Self-Aware MIMO Beamforming Systems :
Dynamic Adaptation to Channel Conditions and
Manufacturing Variability

Suhasini Komarraju and Abhijit Chatterjee
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
Email: skomarraju3 @gatech.edu, abhijit.chatterjee @ece.gatech.edu

Abstract—Emerging wireless technologies employ MIMO
beamforming antenna arrays to improve channel Signal-to-Noise
Ratio (SNR). The increased dynamic range of channel SNR
values that can be accommodated, creates power stress on
Radio Frequency (RF) electronic circuitry. To alleviate this, we
propose an approach in which the circuitry along with other
transmission coding parameters can be dynamically tuned in
response to channel SNR and beam-steering angle to either
minimize power consumption or maximize throughput in the
presence of manufacturing process variations while meeting a
specified Bit Error Rate (BER) limit. The adaptation control
policy is learned online and is facilitated by information obtained
from testing of the RF circuitry before deployment.

Index Terms—MIMO, Adaptation, actor-critic

I. INTRODUCTION

5G and beyond wireless networks employ Multiple Input
Multiple Output (MIMO) beamforming antenna arrays to pro-
vide data rates in multiple Gigabits per second [1]. The wide
range of wireless channel conditions seen by these systems in
the field pose arguments in favor of designing the underlying
electronics to adapt dynamically to such channel conditions
across diverse beamsteering angles. Besides, dynamic adapta-
tion is essential to reduce power consumption while staying
within specified system bit error rate limits for corresponding
wireless channels encountered. Such design is challenging due
to the complex architecture of systems involved [2] and the
performance versus power trade-offs of individual RF and
digital modules used in the design. Power is saved by trading
off linearity of individual amplifier and mixer modules of the
wireless system front-end under varying channel conditions.

Systems for self-learning wireless RF MIMO receivers were
presented in [3], [4] and investigated simultaneous tuning of
RF circuitry and wireless channel coding parameters. These
did not consider beamsteering capability and relied on the
use of neural network training for learning the relationships
between tuning knobs (bias voltages and currents of receiver
circuitry), process parameters, wireless signal quality and
system performance. The learning is performed on-line and
requires dedicated on-board computing resources. Recently,
there has been work on the use of multi-arm bandit rein-
forcement learning for tuning RF power amplifier distortion
parameters [5].
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Fig. 1: Beamforming receiver system

II. PRELIMINARIES AND APPROACH

We consider a 5.9GHz linear (8x1) analog antenna array
receiver system with individual low noise amplifiers (LNA)
and phase shifters connected to each antenna element as
shown in Figure 1. Further, we assume that there are on-board
software-hardware resources to tune the receiver configuration
by varying the bias voltages and currents in the receiver
circuitry. The problem to be solved is defined as follows:
Problem definition: For adaptive beamsteering systems such
as the one shown in Figure 1, the problem is one of determin-
ing a control policy for the wireless front-end circuitry that
modulates its circuit-level tuning knobs (T) (bias voltages and
currents), baseband word length (L), symbol modulation rate
(M) and coding rate (C) in response to channel conditions
(W) and desired beamsteering angle (B) in such a way as
to: (a) minimize energy per bit or (b) maximize throughput
per Watt of the wireless communications system under given
communication bit error rate (BER) constraints.

In this work, error vector magnitude (EVM) is used as a
proxy for BER as it can be estimated much faster than BER
for a specified level of statistical confidence [3].

To determine the control policy, an actor-critic reinforce-
ment learning approach is developed that allows the system
to learn through exposure to real-time wireless channel con-
ditions in field use. There are three aspects to the proposed
approach in solving the above problem:

Step 1. Receiver circuitry characterization: The RF chains in
the receiver are characterized by applying baseband tests to
determine their gain and intermodulation specifications as a
function of their configuration (T). The intermodulation effects
corrupt the received signal, contributing to degraded EVM of
the receiver. A measure of the receiver non-linearity (/N M) as



a function of the tuning knobs T, NM=f(T) is computed. A
non-linear polynomial regressor is used to map to NM value.
Step 2. Wireless channel estimation: The wireless channel
quality determines the EVM of the received signal [6]. Pilot
symbols associated with transmitted data frames are used
to estimate channel quality using least squares estimation
technique [6].

Step 3. Learning the control adaptation policy: The wireless
channel estimated in Step 2 along with the weights of the
regression function determined in Step 1 are passed as inputs
to the learning algorithm. The learning algorithm is based on
actor-critic reinforcement learning. In this, choice of the actor
determines the probability that a particular action ( defined as
vector v with [T,M,C,L] defined above) is selected for a given
receiver state. The state of the receiver is defined by the current
estimated wireless channel and beamsteering angle. The critic
restricts the actions taken based on given EVM constraints.
The critic evaluates the taken action based on EVM, power
consumption and Energy/bit (or Throughput/Watt) values of
the receiver after taking the action. It provides feedback
to the actor so that the probability of an action given a
receiver state, is updated. As the system experiences state-
action combinations and learns over time, given any state, the
optimal action for minimizing (or maximizing) Energy/bit (or
Throughput/Watt) is determined.

III. RECEIVER CIRCUITRY CHARACTERIZATION

At 5.9GHz frequency of operation, a noise cancellation
equipped low noise amplifier (LNA) along with the bias
voltages (VB1, Vb2) used for tuning are shown in Figure 2 is
designed in 130 nm technology [7]. A fully balanced Gilbert
cell type mixer implemented based on the work in [8] is also
given in Figure 2 and is tuned by varying the highlighted Vb
and Vbsw voltages. The phase shifter circuit used is given in
Figure 3. The DI and DQ currents determine the phaseshift
value as tan~!(DQ/DI) and are used for tuning it.
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Fig. 2: Low Noise Amplifier and Mixer

For an ideal RF chain, the input (x(¢)) and output (y(¢)) of the
system are related linearly as y;geqi(t) = aia(t). A real RF
chain exhibits higher order distortions as shown in Equation
1. The oy, as and a5 represent the gain, third order and fifth
order distortions of a RF chain. The research presented in
[9] shows that the tuning parameters (circuit biases mentioned
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Fig. 3: Phase shifter

above) affect the gain and non-linearities. Table I presents the
input sinusoid frequencies applied to each RF chain in an eight
element receiver array to estimate o, as and as. In table I,
f is the minimum baseband frequency tone possible. FFT is
applied to the combined receiver output and the a1, as, as
values are calculated using the amplitudes of the frequency
tones in the resultant output. The input frequencies in table
I are chosen such that, when frequencies given in a column
are applied concurrently to the receiver system, the combined
output has minimal distortion [10].

Yreat(t) = anz(t) + as(2(t))’ + as(2(1)’ (1)
TABLE I: Input frequencies applied to estimate oy, ag & as

RF chain | To estimate o To estimate a3 & as

I f f, 6f

2 o6f 7f,12f
3 7t 13f, 18f
4 8f 191, 24f
5 of 25f, 30f
6 10f 31f, 36f
7 11f 371, 42f
8 13f 43f, 48f

The difference of Yyeq(t) and y;geqi(t) gives the distortion
in the received output of RF chain. Note that this is dependent
on the bias values(T) set for each RF chain and affects the
combined receiver EVM. For a receiver system with N RF
chains set at 7' configuration(as defined by bias values), the
total non-linearity measure (NM) can be given by Equation
2 in which oy; represents the k' order distortion in RF
chain i. The higher the value of NM, the higher is the
distortion and higher is the EVM. By increasing the power
consumption of the circuitry (by varying T), NM can be
decreased. As aresult, given any state, the learning policy must
take actions that result in maximum decrease in N/ while
ensuring minimum increase in power consumption. Hence, a
metric NP which is a function of tuning configuration (T)
and length of digitized output(L) is defined in Equation 3.
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NP — NM (T).
Power consumption(T, L)

3)

For a given device, the circuit tuning parameters (T) and
word-size (L) are varied to estimate the corresponding NP
values. [T,C,M,L] defined in Section II is taken as vector
v’. For a given device, the vector ’v’ is randomly sampled
and the corresponding value NP is noted to form a dataset.
In our receiver design there are 24 bits (3 for the LNA
and mixer each, 16 bits for the phase shifter and 2 bits for
length of digitized output). In a MIMO system with 8 RF
chains, this evaluates to 192 bits of tuning. Hence, generating
and storing the NP value for all possible combinations of
v’ is expensive. A multi-dimensional quadratic polynomial
regression as shown in Equation 4 is applied on the generated
dataset to estimate the corresponding value of NP as M,.. . In
this equation, (3; (V i=0 to 2) are regression vector co-efficients,
v? is a vector obtained by squaring each value in the vector
v and -’ represents the dot product between the vectors. The
final B; values after regression are passed as inputs to the

learner. 7 (v) = Bo + (B1 - v) + (B2 - (1v)?)) “4)
IV. WIRELESS CHANNEL ESTIMATION

In addition to the distortion within the receiver circuitry,
the wireless channel exhibits additive noise and fading char-
acteristics that degrade the received signal. As such, there is a
requirement to estimate the wireless channel. To estimate the
wireless channel quality, 'pilot symbols’ are transmitted along
with data symbols at periodic intervals. If the transmitted pilot
symbols are represented using a diagonal matrix X and the
received symbols by vector Y, the relation between X and Y is
given as Y = X H 4 Z in which Z represents the noise vector
and H gives the channel matrix. Least squares(L.S) channel
estimation states that the estimated channel matrix H Ls 18
one that minimizes the cost function J(H) given in Equation
5 [6] and the corresponding Hyg is also given by the same
Equation. This channel matrix along with estimated SNR [11]
are passed to the learning algorithm as inputs.

JH)=||Y — XH|? and Hy 5 = XY (5)
V. LEARNING THE CONTROL ADAPTATION POLICY

The adaptation control policy is learned using the actor
critic approach [12]. Given any state of the wireless channel,
actions are chosen according to a policy by an actor. The
critic evaluates the system after the action is applied and
updates the actor’s policy such that the actions with maximum
reward, represented by ’r’, are reinforced. In this research,
a state of the system is defined by the estimated wireless
channel quality (W) and beamsteering angle (B). The actions
are vectors of [T,M,C,L] which are defined in Section II. The
actor policy 7(s,a) is given in Equation 6 and denotes the
policy of actor at time step t when the environment is in state
s. The probability that the actor chooses action « in state s and
depends on M,.., obtained from Equation 4 as well as real-
time measurements of power and throughput. In this, (3, (, are
weighing factors chosen so that the value of 7 (s, a) is positive
and less than 1. It is updated by the critic using the function

o given as o¢(s,a) = oi(s,a) + pdy, where p is a positive
parameter and J; is given by §; = 1141 + YV (St41) — V(st).
The critic first estimates the EVM and if it is not within the
chosen limits, it informs the actor to set the probability of
the chosen action to 0. Otherwise, it calculates the temporal
difference error based on the environment before and after
applying the action using the function ¢ defined above. Here,
~ is a positive value and V'(s;) is the value function in
state s at time step t. The value function is defined based
on objective functions (i.e., maximize Throughput/Watt or
minimize Energy/Bit) as given in Equation 7.

Note that initially the learning starts with low non-linearity
and higher power consumption. At each learning step, the al-
gorithm explores lower power but higher non-linearity system
configurations that meet stipulated EVM constraints.
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VI. EXPERIMENTAL RESULTS

The receiver circuitry was implemented using Advanced
Design System (ADS) and the learning algorithm was imple-
mented in Python using Jupyter Notebook. The tuning parame-
ters for the receiver system under consideration are the voltage
and current biases as specified in Section III, modulation rate
and code rate of the wireless system and the FFT wordsize.
The modulation rate of the transmitter was selected to be
16QAM, 64QAM and 128QAM while the code rate was varied
between 0.5 and 0.75. The research in [13] demonstrated that
by decreasing the wordsize, the power consumption in filtering
and FFT operations is reduced. We correlate two wordsizes
10 and 12 with corresponding power consumptions in FFT
operations, 12.1mW and 17.4mW, respectively. Similarly, the
two wordsizes correspond to 17.4mW and 11.8mW power con-
sumption in the FIR filter. Excluding the baseband power, the
power consumption of nominal receiver circuitry described in
Section IV is 60mW without any optimization. Thus a receiver
system without any adaptation consumes around 89mW power.

The power consumption of a receiver system for the two
proposed objective function optimizations (Throughput/Watt
and Energy/Bit) under varying channel conditions is presented
in Figure 4. It can be seen that initially, the power savings
are from the receiver tuning while the wordlength is main-
tained at 12. Around 3.4dB (for energy/bit optimization) and
4.2dB (for throughput/Watt optimization), the word length
changes from 12 to 10 resulting in power savings of around
30mW. Similarly, the resultant optimal throughput for both
optimizations is plotted in Figure 5. It can be seen that the
throughput improves as channel SNR improves due to change
in the modulation rate. It can be observed from Figure 5 that
higher throughput can be achieved with optimization even
for channels with lower SNR than in the case without any
optimization (2Mbps for all channel SNR values). Note that



the change in modulation rate can be observed for varying
levels of throughput.
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Fig. 6: Optimal power consumption across beam angles
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Fig. 7: Learning performance with and without prior regression
for process varied devices

The optimized total power consumption of a receiver system
under Energy per bit optimization is shown for four beam-
steering angles (45°, 90°, 135°, 0°) in Figure 6. It can be
seen that the optimized power profiles vary with varying beam
steering angle. This is due to the difference in gain and power
consumption patterns of phase shifters across different beam
angles.

In Figure 7, the power consumption as a function of the
learning time of the algorithm to optimize Energy/Bit is shown
for two process varied devices. With the help of regression
function guided learning, the power consumption reaches its
optimal value (72% of the original) in both cases. Without the
regression function, both the systems take more time to reach
their optimal points as seen in Figure 7. This demonstrates
the efficiency of the proposed adaptation across process varied
devices as well as the importance of using regression based

actor-critic. VII. CONCLUSIONS

In this work, a reinforcement learning based approach
for power-optimal cross-layer adaptation of beamforming RF
MIMO arrays for dynamically changing channel conditions is
developed. Results indicate that 1.3X-2X improvements are
observed in selected power and energy metrics under diverse
channel conditions.
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