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Abstract
It has been known since work of Lichtenstein [43] and Gunther [30] in the 1920’s that the 3D

incompressible Euler equation is locally well-posed in the class of velocity fields with Hölder continuous
gradient and suitable decay at infinity. It is shown here that these local solutions can develop
singularities in finite time, even for some of the simplest three-dimensional flows.
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1 Introduction
The question of global regularity for solutions to the incompressible Euler equation has been studied by
many authors over the years and is considered a major open problem in the study of partial differential
equations. The purpose of this work is to solve one case of this problem and, additionally, to bring to
light some methods which might prove useful for further studies of the global regularity problem. Our
approach is relatively straightforward: we analyze the various terms of the Euler equation and identify
regimes where some terms become negligible. It turns out that for solutions satisfying certain symmetries
at regularity C1,α with α > 0 small, it is possible to isolate a simple non-linear equation which encodes
the leading order dynamics of the solution to the Euler equation. This simple non-linear equation is
exactly solvable and possesses families of explicit solutions which become singular in finite time in a very
regular way. In fact, after passing to self-similar variables, they satisfy a time-independent equation. We
then search for solutions to the Euler equation which are also self-similar and are close to those found
for the model. It turns out to be possible to deduce the existence of such solutions to the Euler equation
itself using energy and compactness methods as well as basic modulation techniques since the self-similar
solutions to the model equation are stable in a very precise sense.

1.1 The Euler equation
Recall the incompressible Euler equation governing the motion of an ideal fluid on R3:

∂tu+ u · ∇u+∇p = 0, (1.1)

div (u) = 0, (1.2)

u|t=0 = u0. (1.3)
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u : R3 × [0,∞) → R3 is the velocity field of the fluid. p is the force of internal pressure which acts to
enforce the incompressibility constraint (1.2). Incompressibility is a natural property of the fluid: the
velocity field is not allowed to squeeze or expand the volume of a portion of fluid. This makes it difficult
to imagine the formation of singularities in an ideal fluid since any attempt of squeezing the fluid in a
certain direction is met with an expansion in another direction. The incompressibility condition also
ensures that smooth and localized solutions to (1.1)-(1.2) on R3 × [0, T ) satisfy:

d

dt

∫
R3

|u(x, t)|2dx = 0 (1.4)

for all t ∈ [0, T ). This is another reason one might believe that singularities are unlikely. The difficulty is
that, as far as our current knowledge goes, to prevent a solution of (1.1)-(1.2) from forming a singularity
as t → T , we essentially need to know that

∫ t
0

supx |∇u(x, s)|ds is uniformly bounded as t → T . This
follows from viewing (1.1)-(1.2) as an ordinary differential equation, in some sense. This substantial gap
between what we know and what we need to know about solutions to the Euler equation is what is behind
the well-known global regularity problem for the incompressible Euler equation:

Question 1.1. Given a solution u ∈ C∞(R3×[0, T )) to (1.1)-(1.2), is it possible that limt→T supx |∇u(x, t)| =
+∞?

This problem is a major open problem in the theory of partial differential equations. The goal of this
work is to explore the case of “classical solutions,” when C∞ in Question 1.1 is replaced by C1,α for some
α > 0. This is the context within which the classical well-posedness theory of the Euler equation has
been considered starting with the works of Lichtenstein [43] and Gunther [30].

1.2 The vorticity equation
An important quantity to consider when studying ideal fluids is the vorticity vector field

ω := ∇× u.

It satisfies the vorticity equation:
∂tω + (u · ∇)ω = (ω · ∇)u. (1.5)

Since div (u) = 0 we have that ∇ × (∇ × u) = −∆u. Thus, u can be recovered from ω by the so-called
Biot-Savart law:

u = (−∆)−1(∇× ω). (1.6)

For classical solutions (with u ∈ C1,α or, equivalently, ω ∈ Cα for some α > 0), solving (1.1)-(1.2)
is equivalent to solving (1.5)-(1.6) (so long as the vorticity is taken to be divergence-free when solving
(1.5)-(1.6)).

To the author’s knowledge, the first works on the local well-posedness theory of the 3D Euler equation
were completed by Lichtenstein [43] and Gunther [30] in the 1920’s and early 1930’s. They showed that
if u0 ∈ C1,α(R3) for some1 0 < α < 1 and the initial vorticity decays sufficiently rapidly, then there is a
time T > 0 and a unique solution u ∈ C1,α(R3 × [0, T )) to (1.1)-(1.3). We call the solutions constructed
by Lichtenstein [43] and Gunther [30] “Classical Solutions.” Later, Kato [34] and Kato and Ponce [33]
established similar results in the scale of Sobolev spaces.

A well-known result of Beale, Kato, and Majda [3] tells us that a classical solution to (1.5)-(1.6) loses
its regularity as t→ T if and only if

lim
t→T

∫ t

0

sup
x
|ω(x, s)|ds = +∞.

1See Subsection 1.7 for the definition of these spaces.
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In the special case where we consider two-dimensional solutions, where u3 ≡ 0 and u1, u2 are dependent
only on x1 and x2, we have that ω · ∇u ≡ 0 so that

sup
x
|ω(x, t)| = sup

x
|ω(x, 0)|,

for any t ≥ 0. Consequently, two-dimensional classical solutions to (1.5)-(1.6) cannot develop a singularity
in finite time.

For fully three-dimensional solutions such bounds are not available and, in fact, are known to be false
in general [26]. We will show here that this lack of bounds was actually a sign of a more alarming fact:
that the classical local theory for solutions to the 3D Euler equation cannot be made into a global one.

1.3 Statement of the Main Theorem
Definition 1.2. A velocity vector field u : R3 → R3 will be called odd if ui is odd in xi and even in the
other two variables for each 1 ≤ i ≤ 3.

The following theorem is the main result of the present work.

Theorem 1. There exists an α > 0 and a divergence-free and odd u0 ∈ C1,α(R3) with initial vorticity
|ω0(x)| ≤ C

|x|α+1 for some constant C > 0 so that the unique local odd solution to (1.1)-(1.3) belonging to
the class C1,α

x,t ([0, 1)× R3) satisfies

lim
t→1

∫ t

0

|ω(s)|L∞ds = +∞.

Remark 1.3. The solution ω is exactly self-similar. That is, it takes the form:

ω(x, t) =
1

1− t
F
( x

(1− t)ξ
)

for some constant ξ > 0. As t approaches t = 1 (from below), ω develops a singularity like |x|−β near
the origin for some small β > 0.

Remark 1.4. The solutions of Theorem 1 have infinite energy and do not satisfy (1.4). Note, however,
that if one allows for a uniformly C1,α external force, blow-up for finite energy solutions follows almost
directly from the above result.

More than this, we show in a joint work with T. Ghoul and N. Masmoudi [19] that these solutions
can be localized to locally self-similar solutions with compactly supported vorticity and without external
force since the blow-up is stable to certain kinds of perturbations that allow us to construct a L2 ∩C1,α

classical solution that becomes singular in finite time [19]. We will discuss this point in more detail on a
model problem at the end of Section 3.

Besides, at a more heuristic level, this result should not be confused with previous blow-up results for
infinite energy solutions such as the ones in ([53],[11],[28]); indeed, in all these cases the vorticity itself
grows linearly at spatial infinity and the blow-up occurs on an infinite line or plane. The vorticity is
decaying in our case and the blow-up occurs at a single point. This is what makes it possible to localize
the blow-up.

Remark 1.5. The solutions of Theorem 1 that we construct here are axially symmetric and without
swirl. It is known that sufficiently smooth (in particular, C∞) axi-symmetric solutions without swirl are
globally regular; however, all the available global regularity results seem to require the velocity field to
be at least C1, 13 + smooth. Heuristics suggest that this regularity threshold is actually sharp and that
there exist axi-symmetric solutions in C1, 13− which become singular in finite time. We also remark,
importantly, that while the methods used here are applicable to axi-symmetric solutions without swirl,
it is likely that they are also applicable in less rigid geometries and that in such settings one might be
able to get much smoother solutions which develop singularities.
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1.4 Previous works on singularity formation
There are numerous previous works on the global regularity problem and we will only discuss a few which
are directly relevant to this work. A more extensive list of works can be found in the book [46], the
review papers [27], [2], [8], and [37], the numerical work [45] as well as the author’s work with I. Jeong
[25]. We will discuss three types of results here: blow-up criteria, infinite-time singularity formation, and
model problems. We will not be discussing weak solutions in any detail but we refer the reader to the
recent review papers [14] and [4].

The most well-known blow-up criterion is that of Beale, Kato, and Majda [3] which we have already
seen; it states that singularities in classical solutions occur if and only if the vorticity becomes unbounded.
Another blow-up criterion is due to Constantin, Fefferman, and Majda [12] and dictates that if the velocity
field remains uniformly bounded and the direction of the vorticity remains uniformly Lipschitz continuous
up to time T , then there is no singularity at time T . This can be seen as a generalization of the global
regularity for two-dimensional flows. Further advances in this direction have been made in [15]. Another
line of work in the direction of ruling out singularities is devoted to self-similar singularities. That is, one
postulates a form for the solution like

ω(x, t) =
1

(1− t)α
F (

x

(1− t)β
).

Then F satisfies a time-independent equation which can be studied directly. Several authors have ruled
out self-similar singularities for the Euler and Navier-Stokes equations (see [5], [6], [57], and [48]). In
the case of the Euler equations, usually this is done under quite strong decay conditions on the vorticity.
Since the profile we construct decays very slowly at spatial infinity, it does not contradict any of those
results.

In terms of results on singularity formation in the Euler equations, most of them have to do with
infinite time singularity formation in two dimensions. We mention without details the results of Yudovich
[59], Nadirashvilli [47], Denisov ([16], [17]), Kiselev and Šverák [39], and Zlatoš [60]. There are also a few
results on infinite time singularity formation in the 3D Euler equations such as [59], [26], and [18]. To the
author’s knowledge, the only result on finite-time singularity formation for finite-energy solutions to the
3D Euler equation prior to the present one is that of the author and I. Jeong [25] on hour-glass shaped
axi-symmetric domains with a sharp corner. It was shown that a natural local well-posedness theory can
be established on those domains, but that solutions with (constant) finite energy could become singular
in finite time. This was done by taking advantage of the scaling and rotational symmetries of the 3D
Euler equation. It remains open whether those methods can be used to give a singularity on R3 though
there seems to be some evidence that this can be done. The present work, however, follows a different
philosophy which is closer to the study of simplified models of the Euler equation which we discuss next.

Because the dynamics of solutions to (1.5)-(1.6) is still not well understood due to the many facets of
the equations, many model equations have been devised to study some of the basic elements that make
up the Euler equations. The first model problem we will discuss was introduced by Constantin, Lax, and
Majda [9] to investigate the amplifying effects of the vortex stretching term in a non-local model. For
this model, almost all of the geometric properties of the vorticity equation are neglected, the advection
term is neglected and we get:

∂tω = ω∂xu.

Moreover, the Biot-Savart law is replaced by

u = (−∆)−
1
2ω.

After all these reductions, it is not surprising that the resulting model can be solved explicitly. Indeed,
this was shown in [9] and a necessary and sufficient condition for singularity formation for smooth and
localized solutions was found. A skeptical observer might view these reductions as baseless, but the
surprising fact is that these reductions turn out to be quite meaningful and serve as a motivation for
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the present work. We should remark that if one retains the advection term in the above model, not
much is known about the equation though there have been a few recent advances on that problem ([23],
[32], [42]); it has been conjectured by several authors that retaining the advection term u∂xω actually
leads to global regularity (see Section 3 for more on this point). One work in this direction which we are
drawing inspiration from is [23] where it is shown that the regularizing effect of the advection term can
be minimized by considering vorticity at Cα regularity with α small.

After the numerical work of Luo and Hou [45] and the work of Kiselev and Šverák [39], several other
model problems related to the scenario in [45] were considered (see [7], [38], for example). One of the
ideas in these works is to study scenarios where the Biot-Savart law (1.6) can be decomposed into a main
singular term and a more regular lower order term. This idea also informs what we do here. In addition
to the above works, there have been also been a few recent works by T. Tao exploring singularities for
other types of model problems and the possibility of finite-time singularity for the Euler equations on
manifolds of high dimension ([56], [55], [54]).

1.5 Classical vs. Smooth and R3 vs. R3
+

It is important to say this directly: It is still open whether C∞ solutions to the incompressible Euler
equation on R3 can develop a singularity in finite-time; we have merely shown singularity formation for
C1,α solutions for some α > 0. Furthermore, the degree of regularity of solutions plays a key role in the
construction presented here. It must also be emphasized, however, that this limitation on the regularity
of the data can most likely be improved significantly in the presence of physical boundaries or by applying
the methods to scenarios less rigid than zero-swirl axi-symmetric solutions (though the construction will
have to be modified accordingly). Indeed, it is well known to specialists that if the vorticity of an Euler
solution is non-zero on spatial boundaries, then this is analogous to considering solutions on R3 which
have jumps in its vorticity (that is, the regularity of the velocity field would only be Lipschitz continuous
on R3). A relevant case is when the domain is R3

+. Any solution to the incompressible Euler equation on
R3

+ satisfying the (natural) no-penetration boundary condition can be extended to a solution on R3 by
extending the first and second components of the vorticity as odd functions in the third variable, x3, and
the third component of the vorticity as an even function in x3. Likewise, any solution on R3 satisfying
these symmetries can be restricted to R3

+ and will solve the Euler equation with the natural boundary
condition. Consequently, if the first and second components of the vorticity of a solution on R3

+ do not
vanish on x3 = 0, it can actually be viewed as a solution on R3 which jumps across the plane x3 = 0. In
this case, the regularity of the velocity field on R3 will not even be C1. This point is also explored in the
second example of Section 3. In this sense, it is not possible to compare blow-up on a smooth domain
(when the vorticity is non-vanishing on the boundary), such as the one which is numerically predicted
to occur in [44], with the result of the present work. Each blow-up result has different advantages and
deficiencies but both would answer fundamental questions, in my view.

To wrap this point up, I should say that it is conceivable that some of the methods that already exist
in the literature (including this work) could be used to produce an example of singularity formation for
smooth solutions on a domain with smooth boundary (like R3

+) or even for C1,α(R3) solutions for any
α < 1. The global regularity problem for C∞ and localized solutions on R3, on the other hand, seems
quite far as of now, though there are claims of numerical evidence for breakdown in that case as well (see
[35]-[36] and [40], for example).

1.6 Organization
The introductory material comprises the first three sections of this work. The first section is general. Sec-
tion 2 describes the exact setup of this work. Section 3 provides a few simple examples which demonstrate
some of the ideas behind this work. Section 4 provides a basic analysis of the “Fundamental Model” which
encodes the leading order dynamics of the type of solutions we are looking for as described in Section
2. Section 5 describes the coercivity of the linearization of the fundamental model around its self-similar
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solutions. Section 6 gives the coercivity estimates for the linearization of the fundamental model along
with the relevant angular transport term. Section 7 gives elliptic estimates which allow us to approximate
the main non-local terms as described in Subsection 2.2. Section 8 gives some useful information about
the function spaces we are working in. In Section 9 we set up the exact equation for the perturbation
to the solution of the fundamental model, prove the relevant a-priori estimates on the perturbation, and
construct the full self-similar solution.

1.7 Notation
In this subsection we give a guide to the notation used in the main part of the paper (Sections 2, 5-9).
Note that in the general discussions of Sections 3 and 4, slightly different conventions will be used.

1.7.1 Functions, variables, and parameters

With the exception of introductory parts of this work, r will generally denote the two dimensional radial
variable:

r =
√
x2

1 + x2
2.

θ will denote the angle between r and x3:

θ = arctan(
x3

r
),

so that θ = 0 corresponds to the plane x3 = 0 while θ = ±π2 corresponds to the x3 axis. ρ will denote
the three dimensional radial variable

ρ =
√
r2 + x2

3.

R will denote ρα:
R = ρα

(where α > 0 is a constant which will be small). z, on the other hand, will generally denote the self-similar
radial variable:

z =
R

(1− (1 + µ)t)1+λ

where λ and µ are small constants. Functions in this paper will generally take the variables z and θ or
R, θ, and t (dependence on t is usually suppressed). Because the axial vorticity will be odd in the third
variable, the θ variable will generally be in [0, π/2] while the z variable will usually be in [0,∞). The
main parameters we will use are:

η =
99

100
, α > 0, γ = 1 +

α

10
.

α will be chosen at the end to be very small. In the later sections we use the functions

Γ(θ) = (sin(θ) cos2(θ))α/3

and
K(θ) = 3 sin(θ) cos2(θ).

We will often use c to denote a small constant and C to denote a large constant. These constants will
change from line to line but will be universal and independent of the main parameters α and γ.
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1.7.2 Norms and Operators

We first define the L2 inner product:

(f, g)L2(Ω) =

∫
Ω

fg

and norm
|f |L2 =

√
(f, f)L2(Ω),

where Ω is the spatial domain. Often we will not write the subscript L2 in the norm and/or the inner
product and the meaning will have to be understood from context. For a bounded continuous function
f , we define

|f |L∞(Ω) = sup
x∈Ω
|f(x)|.

We also define the Hölder spaces using the norms:

|f |Cβ(Ω) = sup
x∈Ω
|f |+ sup

x 6=y

|f(x)− f(y)|
|x− y|β

.

If f ∈ C1 we say that f ∈ C1,β when ∇f ∈ Cβ . When the domain Ω is clearly understood from context,
we often omit writing it.

Warning : In most of this paper, we will be working in some form of polar or spherical coordinates
and will be using spaces like L2([0,∞) × [0, π/2]) or similar spaces where the relevant variables are a
radial and angular variable. The norm on this space is the usual L2 norm with the measure drdθ and
not the measure rdrdθ.

We define the weights

w(z) =
(1 + z)2

z2
,

wθ(θ) =
1

sin(2θ)
γ
2

,

and
W = w · wθ.

We also define the differential operators:

Dθ(f) = sin(2θ)∂θf, DR(f) = R∂Rf,

and
Dz(f) = z∂zf.

We define the space H by the norm:

|f |H = |f w

sin(2θ)η/2
|L2 . (1.7)

We define the Hk([0,∞)× [0, π/2]) norm:

|f |2Hk =
k∑
i=0

|Di
Rf

w

sinη/2(2θ)
|2L2 +

∑
0≤i+j≤k,i≥1

|Dj
RD

i
θfW |2L2 . (1.8)

We also define the W l,∞ norm:

|f |Wl,∞ =
∑

0≤k≤l

|(z + 1)k∂kz f |L∞ +
∑

1≤k+j≤l,j≥1

|(z + 1)k∂kzD
j
θf

sin(2θ)−
α
5

α+ sin(2θ)
|L∞ . (1.9)
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It is clear that any smooth function with sufficient z decay belongs to W l,∞ due to the inequality:

sup
x∈[0,1],ε∈[0,1]

x1−ε

ε+ x
≤ 1.

The basic example of a W l,∞ function is the function

Γ(θ)
z

(1 + z)2
.

Remark 1.6. By the above we mean that the space Hk is the closure of C∞c ((0,∞)× (0, π/2)) functions
in the Hk norm.

Define the integral operator L12 : L2([0,∞)× [0, π/2])→ L2([0,∞)) by

L12(f)(z) =

∫ ∞
z

∫ π/2

0

f(r, θ)
K(θ)

r
dθdr.

1.7.3 Linearized Operators

Also define the linearized operators L, LΓ, and LTΓ as follows:

L(f) = f + z∂zf − 2
f

1 + z
,

LΓ(f) = f + z∂zf − 2
f

1 + z
− 2zΓ(θ)

c(1 + z)2
L12(f),

and
LTΓ (f) = LΓ(f)− P(

3

1 + z
sin(2θ)∂θf),

where

P(f)(z, θ) = f(z, θ)− Γ(θ)

c∗

2z2

(1 + z)3
L12(f)(0).

2 The Setup
A natural idea to use to establish singularity formation for solutions to the 3D Euler equation is to try to
reduce as much as possible the complexity of the solutions we are studying. One of the simplest examples
of three dimensional flows are the axi-symmetric flows without swirl. Such velocity fields are symmetric
with respect to rotations which preserve the x3 axis and have zero axial velocity (see [46] for more details).
In this case, the vorticity equation and Biot-Savart law become the much simplified system (2.1)-(2.3)
below.

We start with the axi-symmetric 3D incompressible Euler equations (with vanishing swirl):

∂tω + u · ∇r,x3ω =
1

r
urω,

where ∇r,x3
= (∂r, ∂x3

) and u = (ur, u3) is determined as follows. First we solve the elliptic problem2:

∂r(
1

r
∂rψ̃) +

1

r
∂33ψ̃ = −ω

2Note that the − sign on the left hand side is not conventionally added, but there is no difference up to a change of
variables.
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and then we set
ur =

1

r
∂3ψ̃ u3 = −1

r
∂rψ̃.

Next, in order to fix the homogeneity, we set ψ̃ = rψ. Then we have:

ur = ∂3ψ u3 = −1

r
ψ − ∂rψ

and
∂r(

1

r
∂r(rψ)) + ∂33ψ = −ω,

which leads us to the system:

∂tω + ur∂rω + u3∂3ω =
1

r
urω, (2.1)

− ∂rrψ − ∂33ψ −
1

r
∂rψ +

ψ

r2
= ω, (2.2)

ur = ∂3ψ u3 = −1

r
ψ − ∂rψ. (2.3)

The problem is normally set on the spatial domain {(r, x3) ∈ [0,∞)× (−∞,∞)} and the elliptic problem
(2.2) is solved with the boundary condition ψ = 0 on r = 0. We will start by imposing an odd symmetry
on ω with respect to x3. That is, we search for solutions with:

ω(r, x3) = −ω(r,−x3)

for all r, x3. Consequently, we may reduce to solving on the domain [0,∞)× [0,∞) while enforcing that
ψ vanish on r = 0 and x3 = 0 when solving (2.2):

ψ(r, 0) = ψ(0, x3) = 0, (2.4)

for all r, x3 ∈ [0,∞). We note that with these conditions, the original ψ̃ actually vanishes quadratically
on r = 0. Note also, that for the full three dimensional vorticity to be C∞ a necessary condition is that
ω vanish at least linearly on r = 0. We are only interested in Hölder continuous solutions so we only
impose that ω vanishes on r = 0 for now.

Let us make a few remarks about the system (2.1)-(2.3). Since solutions to this system are auto-
matically solutions to the 3D Euler equation, any Cα solution to (2.1) with sufficient decay at infinity
and which vanishes on r = 0 is a classical solution to the full 3D Euler system and thus falls into the
range of applicability of the local well-posedness results of Lichtenstein [43] and Gunther [30]. Global
well-posedness for this system has been established by Ukhovskii and Yudovich [58] under the additional
assumption that ω0

r ∈ L
∞. This assumption was later relaxed to ω0

r ∈ L
3,1(R3) by Serfati [51], Saint-

Raymond [49], Abidi, Himidi, and Keraani [1], Shirota and Yanagisawa [52], and Danchin [13] in various
settings. In particular, in the scale of Hölder spaces, global regularity of axi-symmetric solutions without
swirl remained open if u ∈ C1,α for 0 < α ≤ 1

3 . Here we construct a self-similar solution with a finite-time
singularity when α is small.

We will now proceed to explain how we are going to prove existence of a self-similar blow-up solution
to (2.1)-(2.3). The reader may find the following schematic helpful:

Full 3D Euler =⇒ Axisymmetric without swirl =⇒ Neglect the regular part of the singular integral

=⇒ Remove the transport terms =⇒ Solve =⇒ Stability
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2.1 Passing to a form of polar coordinates
First we define ρ =

√
r2 + x2

3 and θ = arctan(x3

r ) and set R = ρα for some (small) constant α > 0.
Then we introduce new functions ω(r, x3) = Ω(R, θ) and ψ(r, x3) = ρ2Ψ(R, θ). We now show the forms
of (2.1), (2.2), and (2.3) in the new coordinates. Note that

∂r →
cos(θ)

ρ
αR∂R −

sin(θ)

ρ
∂θ ∂3 →

sin(θ)

ρ
αR∂R +

cos(θ)

ρ
∂θ

u in terms of Ψ

From (2.3) and the above facts we see:

ur = ρ
(

2 sin(θ)Ψ + α sin(θ)R∂RΨ + cos(θ)∂θΨ
)

while
u3 = ρ

(
− 1

cos(θ)
Ψ− 2 cos(θ)Ψ− α cos(θ)R∂RΨ + sin(θ)∂θΨ

)
Evolution equation for Ω

Observe that using the above calculations, (2.1) becomes

∂tΩ+(−3Ψ−αR∂RΨ)∂θΩ+(∂θΨ−tan(θ)Ψ)αR∂RΩ =
1

cos(θ)

(
2 sin(θ)Ψ+α sin(θ)R∂RΨ+cos(θ)∂θΨ

)
Ω.

(2.5)
One can notice that the quantity Ω

cos(θ)R
1
α

(which is ω
r ) is exactly transported.

Relation between Ψ and Ω

After some calculations3 (2.2) becomes:

− α2R2∂RRΨ− α(5 + α)R∂RΨ− ∂θθΨ + ∂θ
(

tan(θ)Ψ
)
− 6Ψ = Ω. (2.6)

with the boundary conditions:
Ψ(R, 0) = Ψ(R,

π

2
) = 0

for all R ∈ [0,∞).

2.2 Reductions by taking α small and looking at R = 0

Up to now all we have done is a change of variables. Now we start to make reductions. First, by analyzing
the equation (2.6) (according to the analysis done in Section 7), we realize that

Ψ =
1

4α
sin(2θ)L12(Ω) + lower order terms,

with

L12(Ω) =

∫ ∞
R

∫ π
2

0

Ω(s, θ)
K(θ)

s
dsdθ,

with K(θ) = 3 sin(θ) cos2(θ). The idea behind this is that one first tries to derive L2 estimates for
solutions of (2.6). If one multiplies by Ψ and integrates, it becomes apparent that the a-priori estimate

3See the calculation preceding (7.1).
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blows up as α → 0. This leads to studying (2.6) when α = 0. It then becomes apparent that sin(2θ) is
in the kernel of the operator

L0(Ψ) = −∂θθΨ + ∂θ(tan(θ)Ψ)− 6Ψ

while sin(θ) cos2(θ) is the unique element of the kernel of the adjoint. Thus, a necessary (and sufficient)
condition to solve L0(Ψ) = Ω is that Ω is orthogonal to sin(θ) cos2(θ). When α > 0 there is no solvability
condition but α independent bounds are gotten by first subtracting a specific term which is the main term
in the expansion above. An important observation is that the “lower order terms” in the expansion of Ψ
above all must vanish at R = 0, in addition to being smaller than the leading order term in magnitude
as α→ 0.

Next, we neglect all terms which vanish quadratically at R = 0 and contain a factor of α. The reason
we do this is that the equation which we will eventually get has self-similar blow-up which is stable under
these kinds of perturbations. We thus write:

−3Ψ− αR∂RΨ ≈ − 3

4α
sin(2θ)L12(Ω), ∂θΨ− tan(θ)Ψ ≈ 1

4α
(2 cos(2θ)− 2 sin2(θ))L12(Ω)

1

cos(θ)

(
2 sin(θ)Ψ + α sin(θ)R∂RΨ + cos(θ)∂θΨ

)
≈ 2

4α
L12(Ω)

After (time) scaling out a constant factor and neglecting the above-mentioned terms in (2.5) we get:

∂tΩ−
3

2α
sin(2θ)L12(Ω)∂θΩ + L12(Ω)(cos(2θ)− sin2(θ))R∂RΩ =

1

α
L12(Ω)Ω. (2.7)

Notice that the second transport term on the left looks much smaller than the other two non-linear
terms in the equation. The reason we have kept it is to balance the first transport term. Indeed, for
this model, it is very likely that if Ω is smooth in θ there is global regularity. However, if one considers
solutions which roughly behave like R(sin(θ) cos2(θ))α/3 near R = 0, a simple computation shows that
the first two terms are annihilated to leading order. This is a key observation which now leads us to
neglect the transport terms.

2.3 Dropping the transport term
From the discussion above, if we view the solution Ω as being of the form: Ω(R, t, θ) = (sin(θ) cos2(θ))α/3Ω∗(R, t),
then the transport term becomes negligible in front of the term 1

αL12(Ω)Ω since

| sin(2θ)∂θ(sin(θ) cos2(θ))α/3| ≤ 2α(sin(θ) cos2(θ))α/3

and α is small. For this reason, we drop the transport terms4 and now study the equation:

∂tΩ =
1

α
L12(Ω)Ω, (2.8)

L12(Ω) =

∫ ∞
R

∫ π
2

0

Ω(s, θ)
K(θ)

s
dsdθ. (2.9)

This is what we call the fundamental model in this paper. It turns out that this equation possesses simple
self-similar blow-up solutions which

1. have a fixed dependence on θ which can be freely chosen

2. are of order α,
4Note that when we come to estimating the effects of dropping the transport terms we will only do so in an energy-type

argument using integration by parts since otherwise we would incur a loss of derivatives.
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3. are spectrally stable to perturbations which vanish quadratically at R = 0.

In particular, there are solutions to the fundamental model of the form:

Ω(R, θ, t) = Γ̃(θ)
1

1− t
F
( R

1− t

)
for F (z) = 2z

(1+z)2 and for essentially any Γ̃ (in particular we can take Γ = c(sin(θ) cos2(θ))α/3 for some
fixed constant c > 0 close to 1 uniformly in α).

(1) and (3) above is what allows us to indeed neglect the transport terms (to first order in R, we can
choose an angular dependence which forces the transport terms to vanish). (2) and (3) is what allows us
to neglect the rest of the terms. By carefully choosing the spaces where we are working, the preceding
considerations can be made rigorous and the reductions can be justified. After all this is done, we thus
prove existence of a self similar solution to (2.5)-(2.6) near the one for the fundamental model with the
angular dependence prescribed by the transport terms.

Remark 2.1. It is important to mention the exact geometry of the solution constructed. Particles flow
down the x3 axis and outward on the x3 = 0 plane. Because of the weak vanishing of vorticity on the
axis of symmetry, vorticity accumulates near the origin and becomes infinite at the time of singularity.

3 Three Examples
In this section we give examples of two equations with structure similar to the 3D Euler equation which
highlight the effects of Cα regularity of the vorticity and/or the effects of spatial boundaries. We also
give an example of how to continue a self-similar blow-up in a very simple model problem (which will be
useful to understand the general scheme of the proof of Theorem 1). The first two examples are based
on the following general principle:

The vortex stretching term in (1.5) tends to cause vorticity growth while the advection term tends to
deplete that growth. Thus, singularities should be found in scenarios where the depletion from advection
is minimized.

The following two examples show how low regularity in the vorticity or solid boundaries on which the
vorticity does not vanish (which, as we mentioned, is essentially equivalent to a jump in the vorticity!)
can stop the regularizing effect of the advection term. As far as the author knows, these are the only
scenarios known to have this effect, but there may be others. We remark that the idea that the advection
term in 3D Euler and Navier-Stokes is regularizing is present in work of Hou and Lei [31]. Also see work
of Larios and Titi in this direction [41].

3.1 First Example
We consider the following active scalar model:

∂tω + u∂xω = ω∂xu (3.1)

− ∂xxu = ω. (3.2)

If we are solving this equation on S1, we should impose that
∫
S1 ω = 0 (which we may assume on the

initial data). Now we recall from [50] that this system satisfies

1. If we solve (3.1)-(3.2) in [0, π] with the natural boundary conditions and if ω is non-vanishing on
[0, π], then ω may become singular in finite time.
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2. If we solve (3.1)-(3.2) on S1 with Cα data for some α < 1, the unique local solution may become
singular in finite time.

3. If we solve (3.1)-(3.2) on S1 with C1 data, the solution is global.

These points lead us to the following conclusion:

• Either by imposing solid boundaries at which the vorticity does not vanish or by taking the vorticity
to vanish on that spatial boundary to order |x|α for some α < 1, the regularizing effect of the
advection term can be overcome. Otherwise, solutions are global due to the regularizing effect of
the advection term.

3.2 Second Example
We now present a second example which can be seen as the motivation for this whole work. Consider the
following 2D system

∂tω − (x1λ(t),−x2λ(t)) · ∇ω = ∂1ρ (3.3)

∂tρ− (x1λ(t),−x2λ(t)) · ∇ρ = 0, (3.4)

λ(t) =

∫
R2

y1y2

|y|4
ω(y, t)dy. (3.5)

This can be seen as a local model of the dynamics of solutions to the 3D axi-symmetric Euler equation
(with swirl) away from the axis of symmetry near a hyperbolic stagnation point which we take to be
(0, 0). We remark that this also serves as a toy model of the scenario discovered in the numerical work
[45]. We consider solutions with ω odd in x1 and x2 separately and ρ odd in x2 and even in x1. For such
solutions, we have the following:

1. If ω0, ∂1ρ0 ∈ C2
c (R2) the unique local solution to (3.3)-(3.5) is global.

2. There exist ω0, ∂1ρ0 ∈ C∞c (R2
+) so that the unique solution to (3.3)-(3.5) develops a singularity in

finite time.

The proof of both statements follows essentially by solving the equation. First we introduce

µ(t) = exp
(∫ t

0

λ(s)ds
)
.

For simplicity we assume that ω0 ≡ 0 (this assumption can be easily removed). Then we see that the
unique local solution of (3.3)-(3.5) can be written as:

ω(x1, x2, t) = ∂1ρ0(µ(t)x1,
x2

µ(t)
)

∫ t

0

µ(s)ds.

Consequently,
µ̇(t)

µ(t)
=
(∫ t

0

µ(s)ds
)(∫ ∞

0

∫ ∞
0

y1y2

|y|4
∂1ρ0(µ(t)y1,

y2

µ(t)
)dy1dy2

)
.

Case 1: Smooth on R2:
The important point is that when ρ is C2 and compactly supported on R2, we must have that

|∂1ρ0(x1, x2)| ≤ |x1x2|D(x1, x2)

for x1, x2 small for D a uniformly bounded and compactly supported function. Consequently,∣∣∣ µ̇(t)

µ(t)

∣∣∣ ≤ C ∫ t

0

µ(s)ds

∫ ∞
0

∫ A
µ(t)

0

(y1y2)2

|y|4
dy1dy2 ≤ C

∫ t

0

µ(s)ds

∫ A
µ(t)

0

y1dy1 ≤
C

µ(t)2

∫ t

0

µ(s)ds.
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Thus, µ remains bounded for all finite times.
Case 2: Smooth on R2

+.
Now let’s look at the case when ρ0 is just smooth on R2

+ and not vanishing on x2 = 0. We take
∂1ρ0(x1, x2) to be a smooth odd-in-x1 function on (−∞,∞) × [0,∞) equal to x1 on [0, 1]2, vanishing
outside of [0, 2]2 and non-negative on [0,∞)2. In this case, we again have:

µ̇(t)

µ(t)
=
(∫ t

0

µ(s)ds
)(∫ ∞

0

∫ ∞
0

y1y2

|y|4
∂1ρ0(µ(t)y1,

y2

µ(t)
)dy1dy2

)
≥
(∫ t

0

µ(s)ds
)
µ(t)

(∫ µ(t)

0

∫ 1
µ(t)

0

y2
1y2

|y|4
dy1dy2

)

=
(∫ t

0

µ(s)ds
)
µ(t)

(∫ µ(t)

0

∫ 1
µ(t)

0

y2
1y2

|y|4
dy1dy2

)
=

1

2

(∫ t

0

µ(s)ds
)
µ(t)

∫ 1
µ(t)

0

y2
1

( 1

y2
1

− 1

y2
1 + µ(t)2

)
dy1 ≥

1

10

∫ t

0

µ(s)ds,

so long as µ(t) ≥ 1. Thus,

µ̇(t) ≥ cµ(t)

∫ t

0

µ(s)ds

for some fixed c > 0. Since µ(0) = 1, µ becomes infinite in finite time.

Remark 3.1. The above calculation shows that if ρ0 vanishes to order yα at y = 0 with α sufficiently
small, then there will still be singularity in finite time on R2.

3.3 Stable singularity formation in the simplest setting
In this subsection we explore the problem of finite time-singularity formation in the ODE:

∂tf = f2 + εN(f), (3.6)

for x, t ∈ [0,∞). Here N is a quadratic non-linearity with total degree zero5 satisfying some natural
conditions and ε is a small constant. The question we wish to consider is: how can we efficiently show
that the blow-up for the ε = 0 problem persists when ε > 0. Our goal is to have a method which is flexible
enough to handle non-linearities N which may include derivatives and non-local operators at least. This
is, admittedly, just an exercise, so those familiar with these types of questions and the methods to solve
them can skip this part all together.

We first observe that when ε = 0 we have the self similar solution:

f(x, t) =
1

1− t
F∗(

x

1− t
),

with F∗(z) = 1
1+z . Now we search similarly for a solution to (3.6) now of the form

f(x, t) =
1

1− (1 + µ)t
F (

x

(1− (1 + µ)t)1+λ
).

If ε is small, we should think that µ, λ = O(ε) and F = F∗ +O(ε). We see that

(1 + µ)F + (1 + λ)(1 + µ)z∂zF = F 2 + εN(F ).

Now we write F = F∗ + g. Then,

g+z∂zg−
2

1 + z
g = −µF∗−(µ+λ+λµ)z∂zF∗−(µ+λ+λµ)g−(µ+λ+λµ)z∂zg+εN(F∗+g)+g2. (3.7)

5By this we mean that for λ > 0, if fλ(·) = f(λ·), then N(fλ) = N(f)λ
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We re-write this as:

L(g) = −µF∗ − (µ+ λ+ λµ)z∂zF∗ − (µ+ λ+ λµ)g − (µ+ λ+ λµ)z∂zg + εN(F∗ + g) + g2.

Now, after studying L = Id + z∂z − 2
1+z Id a little bit, it becomes apparent that L is a coercive operator

on the weighted L2 space with weight (z+1)2

z2 and properly weighted Hs spaces. In particular, in order to
solve for g, we need g and the RHS of (3.7) to vanish at least quadratically at z = 0. We just choose µ and
λ so that the right hand side vanishes quadratically at z = 0 assuming that g itself vanishes quadratically.
In particular, evaluating the right hand side at z = 0 to 0th and 1st order we see:

0 = −µ+ εN(F∗ + g)(0)

0 = µ+ (µ+ λ+ λµ) + ε∂z(N(F∗ + g))(0).

In particular, we can solve for µ and λ explicitly in terms of εN(F∗ + g). Making the above choices for
µ and ε, we now observe that if X is a weighted H1 space in which L satisfies

(Lg, g)X ≥ c|g|2X ,

then we have from (3.7) that
c|g|2X ≤ Cε(|g|X + |g|2X) + |g|3X ,

which yields the a-priori estimate:
|g|X ≤ Cε,

when ε is small enough.
One difficulty we will face is that the ε = 0 problem in our setting is actually the “fundamental model”

which we describe in the coming section which is, itself, non-local and multivariable. As can be expected,
the linearized operator requires a non-local condition to be coercive. For this reason, the actual argument
is not as simple as the one above, but there is a lot to be gained from studying (3.6) and (3.7) first.

3.3.1 Localization

Taking the above example further, we want to explain how the above stability at the level of self-similar
solutions can be used to establish non-linear stability of the blow-up (and, ultimately, a finite-energy
version of the main theorem). As remarked above, the full details of this argument for the Euler equation
is given in the joint work with Ghoul and Masmoudi [19], but here we explain how this can be done on
the above simple model.

Let us start with
∂tf = f2. (3.8)

We know that there is a self-similar solution. Now let us suppose that we want to know whether this
solution is “stable” among general solutions (not just self-similar solutions to nearby problems). We
formalize this as follows. Let us assume that nice functions µ̄(t), λ̄(t) are given and let us write the
solution to (3.8) as:

f(x, t) =
1

λ̄(t)
F
( µ̄(t)x

λ̄(t)
, t
)
.

Let us define the variables
z =

µ̄(t)

λ̄(t)
x,

ds

dt
=

1

λ̄
.

The above change of variables can always be done (locally in time) under mild assumptions on λ̄, µ̄. Now
let us see what equation we get for F :

∂sF −
λs
λ
F +

(µs
µ
− λs

λ

)
z∂zF = F 2, (3.9)
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where λs = dλ
ds and µs = dµ

ds . Our self-similar solution is a solution triple:

F (z, t) = F∗(z), λs = −λ, µ ≡ 1.

Now all we wish to know is whether this solution triple is spectrally stable. Looking at solutions of the
form F = F∗ + g, we get

∂sg + g + z∂zg − 2F∗g =
(λs
λ

+ 1
)

(F∗ + z∂zF∗)−
µs
µ
z∂zF∗ +

(λs
λ

+ 1
)

(g + z∂zg)− µs
µ
z∂zg + g2,

which is just

∂sg + L(g) =
(λs
λ

+ 1
)

(F∗ + z∂zF∗)−
µs
µ
z∂zF∗ +

(λs
λ

+ 1
)

(g + z∂zg)− µs
µ
z∂zg + g2.

Note that the first two terms on the right hand side are treated as linear terms and are chosen merely to
keep g in the space where L is positive. The last three terms on the right hand side are non-linear terms
and are treated just with energy arguments. For g0 small, we choose λ, µ so that we can close estimates
of the form ∣∣∣λs

λ
+ 1
∣∣∣+ |µs

µ
|+ |g|X ≤ Cε exp(−cs)

for all s ≥ 0 and some fixed C, c > 0.
We will not pursue this example any further but what should be clear is that the heart of the matter

is in understanding the linearized operator L. For the Euler equation there is a similar linear operator
(what we call LTΓ below). An important difference between this example and our actual analysis is that
the scaling parameter for the blow-up is also determined dynamically. This is because we are not just
perturbing a given blow-up profile for the Euler equation, we are perturbing a profile for a different
equation. The preceding discussion, of course, is just a very rough sketch of the idea and the interested
reader is encouraged to study [19] for more information.

4 The Fundamental Model
In this section we describe the basic model which we will use to approximate some solutions to the
Euler equation. First we describe how the model originally came about and then we exhibit the specific
solutions to the model which we will be using later on. We remark that this model can also be used to
describe situations other than the one discussed in Section 2; in fact, I believe that some form of this
model is also behind the singularity in the numerical work [45].

4.1 Origin
We begin by introducing the model:

∂tf(ρ, θ, t) = f(ρ, θ, t)LK12(f)(ρ, t), LK12(f)(ρ, t) =

∫ ∞
ρ

∫ 2π

0

K(θ′)f(s, θ′, t)

s
dθ′ds, (4.1)

with K some 2π periodic function whose identity we will discuss later. The choice of K really depends
upon the scenario we are trying to model; specifically, what kind of symmetries we impose on the vorticity.
One can view this model in the spirit of the Constantin-Lax-Majda model [9] for the vortex stretching
term in the 3D Euler equation:

∂tf = fH(f),
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where H is the Hilbert transform. To arrive at the model (4.1), one first builds a more realistic model6

∂tf = fR12f,

where R12 is just the singular integral operator with Fourier symbol − ξ1ξ2|ξ|2 . The advantage of this model
is that the non-linearity

fR12f

appears in some form in the vortex stretching term of the actual 3D Euler equation. It appears that
C∞ solutions to this model which are odd in x and y separately and non-negative on [0,∞)2 become
singular in finite time (though this remains open). One disadvantage of this model is that it seems much
more difficult to analyze than the Constantin-Lax-Majda model. However, in the odd scenario described
above, it turns out that when we replace R12 by LK12 (when K = sin(2θ)), the problem becomes solvable
again. Moreover, replacing R12 by LK12 (with K = sin(2θ)) is actually justifiable! This is an important
observation which has its origins in the work of Kiselev and Šverák [39] and further refinements in previous
works of the author [24] and the author and Jeong ([21], [25],[22]).

4.2 Analysis
Now we turn to a basic analysis of (4.1) and the main result here is Lemma 4.1. First, in order to get
local well-posedness for solutions to (4.1), we should only search for solutions which vanish at ρ = 0,
which are at least Hölder continuous in (ρ, θ) (and thus on R2), and which vanish at infinity like ρ−δ for
some δ > 0. It is not difficult to establish local well-posedness in this class by using that the mapping
LK12 is a bounded operator on the class of functions we just described (on R2 it can be viewed as local
well-posedness on the class Cα ∩ Lp for some 0 < α < 1 and p <∞).

Next, it is not difficult to see that smooth solutions to this equation can become singular in finite
time. Indeed, upon multiplying both sides of the equation by K(θ)

ρ and integrating on the whole space
we see that:

d

dt
LK12(f)(0) =

1

2
LK12(f)(0)2.

However, in order to use solutions to this equation to approximate some solutions to the Euler equation,
it is necessary to get a finer understanding of the blow-up behavior.

We now show how to solve (4.1) explicitly. This is not difficult to achieve since LK12(f) is a radial
function and thus it is possible to reduce this problem to an ODE. Indeed, upon multiplying by K(θ)

s and
now integrating on the region [ρ,∞)× [0, 2π] we see that:

∂tL
K
12f(ρ, t) =

1

2
LK12f(ρ, t)2.

This gives us a formula for LK12f in terms of LK12f0. Then we further have that

f = f0 exp
(∫ t

0

LK12f(·, s)ds
)

= f0 exp
(∫ t

0

LK12f0

1− 1
2sL

K
12f0

ds
)

=
f0

(1− 1
2 tL

K
12f0)2

.

In fact, it is not so important for us that this problem is explicitly solvable. What is important for
us is that it possesses many families of self-similar blow-up solutions (which are, of course, easy to find
when we have a solution formula!). One such family is described in the following. We search for solutions
of the form

f(ρ, θ, t) =
Γ(θ)

c∗

1

1− t
F∗,rad(

ρ

1− t
),

6We remark that this type of model appeared in a work of Constantin and Sun [10] and a note of A. Kiselev in the list
of open problems [29].
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where c∗ =
∫ 2π

0
Γ(θ)K(θ)dθ and where

F∗,rad(z) =
2z

(1 + z)2
.

We see that, after plugging the ansatz into (4.1), for this to be truly a self-similar solution F∗ should
satisfy:

F∗,rad + z∂zF∗,rad = F∗,rad

∫ ∞
z

F∗,rad(ρ)

ρ
dρ.

Now plugging in F∗,rad = 2z
(1+z)2 we note:

F∗,rad + z∂zF∗,rad =
2z

(1 + z)2
+

2z

(1 + z)2
− 4z2

(1 + z)3
=

4z

(1 + z)3

= F∗,rad(z)

∫ ∞
z

F∗,rad(ρ)

ρ
dρ.

Consequently, we get the following lemma.

Lemma 4.1. The fundamental model (4.1) possesses a family of self similar solutions of the form:

f(r, θ, t) = 2α
Γ(θ)

c∗

1

1− t
F∗,rad

( rα

1− t

)
,

where
F∗,rad(z) =

z

(1 + z)2
,

KΓ ∈ L1([0, 2π]), and

c∗ =

∫ 2π

0

K(θ)Γ(θ)dθ

whenever c 6= 0 and α > 0.

Specification of K and angular domain

In this work, we will be working in a situation where

K(θ) = 3 sin(θ) cos2(θ)

and the spatial domain is [0,∞)× [0, π/2]. For this reason, from now on, we will take

L12(f) =

∫ ∞
r

∫ π/2

0

3f(ρ, θ) sin(θ′) cos2(θ′)

ρ
dθ′dρ

and

c∗ =

∫ π/2

0

K(θ)Γ(θ)dθ.
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5 Linearization of the Fundamental Model in Self-Similar Vari-
ables

By solving the system (4.1) directly, it is not difficult to see that the solutions described in Lemma 4.1
are stable in that there are open sets of functions which all blow-up in the same way. Since we will not
be able to solve explicitly after this section, it will be more useful to see this stability in terms of spectral
properties of the linearization around the self similar solutions of Lemma 4.1. First we will define the
relevant linear operator, then we will discuss its coercivity properties which are motivated by previous
work with Ghoul and Masmoudi [20] and Jeong [23]. The main result of this subsection is Proposition
5.4 which shows coercivity of the relevant linear operator in a weighted L2 space.

Definition 5.1. We define the operators

LΓ(f) = f + z∂zf − 2
f

1 + z
− 2zΓ(θ)

c(1 + z)2
L12(f),

L(f) = f + z∂zf − 2
f

1 + z
.

To study the coercivity properties of L and LΓ, we begin by recalling the weight function w which
will be used throughout the paper:

w(z) =
(1 + z)2

z2
.

Next, we have the following useful lemma.

Lemma 5.2. We have that
L12

(
LΓ(f)

)
= L

(
L12(f)

)
(5.1)

L(g)w = gw + z∂z(gw). (5.2)

Proof. Both of these statements are simple computations which we give now. To show (5.1) we compute
directly:

L12(LΓ(f)) = L12

(
f + z∂zf − 2

f

1 + z
− 2zΓ(θ)

c(1 + z)2
L12(f)

)
= L12(f) + z∂zL12(f)− 2

1 + z
L12(f),

where we integrated by parts to get the second equality. For (5.2) we have that

L(g)w = gw+ z∂z(gw)− 2

1 + z
gwz − gz∂zw = gw+ z∂z(gw)− 2

1 + z
gw+ gz

( 2

z2
+

2

z3

)
= gw+ z∂z(gw).

We need the following Hardy-type inequality.

Lemma 5.3. Assume fw ∈ L2 and L12(f)w ∈ L2. Then,

|L12(f)w|L2 ≤ 4|fw|L2 .

Proof. We will establish the result for smooth functions with f and L12(f) vanishing (at least) quadrat-
ically at zero. The general case will follow by approximation. Let us first recall that

w(z)2 =
(1 + z)4

z4
.
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Thus, it is easy to check using the Cauchy-Schwarz inequality that

1 +
6

z2
+

1

z4
≤ w(z)2 ≤ 4(1 +

6

z2
+

1

z4
).

Observe now that for integer k 6= 1, we have that∫
z−kL12(f)2 =

∣∣∣ 1

k − 1

∫
∂zz
−kL12(f)2

∣∣∣ =
∣∣∣ 2

k − 1

∫
z−kL12(f)∂zL12(f)

∣∣∣
=

2

|k − 1|

∫
z−kL12(f)(z)

∣∣∣ ∫ π/2

0

K(θ)f(z, θ)dθdz
∣∣∣ ≤ 2

|k − 1|
|K|L2 |z−k/2L12(f)|L2 |z−k/2f |L2

≤ 2

|k − 1|
|z−k/2L12(f)|L2 |z−k/2f |L2 .

Thus, by the Cauchy-Schwarz inequality, we have that for integer k 6= 1∫ ∞
0

z−kL12(f)2 ≤ 4

∫ ∞
0

∫ π/2

0

z−kf2.

The result now follows.

We make the following observation about the function Γ:

| Γ
c∗
−K|L2[0,π/2]) ≤

7

10
. (5.3)

Recall that Γ takes the form Γ = (sin(θ) cos2(θ))β for some 0 ≤ β ≤ 1. The fact that such examples
actually satisfy this assumption is a simple exercise which is easiest to check when β = 0 and β = 1.

We now proceed to establish weighted L2 coercivity estimates on LΓ.

Proposition 5.4. We have that

(LΓ(f)w, fw)L2 ≥ 1

4
|fw|2L2 . (5.4)

Proof. Observe that

LΓ(f) = L(f)− 2Γz

c(1 + z)2
L12(f).

Thus,

(LΓ(f)w, fw)L2 =
(
L(f)w, fw

)
L2
− 2
(
K

z

(1 + z)2
fw2, L12(f)

)
L2
− 2
(

(
Γ

c∗
−K)

z

(1 + z)2
fw2, L12(f)

)
L2

=
1

2
|fw|2L2 − 2

(
K
f

z
w,L12(f)

)
L2
− 2
(
fw, (

Γ

c∗
−K)

L12(f)

z

)
L2

=
1

2
|fw|2L2 +

(
∂z
(
L12(f)2

)
, w
)
L2
z

− 2
(
fw, (

Γ

c∗
−K)

L12(f)

z

)
L2

≥ 1

2
|fw|2L2 − (L12(f)2, ∂zw)L2

z
− 2|fw|L2 | Γ

c∗
−K|L2(S1)|

1

z
L12(f)|L2

z

≥ 1

2
|fw|2L2 + 2|1

z
L12(f)|2L2

z
− 7

5
|fw|L2 |1

z
L12(f)|L2

z
,

where we used (5.2) and the definition of w in the second equality, the definition of L12 in the third
equality, integration by parts in the first inequality, and (5.3) in the second inequality.

Since
(

7
5

)2

< 4( 1
4 )(2), we have

(LΓ(f)w, fw)L2 ≥ 1

4
|fw|2L2 .
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6 Linearization with angular transport
To move back toward the Euler equation from the fundamental model as explained in Section 2 (read
backwards), it will be necessary to also study the coercivity properties of the following operator which
is the same as LΓ but with an extra transport term in the angular direction. We begin by defining this
operator in Definition 6.1. The goal of this section will then be to prove that LTΓ is coercive on Hk
as is explained in Proposition 6.14 below and the remarks preceding it. Note that the weights in the
definition of Hk (as in (1.8)) are chosen to have favorable properties when we take the inner product
between LTΓ (g) and g when g ∈ Hk. The use of the radial weights is clear from Proposition 5.4 and the
importance of the angular weights 1

sin(2θ)η and 1
sin(2θ)γ are that they will allow us to hide the effect of

the angular transport term. The reason for having two different angular weights comes from the elliptic
estimates as is explained in Section 7.3.

Definition 6.1. We define the following operator acting first on C1
c functions:

LTΓ (f) = LΓ(f)− P(
3

1 + z
sin(2θ)∂θf),

where P is an operator which we will now define. First recall that

Γ(θ) =
(

sin(θ) cos2(θ)
)α/3

, c∗ =

∫ π/2

0

Γ(θ)K(θ)dθ.

Definition 6.2. For f ∈ H we define

P(f)(z, θ) = f(z, θ)− Γ(θ)

c∗

2z2

(1 + z)3
L12(f)(0).

Remark 6.3. Note that L12(P(f))(0) = 0 for every f . The reason for including the projector P in
the definition of LTΓ is that we want to be able to say that if g vanishes quadratically at z = 0 and
L12(g)(0) = 0 then the same can be said about LTΓ (g). The projector is there mainly to ensure that
L12(LTΓ (g))(0) = 0. Let us also note that many projectors could have been chosen to achieve these
properties, but this is the only one which also arises naturally from relaxing certain scaling parameters
in the problem (see the calculation preceding equation (9.6)).

Observe the pointwise inequality
|DθΓ| ≤ 2αΓ. (6.1)

To avoid cumbersome notation, we recall the operator

Dθ := sin(2θ)∂θ.

We also recall
γ = 1 +

α

10
. (6.2)

6.1 L2 coercivity for LTΓ with one θ-derivative
We begin with an L2 estimate which directly follows from Proposition 5.4.

Remark 6.4. For the following propositions, we will establish a number of inequalities that are valid
for f ∈ C∞c ((0,∞) × (0, π/2)) but which can be easily extended to the classes Hk (see the beginning of
Section 8.2).

Proposition 6.5. We have that

(LTΓ (f)w, fw)L2 ≥ 1

5
|fw|2L2 − 100|Dθfw|2L2 .
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Proof. The proof is a direct application of Proposition 5.4 and the Cauchy-Schwarz inequality on the last
term. Indeed,

(LTΓ (f)w, fw)L2 = (LΓ(f)w, fw)L2 − (P(
3

1 + z
Dθf)w, fw)L2

≥ 1

4
|fw|2L2 − |P(

3

1 + z
Dθf)w|L2 |fw|L2 ≥ 1

5
|fw|2L2 − 5|P(

3

1 + z
Dθf)w|2L2 ≥

1

5
|fw|2L2 − 100|Dθfw|2L2 .

Proposition 6.6. We have that((
DθLTΓ (f)

)
,
(
Dθf

) w2

sin(2θ)γ

)
L2
≥ (

1

4
− α)

∣∣∣(Dθf
) w√

sin(2θ)γ

∣∣∣2
L2
− 107α|fw|2L2 .

Remark 6.7. The idea behind the proof is simple. First, Dθ commutes with the transport term and
all of LΓ except the term involving Γ. Because of (6.1), when Dθ hits Γ, this produces a term of size
α. Similarly, when Dθ hits the extra term in P we get the same factor of α. Finally, the purpose of
the weight 1

sin(2θ)γ is to give a mostly-favorable term when the inner product is taken with the transport
term.

Proof. We write:

LTΓ (f) = L(f)− 2Γz

c(1 + z)2
L12(f)− 3

1 + z
Dθf +

Γ(θ)

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθf)(0).

Thus,

DθLTΓ (f) = L(Dθf) +DθΓ
(
− 2z

c(1 + z)2
L12(f) +

1

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθf)(0)

)
− 3

1 + z
Dθ(Dθf)

Now, it is easy to check that∫ π/2

0

1

sin(2θ)γ
|DθΓ(θ)|2dθ ≤

∫ π/2

0

4α2Γ2

sin(2θ)γ
≤ 4α2

∫ π/2

0

dθ

sin(2θ)1−α2
≤ 8α2

∫ π/4

0

1

( 4
π θ)

1−α/2 = 4πα.

Also observe that∣∣∣(− 2z

c(1 + z)2
L12(f) +

1

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθf)(0)

)
w
∣∣∣
L2
z

≤ 3|wL12(f)|L2 + 9|L12(Dθf)(0)|

≤ 12|fw|L2 + 27

∫
|f(z, θ)|
z(1 + z)

dzdθ ≤ 12|fw|L2 + 27|fw|L2

√∫ ∞
0

∫ π/2

0

z2

(1 + z)4
≤ 39|fw|L2 ,

where we used Lemma (5.3) in the second inequality.
Consequently, if we multiply DθLTΓ (f) by w2 1

sin(2θ)γDθf and integrate, we get:((
DθLTΓ (f)

)
,
(
Dθf

) w2

sin(2θ)γ

)
L2
≥ 1

2

∣∣∣(Dθf
) w√

sin(2θ)γ

∣∣∣2
L2
− 103

√
α|fw|L2 |(Dθf)

w√
sin(2θ)γ

|L2

+
3

2

(
∂θ(sin(2θ)−α/10),

w2

(1 + z)
(Dθf)2

)
.

The third term comes from integrating the transport term by parts. Thus,((
DθLTΓ (f)

)
,
(
Dθf

) w2

sin(2θ)γ

)
L2
≥ (

1

4
− α)

∣∣∣(Dθf
) w√

sin(2θ)γ

∣∣∣2
L2
− 2× 104α|fw|2L2 .
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A similar calculation as above gives the following proposition:

Proposition 6.8. Let η = 99
100 . Then,

(LTΓ (f)w, fw
1

sin(2θ)η
)L2 ≥ 1

5

∣∣∣f w√
sin(2θ)η

∣∣∣2
L2
− 105|1

z
L12f |2L2 .

Corollary 6.9. If α < 10−14 and η = 99
100 we have:

10(LTΓ (f)w, fw
1

sin(2θ)η
)L2 + 108(LTΓ (f)w, fw)L2 + 1012

((
DθLTΓ (f)

)
,
(
Dθf

) w2

sin(2θ)γ

)
L2

≥
∣∣∣f w√

sin(2θ)η

∣∣∣2
L2

+
∣∣∣(Dθf

) w√
sin(2θ)γ

∣∣∣2
L2

+ |fw|2L2 .

Proof. We combine the results of Propositions 6.5, 6.6, and 6.8.

6.2 L2 coercivity for LTΓ with one z-derivative
With Corollary 6.9 in hand, we now move to give higher order coercivity results on LTΓ . We introduce
the weighted differential operator:

Dz := z∂z,

set
η =

99

100
, (6.3)

and define the energies:

E1
θ :=

∣∣∣(Dθf
) w√

sin(2θ)γ

∣∣∣2
L2

+ |f w√
sin(2θ)η

|2L2 ,

E1
z,θ :=

∣∣∣(Dzf
) w√

sin(2θ)η
|2L2 +

∣∣∣(Dθf
) w√

sin(2θ)γ

∣∣∣2
L2

+ |f w√
sin(2θ)η

|2L2 .

Proposition 6.10. Under the assumptions of Corollary 6.9, we have((
DzLTΓ (f)

)
,
(
Dzf

) w2

sin(2θ)η
)L2 ≥ 1

4

∣∣∣(Dzf
) w√

sin(2θ)η

∣∣∣2
L2
− 108E1

θ .

Proof.

DzLTΓ (f) = L(Dz(f)) +
2z

(1 + z)2
f −Dz

( 2Γz

c(1 + z)2
L12(f)

)
− 3DzP

( 1

1 + z
sin(2θ)∂θf

)
.

= L(Dz(f)) +
2z

(1 + z)2
f +

2Γz

c(1 + z)2

(
K, f(z, θ)

)
L2
θ

− 2
Γz(1− z)

c(1 + z)3
L12(f) +

3z

(1 + z)2
Dθf

− 3

1 + z
DθDzf + 3Dz(

Γ

c∗

2z2

(1 + z)3
L12(

1

1 + z
sin(2θ)∂θf)(0))

=
7∑
i=1

Ii.

Let us take a brief look at each term before proceeding. I1 gives us coercivity once we include the weight
w2

cos(θ)η . I2 can be seen as lower order since it contains no derivative on f and we already have an L2

estimate from Corollary 6.9. I3 and I4 is also lower order in this sense but they contain 1
1−η as a factor.
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I5 can also be seen as lower order since we have already controlled Dθf in Corollary 6.9. For I6, after
integrating by parts in θ we will get a positive term which we forget about and a negative term which
contains 1− η as a coefficient just as we argued in the proof of Proposition 6.6. More precisely we have
the following bounds which are not difficult to check:

(I1, Dz(f)
w2

sin(2θ)η
)L2 ≥ 1

2

∣∣∣(Dzf
) w√

sin(2θ)η

∣∣∣2
L2
.

∣∣∣I2 w√
sin(2θ)η

∣∣∣
L2
≤ |f w√

cos(θ)η
|L2

∣∣∣I3 w√
sin(2θ)η

∣∣∣
L2
≤ 10√

1− η
|fw|L2 .

∣∣∣I4 w√
sin(2θ)η

∣∣∣
L2
≤ 10√

1− η
|1
z
L12(f)|L2

z
.∣∣∣I5 w√

sin(2θ)η

∣∣∣
L2
≤ 3|Dθf

w√
cos(θ)η

|L2

∣∣∣(I6, Dz(f)
w2

sin(2θ)η
)L2

∣∣∣ ≤ 3(1− η)|(Dzf)
w√

cos(θ)η
|L2 .

∣∣∣I7 w√
sin(2θ)η

∣∣∣
L2
≤ 100√

1− η
|fw|L2 .

The result now follows using the Cauchy-Schwarz inequality.

Definition 6.11. We define the H1 inner product by

(f, g)H1 = 10
((
Dzf

)
,
(
Dzg

) w2

sin(2θ)η

)
L2

+ 1010(fw, gw
1

sin(2θ)η
)L2

+1017(fw, gw)L2 + 1021
((
Dθf

)
,
(
Dθg

) w2

sin(2θ)γ

)
L2
,

which induces a norm equivalent to

|f |2H1 =
1∑
k=0

|(Dz)
kf

w√
sin(2θ)η

|2L2 + |(Dθ)f
w√

sin(2θ)γ
|2L2 .

Corollary 6.12. Let η = 99
100 and α < 1

1014 . Then,

(LTΓ (f), f)H1 ≥ |f |2H1 . (6.4)

Remark 6.13. The reader should take note that (f, f)H1 6= |f |2H1 but |f |2H1 ≤ (f, f)2
H1 ≤ 1021|f |2H1

6.3 Higher order derivatives and the inner product on Hk

In this section, we show how to inductively define an inner product on Hk from the inner product on H1

to show that LTγ is coercive on Hk for each k ≥ 2. Toward this end, fix some k ≥ 2 and assume that we
have defined an inner product (·, ·)Hk−1 with the following properties:

1. |f |2Hk−1 ≤ (f, f)Hk−1 ≤ Ck−1|f |2Hk−1

2. (LTΓf, f)Hk−1 ≥ ck−1|f |2Hk−1 .
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Then, we will construct an inner product on Hk satisfying the above two properties with k − 1 replaced
by k. Observing that we have already established these in the case k = 2 the main result of this section
will follow by induction:

Proposition 6.14. Fix α < 10−14 and k ∈ N.Then, there exists ck > 0 so that for all f ∈ Hk we have:

(LTΓ (f), f)Hk ≥ ck|f |2Hk . (6.5)

Remark 6.15. The reader should take note that (f, f)Hk 6= |f |2Hk but |f |2Hk ≤ (f, f)2
Hk ≤ Ck|f |

2
Hk

Proof. Suppose k ≥ 2 and we have defined an inner product on Hk−1 on which LTΓ is coercive as explained
above. We will now define

(f, g)Hk = (f, g)Hk−1 + c1,k(Dθf,Dθg)Hk−1 + c2,k(Dzf,Dzg)Hk−1 ,

where c1,k, c2,k ≥ 1 will be chosen depending on k only. First, let us observe that the first condition is
satisfied automatically. To avoid unnecessary repetition let us introduce the notation ≈ here to mean
a ≈ b if c̄kb ≤ a ≤ C̄kb for some positive universal constants7 depending only on k.

(f, f)Hk ≈ |f |2Hk−1 + |Dzf |2Hk−1 + |Dθf |2Hk−1 ≈ |f |2Hk .

Now let us define c1,k and c2,k in such a way that LTΓ will be coercive. Now let us compute:

(LTΓ (f), f)Hk ≥ ck−1|f |2Hk−1 + c1,k(DθLTΓ (f), Dθf)Hk−1 + c2,k(DzLTΓ (f), Dzf)Hk−1 .

Now, as in the proof of Proposition 6.6, we note that

DθLTΓ (f) = L(Dθf) +DθΓ
(
− 2z

c(1 + z)2
L12(f) +

1

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθf)(0)

)
− 3

1 + z
DθDθf

= LTΓ (Dθf) +DθΓ
(
− 2z

c(1 + z)2
L12(f) +

1

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθf)(0)

)
− 3

1 + z
DθDθf

+2z
Γ(θ)

c(1 + z)2
L12(Dθf)

:= LTΓ (Dθf) + E1.

Observe that
|E1|Hk−1 ≤ C̄k|f |Hk−1 .

This is because L12 is actually smoothing in θ so that L12(Dθf) and L12(f) actually have the same
regularity (they can both be bounded in Hk−1 by f in the same space).

Thus,

(DθLTΓ (f), Dθf)Hk−1 = (LTΓ (Dθf), Dθf)Hk−1+(E1, Dθf)Hk−1 ≥ ck−1|Dθf |2Hk−1−Ck−1|E1|Hk−1 |Dθf |Hk−1

Thus,
(DθLTΓ (f), Dθf)Hk−1 ≥ ck−1|Dθf |2Hk−1 − C̄k|f |Hk−1 |Dθf |Hk−1 .

In particular, we now choose c1,k so that

c1,kC̄k =
1

2
c2k−1,

7In the following, C̄k and c̄k are constants that depend on k but which may change from line to line.
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we will have:

(LTΓ (f), f)Hk ≥
1

2
ck−1|f |2Hk−1 +

1

2
c1,kck−1|Dθf |2Hk−1 + c2,k(DzLTΓ (f), Dzf)Hk−1 .

Next, in an almost identical way to the above calculation, we observe that:

Dz(LTΓ (f)) = LTΓ (Dzf) + E2,

where
|E2|Hk−1 ≤ C̄k(|f |Hk−1 + |Dθf |Hk−1).

Observe that the derivative term comes from the commutator with the angular transport term and Dz

and this is why we choose c1,k first as in the calculations in the preceding section. Thus, choosing c2,k so
that:

c2,kC̄k =
1

8
c21,kc

2
k−1,

we get:
(LTΓ (f), f)Hk ≥ ck|f |2Hk

for some constant ck > 0. This concludes the proof.

7 Elliptic Regularity Estimates
The purpose of this section is to establish the necessary weighted L2 and Sobolev estimates for the elliptic
operator which relates the stream function and the vorticity. This is where the relationship between ur

r
and L12 as explained in Section 2.2 is made precise. The main technical results of this section are
Propositions 7.1 and 7.8. From these we establish Theorem 2 which is one of the pillars of this work. We
should remark that Theorem 2 is related to the “Key Lemma” in [39], the point being to isolate a main
term in the Biot-Savart law for functions that are merely bounded. This connection and related issues
are discussed in some detail in [24] and Section 6 of [22].

Consider the axi-symmetric Biot-Savart law:

−∂rrψ − ∂33ψ −
1

r
∂rψ +

1

r2
ψ = f.

We begin by writing this in polar coordinates. We define

ρ =
√
r2 + x2

3 θ = arctan(
x3

r
).

Then we see:

−∂ρρψ −
2

ρ
∂ρψ −

1

ρ2
∂θθψ +

tan(θ)

ρ2
∂θψ +

sec2(θ)

ρ2
ψ = f

Next, let’s write f = F (ρα, θ) and (postulate that) ψ = ρ2Ψ(ρα, θ). It is convenient to introduce another
variable

R = ρα.

Then we see:

−(2Ψ + α(1 + α)R∂RΨ + α2R2∂RRΨ)− 4Ψ− 2αR∂RΨ− ∂θθΨ + tan(θ)∂θΨ + sec2(θ)Ψ = F.

One way to rewrite this is:

L(Ψ) = −α2R2∂RRΨ− α(5 + α)R∂RΨ− ∂θθΨ + ∂θ
(

tan(θ)Ψ
)
− 6Ψ = F. (7.1)

We couple this equation with the natural boundary conditions on Ψ:

Ψ(R, 0) = Ψ(R, π/2) = 0, lim
R→∞

Ψ(R, θ) = 0.
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7.1 L2 Estimates
Notice that the first four terms of (7.1) form a “positive” operator in the L2 sense. The dangerous term is
the −6Ψ term–especially when α is very small. Despite this problem, we have the following proposition
which is the backbone of this work.

Proposition 7.1. Let F ∈ L2 be given and 0 < α ≤ 1. Assume that for every R we have∫ π/2

0

F (R, θ) cos2(θ) sin(θ)dθ = 0.

Then, the unique L2 solution to (7.1) with Dirichlet boundary conditions on [0,∞)× [0, π/2] satisfies:∣∣∣∂θ( Ψ

cos(θ)

)∣∣∣
L2

+ |∂θθΨ|L2 + α2|R2∂RRΨ|L2 ≤ 100|F |L2 . (7.2)

Remark 7.2. Note that the control of the mixed derivative |R∂RθΨ|L2 follows by interpolation. Indeed,

α2|R∂RθΨ|2L2 ≤ 2(α4|R2∂RRΨ|2L2 + |∂θθΨ|2L2),

since we can write:∫
R2∂RθΨ∂RθΨ =

∫
R2∂θθΨ∂RRΨ +

∫
(∂θΨ)2 ≤ (

1

α2
+ 1)|∂θθΨ|2L2 + α2|R2∂RRΨ|2L2 .

Note also that here and in the coming computations the integration by parts is fully justified by ap-
proximation. We will not comment further on this point and will freely assume that Ψ is smooth in the
coming computations (note that this is allowed in general when what we start with and what we end up
with are well-defined).

The proof of Proposition 7.1

Proof of Proposition 7.1. We only establish the a-priori estimate as existence and uniqueness follows from
the standard Lp theory.

Step 1: Ψ is orthogonal to sin(θ) cos2(θ)

An important observation is that under the conditions of the lemma, Ψ must also be orthogonal to
sin(θ) cos2(θ). Indeed, define

Ψ?(R) :=

∫ π/2

0

Ψ(R, θ) sin(θ) cos2(θ)dθ.

Then, we see:
α2R2∂RRΨ? + α(5 + α)R∂RΨ? = 0.

This is because sin(θ) cos2(θ) is in the kernel of the adjoint problem when α = 0. This ODE for Ψ? (an
Euler equation!) can be solved explicitly and its solutions are determined by solving

α2λ(λ− 1) + α(5 + α)λ = 0

which gives λ1 = 0 and λ2 = − 5+α
α + 1. Thus,

Ψ?(R) = c1 + c2R
1− 5+α

α
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and the condition that Ψ? → 0 as R → ∞ and that R2Ψ vanishes at 0 implies that c1 = c2 = 0.
Therefore,

Ψ? ≡ 0.

Step 2: Energy estimates

As usual, we multiply the equation by Ψ and integrate by parts. For this part, we use the notation:

| · | = | · |L2 .

Multiplying (7.1) by Ψ and integrating we get

α2|R∂RΨ|2 − α2|Ψ|2 +
α(5 + α)

2
|Ψ|2 + |∂θΨ|2 − 6|Ψ|2 +

1

2
| sec(θ)Ψ|2 = (F,Ψ).

In particular, since 0 < α ≤ 1 we have:

|∂θΨ|2 − 6|Ψ|2 ≤ |F ||Ψ|. (7.3)

Now let’s expand Ψ in a series (recalling the boundary conditions):

Ψ(R, θ) =
∑
n∈N

Ψn(R) sin(2nθ),

where

Ψn(R) =
4

π

∫ π/2

0

Ψ(R, θ) sin(2nθ)dθ.

Inserting this expansion into (7.3) we get:∑
n≥2

(4n2 − 6)|Ψn(R)|2L2
R
≤ 2|Ψ1(R)|2L2

R
+
π

4
|F ||Ψ|. (7.4)

But we also know that Ψ? ≡ 0. Thus,

0 =
4

π

∑
n

Ψn(R)

∫ π/2

0

sin(θ) cos2(θ) sin(2nθ)dθ =
4

π

∑
n

Ψn(R)(−1)n
4n

(4n2 − 9)(4n2 − 1)
.

Solving for Ψ1 gives

|Ψ1|L2 ≤
∑
n≥2

|Ψn|L2

15n

(4n2 − 9)(4n2 − 1)
.

Therefore,

|Ψ1|2L2 ≤
∑
n≥2

|Ψn|2L2

∑
n≥2

225n2

(4n2 − 9)2(4n2 − 1)2
<
∑
n≥2

|Ψn|2L2 . (7.5)

The last inequality is clear since∑
n≥2

225n2

(4n2 − 9)2(4n2 − 1)2
<
∑
n≥2

n2

(4n2 − 9)2
<
∑
n≥2

1

n2
< 1.

Thus, combining (7.5) and (7.4), we get that∑
n≥1

n2|Ψn(R)|L2 ≤ |F ||Ψ|L2 .
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In particular,
|∂θΨ|L2 ≤ 4|F |L2 (7.6)

At this point we are done and the rest is standard, but let us give more details. Now we come back to
equation (7.1) and multiply by −∂θθΨ and integrate. Integrating by parts in R and θ we get:

α2|R∂RθΨ|2L2 − α2|∂θΨ|2 +
α(5 + α)

2
|∂θΨ|2 + |∂θθΨ|2 − 6|∂θΨ|2 −

∫
∂θ

(
tan(θ)Ψ

)
∂θθΨ = −

∫
F∂θθΨ.

Since we have already controlled |∂θΨ|2L2 , we only need to study the last term before the equality sign.
Indeed, it has the same scaling as the term |∂θθΨ|2 and could destroy the energy estimates if handled
foolishly. First let

Ψ̃ =
Ψ

cos(θ)
.

By Lemma 7.3, we have already established an L2 a-priori estimate on Ψ̃. Moreover,

−
∫
∂θ

(
tan(θ)Ψ

)
∂θθΨ = −

∫
∂θ(sin(θ)Ψ̃)∂θθ(cos(θ)Ψ̃)

= −
∫

(cos(θ)Ψ̃ + sin(θ)∂θΨ̃)(− cos(θ)Ψ̃− 2 sin(θ)∂θΨ̃ + cos(θ)∂θθΨ̃)

= 2

∫
sin2(θ)(∂θΨ̃)2 +

∫
cos2(θ)(∂θΨ̃)2 −

∫
sin(θ) cos(θ)∂θΨ̃∂θθΨ̃ +G

=
3

2

∫
(∂θΨ̃)2 +G

where |G| ≤ 3
2 |Ψ̃|

2
L2 ≤ 15|∂θΨ|2L2 using Lemma 7.3. Thus,

|∂θθΨ|2L2 +
3

2
|∂θΨ̃|2L2 ≤ 21|∂θΨ|2L2 + |F |L2 |∂θθΨ|L2

Thus,
|∂θθΨ|2L2 + 3|∂θΨ̃|2L2 ≤ (2(21)(16) + 1)|F |2L2 .

using (7.6) The estimate on α2|R2∂RRf |L2 follows easily.

7.2 The H2 Norm
We now define the main norm which we will use which depends on two parameters: η and γ. Recall first
the weight w = (1+z)2

z2 and the derivatives DR = R∂R and Dθ = sin(2θ)∂θ. Then the H2 norm is defined
as:

|f |2H2 =
2∑
k=0

∣∣∣Dk
Rf

w√
sinη(2θ)

∣∣∣2
L2

+
∣∣∣Dθf

w√
sinγ(2θ)

∣∣∣2
L2

+
∣∣∣DθDRf

w√
sinγ(2θ)

∣∣∣2
L2

+
∣∣∣D2

θf
w√

sinγ(2θ)

∣∣∣2
L2

As before, we take η = 99
100 and γ = 1 + α

10 . It is important to point out: when we prove elliptic estimates
in H2 the constants will be independent of γ and α and thus universal since we fix η = 99

100 . Toward
proving elliptic estimates in H2 we need a few Hardy-type inequalities.
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Hardy Inequalities

Lemma 7.3. Let f ∈ H1([0, π/2]). Assume that f(0) = f(π/2) = 0. Then,∫ π/2

0

|f(θ)|2

sin2(2θ)
dθ ≤ 10

∫ π/2

0

|f ′(θ)|2dθ.

The proof of this lemma follows from the original Hardy inequality by noting that sin(2θ) ≥ 1− 4
π |θ−

π
4 |

for θ ∈ [0, π/2], splitting the integral into two pieces, and making a change of variables. Later on we will
also need the following two inequalities.

Lemma 7.4. Let f ∈ H2([0, π/2]). Assume that f(0) = f(π/2) = 0. Then,∫ π/2

0

(
∂θ
( f(θ)

sin(2θ)

))2

dθ ≤ 10

∫ π/2

0

|f ′′(θ)|2dθ.

Proof. For simplicity, we give a proof of a simpler version and leave the stated result to the reader:∫ ∞
0

(
∂x
(f
x

))2

≤ 1

2

∫ ∞
0

(f ′′(x))2.

The proof of this is as follows: Set g = f
x . Then, f

′′ = (gx)′′ = xg′′ + 2g′.∫
(f ′′)2 =

∫
x2(g′′)2 + 4(g′)2 + 4xg′′g′ =

∫
x2(g′′)2 + 2(g′)2.

We also need the following sharp version of Lemma 7.3

Lemma 7.5. Let f ∈ H1([0, π]) and 0 ≤ η ≤ 1. Assume that f(0) = f(π) = 0. Then,∫ π

0

|f(θ)|2

sin2+η(θ)
dθ ≤ 4

(η + 1)2

∫ π

0

|f ′(θ)|2

sinη(θ)
dθ + 100|f |2H1 .

Remark 7.6. The lemma is sharp in terms of the size of the first constant; the size of the second constant
is irrelevant for our purposes.

Proof. Observe that for θ ∈ [0, π/2] we have:∣∣∣ 1

sin2+η(θ)
− 1

θ2+η

∣∣∣ ≤ |θ2+η − sin2+η(θ)|
sin4+2η(θ)

≤ C

sinη(θ)
.

Thus, ∣∣∣ ∫ π/2

0

f(θ)2

sin2+η(θ)
dθ −

∫ π/2

0

f(θ)2

θ2+η
dθ
∣∣∣ ≤ 2(1 + η)

∫ π

0

|f(θ)|2

sinη(θ)
dθ.

Now,∫ π/2

0

f(θ)2

θ2+η
≤
∫ π

0

f(θ)2

θ2+η
= − 2

1 + η

∫ π

0

f(θ)f ′(θ)

θ1+η
dθ ≤ − 2

1 + η

∫ π/2

0

f(θ)f ′(θ)

θ1+η
dθ+

22+η

(1 + η)

∫ π

π/2

f(θ)f ′(θ)dθ.

Thus, using the Cauchy-Schwarz inequality we see:∫ π/2

0

f(θ)2

θ2+η
dθ ≤ 4

(1 + η)2

∫ π/2

0

f ′(θ)2

θη
dθ +

23+η

(1 + η)
|f |2H1 .
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Now note that ∣∣∣ 1

θη
− 1

sinη(θ)

∣∣∣ ≤ 10

for θ ∈ [0, π/2] since 0 ≤ η ≤ 1. Now we do a similar calculation on the interval [π/2, π] and we are
done.

We now have the following corollary which follows from Lemma 7.5 by scaling.

Corollary 7.7. Let f ∈ H1([0, π/2]) and 0 ≤ η ≤ 1. Assume that f(0) = f(π/2) = 0. Then,∫ π/2

0

|f(θ)|2

sin2+η(2θ)
dθ ≤ 1

(η + 1)2

∫ π/2

0

|f ′(θ)|2

sinη(2θ)
dθ + 100|f |2H1 .

7.3 H2 Estimates
We now move to establish the H2 estimates for solutions to (7.1) which is the heart of this section.

Proposition 7.8. Under the same assumptions as Proposition 7.1 along with the assumptions that
0 ≤ α ≤ 1

4 , 1 < γ ≤ 5
4 and |F |H2 <∞, we have:

α2|R2∂RRΨ|H2 + |∂θθΨ|H2 ≤ C|F |H2

for some universal constant C > 0 independent of α and γ.

Remark 7.9. The assumption that α ≤ 1
4 is probably technical, but we are only going to use this when

α is very small.

Proof. Recall the H norm defined in (1.7).

Step 1: Only radial weights

The goal of this step is to establish a weighted version of Proposition 7.1. We start by multiplying
(7.1) by Ψw2 and integrating (note that we are only putting a weight in R to begin with). We see:

α2|∂RΨRw|2−α
2

2
(Ψ2, ∂2

R(R2w2))L2+
α(5 + α)

2
(Ψ2, ∂R(Rw2))L2+|∂θΨw|2−6|Ψ|2+

1

2
| sec2(θ)Ψw|2 = (F,Ψw2).

Moreover, it can be checked directly that

|∂2
R(R2w2)| ≤ 6w2, |∂R(Rw2)| ≤ 3w2.

Thus,

α2|∂RΨRw|2 + |∂θΨw|2 − 6|Ψw|2 +
1

2
| sec2(θ)Ψw|2 ≤ (F,Ψw2) + (3α2 +

3α(5 + α)

2
)|wΨ|2.

In particular, since 0 ≤ α ≤ 1
4 we see:

|∂θΨw|2 − 9.5|Ψw|2 ≤ |(Fw,Ψw)L2 |

Now we argue as in Step 2 of the proof of Proposition 7.1. Using that wΨ? ≡ 0, we see that∑
n≥2

(4n2 − 9.5)|Ψnw|2L2 ≤ 5.5|Ψ1w|2L2 + |Fw|L2 |Ψw|L2 .
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Thus, since
|Ψ1w|2L2 <

∑
n≥2

|Ψnw|2L2

we get ∑
n≥2

(4n2 − 15)|Ψnw|2L2 ≤ |Fw|L2 |Ψw|L2 .

Thus, ∑
n≥1

4n2|Ψnw|2L2 ≤ 20|Fw|L2 |Ψw|L2 .

Now the proof follows the same as before to give:

α2|R2∂RRΨw|L2 + |∂θθΨw|L2 ≤ C1|Fw|L2 . (7.7)

Step 2: Radial and (weak) angular weights

In this step we will prove

α2|R2∂RRΨ
w

sin(2θ)η/2
|L2 + |∂θθΨ

w

sin(2θ)η/2
|L2 ≤ C1|F

w

sin(2θ)η/2
|L2 . (7.8)

As in Step 1, we multiply (7.1) by −∂θθΨ w2

sin(2θ)η and integrate. We get:

5∑
i=1

Ii = −
(
F, ∂θθΨ

w2

sin(2θ)η

)
,

where

I1 = α2
(
R2∂RRΨ, ∂θθΨ

w2

sin(2θ)η

)
I2 =

(
α(5 + α)R∂RΨ, ∂θθΨ

w2

sin(2θ)η

)
, I3 =

(
∂θθΨ, ∂θθΨ

w2

sin(2θ)η

)
I4 = −

(
∂θ
(

tan(θ)Ψ
)
, ∂θθΨ

w2

sin(2θ)η

)
, I5 = 6

(
Ψ, ∂θθΨ

w2

sin(2θ)η

)
.

Note that I3 is a positive term which we will not touch. After integrating by parts in the right way, I1
and I4 contain positive terms and some terms which we control by the information we gained from Step
1. For I2 and I5 we just estimate estimate them directly using the Cauchy-Schwarz inequality. For I5,
observe that ∣∣∣ Ψ

sin(2θ)η/2
w
∣∣∣
L2
≤ |∂θΨw|L2 ≤ C|Fw|L2

using the Hardy inequality and (7.7) from Step 1. Similarly, for I2, observe that

α
∣∣∣R∂RΨ

w

sin(2θ)η/2

∣∣∣
L2
≤ Cα|R∂RθΨw|L2 ≤ C|Fw|L2

again using the Hardy inequality and (7.7) and a similar calculation to the one in Remark 7.2. We now
move to I1. In what follows we will denote by E an error which changes from line to line but
can be controlled in a similar way to how I5 and I2 were just estimated.

I1 = α2
(
R2∂RRΨ, ∂θθΨ

w2

sin(2θ)η

)
= −α2

(
R2∂RΨ, ∂RθθΨ

w2

sin(2θ)η

)
+ E

= α2
(
R2∂RθΨ, ∂RθΨ

w2

sin(2θ)η

)
+ α2

(
R2∂RΨ, ∂RθΨ∂θ

w2

sin(2θ)η

)
+ E
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Now, we have to be very careful in how we handle

α2
(
R2∂RΨ, ∂RθΨ∂θ

w2

sin(2θ)η

)
= −α

2

2
(R2∂RΨ, ∂RΨ∂θθ

w2

sinη(2θ)

)
.

Observe that

∂θθ
1

sin(2θ)η
= 4η(η + 1)

cos2(2θ)

sin2+η(2θ)
+

4η

sinη(2θ)
.

Thus,

I1 = α2
(
R2∂RθΨ, ∂RθΨ

w2

sin(2θ)η

)
− α2(2η(η + 1))

(
R2∂RΨ, ∂RΨ

w2

sin2+η(2θ)

)
+ E.

Now, by the sharp Hardy inequality (7.7), we have:

I1 ≥ α2
[(
R2∂RθΨ, ∂RθΨ

w2

sin(2θ)η

)
− 2η

η + 1

(
R2∂RθΨ, ∂RθΨ

w2

sin(2θ)η

)]
− |Fw|2L2

=
1− η
1 + η

α2|R∂RθΨ
w

sin(2θ)η/2
|2L2 − C|Fw|2L2 .

We now turn to I4. To estimate

I4 = −
(
∂θ
(

tan(θ)Ψ
)
, ∂θθΨ

w2

sin(2θ)η

)
,

we again introduce

Ψ̄ =
Ψ

cos(θ)
.

As before, we denote by E an error term which is easily controlled. Then,

I4 = −(sin(θ)∂θΨ̄∂θθ(cos(θ)Ψ̄),
w2

sinη(2θ)

)
+ E = I4,1 + I4,2 + I4,3 + E,

where

I4,1 = −1

2

(
DθΨ̄∂θθΨ̄,

w2

sinη(2θ)

)
I4,2 = 2

(
sin2(θ)(∂θΨ̄)2,

w2

sinη(2θ)

)
I4,3 =

1

2

(
DθΨ̄Ψ̄,

w2

sinη(2θ)

)
.

Integrating by parts and using (7.7), it is easy to see that

|I4,3| ≤ C|Fw|L2 .

I4,2 is a positive term which we will use and I4,1 can be re-written as:

I4,1 =
1− η

2

(
cos(2θ)(∂θΨ̄)2,

w2

sinη(2θ)

)
.

. Thus, since cos(2θ) = cos2(θ)− sin2(θ) we see:

I4 ≥
(

sin2(θ)(∂θΨ̄)2,
w2

sinη(2θ)

)
− C|Fw|2L2 .

Summing up the estimates of Ii for 1 ≤ i ≤ 5, we get:

|∂θθΨ
w

sin(2θ)η/2
|L2 ≤ C|F w

sin(2θ)η/2
|L2 .
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From here, it is not difficult to get (7.8).

Step 3: Radial and (weak) angular weights with radial derivatives

We note that we can rewrite (7.1) in the following convenient form:

L(Ψ) = −α2(R∂R)2Ψ− 5αR∂RΨ− ∂θθΨ + ∂θ(tan(θ)Ψ)− 6Ψ = F.

Recall the notation DR = R∂R. Consequently,

L(Dk
RΨ) = Dk

RF

for k = 0, 1, 2. Thus, using Steps 1 and 2 (in particular, (7.8)) we have:

α2|R2∂RR(DR)kΨ
w

sin(2θ)η/2
|L2 + |∂θθ(DR)kΨ

w

sin(2θ)η/2
|L2 ≤ C|(DR)kF

w

sin(2θ)η/2
|L2 (7.9)

for k = 0, 1, 2.

Step 4: Radial and angular weights with one angular derivative.

Now notice that from Step 3 have shown that |D2
R∂θθΨw|L2 ≤ C|D2

RFw|L2 . Consequently, we can
write:

−∂θθΨ + ∂θ(tan(θ)Ψ) = F + 6Ψ + α2D2
RΨ− 3αDRΨ := F1.

Now let’s apply ∂θ to this equation and multiply both sides by − sin(2θ)2−γ∂3
θΨw2. We get:∫

|∂3
θΨ|2 sin(2θ)2−γw2 −

∫
∂θθ(tan(θ)Ψ)∂3

θΨ sin(2θ)2−γw2 = −
(
∂θF1 sin(2θ)

2−γ
2 w, ∂3

θΨ sin(2θ)
2−γ
2 w

)
L2
.

By assumption as well as (7.9) we have that

|∂θF1 sin(2θ)2−γw| ≤ C|F |H2 .

Thus, our concern is to deal with the term:

I := −
∫
∂θθ(tan(θ)Ψ)∂3

θΨ sin(2θ)2−γw2.

As in Step 1, we define:

Ψ̄ =
Ψ

cos(θ)
.

Then,

I = −
∫ (

sin(θ)∂2
θ Ψ̄ + 2 cos(θ)∂θΨ̄− sin(θ)Ψ̄

)
∂3
θΨ sin(2θ)2−γw2

= −
∫

sin(θ)∂2
θ Ψ̄
(

cos(θ)∂3
θ Ψ̄− 3 sin(θ)∂2

θ Ψ̄− 3 cos(θ)∂θΨ̄ + sin(θ)Ψ̄
)

sin(2θ)2−γw2

−
∫ (

2 cos(θ)∂θΨ̄− sin(θ)Ψ̄
)
∂3
θΨ sin(2θ)2−γw2

= I1 + I2.

First we estimate I2. Note that cos(θ)∂θΨ̄ = ∂θ(cos(θ)Ψ̄) + sin(θ)Ψ̄. Thus,

I2 = −
∫ (

2∂θΨ̄ + sin(θ)Ψ̄)∂3
θΨ sin(2θ)2−γw2.
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Thus,
|I2| ≤ C|∂3

θΨ sin(2θ)
2−γ
2 w||Fw|

using (7.7) and the Hardy inequality. Now we turn to I1.

I1 = −
∫

sin(θ)∂2
θ Ψ̄
(

cos(θ)∂3
θ Ψ̄− 3 sin(θ)∂2

θ Ψ̄− 3 cos(θ)∂θΨ̄ + sin(θ)Ψ̄
)

sin(2θ)2−γw2.

We will now proceed to show that the highest order part, containing (∂2
θ Ψ̄)2 is actually positive. This is

just gotten by integrating by parts the first term in the integral (the second one is clearly positive). The
lower order terms can be controlled by a bound on (∂θΨ̄)2, which actually follows from the L2 estimate
with the weight w. We first re-write I1 and then integrate by parts:

I1 =

∫ [
−1

4
sin(2θ)3−γ∂θ

(
(∂2
θ Ψ̄)2

)
+3 sin2(θ)

(
∂2
θ Ψ̄
)2

sin(2θ)2−γ+
3

4
sin(2θ)3−γ∂θ

(
(∂θΨ̄)2

)
−sin2(θ) sin(2θ)2−γΨ̄∂2

θ Ψ̄
]
w2

=

∫ [
(
3− γ

2
cos(2θ)+3 sin2(θ))

(
∂2
θ Ψ̄
)2

sin(2θ)2−γ−3(3− γ)

2
cos(2θ) sin(2θ)2−γ(∂θΨ̄)2−sin2(θ) sin(2θ)2−γΨ̄∂2

θ Ψ̄
]
w2

≥ 1

4

∫ (
∂2
θ Ψ̄
)2

sin(2θ)2−γ − C|∂θΨ̄w|2L2 − C|Ψ̄w|2L2 ,

since 1 ≤ γ ≤ 3
2 . Now, we already know that∫

(∂θΨ̄)2w2 ≤ C|Fw|2L2 ,

using the the proof of (7.7) and the equation (7.1). Furthermore, we have that∫
(Ψ̄)2w2 ≤ C

∫
(∂θΨ̄)2w2

since Ψ̄ vanishes at θ = 0 (note that w does not depend on θ). Note that we could have also bounded∫
(Ψ̄)2w2 ≤ C

∫
(∂θΨ)2w2,

using a different version of the Hardy Inequality given in Lemma 7.3. We thus conclude that∣∣∣∂3
θΨ sin(2θ)

2−γ
2 w

∣∣∣
L2
≤ C|F |H2 . (7.10)

Next we want to estimate two derivatives in θ.

Step 5: Radial and angular weights with two angular derivatives.

We now come to the last step of the proof which handles the case of two angular derivatives. As in
the previous step, where we only took one angular derivative, we just take the equation:

−∂θθΨ + ∂θ(tan(θ)Ψ) = F + 6Ψ + α2D2
RΨ− 5αDRΨ := F1,

apply ∂θθ, multiply by − sin(2θ)4−γ∂4
θΨw2, and integrate. We get:∫

|∂4
θΨ|2 sin(2θ)4−γw2 = −

(
∂2
θF1 sin(2θ)

4−γ
2 w, ∂4

θΨ sin(2θ)
4−γ
2 w

)
L2

+

∫
∂3
θ (tan(θ)Ψ)∂4

θΨ sin(2θ)4−γw2.

As before, ∣∣∣(∂2
θF1 sin(2θ)

4−γ
2 w, ∂4

θΨ sin(2θ)
4−γ
2 w

)
L2

∣∣∣ ≤ |F |H2 |∂4
θΨ sin(2θ)

4−γ
2 w|L2 .
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Thus we are left to study:

I :=

∫
∂3
θ (tan(θ)Ψ)∂4

θΨ sin(2θ)4−γw2.

We will show that this quantity consists of negative terms and terms which we have already controlled.
Again we introduce the function Ψ

cos(θ) = Ψ̄. Then

I =

∫
∂3
θ (sin(θ)Ψ̄)∂4

θ (cos(θ)Ψ̄) sin(2θ)4−γw2 =
14∑
i=1

∫
Ii sin(2θ)4−γw2,

with:

I1 = − cos2(θ)Ψ̄2 I2 = −7

2
sin(2θ)Ψ̄∂θΨ̄ I3 = 9 cos2(θ)Ψ̄∂θθΨ̄ I4 =

5

2
sin(2θ)Ψ̄∂3

θ Ψ̄,

I5 = − cos2(θ)Ψ̄∂4
θ Ψ̄ I6 = −12 sin2(θ)(∂θΨ̄)2 I7 = 15DθΨ̄∂

2
θ Ψ̄ I8 = 16 sin2(θ)∂θΨ̄∂

3
θ Ψ̄

I9 = −3

2
∂θΨ̄∂

4
θ Ψ̄ I10 = −18 cos2(θ)(∂2

θ Ψ̄)2 I11 = −9 sin(2θ)∂2
θ Ψ̄∂3

θ Ψ̄ I12 = 3 cos2(θ)∂2
θ Ψ̄∂4

θ Ψ̄

I13 = −4 sin2(θ)(∂3
θ Ψ̄)2 I14 =

1

2
sin(2θ)∂3

θ Ψ̄∂4
θ Ψ̄.

Note that
∫
∂2
θ Ψ̄ sin2−γ(2θ)w2 has already been controlled (see the inequality right before (7.10)). Sim-

ilarly, all lower order terms have been controlled. In particular, Ii for 1 ≤ i ≤ 11 can be controlled by
C|F |2H2 as before using integration by parts in some terms (though there are many good terms as well).
Thus we will only need to consider I12, I13, and I14.

I ≤ C|F |2H2−3

∫
cos2(θ)(∂3

θ Ψ̄)2 sin4−γ(2θ)w2−4

∫
sin2(θ)(∂3

θ Ψ̄)2 sin4−γ(2θ)w2+
5− γ

2

∫
cos(2θ)(∂3

θ Ψ̄)2 sin4−γ(2θ)w2

≤ C|F |2H2 −
∫

(∂3
θ Ψ̄)2 sin4−γ(2θ)w2

This concludes the proof.

7.4 General Hk Case
In this subsection we extend Proposition 7.8 which established elliptic estimates on H2 to all Hk spaces
for k ≥ 3.

Proposition 7.10. Fix k ≥ 2. Under the same assumptions as Proposition 7.8, if |F |Hk <∞, we have:

α2|R2∂RRΨ|Hk + |∂θθΨ|Hk ≤ Ck|F |Hk

for some constant Ck > 0 depending only on k and independent of α and γ.

The proof is quite similar to the proof in the H2 case so we only give a sketch.

Proof. As with the coercivity estimates, since we already have an H2 we can proceed by induction on k.
Let us first rewrite (7.1) as:

−∂θθΨ + ∂θ(tan(θ)Ψ) = F + 6Ψ + α2D2
RΨ + αDRΨ := G.

Since estimates on the radial derivatives are relatively simple to get (because the equation commutes
with DR derivatives), it suffices to establish Hk estimates on just the angular part of the equation:

−∂θθΨ + ∂θ(tan(θ)Ψ) = G,
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for |G|Hk ≤ Ck|F |Hk . To get the highest order estimate, we take ∂kθ of the equation and integrate against
−∂k+2

θ Ψ with the relevant weight. The ambiguous term is

−(∂k+1
θ (tan(θ)Ψ), ∂k+2

θ Ψ sin(2θ)2k−γ)L2
θ
,

which we will now show is positive up to lower order terms. Again, it is useful to define

Ψ̄ =
Ψ

cos(θ)
,

so that the term in question becomes

I := −(∂k+1
θ (sin(θ)Ψ̄), ∂k+2

θ (cos(θ)Ψ̄) sin(2θ)2k−γ)L2
θ
.

Up to a lower order term E, we can write

I =

∫
−1

2
∂k+1
θ Ψ̄∂k+2

θ Ψ̄ sin(2θ)2k−γ+1−(k+1) cos2(θ)∂kθ Ψ̄∂k+2
θ Ψ̄ sin(2θ)2k−γ+(k+2) sin2(θ)

(
∂k+1
θ Ψ̄

)2

sin(2θ)2k−γ

Integrating by parts, the first and second terms we get:

I =

∫ (2k − γ + 1

2
cos(2θ) + (k + 1) cos2(θ) + (k + 2) sin2(θ)

)(
∂k+1
θ Ψ̄

)2

sin(2θ)2k−γ + E

=

∫ (2k − γ + 1

2
cos(2θ) + (k + 1) cos2(θ) + (k + 2) sin2(θ)

)(
∂k+1
θ Ψ̄

)2

sin(2θ)2k−γ + E

=

∫ (2k − γ + 1

2
(cos2(θ)− sin2(θ)) + (k + 1) cos2(θ) + (k + 2) sin2(θ)

)(
∂k+1
θ Ψ̄

)2

sin(2θ)2k−γ + E

≥
∫ (

∂k+1
θ Ψ̄

)2

sin(2θ)2k−γ − Ck|F |Hk−1

7.5 The singular term
In Propositions 7.1, 7.8, and 7.10, one of the main conditions on F is the condition∫ π/2

0

F (R, θ) cos2(θ) sin(θ)dθ ≡ 0.

In fact, when α = 0 this is precisely the condition necessary to solve (7.1). Now we show how to solve
the problem when

F?(R) :=

∫ π/2

0

F (R, θ) cos2(θ) sin(θ)dθ 6≡ 0.

Note first that when α = 0, sin(2θ) is in the kernel of L (in (7.1)). Consequently, if G is some function
of R only we have:

L(G(R) sin(2θ)) = (α2R2∂RRG+ α(5 + α)R∂RG) sin(2θ).

Thus, if Ψ solves (7.1) and we define Ψ̂ = Ψ +G sin(2θ) then we have:

L(Ψ̂) = F − (α2R2∂RRG+ α(5 + α)R∂RG) sin(2θ).

Now noting that
∫ π/2

0
sin(2θ) cos2(θ) sin(θ)dθ = 4

15 we see that if we define G by:

α2R2∂RRG+ α(5 + α)R∂RG =
15

4
F?.
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where G vanishes as R → ∞, then Ψ̂ will enjoy all the bounds given in Propositions 7.1 and 7.10. For
example, we will have that

|∂θθΨ̂|Hk ≤ C|F |Hk ,

which will follow from a bound on αG which we will observe below.
Now we just need to solve for G. Notice that

∂RRG+
5 + α

α

1

R
∂RG =

15

4α2R2
F?.

Thus,

∂R

(
R

5+α
α ∂RG

)
=

15

4α2
R

5−α
α F?

and so

R
5+α
α ∂RG =

15

4α2

∫ R

0

s
5−α
α F?(s)ds.

Therefore,

G = − 15

4α2

∫ ∞
R

ρ−
5+α
α

∫ ρ

0

s
5−α
α F?(s)dsdρ.

Next, by integrating by parts we see:

G =
3

4α

∫ ∞
R

∂ρ(ρ
− 5
α )

∫ ρ

0

s
5−α
α F?(s)dsdρ = − 3

4α

∫ ∞
R

F?(ρ)

ρ
dρ− 3

4α
R−

5
α

∫ R

0

ρ
5−α
α F?(ρ)dρ.

Thus,

G = − 1

4α
L12(F )− 3

4α
R−

5
α

∫ R

0

ρ
5−α
α F?(ρ)dρ := G? + Ḡ.

Next, observe that while Ḡ is preceded by 1
α , we still have a good bound for it.

|Ḡ|L2 ≤ C|F |L2

with C a constant independent of α. This is a consequence of the following Hardy-type inequality
established in Lemma A.7 of [23]:

Lemma 7.11. Let α > 0. For all f ∈ Hk([0,∞)) we have∣∣∣ sin(2θ)R−
5
α

∫ R

0

ρ
5−α
α f(ρ)dρ

∣∣∣
Hk
≤ Ckα|f |Hk .

We have proved the following Theorem.

Theorem 2. Let α > 0 and F ∈ Hk given. Let Ψ be the unique C2 solution to (7.1) which vanishes on
θ = 0, θ = π

2 and as R→∞. Then,

α2|R2∂RRΨ|Hk + |∂θθ
(
Ψ− 1

4α
sin(2θ)L12(F )

)
|Hk ≤ C|F |Hk ,

with C a universal constant independent of α and γ in the definition of Hk.

39



8 Some useful facts about Hk and W l,∞

In this section we collect a few facts about the spaces Hk and W l,∞ that we will find useful. For the
sake of concreteness, we will fix k = 4 and l = 5 in the following, but everything we will do will be
applicable for any k ≥ 4 and l ≥ 5. We should remark that in the original version of this paper on the
ArXiv the non-linear estimates were done in H2. In H2 the problem becomes critical in a certain sense
and it is not clear whether the non-linear estimates can be closed in an easy way. The author thanks
Jiajie Chen for pointing out this oversight. In H4 the estimates are significantly simpler because we have
better embedding theorems.

As we already introduced in the notations section, the space Hk is defined using the norm (1.8). More
precisely, Hk is just the closure of C∞c ((0,∞) × (0, π/2)) in the Hk norm. The precise definition of the
space W l,∞ is irrelevant to the problem at hand. This is since the unknown g in the full non-linear
problem will be studied (only) in Hk. We are only using the norm W l,∞ as a convenient way to measure
the regularity of the (known) approximate solution F∗. The purpose of the W l,∞ norm is to emphasize
that F∗ is smooth in z and that Dj

θF∗ is “better” than F∗ itself (either in terms of regularity or smallness).

8.1 Product Rules in H4

We begin by proving that H4 embeds in a space of Hölder continuous functions.

Lemma 8.1. Let g ∈ C∞c ((0,∞)× (0, π/2)). We have that

sup
θ
|g(z, θ)|2 ≤ C

γ − 1

∫ π/2

0

|∂θg(z, θ)|2 sin(2θ)2−γdθ,

and

sup
z
|g(z, θ)|2 ≤ C

∫ ∞
0

|Dzg(z, θ)|2 (1 + z)4

z4
dz,

with C a universal constant.

Proof. The proofs of both statements is essentially the same so we only prove the first one. Observe that

|g(z, θ)|2 = |g(z, θ)−g(z, 0)|2 ≤
(∫ π/2

0

|∂θg(z, θ)|dθ
)2

≤
∫ π/2

0

|∂θg(z, θ)|2 sin(2θ)2−γdθ

∫ π/2

0

sin(2θ)γ−2dθ

≤ C

γ − 1

∫ π/2

0

|∂θg(z, θ)|2 sin(2θ)2−γdθ.

We now mention a few corollaries of this Lemma.

Corollary 8.2. Assuming that g ∈ H2 we have that

|g|L∞ ≤
C√
γ − 1

|g|H2 ,

for C a universal constant. In fact, for any β < γ − 1, we have that

|g|Cβ ≤ Cβ |g|H2 .

Corollary 8.3. If g ∈ H4 and if D is any first or second derivative of Dz and Dθ, then we have that
|g|L∞ + |Dg|L∞ ≤ C√

γ−1
|g|H4 .

Now we have the main product lemma in H4.
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Lemma 8.4. Let f, g ∈ H4. Then,

|fg|H4 ≤ C√
γ − 1

|f |H4 |g|H4 .

Proof. The proof follows basically directly from Corollary 8.3 and is elementary. For this reason we just
consider two model terms: D4

θ(fg) and DθD
3
z(fg), the second one being the only real difficulty. First,

D4
θ(fg) =

2∑
i=0

aiD
i
θfD

4−i
θ g +

4∑
i=3

aiD
i
θfD

4−i
θ g,

where ai are binomial coefficients. Thus,

|D4
θ(fg)W |L2 ≤ C

( 2∑
i=0

|Di
θfD

4−i
θ gW |L2 +

4∑
i=3

|Di
θfD

4−i
θ gW |L2

)
≤ C(|f |L∞ + |Dθf |L∞ + |D2

θf |L∞)|g|H4 + C(|Dθg|L∞ + |g|L∞)|f |H4 .

Next, consider (DθD
3
z)(fg). The problem with this term is that since, in the definition of H4, terms

without a θ derivative have a slightly weaker weight than terms with a θ derivative, when we encounter
the term |D3

zfDθgW |L2 , we cannot simply pull the |Dθg|L∞ out since we do not have an estimate on
|D3

zfW |L2 . This problem only occurs when we pair one derivative in θ with three derivatives in z and
all other terms in |fg|H4 can be treated as the first term D4

θ(fg) was. To overcome this, we use the full
power of Lemma 8.1 to pull out Dθgwθ in L∞z and |D3

zfw|L∞θ . Indeed,

|DθgD
3
zfW |2L2 =

∫ ∞
0

∫ π/2

0

(D3
zf)2(∂θg)2 sin(2θ)2−γ (1 + z)4

z4
dzdθ

≤
(∫ π/2

0

sup
z
|∂θg|2 sin(2θ)2−γdθ

)(∫ ∞
0

sup
θ
|D3

zf |2
(1 + z)4

z4
dz
)

≤ C

γ − 1
|g|H2 |f |H4 ,

by Lemma 8.1.

Remark 8.5. From the proof, it is also clear that we actually have:

|fg|Hk ≤
Ck√
γ − 1

|f |Hk |g|Hk

for any k ≥ 3. In the case k = 3, note that when three derivatives split onto a product fg, one of f and
g has at most one derivative. The proof then follows exactly as above. The H3 estimate is important in
the estimate of ∂τg in the construction of the solution in Section 9.5.

We now state a corresponding statement regarding the product of W4,∞ and H4 functions whose
proof is also elementary8:

Lemma 8.6. Let f ∈ W4,∞ and g ∈ H4. Then, fg ∈ H4 and

|fg|H4 ≤ C√
γ − 1

|f |W4,∞ |g|H4 .

8A small difference between the preceding case and this one is that the W4,∞ part can accept four Dθ or Dz derivatives
in L∞ which actually makes the proof even easier.

41



8.2 Transport Estimates
We now move to state and prove some transport estimates which are similar in nature to the product
rules in the preceding subsection. We will encounter a number of different types of transport terms, the
most dangerous of which (in terms of regularity considerations) are of the form:

αDzΨg∂θg, U(Φg −
1

4α
sin(2θ)L12(g))∂θg, V (Φg −

1

4α
sin(2θ)L12(g))Dzg,

where the operator U can be thought of as Id + αDz and V can be thought of as ∂θ. In view of the
elliptic estimates from Theorem 2, we can think of the above transport terms as g being transported by a
velocity which is one derivative more regular than g (as is classically the case with the transport term in
the vorticity equation). See (9.2) and the calculations thereafter for the precise transport terms. Before
diving into the estimates, we want to make a remark on the meaning of some expressions that do not
appear at first to be well-defined.

On the meaning of some ambiguous expressions

When we deal with transport estimates, we will undoubtedly run into terms of the following form:

(fDθg, g)H4 ,

where f, g ∈ H4. It appears, at first, that this is not well defined since it seems to require that fDθg ∈ H4;
however, a simple integration by parts argument allows us to define this expression even for H4 functions.
This can in fact be done for a wide class of Sobolev spaces with weights. Indeed, for f ∈ H4, g ∈ H5, the
expression makes sense and we can write:

(fDθg, g)H4 =
∑

0≤i,j≤4

∫
Di
zD

j
θ(fDθg)Di

zD
j
θgwi,j ,

=

∫
fDθD

i
zD

j
θgD

i
zD

j
θgwi,j + E(f, g),

where E is well-defined for f, g ∈ H4 and where wi,j are weights depending on i and j (the main
dependence in our case is in the coefficients). Now we just observe that the ambiguous term can be
rewritten: ∫

fDθD
i
zD

j
θgD

i
zD

j
θgwi,j = −1

2

∫ (
Di
zD

j
θg
)2

∂θ(sin(2θ)fwi,j),

which again is well-defined for f, g ∈ H4 since |Dθf |L∞ ≤ C|f |H4 , by Corollary 8.3 and since

|Dθwi,j | ≤ Cwi,j .

The same process can be done for radial transport terms. More formally, let us fix an f ∈ H4 and
consider the function Bf : H5 → R defined by:

Bf (g) := (fDθg, g)H4 .

It follows directly from the algebra property that this is a continuous function on H5. Now we will show
that B has a unique continuous extension to H4.

|B(g1)−B(g2)| ≤ C(|f |H3)
∑

0≤i,j≤4

∫
|(Di

zD
j
θg1)2 − (Di

zD
j
θg2)2|wi,j + |E(f, g1)− E(f, g2)|

≤ C|f |H4(|g1|H4 + |g2|H4)|g1 − g2|H4 .

42



Note that the bound on E is done in more detail in the next Proposition. It follows from the density
of C∞c in H4 that we can uniquely extend Bf to H4. Note that there are no other ambiguous terms.
The above considerations allow us to tacitly assume that the functions g treated here are in fact C∞c in
arguments involving integration by parts and similar manipulations. Note that these ideas are standard
in PDE theory when we are using standard Sobolev spaces, though the spaces defined here are a little
more exotic.

Now we move on to the estimates we need.

Lemma 8.7. Assume f, g ∈ H4. Then,

|(fDθg, g)H4 | ≤ C√
γ − 1

|f |H4 |g|2H4 .

Proof. The proof of the lemma is again elementary and we only consider two model cases: (D4
θ(fDθg), D4

θgW
2)L2

and (D3
zDθ(fDθg), D3

zDθgW
2)L2 , the delicate one being the second one. For the first one, observe that

(D4
θ(fDθg), D4

θgW
2)L2 =

2∑
i=1

ai(D
i
θfD

5−i
θ g,D4

θgW
2)L2+

4∑
i=3

ai(D
i
θfD

5−i
θ g,D4

θgW
2)L2+

1

2
(Dθ((D

4
θg)2), fW 2)L2

≤ C(|Dθf |L∞ + |D2
θf |L∞)|g|2H4 + C(|Dθg|L∞ + |D2

θg|L∞)|f |H4 |g|H4 .

≤ C√
γ − 1

|f |H4 |g|2H4 .

Now we move to investigate the term (D3
zDθ(fDθg), D3

zDθgW
2)L2 . Upon expanding the derivatives in

this expression using Leibniz’s rule as above, we see that there is again only one term that is not treated
as above: (D3

zfD
2
θg,D

3
zDθgW

2)L2 . As in the proof of Lemma 8.4, we cannot simply pull out |D2
θg|L∞ .

Thus we first apply Cauchy-Schwarz and then we observe that:√∫ ∞
0

∫ π/2

0

(D3
zf)2(∂θDθg)2 sin(2θ)2−γ (1 + z)4

z4
dzdθ ≤ C√

γ − 1
|f |H4 |Dθg|H2 ≤ C√

γ − 1
|f |H4 |g|H4 ,

where we applied Lemma 8.1 just as in the second part of the proof of Lemma 8.4.

We next state the corresponding result for Dz derivatives, whose proof is identical to the proof of
Lemma 8.7.

Lemma 8.8. If f, g ∈ H4, then

|(fDzg, g)H4 | ≤ C√
γ − 1

|f |H4 |g|2H4 .

We further have two more similar transport estimates with W4,∞ velocity.

Lemma 8.9. If f ∈ W4,∞ and g ∈ H4, then

|(fDzg, g)H4 |+ |(fDθg, g)H4| ≤
C√
γ − 1

|f |W4,∞ |g|2H4 .

The proof of Lemma 8.9 is much simpler than the proof of Lemma 8.7 since when any derivative hits
f we can simply estimate that term pointwise using |f |W4,∞ while the other term can be estimated using
integration by parts.

Let us end by mentioning a slightly more non-trivial estimate that we will use.
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Proposition 8.10. Let g ∈ H4 and assume that f is such that ∂θf ∈ W4,∞ and f(z, 0) = f(z, π/2) = 0,
for all z ∈ [0,∞). Then,

(f∂θg, g)H4 ≤ C√
γ − 1

|∂θf |W4,∞ |g|2H4 .

Proof. The proof is slightly more delicate here so we will go into more detail. We will deal with Dθ and
Dz derivatives slightly differently. First observe that for any 0 ≤ j ≤ 4 we have that

|Dj
z

f

sin(2θ)
|L∞ ≤ C|Dj

z∂θf |L∞ ≤ C|∂θf |W4,∞ .

Now, (f∂θg, g)H4 can be written as a sum of terms of the form:

(Di1
θ D

i2
z fD

j1
θ D

j2
z ∂θg,D

i1+j1
θ Di2+j2

z gWi,j)L2 ,

where 0 ≤ i1 + i2 + j1 + j2 ≤ 4 and Wi,j is w2

sin(2θ)η if i1 = j1 = 0 and w2

sin(2θ)γ otherwise. We only need to
consider a couple of cases.

Case 1: i1 = i2 = 0 (all derivatives fall on g). Here we will want to integrate by parts except in the
commutator terms. The information we will use about f is that

| f

sin(2θ)
|L∞ + |∂θf |L∞ ≤ C|∂θf |W4,∞

since f(z, 0) = f(z, π/2) = 0 for all z.
We have:

(fDj1
θ ∂θD

j2
z g,D

j1
θ D

j2
z gWi,j)L2 = (f∂θ(D

j1
θ D

j2
z g), Dj1

θ D
j2
z gWi,j)L2

+(f [Dj1
θ , ∂θ]D

j2
z g,D

j1
θ D

j2
z gWi,j)L2 := I + II.

Now,

|I| = |(f∂θ(Dj1
θ D

j2
z g), Dj1

θ D
j2
z gWi,j)L2 | = 1

2
|(∂θ(fWi,j), (D

j1
θ D

j2
z g)2)L2 | ≤ C|∂θf |W4,∞ |g|2H4 ,

since
|∂θ(fWi,j)| ≤ C|∂θf |W4,∞Wi,j ,

for C a universal constant where we just used boundedness of ∂θf and f
sin(2θ) . Next, for the commutator

term:
II = (f [Dj1

θ , ∂θ]D
j2
z g,D

j1
θ D

j2
z gWi,j)L2 .

It is easy to see that

| sin(2θ)[Dj1
θ , ∂θ]D

j2
z g| ≤ C

j1∑
i=1

|Di
θD

j2
z g|.

Note that the sum (and the commutator) is 0 when j1 = 0. Thus,

|II| ≤ | f

sin(2θ)
|L∞ |g|2H4 .

This concludes Case 1.
Case 2: i1 + i2 ≥ 1. This case is very similar to the above and we leave it to the reader.
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8.3 Functions which belong to W5,∞

We now give the main example of a function belonging to W5,∞ which we will use. Let us recall the
definition of the W l,∞ norm:

|f |Wl,∞ =
∑

0≤k≤l

|(z + 1)k∂kz f |L∞ +
∑

1≤k+j≤l,j≥1

|(z + 1)k∂kzD
j
θf

sin(2θ)−
α
5

α+ sin(2θ)
|L∞ .

We remind the reader that
γ = 1 +

α

10
.

We let
Γ(θ) = (sin(θ) cos2(θ))α/3.

Let us start with the following Lemma, which will simplify most computations involving specific functions
in W l,∞.

Lemma 8.11. Fix 0 ≤ β ≤ 1. Then,

|(x∂x)k(xβ − sin(x)β)|C1[0,1/2] ≤ Ck,

for any non-negative integer k, where the constant Ck is independent of β.

Proof. xβ − sin(x)β = xβ(1−
(

sin(x)
x

)β
). Now let

f(x) = 1−
( sin(x)

x

)β
.

Observe that for x ∈ [0, 1/2] we have 1/2 ≤ sin(x)
x ≤ 1. Now observe that f(0) = 0 and that |f |Ck ≤ Ck

where Ck can be independent of β ∈ [0, 1]. Thus, if we define

F (x) =
f(x)

x
,

we also have |F |Ck ≤ Ck. Thus, we can write:

xβ − sin(x)β = x1+βF (x).

The result now follows by a direct computation.

Remark 8.12. Indeed, it allows us to replace sin(x) by x and cos(x) by π
2 − x in essentially all the

computations we will do. In particular, it will allow us to write:

Γ(θ) = θ
α
3 + smoother

for θ ∈ [0, π4 ] and similar for θ ∈ [π4 ,
π
2 ]. Here, the “smoother” term is actually uniformly C1 in θ.

A direct corollary is then

Proposition 8.13. Γ ∈ W5,∞ with norm independent of α.

Let us also make the following observation.

Corollary 8.14.

| 1

sin3(x)

∫ x

0

sin2(β)Γ(β)|W5,∞ ≤ C.
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Proof. Up to a function which is C1 on [0, π/4] with any as many x∂x derivatives as we want, the integral
in question is just

1

x3

∫ x

0

β2+α/3dβ =
1

3 + α/3
xα/3.

We also have the following clear proposition:

Proposition 8.15. Fix l ∈ N. There exists a constant C = C(l) > 0 so that if f, g ∈ W l,∞, then

|fg|Wl,∞ ≤ C|f |Wl,∞ |g|Wl,∞ .

Observe now that if we let F∗(z, θ) = 2αΓ(θ)
c∗

z
(z+1)2 , then we have that L12(F∗) = 2α

z+1 . Thus, L12(F∗) ∈
W5,∞. Moreover, we define Φ∗ by

−α2z2∂zzΦ∗ − α(5 + α)DzΦ∗ − ∂θθΦ∗ + ∂θ
(

tan(θ)Φ∗
)
− 6Φ∗ = F∗.

Proposition 8.16. We have

|∂zz(Φ∗ −
1

4α
sin(2θ)L12(F∗))|W5,∞ + |z + 1

z
∂θθ(Φ∗ −

1

4α
sin(2θ)L12(F∗))|W5,∞ ≤ Cα.

Proof. As in Section 7.5, we first note that
∫ π/2

0
F∗(θ, z) sin(θ) cos2(θ)dθ = 2αz

(1+z)2 . Now define G by

α2z2∂zzG+ α(5 + α)DzG =
15

4

2αz

(1 + z)2
.

Now we observe, as in Section 7.5, that

G = − 1

4α
L12(F∗)−

3

2
z−5/α

∫ z

0

ρ
5−α
α

ρ

(1 + ρ)2
dρ

= − 1

4α
L12(F∗)−

3

2
z−5/α

∫ z

0

ρ5/α

(1 + ρ)2
dρ.

= − 1

4α
L12(F∗)−

3α

2
z−5/α ρ

5/α+1

5 + α

1

(1 + ρ)2

∣∣∣z
ρ=0

+
3α

5 + α
z−5/α

∫ z

0

ρ5/α+1

(1 + ρ)3
dρ.

= − 1

4α
L12(F∗)−

3α

2(5 + α)

z

(1 + z)2
+

3α

5 + α
z−5/α

∫ z

0

ρ5/α+1

(1 + ρ)3
dρ.

In particular, it is easy to see that

|G+
1

4α
L12(F∗)|W 5,∞ ≤ Cα.

Now, from Proposition 7.1, we get that

α2|z2∂zz(Φ∗ + sin(2θ)G)|L2 + |∂θθ(Φ∗ + sin(2θ)G)|L2 ≤ C|F∗|L2 ≤ Cα.

Since F∗ is infinitely smooth in z we also have that

α2|∂kz
(
z2∂zz(Φ∗ + sin(2θ)G)

)
|L2 + |∂kz ∂θθ(Φ∗ + sin(2θ)G)|L2 ≤ Ckα

for any integer k. Consequently, we define

Φ̄ = Φ∗ + sin(2θ)G.
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and F̄∗ = F∗ − 15
2 sin(2θ) αz

(1+z)2 (so that
∫ π/2

0
F̄∗K = 0) and we see:

−∂θθΦ̄ + ∂θ
(

tan(θ)Φ̄
)

= F̄∗ + 6Φ̄ + α2z2∂zzΦ̄ + α(5 + α)DzΦ̄.

Since we have arbitrary smoothness in z, it is now easy to see that most of the terms on the right hand
side can be neglected (by virtue of Lemma 8.11) and that to establish the proposition it suffices to show
that the solution Φ̃ to

∂θθΦ̃− ∂θ(tan(θ)Φ̃) = Γ(θ) (8.1)

satisfies:
|∂θθΦ̃|W5,∞ ≤ C.

We do this by directly solving the above equation. Indeed, once this bound on Φ̃ is established, it is
easy to see that the difference between Φ̄ and Φ̃ z

(1+z)2 is smoother (as in Lemma 8.11). To establish the
bound on ∂θθΦ̃ we just solve the ODE.

We observe that

∂θΦ̃− tan(θ)Φ̃ =

∫ θ

0

Γ(θ′)dθ′ + C1

∂θ(Φ̃ cos(θ)) = cos(θ)

∫ θ

0

Γ(θ′)dθ′ + C1 cos(θ)

Thus,

Φ̃ =
1

cos(θ)

∫ θ

0

cos(β)

∫ β

0

Γ(θ′)dθ′ + C1
sin(θ)

cos(θ)

=
1

cos(θ)

(
sin(θ)

∫ θ

0

Γ(β)dβ + C1 sin(θ)−
∫ θ

0

sin(β)Γ(β)dβ
)
.

C1 is now chosen to keep the boundary condition Φ̃(π/2) = 0. That is, we want to take

C1 :=

∫ π/2

0

(sin(β)− 1)Γ(β)dβ.

With this choice of C1, we have

Φ̃ = − sin(θ)

cos(θ)

∫ π/2

θ

Γ(β)dβ +
1

cos(θ)

(
sin(θ)

∫ π/2

0

sin(β)Γ(β)dβ −
∫ θ

0

sin(β)Γ(β)dβ
)

= − sin(θ)

cos(θ)

∫ π/2

θ

Γ(β)dβ +
sin(θ)− 1

cos(θ)

∫ π/2

0

sin(β)Γ(β)dβ +
1

cos(θ)

∫ π/2

θ

sin(β)Γ(β)dβ.

Note that sin(θ)−1
cos(θ) = − cos(θ)

sin(θ)+1 is smooth in [0, π/2] and vanishes at π
2 . Finally, we rewrite Φ̃ :

Φ̃ =
sin(θ)− 1

cos(θ)

(∫ π/2

0

sin(β)Γ(β)dβ −
∫ π/2

θ

Γ(β)dβ
)

+
1

cos(θ)

∫ π/2

θ

(sin(β)− 1)Γ(β)dβ

= − cos(θ)

sin(θ) + 1

(∫ π/2

0

sin(β)Γ(β)dβ −
∫ π/2

θ

Γ(β)dβ
)

+
1

cos(θ)

∫ π/2

θ

(sin(β)− 1)Γ(β)dβ = I + II + III.

Note that to show that ∂θθΦ̃ ∈ W5,∞, it suffices to show that ∂θ(tan(θ)Φ̃) ∈ W5,∞ using (8.1). Observe
that tan(θ) · I ∈ C∞[0, π/2]. Observe also that

tan(θ) · II =
sin(θ)

sin(θ) + 1

∫ π/2

θ

Γ(β)dβ.
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It is thus easy to see that ∂θ(tan(θ)II) ∈ W5,∞. Finally,

tan(θ) · III =
sin(θ)

cos2(θ)

∫ π/2

θ

(sin(β)− 1)Γ(β)dβ

so that

∂θ(tan(θ) · III) =
cos2(θ)− 2 sin2(θ)

cos3(θ)

∫ π/2

θ

(sin(β)− 1)Γ(β)dβ +
(1− sin(θ)) sin(θ)

cos2(θ)
Γ(θ)

=
cos2(θ)− 2 sin2(θ)

cos3(θ)

∫ π/2

θ

cos2(β)
Γ(β)

1 + sin(β)
dβ +

sin(θ)

1 + sin(θ)
Γ(θ).

We now conclude using a variant on Corollary 8.14.

Next, we have the following Proposition.

Proposition 8.17. Assume that f ∈ W5,∞ is smooth in z and that f(0, θ) = 0 for all θ ∈ [0, π/2]. Then,

|z + 1

z
f |W4,∞ ≤ C|f |W5,∞ .

Proof. The proof simply consists of examining the Taylor expansion of f in z.

A corollary is the following

Corollary 8.18. We have that 1
zF∗,

1
z (Φ∗ − 1

4α sin(2θ)L12(F∗)) ∈ W4,∞ and

| (z + 1)2

z
F∗|W4,∞ + |z + 1

z
∂θθ(Φ∗ −

1

4α
sin(2θ)L12(F∗))|W4,∞ ≤ Cα.

This follows from the preceding Proposition and Proposition 8.16.

Remark 8.19. It is true that F∗ is not smooth but that it is only smooth in z (though it has some
regularity in θ). Nevertheless, it is easy to see that F∗ can be approximated by smooth functions in the
W l,∞ norm for any l so that it easy to derive the corollary from the Proposition.

8.4 From W4,∞ to H4.
We will also find the following proposition useful.

Proposition 8.20. There exists a universal constant C > 0 (independent of α) so that if (z+1)3

z2 f ∈
W4,∞, then f ∈ H4 and

|f |H4 ≤ C
∣∣∣ (z + 1)3

z2
f
∣∣∣
W4,∞

.

Proof. The main term to consider in |f |H4 is |D4
zf

w√
sin(2θ)η

|L2 . We see:

|D4
zf

w√
sin(2θ)η

|2L2 ≤ C
4∑
i=1

|∂izf
ziw√

sin(2θ)η
|2L2 ≤ C

4∑
i=1

|(z + 1)∂izfz
iw|2L∞ ,

where all we used is that 1
sin(2θ)η is integrable. On the other hand, by definition,

| (z + 1)3

z2
f |W4,∞ ≥

4∑
i=0

∣∣∣(z + 1)i∂iz

( (z + 1)3

z2
f
)∣∣∣
L∞
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Now let f = z2k. Then we see:

| (z + 1)3

z2
f |W4,∞ ≥

4∑
i=0

|(z + 1)i∂iz

(
(z + 1)3k

)
|L∞ ≥ c

4∑
i=0

|(z + 1)i+3∂izk|L∞ ,

for some universal constant c > 0. Now, we need to bound

4∑
i=1

|(z+1)∂izfz
iw|2L∞ =

4∑
i=1

|(z+1)ziw∂iz(z
2k)|2L∞ ≤ C

4∑
i=0

|(z+1)zi+2w∂izk|2L∞ = C
4∑
i=0

|(z+1)3zi∂izk|2L∞

≤ C| (z + 1)3

z2
f |2W4,∞ .

The rest of the terms are treated similarly or in a simpler way.

We also have the following useful Lemma.

Lemma 8.21. Assume that ∂θf ∈ W4,∞, g ∈ W5,∞, and that f(z, 0) = f(z, π/2) = 0 for all z ∈ [0,∞).
Then,

|f∂θg|W4,∞ ≤ C|∂θf |W4,∞ |g|W5,∞ ,

for C a universal constant.

Remark 8.22. If we knew that ∂θf ∈ W4,∞ implies that f
sin(2θ) ∈ W

4,∞, this result would follow directly
from Proposition 8.15.

Proof. Let us just consider the cases when the derivatives involved are ∂4
z and D4

θ . Observe that

|(z + 1)4∂4
z (f∂θg)|L∞ ≤

4∑
j=0

|(z + 1)j
∂jzf

sin(2θ)
(z + 1)4−jDθ∂

4−j
z g|L∞

≤ |g|W5,∞

4∑
j=0

|(z + 1)j
∂jzf

sin(2θ)
|L∞ ≤ C|g|W5,∞

4∑
j=0

sup
z

sup
θ
|(z + 1)j∂jz∂θf(z, θ)| ≤ |∂θf |W4,∞ |g|W5,∞ .

Next, we observe that

|D4
θ(f∂θg)

sin(2θ)−α/5

α+ sin(2θ)
|L∞ ≤ C

4∑
j=0

|Dj
θ∂θf |L∞ |g|W5,∞ ≤ C|∂θf |W4,∞ |g|W5,∞ .

8.5 Other Useful Facts
In this subsection, we establish two more elementary facts. First we have the following

Proposition 8.23. There exists a universal constant C > 0 so that for all g ∈ H4 with L12(g)(0) = 0
we have that L12(g) ∈ H4 and

|L12(g)|H4 ≤ C|g|H4 .

Proof. Let g ∈ H4 be such that L12(g)(0) = 0. Observe that L12(g) is independent of θ so all we only
need to show that

|Dk
zL12(g)w|L2

z
≤ C|g|H4 ,

for 0 ≤ k ≤ 4. Since
DRL12(g) = (g,K)L2

θ
,
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the only non-trivial case is k = 0. In the case k = 0 observe that:∫ 1

0

(z + 1)4

z2
(L12(g)(z))2dz ≤ C

∫ 1

0

1

z4

(∫ π/2

0

∫ z

0

g(r, θ)

r
drdθ

)2

dz := I

where we used that L12(g)(0) = 0. Now observe that, by integration by parts,

I =
3

2

∫ 1

0

(∫ π/2

0

g(z, θ)

z2

) 1

z2

(∫ π/2

0

∫ z

0

g(r, θ)

r
drdθ

)
dz ≤ 3

2

√
I

∫ 1

0

(∫ π/2

0

g(z, θ)

z2
dθ
)2

≤

C
√
I

∫ 1

0

∫ π/2

0

g(z, θ)2

z4
dzdθ ≤ C

√
I|g|H4 .

Thus, I ≤ C|g|2H4 and ∫ 1

0

(z + 1)4

z2
(L12(g)(z))2dz ≤ C|g|2H4 .

Next, observe that ∫ ∞
1

(z + 1)4

z4
(L12(g)(z))2 ≤ |g|2H4

again using integration by parts as above and in the proof of Lemma 5.3.

We also have the following useful Proposition

Proposition 8.24. Let Φ : [0,∞)× [0, π/2]→ R be smooth and rapidly decaying in z. Assume also that
Φ(z, 0) = Φ(z, π/2) = 0 for all z ∈ [0,∞). Then, 1

sin(2θ)Φ ∈ H4 and

| 1

sin(2θ)
Φ|H4 ≤ C|∂θΦ|H4 .

Remark 8.25. By density, this of course extends to all Φ with ∂θΦ ∈ H4 and Φ(z, 0) = Φ(z, π/2) = 0
for all z.

The proof directly follows from two lemmas. The first, Lemma 7.5, has already been established and
the second is a variant on Lemma 7.4:

Lemma 8.26. Assume that f ∈ C∞c ((0,∞)) and k ∈ N and γ ≥ 0. Then,∫ ∞
0

x2k−γ
(
∂kx
(f(x)

x

))2

dx ≤
∫ ∞

0

x2k−γ(∂k+1
x f)2.

Proof. Define h = f(x)
x . Then, ∂k+1

x f = ∂k+1
x hx+ (k + 1)∂kxh. Now observe that∫ ∞

0

x2k−γ∂kxh∂
k+1
x f =

∫ ∞
0

x2k−γ((k+1)(∂kxh)2+x∂kxh∂
k+1
x h) = [(k+1)− 1

2
(2k+1−γ)]

∫ ∞
0

x2k−γ(∂kxh)2

= (1 +
γ

2
)

∫ ∞
0

x2k−γ(∂kxh)2.

The result now follows.
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9 Self-similar variables and modulation
In this section we will use the results of the preceding sections to construct a self-similar blow-up solution
to the Euler equation and prove Theorem 1. In the first part of the section, we will use the result of
Theorem 2 to rewrite the Euler equation as a perturbation of the fundamental model as explained in
Section 2. Then we will search for self-similar solutions to the Euler equation near self-similar solutions
to the fundamental model. This will naturally lead us to the system (9.6)-(9.12), where we will use the
results of Sections 6, 7, and 8 to prove existence of a solution. The reader may find rereading Section 2
helpful in motivating some of the computations in the beginning of this section.

Recall from Section 2 the following equations for Ω and Ψ:

1

2
∂tΩ + U(Ψ)∂θΩ + V (Ψ)αR∂RΩ = R(Ψ)Ω, (9.1)

U(Ψ) := −3Ψ−αR∂RΨ V (Ψ) := ∂θΨ−tan(θ)Ψ, R(Ψ) :=
1

cos(θ)

(
2 sin(θ)Ψ+α sin(θ)R∂RΨ+cos(θ)∂θΨ

)
,

(9.2)

− α2R2∂RRΨ− α(5 + α)R∂RΨ− ∂θθΨ + ∂θ
(

tan(θ)Ψ
)
− 6Ψ = Ω. (9.3)

Note that the 1
2 preceding the ∂tΩ is there for convenience and can be viewed as a time-dilation. Let us

search for a solution of the form

Ω =
1

1− (1 + µ)t
F
( R

(1− (1 + µ)t)1+λ
, θ
)

where µ and λ are small real numbers. We introduce the self-similar variable

z =
R

(1− (1 + µ)t)1+λ
.

It is easy to see that if Ω has the above form, then Ψ should have the form:

Ψ =
1

1− (1 + µ)t
Φ(z, θ).

Now we write the equations for F and Φ:

(1 + µ)F + (1 + µ)(1 + λ)DzF + 2U(Φ)∂θF + 2αV (Φ)DzF = 2R(Φ)F

U(Φ) := −3Φ−αDzΦ V (Φ) := ∂θΦ−tan(θ)Φ, R(Φ) :=
1

cos(θ)

(
2 sin(θ)Φ+α sin(θ)DzΦ+cos(θ)∂θΦ

)
,

−α2z2∂zzΦ− α(5 + α)z∂zΦ− ∂θθΦ + ∂θ
(

tan(θ)Φ
)
− 6Φ = F.

Now recall from the elliptic estimates of Theorem 2 that Φ − 1
4α sin(2θ)L12(F ) satisfies much better

estimates than Φ itself. Thus we write:

(1+µ)F+(1+µ)(1+λ)DzF+
1

2α
U(sin(2θ)L12(F ))∂θF+

1

2
V (sin(2θ)L12(F ))DzF−

1

2α
R(sin(2θ)L12(F ))F

= 2R(Φ− 1

4α
sin(2θ)L12(F ))F − 2U(Φ− 1

4α
sin(2θ)L12(F ))∂θF − 2αV (Φ− 1

4α
sin(2θ)L12(F ))R∂RF.

Now let’s compute:

U(sin(2θ)L12(F )) = −3 sin(2θ)L12(F ) + α sin(2θ)(F,K)L2
θ
.
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V (sin(2θ)L12(F )) = 2(cos(2θ)− sin2(θ))L12(F ),

R(sin(2θ)L12(F )) = 2L12(F )− 2α sin2(θ)(F,K)L2
θ
.

Thus,

(1 + µ)F + (1 + µ)(1 + λ)DzF −
1

α
L12(F )F − 3

2α
L12(F )DθF + (cos(2θ)− sin2(θ))L12(F )DzF = N ,

where
N = 2R(Φ− 1

4α
sin(2θ)L12(F ))F − 2U(Φ− 1

4α
sin(2θ)L12(F ))∂θF

−2αV (Φ− 1

4α
sin(2θ)L12(F ))DzF − sin(2θ)(F,K)L2

θ
∂θF − 2 sin2(θ)(F,K)L2

θ
F.

Rewriting this once more we get:

F +DzF −
1

α
L12(F )F − 3

2α
L12(F )DθF +(cos(2θ)− sin2(θ))L12(F )DzF = −µF − (µ+λ+µλ)DzF +N ,

Next, we write:
F = F∗ + g,

where
F∗ = α

Γ(θ)

c∗

2z

(1 + z)2
,

with
Γ(θ) = (sin(θ) cos2(θ))α/3 (9.4)

and c∗ =
∫ π/2

0
Γ(θ)K(θ)dθ. µ and λ will be chosen to ensure that there exists a (small) g ∈ H2 with

L12(g)(0) = 0 so that F = F∗ + g solves the above. Now we write the equation for g, noting that

F∗ +DzF∗ −
1

α
L12(F∗)F∗ = 0.

We get:

LΓ(g)− 3

2α
L12(F∗)Dθg = −µF∗ − (µ+ λ+ µλ)DzF∗ +N0 +N +N∗, (9.5)

where

N0 =
3

2α
L12(F∗)DθF∗ − (cos(2θ)− sin2(θ))L12(F∗)DzF∗ +

1

α
L12(g)g +

3

2α
L12(g)DθF

−(cos(2θ)− sin2(θ))L12(g)DzF − (cos(2θ)− sin2(θ))L12(F∗)Dzg,

N∗ = −µg − (µ+ λ+ µλ)Dzg.

We now re-write (9.5) as:

LTΓ (g) = −Γ(θ)

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθg)(0)− µF∗ − (µ+ λ+ µλ)DzF∗ +N0 +N +N∗.

We now choose λ so that µ+ (µ+ λ+ µλ) = 0. This will cancel all terms which vanish only linearly at
z = 0 in the above equation. That is, we take:

λ = − 2µ

µ+ 1
.
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Thus we get:

LTΓ (g) = −Γ(θ)

c∗

2z2

(1 + z)3
L12(

3

1 + z
Dθg)(0)− µF∗ + µz∂zF∗ +N0 +N +N∗,

which becomes:

LTΓ (g) = −Γ(θ)

c∗

2z2

(1 + z)3

(
L12(

3

1 + z
Dθg)(0) + 2αµ

)
+N0 +N +N∗.

Now call
µ̄ = L12(

3

1 + z
Dθg)(0) + 2αµ.

Thus we arrive at:

LTΓ (g) = −µ̄Γ(θ)

c∗

2z2

(1 + z)3
+N0 +N +N∗.

Now we choose µ̄ so that L12(g) remains 0. That is, we take:

µ̄ := L12(N0)(0) + L12(N )(0),

where we note that L12(N∗)(0) = 0 so long as L12(g)(0) = 0. Therefore, we have to solve:

LTΓ (g) = P(N0 +N +N∗). (9.6)

N0 =
3

2α
L12(F∗)DθF∗ − (cos(2θ)− sin2(θ))L12(F∗)DzF∗ +

1

α
L12(g)g +

3

2α
L12(g)DθF (9.7)

−(cos(2θ)− sin2(θ))L12(g)DzF − (cos(2θ)− sin2(θ))L12(F∗)Dzg

N = 2R(Φ− 1

4α
sin(2θ)L12(F ))F − 2U(Φ− 1

4α
sin(2θ)L12(F ))∂θF (9.8)

−2αV (Φ− 1

4α
sin(2θ)L12(F ))DzF − (F,K)L2

θ
DθF − 2 sin2(θ)(F,K)L2

θ
F.

N∗ = −µg − (µ+ λ+ µλ)Dzg (9.9)

µ =
1

2α
(L12(N0)(0) + L12(N )(0))− 1

2α
L12(

3

1 + z
Dθg)(0), λ = − 2µ

µ+ 1
. (9.10)

U(Φ) := −3Φ−αDzΦ V (Φ) := ∂θΦ−tan(θ)Φ, R(Φ) :=
1

cos(θ)

(
2 sin(θ)Φ+α sin(θ)DzΦ+cos(θ)∂θΦ

)
,

(9.11)

− α2z2∂zzΦ− α(5 + α)DzΦ− ∂θθΦ + ∂θ
(

tan(θ)Φ
)
− 6Φ = F. (9.12)

The remaining portion of the paper will be devoted to showing that the system (9.6)-(9.12) possesses
an H2 solution of size at most O(α2) if α is small enough. Toward this end, we will study the H4 inner
product of (9.6) with g.
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9.1 Terms in N0

The goal of this subsection is to estimate (g,N0)H4 for N0 as in (9.7):

N0 =
3

2α
L12(F∗)DθF∗ − (cos(2θ)− sin2(θ))L12(F∗)DzF∗ +

1

α
L12(g)g +

3

2α
L12(g)DθF

−(cos(2θ)− sin2(θ))L12(g)DzF − (cos(2θ)− sin2(θ))L12(F∗)Dzg :=
6∑
i=1

IN0
i .

The result of this subsection is Proposition 9.1.

9.1.1 IN0
1 + IN0

2

In these terms we see the importance of the exact form of Γ as Γ(θ) = (sin(θ) cos2(θ))α/3. Indeed, each
term of

3

2α
L12(F∗)DθF∗ − (cos(2θ)− sin2(θ))L12(F∗)DzF∗

only vanishes linearly at z = 0 and thus does not belong to H4. However, because of the exact form of
Γ we see:

3

2α
L12(F∗)DθF∗ − (cos(2θ)− sin2(θ))L12(F∗)DzF∗

=
2α

c(1 + z)

(
3

z

(1 + z)2
DθΓ− 2α(cos(2θ)− sin2(θ))Dz(

z

(1 + z)2
)Γ
)
.

=
8α2

c(1 + z)
(cos(2θ)− sin2(θ))

z2

(1 + z)3
Γ.

A direct calculation then gives∣∣∣ 3

2α
L12(F∗)DθF∗ − (cos(2θ)− sin2(θ))L12(F∗)DzF∗

∣∣∣
H4
≤ Cα2.

9.1.2 IN0
3

By the product estimate in Proposition 8.4, we have:

|IIN0
3 |H4 =

∣∣∣ 1
α
gL12(g)

∣∣∣
H4
≤ C

α3/2
|g|2H4 .

9.1.3 IN0
4 , IN0

5 , IN0
6 .

We now consider IN0
4 , IN0

5 , and IN0
6 . First,

IN0
4 =

3

2α
L12(g)DθF∗ +

3

2α
L12(g)Dθg.

It is easy to see that
|DθF∗|W4,∞ ≤ Cα2.

Thus, by Lemma 8.6 and Proposition 8.23, we have that

| 3

2α
L12(g)DθF∗|H4 ≤ C

√
α|g|H4 .

Next, by Propositions 8.7 and 8.23, we have that

|( 3

2α
L12(g)Dθg, g)H4 | ≤ C

α3/2
|g|3H4 .
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Next, consider

IN0
5 = −(cos(2θ)− sin2(θ))L12(g)DzF∗ − (cos(2θ)− sin2(θ))L12(g)Dzg.

As above, it is easy to see that
|DzF∗|W4,∞ ≤ Cα.

Hence, by Lemma 8.6 and Proposition 8.23, we have that:

|(cos(2θ)− sin2(θ))L12(g)DzF∗|H4 ≤ C
√
α|g|H4 .

Moreover, by Propositions 8.8 and 8.23, we have that

|((cos(2θ)− sin2(θ))L12(g)Dzg, g)H4 | ≤ C√
α
|g|3H4 .

Finally, we study
IN0
6 = −(cos(2θ)− sin2(θ))L12(F∗)Dzg.

Observe that
|(cos(2θ)− sin2(θ))L12(F∗)|W4,∞ ≤ Cα.

This is clear since L12(F∗) = 2α
1+z . Thus, using Proposition 8.9, we have that

|(IN0
6 , g)H4 | ≤ C

√
α|g|2H4 .

9.1.4 Estimate of (N0, g)H4 .

We have established the following Proposition

Proposition 9.1. Assume that g ∈ H4 and L12(g)(0) = 0. Then, if N0 is defined as in (9.7), we have:

|(N0, g)|H4 ≤ C(α2|g|H4 +
√
α|g|2H4 +

1

α3/2
|g|3H4).

9.2 Terms in N
The goal of this subsection is to estimate (g,N )H4 , for N as in (9.8):

N = 2R(Φ− 1

4α
sin(2θ)L12(F ))F − 2U(Φ− 1

4α
sin(2θ)L12(F ))∂θF

−2αV (Φ− 1

4α
sin(2θ)L12(F ))DzF − α(F,K)L2

θ
DθF − 2α sin2(θ)(F,K)L2

θ
F :=

5∑
i=1

INi .

The result of this subsection is Proposition 9.2.

9.2.1 IN1

We begin by studying

IN1 = 2R(Φ− 1

4α
sin(2θ)L12(F ))F

= 2R(Φg −
1

4α
sin(2θ)L12(g))g + 2R(Φg −

1

4α
sin(2θ)L12(g))F∗

+2R(ΦF∗ −
1

4α
sin(2θ)L12(F∗))g + 2R(ΦF∗ −

1

4α
sin(2θ)L12(F∗))F∗.
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Let us study the H4 norm of each of these terms in order. First, by Theorem 2 we have that

|R(Φg −
1

4α
sin(2θ)L12(g))|H4 ≤ C|g|H4 .

Thus, by Proposition 8.4,

|R(Φg −
1

4α
sin(2θ)L12(g))g|H4 ≤ C√

α
|g|2H4 .

Next, using that |F∗|W4,∞ ≤ Cα and Lemma 8.6, we have that

|R(Φg −
1

4α
sin(2θ)L12(g))F∗|H4 ≤ C

√
α|g|H4 .

Similarly, using Proposition 8.16 and Lemma 8.6, we have that

|R(ΦF∗ −
1

4α
sin(2θ)L12(F∗))g|H4 ≤ C

√
α|g|H4 .

Finally, we come to

R(ΦF∗ −
1

4α
sin(2θ)L12(F∗))F∗.

For this one, we make use of Corollary 8.18 and Proposition 8.20 to see that

|R(ΦF∗ −
1

4α
sin(2θ)L12(F∗))F∗|H4 ≤ |z + 1

z
R(ΦF∗ −

1

4α
sin(2θ)L12(F∗))|W4,∞ | (z + 1)2

z
F∗|W4,∞ ≤ Cα2.

In conclusion, we see that

|IN1 |H4 ≤ C(α2 +
√
α|g|H4 +

1√
α
|g|2H4).

9.2.2 INi for 2 ≤ i ≤ 5.

In this subsection, we will study the remaining four terms of N :

IN2 = −2U(Φ− 1

4α
sin(2θ)L12(F ))∂θF,

IN3 = −2αV (Φ− 1

4α
sin(2θ)L12(F ))DzF,

IN4 = − sin(2θ)(F,K)L2
θ
∂θF,

IN5 = −2 sin2(θ)(F,K)L2
θ
F.

All of these terms are dealt in basically the same way: either with a transport estimate (like Proposition
8.7), a product rule (like Proposition 8.4), or Proposition 8.20 when F∗ interacts with itself in conjunction
with an elliptic estimate like Theorem 2 and Proposition 8.16. For the sake of avoiding repetition, we
will only give the details for IN2 and leave the rest to the reader.

Now, to study IN2 , we expand F = F∗ + g and study each of the four terms individually as above:

U(Φ− 1

4α
sin(2θ)L12(F ))∂θF = U(Φg −

1

4α
sin(2θ)L12(g))∂θg + U(Φg −

1

4α
sin(2θ)L12(g))∂θF∗

+U(ΦF∗ −
1

4α
sin(2θ)L12(F∗))∂θg + U(ΦF∗ −

1

4α
sin(2θ)L12(F∗))∂θF∗.

56



First, by Proposition 8.24, we have that

| 1

sin(2θ)
U(Φg −

1

4α
sin(2θ)L12(g))|H4 ≤ C|g|H4 .

Thus, by Proposition 8.7, we have that

|(U(Φg −
1

4α
sin(2θ)L12(g))∂θg, g)H4 | = |( 1

sin(2θ)
U(Φg −

1

4α
sin(2θ)L12(g))Dθg, g)H4 | ≤ C√

α
|g|3H4 .

Next,

|U(Φg −
1

4α
sin(2θ)L12(g))∂θF∗|H4 ≤ C√

α
| 1

sin(2θ)
U(Φg −

1

4α
sin(2θ)L12(g))|H4 |DθF∗|W4,∞ ≤ C

√
α|g|H4 ,

where we have used Proposition 8.24 and Lemma 8.6.
Now we turn to

(|U(ΦF∗ −
1

4α
sin(2θ)L12(F∗))∂θg, g)H4 | ≤ C|(∂θU(ΦF∗ −

1

4α
sin(2θ)L12(F∗)))|W4,∞ |g|2H4 ≤ Cα|g|2H4 ,

by Proposition 8.10 and Proposition 8.16.
Finally, we observe that

|U(ΦF∗ −
1

4α
sin(2θ)L12(F∗))∂θF∗|H4 ≤ Cα2,

which follows from Lemma 8.21, Corollary 8.18, and Proposition 8.20.
The estimates on IN3 is similar and the estimates of IN4 and IN5 are even easier.
In conclusion, we have established that

5∑
i=2

|(INi , g)H4 | ≤ C(
1√
α
|g|3H4 +

√
α|g|2H4 + α2|g|H4).

9.2.3 Estimate of (N , g)H4 .

Proposition 9.2. Let g ∈ H4 satisfy L12(g)(0) = 0. Then we have that

|(g,N )H4 | ≤ C(α2|g|H4 +
√
α|g|2H4 +

1

α3/2
|g|3H4).

9.3 Terms in N∗
Finally, we move to N∗:

N∗ = −µg − (µ+ λ+ µλ)g,

where
µ =

1

2α
(L12(N0)(0) + L12(N )(0))− 1

2α
L12(

3

1 + z
Dθg)(0), λ = − 2µ

µ+ 1
.

It is easy to see that
|(g, g)H4 |+ |(g,Dzg)|H4 ≤ C|g|2H4 .

Thus,
|(N∗, g)H4 | ≤ C|µ||g|2H4 ,

so long as |µ| ≤ 1
2 (it will, in fact, be of order α in the end).
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9.3.1 Estimate on µ

We now establish the following proposition.

Proposition 9.3.

|µ| ≤ C(α+
1

α3/2
|g|H4 +

1

α5/2
|g|2H4). (9.13)

Remark 9.4. This is actually an over-estimate in the second two terms where there is an extra factor
of α−1/2 than what needs to be there. We do not care for this precision.

Proof. The proof is just based on the trivial observation that

|L12(f)(0)| ≤ C|z + 1

z
f |L2 ,

whenever f is such that the right hand side is finite. It then easy to see that the estimates we have
already done above on N and N0 give us the result. Toward some completeness, we detail the argument
for IN2 that was studied above. In particular, we study:

L12(IN2 )(0) = −2L12

(
U(Φ− 1

4α
sin(2θ)L12(F ))∂θF

)
(0).

Recall that F = F∗ + g, but we do not treat g and F∗ much differently below so we just keep them
together. Observe that

L12

(
U(Φ− 1

4α
sin(2θ)L12(F ))∂θF

)
(0) = (U(Φ− 1

4α
sin(2θ)L12(F ))∂θF,

K(θ)

z
)L2

= −(∂θU(Φ− 1

4α
sin(2θ)L12(F ))F,

K(θ)

z
)L2 − (U(Φ− 1

4α
sin(2θ)L12(F ))F,

K ′(θ)

z
)L2 ,

where we have just integrated by parts in θ. Now, note that K,K ′ are uniformly bounded and that

|∂θU(Φ− 1

4α
sin(2θ)L12(F ))|L∞ + |U(Φ− 1

4α
sin(2θ)L12(F ))|L∞ ≤ C(α+

1√
α
|g|H4),

using Theorem 2, Proposition 8.16, and Corollary 8.2 (the α is coming from the F∗ and the 1√
α
|g|H4 is

coming from the g in F = F∗ + g). We then see that:

|L12(IN2 )(0)| ≤ C(α+
1√
α
|g|H4 |(F, 1

z
)L2 | ≤ C(α+

1√
α
|g|H4)(α+ |g|H4).

The rest of the estimates are of a similar nature and are much easier than what we have already done.
We leave them to the interested reader.

9.3.2 Estimate on (N∗, g)H4 .

From Proposition 9.3 and the preceding calculation, we see that we have the following

Proposition 9.5. Let g ∈ H4 satisfy L12(g)(0) = 0. Then we have that

|(g,N∗)H4 | ≤ C(α|g|2H4 +
1

α3/2
|g|3H4 +

1

α5/2
|g|4H4).
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9.4 Final a-priori estimate on g

By combining the estimates (9.1), (9.2),(9.5), we have shown the following proposition.

Proposition 9.6. There exists a universal constant C > 0 so that the following holds for all given α > 0
and g ∈ H4 with L12(g)(0) = 0:

|(N0, g)H4 |+ |(N , g)H4 |+ |(N∗, g)H4 |+
∣∣∣(L12(N0)(0) + L12(N )(0)

)Γ(θ)

c∗

2z2

(1 + z)3

∣∣∣
H4
|g|H4

≤ C
(
α2|g|H4 +

√
α|g|2H4 +

1

α3/2
|g|3H4 +

1

α5/2
|g|4H4

)
,

with N , N∗, and N0 given as in (9.7)-(9.12).

We now have the following corollary which follows using Proposition 6.14, Proposition 9.6, and equa-
tion (9.6).

Corollary 9.7. There exists a universal constant C > 0 so that if g ∈ H4, L12(g)(0) = 0, and g solves
(9.6)-(9.12) for some α > 0, then

|g|2H4 ≤ (LTΓg, g)H4 ≤ C
(
α2|g|H4 +

√
α|g|2H4 +

1

α3/2
|g|3H4 +

1

α5/2
|g|4H4

)
.

In particular, if we assume that |g|H4 ≤ α7/4 with α is small enough, then we actually have:

|g|H4 ≤ 2Cα2.

Passing from the a-priori estimate to existence will now follow using a compactness method which we
explain in the next section.

9.5 Constructing the solution
One can view the estimates of the previous subsection as merely formal. Indeed, we do not know that a
solution g to (9.6) exists. We now eliminate this shortcoming by introducing a “fake” time variable τ and
viewing the solution of (9.6) as the limit of solutions to the τ -dependent equation when τ → ∞. That
is, we solve the following evolution equation for the function g(R, θ, τ):

∂τg + LTΓ (g) = P(N0 +N +N∗), (9.14)

g(z, θ, 0) = 0,

with N , N0, and N∗ as in (9.7)-(9.12). The reader should take note that the τ -independent g of (9.6) is
not the same as the g of (9.14) but limτ→∞ g(z, θ, τ) will be shown to solve (9.6). Let us briefly discuss
the local-in-time solvability of (9.14). Note that (9.14) is the no-swirl axi-symmetric Euler equation up
to linear terms and a forcing. Exactly the same classical methods that lead to local existence of C1,β

solutions for the Euler equation apply here and this gives us a local C1,β solution for some β > 0. That
this solution also belongs to H4 locally in time follows from the a-priori estimates below (such as (9.15))
and a regularization argument. It is easy to see that like the Euler equation, boundedness of the L∞
norm of g implies global existence (in the τ variable).

Remark 9.8. Another way of “regularizing” (9.6) would have been to add a small viscous term ν∆g
to the equation and then argue using the Schauder fixed point theorem, for example. While this would
generally be a natural avenue to solving such a problem, we found that the viscous term would not
interact very well with the weighted norms in the definition of Hk and getting viscosity independent
bounds seems to be difficult. It is possible that there are ways around this.
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9.5.1 a-priori estimates on g and ∂τg

First, let us note that L12(g)(0, τ) satisfies:

∂τL12(g)(0, τ) = −L12(LTΓ (g))(0, τ) = −L12(LΓ(g))(0, τ) = −L(L12(g))(0) = L12(g)(0, τ).

Thus, since L12(g)(0, 0) = 0, we have that L12(g)(0, τ) = 0 for all τ ≥ 0. Now that we know this, as a
consequence of Proposition 9.6, we have that

d

dτ
|g|H4 ≤ −2c|g|H4 + C(α2 +

√
α|g|H4 +

1

α3/2
|g|2H4 +

1

α5/2
|g|3H4)

= |g|H4(−c+ C
√
α+

C

α3/2
|g|H4 +

C

α5/2
|g|2H4) + Cα2,

for some fixed universal constants c, C > 0. In particular, since g|τ=0 = 0, if α is sufficiently small
(depending only on c and C) we have that

|g|H4 ≤ Cα2 (9.15)

for all τ ≥ 0. This already means that g has a (subsequential) limit as τ → ∞. Let’s show this limit is
actually unique. Toward this end, we study the equation for ∂τg.

The equation for ∂τg becomes:

∂ττg + LΓ(∂τg) = P(∂τN0 + ∂τN + ∂τN∗),

and contains no inhomogeneous terms, since all terms that are quadratic in F∗ in (9.14) are independent
of τ . Thus, using arguments identical to those which led to Proposition 9.6 along with Proposition 6.14
and the H4 bound we established on g already, we see:

d

dτ
|∂τg|H3 ≤ −2c|∂τg|H3 +

C

α3/2
|g|H4 |∂τg|H3 .

Note that all of the product rules established in Section 8 work equally well in H3 as in H4 as we remarked
in Remark 8.5. Thus, so long as α is small enough, we have

|∂τg|H3 ≤ Cα2 exp(−cτ)

for all τ ≥ 0.
It now follows that g has a (unique) limit as τ → ∞. Now it is easy to see that (9.6)-(9.12) has a

unique H4 solution in BCα2(0) and vanishing on θ = 0 and θ = π/2 when α is sufficiently small. From
there we also see that µ and λ are of order α. This gives a self similar solution to the Euler equation
(9.1)-(9.3) and, in particular, implies Theorem 1.

10 Conclusion
We have established finite-time singularity formation for classical C1,α solutions to the 3D Euler system
when α > 0 is small. This was done by establishing a link between no-swirl axi-symmetric solutions to
the 3D Euler system and a simple model which we have called the fundamental model in Section 4.1. To
make this rigorous, we took advantage of a small parameter α which is related to the degree of vanishing
of the vorticity at the origin and on the axis of symmetry. Localizing the self-similar solutions we have
constructed to finite-energy solutions with no force is done in a work with Ghoul and Masmoudi [19],
where the effect of the swirl is also analyzed.

Several related questions remain open after this work. Here, the data was C∞ except on the whole
x3-axis and the x3 = 0 plane; the latter is most likely a technical artifact of the proof above and getting
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solutions which are C1,α everywhere and C∞ except on the x3 axis is likely within reach. In fact, using
methods perhaps closer to [39] or [38], one might try to show that no-swirl C1, 13− solutions could become
singular in finite time. For other equations, such as the SQG system, it is possible that the kind of ideas
used here could lead to blow-up of C1,α solutions. In the presence of spatial boundaries, I believe that
several advances can be made. It would be very interesting to construct solutions which are C1,α on R3

and C∞ except at a single point and become singular in finite time. Specifically, the solution constructed
in this paper is non-smooth in the angular and radial variables. I believe that the non-smoothness in the
radial variable is not essential but that the non-smoothness in the angular variable is essential for this
construction. Constructing a blow-up that is C∞ in the angular variable would require using the swirl
or a different geometry and seems to be a challenging problem, though many of the ideas here will be
helpful toward that goal.
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