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On the stability of self-similar blow-up for C1,α

solutions to the incompressible Euler equations
on R

3

Tarek M. Elgindi, Tej-Eddine Ghoul, and Nader Masmoudi

We study the stability of recently constructed self-similar blow-
up solutions to the incompressible Euler equation. A consequence
of our work is the existence of finite-energy C1,α solutions that
become singular in finite time in a locally self-similar manner. As
a corollary, we also observe that the Beale-Kato-Majda criterion
cannot be improved in the class of C1,α solutions.
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1. Introduction

1.1. The Euler equation

Recall the incompressible Euler equation governing the motion of an ideal
fluid on R

3:

∂tu+ u · ∇u+∇p = 0,(1.1)

div(u) = 0,(1.2)

u|t=0 = u0.(1.3)

u : R3 × [0,∞) → R
3 is the velocity field of the fluid. p is the force of inter-

nal pressure which acts to enforce the incompressibility constraint (1.2). The
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incompressibility constraint (1.2) ensures that no patch of fluid can be com-
pressed into a region of smaller volume. The incompressibility constraint has
led many to believe that loss of regularity for classical solutions is unlikely
to occur, since isotropic concentration is not allowed. In fact, a quantitative
consequence of the incompressibility constraint is that localized solutions
which are C1 in space and time on R

3 × [0, T ) conserve their energy:

d

dt

∫
R3

|u(x, t)|2dx = 0(1.4)

for all t ∈ [0, T ). Unfortunately, the conservation of total kinetic energy in
the fluid does not seem to be enough to deduce that solutions to (1.1)–
(1.3) retain their regularity for all time as it does not preclude a blow-up
of the gradient of the velocity field. This is indeed what happens in the
Burgers equation in any dimension (which is (1.1) with p ≡ 0 and without
the constraint (1.2)). On the other hand, the incompressibility constraint
does prevent blow-up in two dimensions. This is due to presence of higher
order conservation laws, which will be discussed in the coming section. In the
class of localized C∞ solutions, it remains a major open problem whether
finite-time blow-up can happen on R

3. In this work we are concerned with
finite-energy C1,α solutions to (1.1)–(1.3). Recently, self-similar solutions to
(1.1)–(1.3) were constructed in [7]. This was done by showing that, in certain
scenarios, the Euler equation (1.1)–(1.3) can be viewed as a perturbation of
a simple model equation with stable self-similar blow-up.

1.2. The vorticity equation

An important quantity to consider when studying ideal fluids is the vorticity
vector field

ω := ∇× u.

It satisfies the vorticity equation:

∂tω + (u · ∇)ω = (ω · ∇)u.(1.5)

Since div(u) = 0 we have that ∇×(∇×u) = −Δu. Thus, u can be recovered
from ω by the so-called Biot-Savart law:

u = (−Δ)−1(∇× ω).(1.6)
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For classical solutions (with u ∈ C1,α or, equivalently, ω ∈ Cα for some
α > 0), solving (1.1)-(1.2) is equivalent to solving (1.5)-(1.6) (so long as the
vorticity is taken to be initially divergence-free when solving (1.5)–(1.6)). It
is important to remark that when the velocity depends only on two coor-
dinates, it is easy to show that solutions are globally regular and that the
vorticity is finite for all finite time. This means that a singularity must come
from a genuinely three-dimensional solution.

1.3. Statement of the main theorem

We now move to discuss the main result of this paper.

Theorem 1. There is a continuum of α > 0 for which there exists a
divergence-free u0 ∈ C1,α(R3) with compactly supported initial vorticity ω0 ∈
Cα(R3) so that the unique local solution to (1.1)–(1.3) belonging to the class
L2 ∩ C1,α

x,t ([0, 1)× R
3) satisfies

lim
t→1

∫ t

0
|ω(s)|L∞ds = +∞.

Moreover, the blow-up is stable in a sense that is specified in Theorem 2.

Remark 1.1. The proof proceeds by showing that the self-similar solution
constructed in [7] is stable with respect to perturbations in a space that
allows for the full solution to be compactly supported. In fact, the pertur-
bations are allowed to have non-trivial swirl.

Remark 1.2. If we take α smaller and smaller, the blow-up becomes more
and more mild. In particular, a consequence of our result is the following
corollary.

Corollary 1.3. In the class of all L2 ∩ C1,α solutions to the 3D Euler
equations, it is not possible to strengthen the Beale-Kato-Majda criterion in
the scale of Lp spaces. In particular, for every p < ∞, there exists a classical
solution to the 3D Euler equation for which

sup
t∈[0,T∗)

‖ω‖Lp < ∞ while lim
t→T∗

∫ t

0
‖ω‖L∞ = +∞.

1.4. Discussion of the result and its proof

Our work here proceeds from the point of view of asymptotic stability of
stationary solutions in basic dynamical systems. In [7], a purely self-similar
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blow-up profile for the 3D Euler equation was constructed. That is, the
vorticity satisfies:

ω̄(x, t) =
1

1− t
Ḡ(

x

(1− t)γ∗
),

for some constant γ∗. In particular, Ḡ satisfies the static equation:

Ḡ+ γ∗z · ∇Ḡ+ uḠ · ∇Ḡ = Ḡ · ∇uḠ,

where

uḠ = (−Δ)−1∇× Ḡ

and z = x
(1−t)γ∗ . The self-similar profile can be viewed as a particular solution

of the Euler equation in rescaled variables that we will now attempt to
explain. For now, let λ̃(t), μ̃(t) be arbitrary functions of time (how they are
chosen will be discussed later). We write:

ω(x, t) =
1

λ̃(t)
G(

xμ̃(t)

λ̃(t)γ∗
, t).

As long as λ̃, μ̃ are nice enough, it is clear that one can do this for any solution
locally in time. This means that the Euler equation can be rewritten as:

1

λ̃(t)
∂tG− λ̃′(t)

λ̃(t)2
G− 1

λ̃(t)

(
γ∗

λ̃′(t)

λ̃(t)
− μ̃′(t)

μ̃(t)

)
z · ∇G+

1

λ̃(t)2
uG · ∇G(1.7)

=
1

λ̃(t)2
G · ∇uG

Observe that

(λ̃(t), μ̃(t), G(·, t)) = ((1− t), 1, Ḡ)(1.8)

is an exact solution to (1.7). Now, it is natural to ask the following

Question 1.4. Is there a sense in which the blow-up solution (1.8) of (1.7)
is stable?

This is the question that we are concerned with. Recall that Ḡ is axi-
symmetric without swirl. Thus, there are several levels at which this question
can be asked: first, within the class of axi-symmetric solutions without swirl;
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second, within the class of general axi-symmetric solutions; finally, among
general solutions to the 3D Euler equation. For this work, we content our-
selves with answering the first and second questions. Studying the stability
with respect to general 3D perturbations seems to be a difficult problem.

Linearized operator and modulation. To answer the above question,
we essentially have to linearize around the base solution (1.8) and study the
behavior of the linearized operator. Once we are working in a setting where
the linearized operator is coercive, just like in basic ODE theory, we should
expect stability. Observe that the equation (1.7) is underdetermined and so
λ̃(t) and μ̃(t) are used to keep perturbations within spaces where we have
coercivity. This is similar to how the (different) parameters λ and μ were
used in [7] to construct F̄ in the first place. Indeed, if one just considers the
relevant linearized operator for only axi-symmetric solutions without swirl,
then the linear estimates were essentially done in [7]. This already allows us
to assert Theorem 1 with relative ease.

When we consider more general perturbations (such as perturbations
with non-trivial swirl), then the linear and non-linear estimates become more
difficult. In fact, the stability of the profile with respect to perturbations with
swirl is only due to a matching of constants that shows that the linearized
operator coming from the equation for the swirl is not worse than that of
the axial vorticity. That the linear growth from the swirl is weaker than that
from the axial vorticity is not obvious. The fact that this is the case is only
due to the exact structure of the equation for the swirl and the nature of
the coupling between the swirl and the axial vorticity.

1.5. Previous works

There are numerous works on the local and global well-posedness of the
incompressible Euler equation in dimensions d ≥ 2 and the blow-up problem.
We refer the reader to [19, 14, 1, 6, 17, 18, 10, 9] for more in-depth reviews of
the history of the singularity problem and related issues regarding the Euler
equation. For the purpose of this discussion, we will only briefly discuss the
issue of self-similar blow-up for the Euler equation. For the Euler and Navier-
Stokes equations, the vast majority of the literature on self-similar blow-up
was devoted to ruling out their existence [2, 3, 25, 24]. Generally, these works
have assumed the existence of a self-similar solution with (relatively) rapid
decay at spatial infinity. This seems to have been motivated by a desire to get
self-similar solutions that themselves have finite energy. It seems that these
assumptions were too restrictive. One purpose of our work is to emphasize



On the stability of self-similar blow-up for C1,α solutions 1041

that the lack of decay of the self-similar profile itself is not an indication
that the blow-up is “coming from infinity” nor is it impossible to get finite
energy solutions from unbounded purely self-similar ones. We remark that
there are also numerous works on “forward” self-similar solutions, where the
data is already singular. Such solutions are also very interesting and can be
used to prove results related to instability and non-uniqueness in various
settings [11, 15, 27, 28].

Next, let us comment on the issue of “stability of blow-up.” This work
does not give a full picture of the stability question in our setting, but a
partial result is given. Indeed, a natural question one could ask is:

Question 1.5. If ω0 gives rise to a blow-up, is it true that there is blow-up
for the Euler equation for any data in a small1 neighborhood of ω0?

The answer to this question remains open for the solution constructed
in [7], but we do show an even stronger result for general axi-symmetric
solutions that are odd in x3 and are close to ω0 in a weighted Sobolev space
(the weight basically imposes that perturbations are vanish to high order
near the point of blow-up). Another way to think of the condition is that
perturbations should be more regular than ω0 itself. Removing some of these
conditions on the perturbation seems to be an interesting and challenging
problem since many of the arguments rely heavily on the imposed symme-
tries. Some partial results in the negative direction were given in [26] (though
the notion of stability there seems to be quite stringent).

Aside from the Euler equation, the issue of stable self-similar blow-up
has been addressed many times before in other contexts. Indeed, our proof
makes use of modulation techniques that have been developed by Merle,
Raphael, Martel, Zaag and others. This technique has been very efficient
to describe the blowup the nonlinear wave equation [23], the nonlinear heat
equation [22], reaction diffusion systems [12, 13], the nonlinear Schrodinger
equation [21, 16], the GKDV equation [20], the Burgers equation [5], and
many others. Note that for 3D Euler comparing to all the previous models
cited above there exists a group of scaling transformations of dimension
larger than two that leaves the equation invariant and the incompressibility
induces a nontrivial nonlocal effect. Here this degeneracy is a real difficulty
since one does not know in advance which scaling law the flow will select.

We remark, finally, that after the completion of this work we came to
know of the nice work of Chen and Hou [4], where many of the methods
used in [7] were adapted to the setting of the numerical work of Luo and

1In a natural topology.
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Hou [18]. They also established a form of stability that allows for compactly

supported vorticity as is done here. Though the terminology used in [4] is

slightly different from that of [7] and ours here, it seems that the methods

are quite similar (notwithstanding technical differences due to the difference

of the setting).

1.6. Organization of the paper

In Section 2 we recall the axi-symmetric Euler equation and setup the prob-

lem we intend to solve in this paper. In Section 3, we discuss the coercivity

of the linearized operators. In Section 5 we derive the “laws” that the modu-

lation parameters μ and λ should satisfy. In Section 6 we discuss the elliptic

estimates that we need. In Section 7 we give the final energy estimate from

which the main result follows. Appendix A collects a few useful tools. Sec-

tions 2, 3, and 7.3 are the heart of the matter.

1.7. Notation

In this subsection we give a guide to the notation used in the rest of the

paper.

Functions, variables, and parameters. With the exception of intro-

ductory parts of this work, r will generally denote the two dimensional radial

variable:

r =
√

x21 + x22.

θ will denote2 the angle between r and x3:

θ = arctan(
x3
r
),

so that θ = 0 corresponds to the plane x3 = 0 while θ = ±π
2 corresponds to

the x3 axis. ρ will denote the three dimensional radial variable

ρ =
√

r2 + x23.

2Except in Sections 2.1–2.2 where it can also be taken to denote the two dimen-
sional polar angle.



On the stability of self-similar blow-up for C1,α solutions 1043

R will denote ρα:

R = ρα

(where α > 0 is a constant which will be small). Because the axial vorticity
will be odd in the third variable, the θ variable will generally be in [0, π/2]
while the R (later called y or z) variable will usually be in [0,∞). The main
parameters we will use are:

η =
99

100
, α > 0, γ = 1 +

α

10
.

α will be chosen at the end to be very small. In the later sections we use the
functions

Γ(θ) = (sin(θ) cos2(θ))α/3

and

K(θ) = 3 sin(θ) cos2(θ).

Sometimes there will be a constant c associated to Γ written as Γ
c . This

constant c always satisfies 1
10 ≤ c ≤ 10 and it is a normalization constant.

Norms and operators. We define the Hölder spaces using the norms:

|f |Cβ(K) = sup
x∈K

|f |+ sup
x�=y

|f(x)− f(y)|
|x− y|β ,

|f |C1,β(K) = |f |Cβ + |∇f |Cβ .

When the domain K is clearly understood from context, we often omit writ-
ing it.

Warning : In most of this paper, we will be working in some form of polar
or spherical coordinates and will be using spaces like L2([0,∞)× [0, π/2]) or
similar spaces where the relevant variables are a radial and angular variable.
The norm on this space is the usual L2 norm with the measure drdθ and
not the measure rdrdθ.

We define the weights

w(z) =
(1 + z)2

z2
,
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wθ(θ) =
1

sin(2θ)
γ

2

,

and

W = w · wθ.

We also define the differential operators:

Dθ(f) = sin(2θ)∂θf, DR(f) = R∂Rf,

and

Dz(f) = z∂zf.

For each k ∈ N we define the spaces Hk and Wk,∞ using the following
norms. We define the Hk([0,∞)× [0, π/2]) norm:

|f |2Hk =

k∑
i=0

|(DR)
if

w

sinη/2(2θ)
|2L2 +

∑
i≥1,1≤i+j≤k

|(Dθ)
iDj

RfW |2L2 .(1.9)

We also define the W l,∞ norm:

|f |Wl,∞ =
∑

0≤k≤l

|(z + 1)k∂k
z f |L∞+

∑
1≤k+j≤l,j≥1

|(z+1)k∂k
zD

j
θf

sin(2θ)−α/5

α+ sin(2θ)
|L∞ .

In Section 3 we inductively define an inner product on Hk which gives
a norm equivalent to the Hk norm (with equivalence constant independent
of α > 0). This inner-product is used to get coercivity out of the linearized
operator MF defined below in (2.20). We remark that since there will be
four linearized operators associated to ε, Uφ, ∂θUφ, and tan(θ)Uφ, we will
actually be using four different inner products all defining norms equivalent
to the Hk norm. For the first two, see Section 3 and for the second two, see
Section 7.3.

Remark 1.6. It is clear that any smooth function vanishing at 0 and π/2
and with sufficient z decay belongs to W l,∞ due to the inequality:

sup
x∈[0,1],ε∈[0,1]

x1−ε

ε+ x
≤ 1.
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The basic example of a W l,∞ function is the function

Γ(θ)
z

(1 + z)2
.

Finally, define

Definition 1.7. Let the integral operator L12 : L2([0,∞) × [0, π/2]) →
L2([0,∞)) be

L12(f)(z) =

∫ ∞

z
3

∫ π/2

0

f(r, θ) sin(θ) cos2(θ)

r
dθdr.

2. The setup

In this section we discuss the general setup and strategy that we will follow.
We will first make a change of variables on the axi-symmetric Euler equation
without swirl as in [7]. Next, we will introduce similarity variables and the
modulation parameters and show that the perturbation ε from the purely
self-similar solution decays exponentially. This is similar to the authors’
previous work [8] but with several added difficulties since the linearized
problem is more delicate.

2.1. Axi-symmetric Euler

We start with the axi-symmetric 3D incompressible Euler equations:

∂tu
φ + ur∂ru

φ + u3∂x3
uφ = −uφur

r
(2.1)

∂tω + ur∂rω + u3∂x3
ω = −2uφ∂x3

uφ

r
+

ωur

r
(2.2)

where (ur, u3) is determined as follows. First we solve the elliptic problem3:

∂r(
1

r
∂rψ̃) +

1

r
∂33ψ̃ = −ω

and then we set

ur =
1

r
∂3ψ̃, u3 = −1

r
∂rψ̃.

3Note that the − sign on the left hand side is not conventionally added, but
there is no difference up to a change of variables.
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Next, in order to fix the homogeneity, we set ψ̃ = rψ.
Then we have:

ur = ∂3ψ, u3 = −1

r
ψ − ∂rψ

and

∂r(
1

r
∂r(rψ)) + ∂33ψ = −ω,

which leads us to the system:

∂tu
φ + ur∂ru

φ + u3∂3u
φ = −1

r
uruφ(2.3)

∂tω + ur∂rω + u3∂3ω =
1

r
urω − 2

uφ∂3u
φ

r
,(2.4)

−∂rrψ − ∂33ψ − 1

r
∂rψ +

ψ

r2
= ω,(2.5)

ur = ∂3ψ, u3 = −1

r
ψ − ∂rψ.(2.6)

The problem is normally set on the spatial domain {(r, x3) ∈ [0,∞) ×
(−∞,∞)} and the elliptic problem (2.5) is solved with the boundary condi-
tion ψ = 0 on r = 0. We will start by imposing an odd symmetry on ω with
respect to x3. That is, we search for solutions with:

ω(r, x3) = −ω(r,−x3)

for all r, x3. Consequently, we may reduce to solving on the domain [0,∞)×
[0,∞) while enforcing that ψ vanish on r = 0 and x3 = 0 when solving (2.5):

ψ(r, 0) = ψ(0, x3) = 0,(2.7)

for all r, x3 ∈ [0,∞).

2.2. Passing to a form of polar coordinates

First we define ρ =
√

r2 + x23 and θ = arctan(x3

r ) and set R = ρα for some
(small) constant α > 0. Then we introduce new functions ω(r, x3) = Ω(R, θ),
uφ = ρUφ(R, θ) and ψ(r, x3) = ρ2ΦΩ(R, θ). We now show the forms of (2.3),
(2.5), and (2.6) in the new coordinates. Note that

∂r →
cos(θ)

ρ
αR∂R − sin(θ)

ρ
∂θ, ∂3 →

sin(θ)

ρ
αR∂R +

cos(θ)

ρ
∂θ
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u in terms of ΦΩ. From (2.6) and the above facts we see:

ur = ρ
(
2 sin(θ)ΦΩ + α sin(θ)R∂RΦΩ + cos(θ)∂θΦΩ

)

while

u3 = ρ
(
− 1

cos(θ)
ΦΩ − 2 cos(θ)ΦΩ − α cos(θ)R∂RΦΩ + sin(θ)∂θΦΩ

)

Evolution equation for Ω and Uφ. Observe that using the above cal-
culations, (2.3) becomes

∂tU
φ + U(ΦΩ)∂θU

φ + V (ΦΩ)αR∂RU
φ = −R(ΦΩ)U

φ − V (ΦΩ)U
φ,(2.8)

∂tΩ+ U(ΦΩ)∂θΩ+ V (ΦΩ)αR∂RΩ(2.9)

= R(ΦΩ)Ω− 2

cos θ
Uφ(sin(θ)αR∂R + cos(θ)∂θ)U

φ,

where

U(ΦΩ) = −3ΦΩ − αR∂RΦΩ, V (ΦΩ) = ∂θΦΩ − tan(θ)ΦΩ,(2.10)

R(ΦΩ) =
1

cos(θ)

(
2 sin(θ)Ψ + α sin(θ)R∂RΨ+ cos(θ)∂θΨ

)
.(2.11)

Relation between ΦΩ and Ω. After some calculations4 (2.5) becomes:

−α2R2∂RRΦΩ − α(5 + α)R∂RΦΩ − ∂θθΦΩ + ∂θ
(
tan(θ)ΦΩ

)
− 6ΦΩ = Ω.

(2.12)

with the boundary conditions:

ΦΩ(R, 0) = ΦΩ(R,
π

2
) = 0

for all R ∈ [0,∞).

2.3. Self-similar variables

Indeed it is shown in [7] that there exists a self-similar solution of the form
for the vanishing swirl system (Uφ = 0):

Ω =
1

T − t
F
( R

(T − t)1+δ
, θ
)

4See the calculation preceding (6.1).
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where δ is a small real number depending on α. Recall that F = F∗ + α2g,
where

F∗ = F∗(α) =
Γ

c

4αz

(1 + z)2
, |g|Hk ≤ C,

with C a constant independent of α. We introduce the self-similar variable

z =
R

(T − t)1+δ
.

It is easy to see that if Ω has the above form, then ΦΩ should have the form:

ΦΩ =
1

T − t
ΦF (z, θ).

Now we write the equations for F and ΦF :

F + (1 + δ)z∂zF + U(ΦF )∂θF + αV (ΦF )z∂zF = R(ΦF )F(2.13)

U(ΦF ) := −3ΦF − αR∂RΦF , V (ΦF ) := ∂θΦF − tan(θ)ΦF ,(2.14)

R(ΦF ) :=
1

cos(θ)

(
2 sin(θ)ΦF + α sin(θ)R∂RΦF + cos(θ)∂θΦF

)
,

−α2R2∂RRΦF − α(5 + α)R∂RΦF − ∂θθΦF + ∂θ
(
tan(θ)ΦF

)
− 6ΦF = F.

To prove the stability of the profiles (F,ΦF ) we rescale (2.8) and (2.12).
A natural change of variables to do here will be

z =
R

λ1+δ
,

ds

dt
=

1

λ
,(2.15)

Ω(R, t, θ) =
1

λ
Ξ
( R

λ1+δ
, s, θ

)
, ΦΩ(R, t, θ) =

1

λ
ΦΞ

( R

λ1+δ
, s, θ

)
,

UΦ(R, t, θ) =
1

λ
Ũφ

( R

λ1+δ
, s, θ

)
.

Note that F̃ = F (μz, θ), Φ̃F = ΦF (μ·) is also a solution of (2.13) and
(2.14). This scaling invariance on (2.13) and (2.14) will induce an instability
later on the linearized operator around (F,ΦF ). To fix this instability, we
introduce a new parameter μ := μ(t) and fix it through an orthogonality
condition. Hence, we introduce

Ξ(z) = W (μz), ΦΞ = ΦW (μz), Uφ = Ũφ(μz), y = μz
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where (W,Uφ,ΦW ) solves

Uφ
s +

μs

μ
y∂yUφ − λs

λ
Sδ(Uφ) + U(ΦW )∂θUφ + V (ΦW )αy∂yUφ(2.16)

= −R(ΦW )Uφ − V (ΦW )Uφ,

Ws +
μs

μ
y∂yW − λs

λ
Sδ(W ) + U(ΦW )∂θW + V (ΦW )αy∂yW(2.17)

= R(ΦW )W − 2Uφ(tan(θ)αy∂y + ∂θ)Uφ,

−α2z2∂zzΦW − α(5 + α)z∂zΦW − ∂θθΦW + ∂θ
(
tan(θ)ΦW

)
− 6ΦW = W.

(2.18)

and

Sδ(W ) = W + (1 + δ)y∂yW.

Now we linearize around (F, 0,ΦF ) by setting,

W = F + ε, ΦW = ΦF +Φε, Uφ = Uφ + 0.

Hence, we obtain the following equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uφ
s + μs

μ y∂yUφ −
(
λs

λ + 1
)
Sδ(Uφ) +Mφ

FUφ = N1(Φε,Uφ),

∂sε+
μs

μ y∂yε−
(
λs

λ + 1
)
Sδ(ε) +MF ε = E +N2(ε) +N3(Uφ),

−α2y2∂yyΦε − α(5 + α)z∂zΦε − ∂θθΦε + ∂θ
(
tan(θ)Φε

)
− 6Φε = ε,

(2.19)

where MF and Mφ
F are the linearized operators given by

MF ε = Sδ(ε) + U(ΦF )∂θε+ V (ΦF )αy∂yε+ U(Φε)∂θF + V (Φε)αy∂yF
(2.20)

−R(ΦF )ε−R(Φε)F,

Mφ
FU

φ = Sδ(Uφ) + U(ΦF )∂θUφ + V (ΦF )αy∂yUφ + (R(ΦF ) + V (ΦF ))Uφ,

(2.21)

E is the error

E = −μs

μ
y∂yF +

(λs

λ
+ 1

)
Sδ(F ),(2.22)
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and the non-linear terms,

N1(Φε,Uφ) = −U(Φε)∂θUφ − V (Φε)αy∂yUφ − (R(Φε) + V (Φε))Uφ,

(2.23)

N2(ε) = −U(Φε)∂θε− αV (Φε)y∂yε+R(Φε)ε,(2.24)

N3(Uφ) = −2Uφ(tan(θ)αy∂y + ∂θ)Uφ.(2.25)

We will allow μ and λ to depend on s to be able to fix ∂yε(0, θ) =
L12(ε)(0) = 0 for all θ. The reason that we wish to keep this information on ε
is that this is precisely what will allow us to squeeze some damping out of the
linearized operator MF . Also note that we will need ∂yUφ(y = 0, θ, s) = 0
for all θ ∈ [0, π2 ] and s ≥ 0. This is propagated once we assume it initially.
Note that even though the condition ∂yε(0, θ) = 0 seems to require μ and/or
λ to depend on θ, the important property of the equation is that, once
L12(ε)(0) = 0, we have that Φε(0, θ) = 0 for all θ. Since all non-linear terms
are roughly of the form εΦε, the quadratic vanishing is propagated once we
have that L12(ε)(0) = 0.

2.3.1. The emergence of L12 and the role of F∗. One important fact
that we will use in our analysis is that the solution Φ of the third equation
in (2.19), can be written as:

Φε =
1

4α
sin(2θ)L12(ε) + Φ̄ε,

where

|∂2
θ Φ̄ε|Hk + α|DR∂θΦ̄ε|Hk + α2|D2

RΦ̄ε|Hk ≤ C|ε|Hk

(see Theorem 3). Consequently, we see from this that

U(Φε) = −3Φε − αDyΦε = − 3

4α
sin(2θ)L12(ε) +O(1)(2.26)

V (Φε) = ∂θΦε − tan(θ)Φε =
1

4α
(2 cos(2θ)− 2 sin2(θ))L12(ε) +O(1)(2.27)

R(Φε) =
1

cos(θ)
(2 sin(θ)Φε + α sin(2θ)DyΦε + cos(θ)∂θΦε)(2.28)

=
1

2α
L12(ε) +O(1),

where the O(1) terms above are terms involving Φ̄ε which satisfies bounds
independent of α.
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Note also that since F = F∗ + α2g with

F∗ =
Γ

c

4αy

(1 + y)2
,

we have that:

U(ΦF ) = −3 sin(2θ)
1

1 + y
+O(α),(2.29)

V (ΦF ) = (2 cos(2θ)− 2 sin2(θ))
1

1 + y
+O(α),(2.30)

R(ΦF ) =
2

1 + y
+O(α).(2.31)

It will be helpful to keep these approximations in mind when studying the
leading order behavior of MF and Mφ

F .

2.4. General strategy

As explained in the beginning of the section, our goal will now be to use
some coercivity from the terms MF (ε) and Mφ

F (Uφ) to prove:

d

dt
Ē ≤ −cĒ + CĒ3/2,

for some constants c, C > 0. This will then show, with a suitable bootstrap
argument (as in Section 3.1 of [8]), that if E(ε0) is sufficiently small, we
have that E(ε) decays exponentially as s → ∞. The focus will now be to
prove coercivity estimates on MF as well as the relevant elliptic and product
estimates that will enable us to establish the above. The consequence is the
following stability theorem from which Theorem 1 and its Corollary follow.

2.5. Stability theorem

Definition 2.1 (Energy). Fix k ≥ 4. For ε ∈ Hk and Uφ ∈ Hk+1 with
tan(θ)Uφ ∈ Hk, define

E(ε,Uφ) = ‖ε‖Hk + ‖Uφ‖Hk+1 + ‖∂θUφ‖Hk + ‖ tan(θ)Uφ‖Hk .

Theorem 2. For k ≥ 4, there exists α0 > 0 small so that for all α < α0,
there is a δ0 > 0 and κ > 0 so that for every initial (ε0,Uφ

0 ) with E(ε0,Uφ
0 ) <



1052 Tarek M. Elgindi et al.

δ0α
3/2 and L12(ε0)(0) = 0, there is an associated unique global solution to

(2.19) so that:

|μs|+ |λs

λ
+ 1|+ E(ε,Uφ)(s) ≤ CE(ε0,Uφ

0 )e
−κs

for all s ≥ 0.

Corollary 2.2. Under the conditions of Theorem 2,

μ(s) → μ∞

exponentially as s → ∞ and there exists T∗ so that

λ(s) exp(s) → 1

T∗
≈ 1,

exponentially fast as s → ∞. Consequently, T∗
T∗−tλ(t) → 1 as t → T∗.

Remark 2.3. Note that this corollary follows directly from Theorem 2 in
view of the scaling laws (2.15).

2.6. Solutions with compactly supported vorticity and finite
energy

In view of Theorem 2, to get finite-time singularity for compactly supported
solutions, it suffices to show that there exists ε0 ∈ Hk with small norm so
that F +ε0 is compactly supported. We take Uφ

0 to be compactly supported.
This is not difficult to do since F decays faster than ε0 needs to. Indeed,
let χ ∈ C∞

c ([0,∞)) with χ ≡ 1 on [0, 1], χ ≡ 0 on [2,∞), and 0 ≤ χ ≤ 1.
We will let M >> 1 and β << 1 be positive constants to be chosen later.
Consider

εM,β
0 = (χ(

z

M
)− 1)F + β sin(2θ)χ((z − 3)2).

Observe that ε0 + F is compactly supported. Next, observe that

‖εM,β
0 ‖Hk ≤ C

M1/4
+ Cβ + Cα2.

This is just due to the fact that F = F∗ + α2g and F∗ ≈ αz−1 as z → ∞
and |g|Hk ≤ C, while the Hk norm is like an L2 norm for large z. We also
use Lemma A.6. Note also that

L12(ε
M,β
0 )(0) = L12(χ(Mz)− 1)(0) + βL12(sin(2θ)χ((z − 3)2))(0).
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Observe that aM := L12(χ(Mz)− 1)(0) satisfies:

|aM | ≤ C

M
+ Cα2,

for the same reason that F = F∗+α2g. On the other hand, the fixed constant

b = L12(sin(2θ)χ((z − 3)2))(0) > 0. Thus we define

β = −aM
b

.

Then we have:

L12(ε
M,β)(0) = 0, ‖εM,β

0 ‖Hk ≤ C
( 1

M1/4
+ α2 + β

)
≤ C

M1/4
+ Cα2

if M is large. In particular, if we take M = 1
α8 and if α is sufficiently small,

εM,β
0 will satisfy the hypothesis of Theorem 2.

3. Coercivity in Hk

Recall from [7] the definition of the following operators.

Definition 3.1.

LF∗(f) = f + y∂yf − 2
f

1 + y
− 2yΓ(θ)

c(1 + y)2
L12(f),

L(f) = f + y∂yf − 2
f

1 + y
,

LT
F∗
f :=LF∗(f)+

3

1 + y
sin(2θ)∂θf − Γ(θ)

c

2z2

(1 + z)3
L12(

3

1 + y
sin(2θ)∂θf)(0).

LF∗ is the linearization of the fundamental model around F∗, which

is the leading order of the linearized operator from [7]. The extra term
Γ(θ)
c

2z2

(1+z)3L12(
3

1+y sin(2θ)∂θf)(0) is to ensure that L12(LT
F∗
(f))(0) =

L12(LF∗(f))(0).

3.1. Coercivity of LT
F∗

in Hk

We begin with the following proposition.
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Proposition 3.2. There exists an inner-product on Hk that gives a norm

equivalent to the Hk norm so that

(LT
F∗
f, f)Hk ≥ |f |2Hk ,(3.1)

and

(LF∗f, f)Hk ≥ |f |2Hk ,(3.2)

whenever f ∈ Hk and L12(f)(0) = 0.

Proof. To do this, we proceed by induction on k. We know that LT
F∗

is

coercive in H2 with a suitable inner product whose first term is always 10.

Let us now show how to pass from coercivity on Hk−1 to coercivity on Hk.

Note that Dθ commutes with LT
F∗

with the exception of the last term in LT
F∗
.

By the induction assumption, we assume that

(LT
F∗
g, g)Hk−1 ≥ |g|2Hk−1 ,

and

(Lg, g)Hk−1 ≥ |g|2Hk−1 .

We first study (Dk
θLT

F∗
f,Dk

θfW )L2 . Recall that

Dk
θLT

F∗
(f)

= L(Dk
θf)+Dk

θΓ
(
− 2y

c(1+y)2
L12(f)+

1

c

2y2

(1+y)3
L12(

3

1 + y
sin(2θ)∂θf)(0)

)

− 3

1 + y
sin(2θ)∂θD

k
θf.

Using the definition of W , it is now easy to see that

(Dk
θLT

F∗
f,Dk

θfW )L2 ≥ 1

10
|Dk

θfW |L2 − Cα|f |2H1 .

Now let us proceed by induction. Let us assume that for 0 ≤ j ≤ k − 2 we

have established an estimate of the form:

(Dk−j
θ Dj

yLT
F∗
f,Dk−j

θ Dj
yfW )L2 ≥ 1

10
|Dk−j

θ Dj
yfW |2L2 − C|f |2Hk−1 ,
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then we will show that

(D
k−(j+1)
θ Dj+1

y LT
F∗
f,D

k−(j+1)
θ Dj+1

y fW )L2

≥ 1

100
|Dk−(j+1)

θ Dj+1
y fW |2L2 − C|f |2Hk−1 − C|Dk−j

θ Dj
yfW |2L2 .

Once this is established, we will be done by induction on j. We first apply

D
k−(j1)
θ to LT

F∗
and we get:

Dk
θLT

F∗
(f)

= L(Dk−(j+1)
θ f)

+D
k−(j+1)
θ Γ

(
− 2y

c(1 + y)2
L12(f)+

1

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θf)(0)

)

− 3

1 + y
sin(2θ)∂θD

k−(j+1)
θ f = I + II + III.

Now we apply Dj+1
y to the above expression. First observe that

(Dj+1
y I,Dj+1

y D
k−(j+1)
θ fW )L2

≥ 1

10
|Dk−(j+1)

θ Dj+1
y fW |2L2 − C|Dk−(j+1)

θ Dj+1
y fW |L2 |f |Hk−1 .

This is because Dy commutes with the derivative term in L and its com-

mutator with the other terms is lower order. The term with II is low order

and we leave it to the reader. As for the term III:

(Dj+1
y III,Dj+1

y D
k−(j+1)
θ fW )L2

≤ 100α|Dk−(j+1)
θ Dj+1

y fW |2L2

+ C|Dk−(j+1)
θ Dj+1

y fW |L2(|Dk−j
θ Dj

yfW |L2 + |f |Hk−1)

the first term comes from the term where all derivatives fall on f in III and

we then integrate by parts using the definition of W . The first part of the

second term comes when one Dy hits the factor 3
1+y and the second part of

the second term comes when more than one derivative hits that factor. This

shows that we can find a suitable inner product whose norm is equivalent

to the Hk norm, with equivalence constants independent of α, so that (3.2)

holds. Note that for the linear estimates α does not need to be taken to

be smaller as k is taken larger. Note also that we have treated the term
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Γ(θ)
c

2y2

(1+y)3L12(
3

1+y sin(2θ)∂θf)(0) perturbatively (as a purely “bad” term) so

we also have that

(LT
F∗
(f) +

Γ(θ)

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θf)(0), f)Hk ≥ |f |2Hk .

We also deduce for the same reason that

(LF∗(f), f)Hk ≥ |f |2Hk .

3.2. Coercivity of MF in Hk

Our goal in this section is to derive coercivity estimates for MF given what

we know about LT
F∗

from the previous section. The argument will be merely

perturbative. Indeed, the self-similar solution F is a perturbation of F∗ =

2αΓ(θ)
c

y
(1+y)2

F = F∗ + α2g.

Hence, one can also write MF as

MF = LT
F∗

+
2y2Γ

c(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0)) +

√
αL̃(3.3)

and

L̃f = − 1√
α

[
αV (F∗)y∂yε+ U(Φε)∂θF∗ + αV (Φε)y∂yF∗ + l.o.t.

]
.

We refer the reader to (2.29)–(2.31) to see how the computation above is

done. In the above, “l.o.t.” refers to lower order terms in α. These are the

terms coming from g and their size is made precise in the following propo-

sition.

Proposition 3.3.

|(L̃(g), g)Hk | ≤ C|g|2Hk .

Remark 3.4. This is because of the
√
α loss in the product rules of Sec-

tion A.
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Proof. This essentially follows from the computations from the preceding
subsection. Indeed, using the notation of [7], F = F∗ + α2g with |g|Hk ≤ C
and F∗ is of order α. Since g is small, we can essentially discard the linear
terms containing g and focus on the rest. Now, by definition, we see that

MF (ε) = LT
F∗
(ε)− y2Γ

c(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0))

+ αV (F∗)y∂yε+ U(Φε)∂θF∗ + αV (Φε)y∂yF∗ + l.o.t.

The result now follows using Propositions A.2, A.3, A.4, and A.5 as well as
Theorem 3.

Hence, the following proposition will follow from the coercivity of LT
F∗

in Hk.

Proposition 3.5. Let ε ∈ Hk satisfy that L12(ε)(0) = 0. There exists a
constant c depending only on k so that if α is sufficiently small, we have
that

(MF (ε), ε)Hk ≥ c|ε|2Hk .(3.4)

3.3. Coercivity of Mφ
F in Hk

Consider Mφ
F :

Mφ
F f = Sδ(f) + U(ΦF )∂θf + V (ΦF )αy∂yf + (R(ΦF ) + V (ΦF ))f.

In view of (2.29)–(2.31), this gives:

Mφ
F (f) = y + y∂yf − 3

1 + y
sin(2θ)∂θf +

4− 6 sin2(θ)

1 + y
f + l.o.t.,

= y + y∂yf − 3

1 + y
sin(2θ)∂θf − 2

1 + y
f +

6 cos2(θ)

1 + y
f + l.o.t.

= LT
F∗

+
6 cos2(θ)

1 + y
f + l.o.t.

where the lower order terms are coming from the g term in the expansion
F = F∗+α2g. It is then easy to see that since the extra 6 cos2(θ) term above

has the right sign and we have that to leading order Mφ
F is “more positive”

than LT
F∗
. It is then easy to show the following proposition.
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Proposition 3.6. For all f ∈ Hk we have that

(Mφ
F (f), f)Hk

U0
≥ c|f |2Hk ,(3.5)

where (·, ·)Hk
U0

is an inner product on Hk that gives rise to a norm equivalent

to the Hk norm.

4. The bootstrap regime

We will define first in which sense the solution is initial close to the self-

similar profile.

Definition 4.1 (Initial closeness). Let δ > 0 small enough, s0  1, and

W0, Uφ
0 ∈ Hk. We say that (W0,Uφ

0 ) is initially close to the blow-up profile

(F, 0) if there exists λ0 > 0 and μ0 > 0 such that the following properties
are verified. In the variables (y, s) one has:

W0(y) = F + ε0, Uφ
0(4.1)

and the remainder and the parameters satisfy:

(i) Initial values of the modulation parameters:

1

2
e−

s0
2 < λ0 < 2e−

s0
2 ,

1

2
< μ0 < 2(4.2)

(ii) Initial smallness:

‖W0‖2H2 + ‖Uφ
0 ‖2H2 + ‖∂θUφ

0 ‖2Hk + ‖ tan(θ)Uφ
0 ‖Hk < e−

s0
8 ,(4.3)

We are going to prove that solutions initially close to the self-similar

profile in the sense of Definition 4.1 will stay close to this self-similar profile
in the following sense.

Definition 4.2 (Trapped solutions). Let K  1. We say that a solution w

is trapped on [s0, s
∗] if it satisfies the properties of Definition 4.1 at time s0,

and if it can be decomposed as

W = F + ε

for all s ∈ [s0, s
∗] with:
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(i) Values of the modulation parameters:

1

K
e−

s

8 < λ(s) < Ke−
s

8 ,
1

K
< μ(s) < K.(4.4)

(ii) Smallness of the remainder:

‖ε‖Hk + ‖Uφ‖Hk+1 + ‖∂θUφ‖Hk + ‖ tan(θ)Uφ‖Hk < Ke−
s

8 ,(4.5)

Proposition 4.3. There exist universal constants K, s∗0  1 such that the

following holds for any s0 ≥ s∗0. All solutions w initially close to the self-

similar profile in the sense of Definition 4.1 are trapped on [s0,+∞) in the

sense of Definition 4.2.

Define for δ > 0 small enough:

E(s) = ‖ε‖Hk + ‖Uφ‖Hk+1 + ‖∂θUφ‖Hk + ‖ tan(θ)Uφ‖Hk .(4.6)

The proof of the proposition will be done later by using energy estimates.

Before this we will derive that “law” that μ and λ will satisfy.

5. Derivation of the laws

In this section, we derive equations for μ and λ that allow us to propagate

∂yε(0, θ, s) = L12(ε)(0, s) = 0 for all θ and s > 0. We assume that these hold

at s = 0. To derive these laws, we first apply L12 to the first equation of

(2.19) and evaluate at 0. It is helpful to observe the following facts: whenever

f(0, θ) = 0 for all5 θ, we have

L12(y∂yf)(0) = 0.

Proposition 5.1. To keep ∂yUφ(0, θ, s) = 0, L12(ε)(0, s) = 0 and ∂yε(0, θ, s) =

0 for all θ ∈ [0, π2 ] and s > 0 it suffices to impose that λ and μ satisfy the

following ODE’s:

− α
(λs

λ
+ 1

)
+ 3L12(

sin(2θ)

1 + y
∂θε)(0)(5.1)

=
√
αL12(L̃ε)(0) + L12(N2(ε))(0) + L12(N3(Uφ))(0),

5Essentially all the functions we deal with have this property.
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μs

μ
= (2 + δ)

(λs

λ
+ 1

)
.(5.2)

∂yUφ(0, θ)
∣∣∣
s=0

= 0

We also have the following bounds,

∣∣∣∣∣α
(λs

λ
+ 1

)
− 3L12(

sin(2θ)

1 + y
∂θε)(0)

∣∣∣∣∣ �
√
α‖ε‖H2 + ‖Uφ‖2H2 .(5.3)

∣∣∣λs

λ
+ 1

∣∣∣ � 1

α
‖ε‖H2(5.4)

Remark 5.2. It is useful to review the contents of Section 3.2, particularly
the definition of MF and its main terms for this calculation.

Proof.

∂yUφ
s

∣∣∣
y=0

+
μs

μ
∂y(y∂yUφ)

∣∣∣
y=0

−
(λs

λ
+ 1

)
∂y(Sδ(Uφ))

∣∣∣
y=0

(5.5)

= ∂yMφ
FU

φ
∣∣∣
y=0

+ ∂yN1(Φε,Uφ)
∣∣∣
y=0

∂yεs

∣∣∣
y=0

+
μs

μ
∂y(y∂yε)

∣∣∣
y=0

−
(λs

λ
+ 1

)
∂ySδ(ε)

∣∣∣
y=0

(5.6)

= ∂yE
∣∣∣
y=0

+ ∂yMF ε
∣∣∣
y=0

+ ∂yN2(ε)
∣∣∣
y=0

+ ∂yN3(Uφ)
∣∣∣
y=0

,

By using that

ε(s, 0, θ) = Uφ(s, 0, θ) = ∂yε(s, 0, θ) = L12(ε)(0) = 0,(5.7)

we deduce easily that,

∂yεs(s, 0, θ) = ∂y(y∂yUφ)
∣∣∣
y=0

= ∂y(y∂yε)
∣∣∣
y=0

= ∂y(Sδ(ε))
∣∣∣
y=0

= 0.(5.8)

Also from L12(ε)(0) = 0 we deduce that,

Φε(0, θ) = ∂θΦε(0, θ) = 0,(5.9)

Hence, from (5.9) we obtain that for all θ ∈ [0, π2 ],

U(Φε)
∣∣∣
y=0

= V (Φε)
∣∣∣
y=0

= R(Φε)
∣∣∣
y=0

= 0.(5.10)
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Hence,

∂yN1(Φε,Uφ)
∣∣∣
y=0

= ∂yN2(ε)
∣∣∣
y=0

= ∂yMF ε
∣∣∣
y=0

= 0.(5.11)

By using that F = αF∗ + α2g with ∂yg(0, θ) = 0 for all θ ∈ [0, π2 ] and

F∗ =
Γ(θ)
c

2y
(1+y)2 we deduce that

∂yE
∣∣∣
y=0

= −μs

μ
∂yF (0, θ) +

(λs

λ
+ 1

)
(2 + δ)∂yF (0, θ)

=
(
− μs

μ
+ (2 + δ)

(λs

λ
+ 1

))
α
2Γ(θ)

c
.

It follows from the previous computations that

−μs

μ
+ (2 + δ)

(λs

λ
+ 1

)
= 0.

Similarly, from

∂yUφ
s

∣∣∣
y=0

+
μs

μ
∂y(y∂yUφ)

∣∣∣
y=0

−
(λs

λ
+ 1

)
∂y(Sδ(Uφ))

∣∣∣
y=0

(5.12)

= ∂yMφ
FUφ

∣∣∣
y=0

+ ∂yN1(Φε,Uφ)
∣∣∣
y=0

we deduce that

∂yUφ(0, θ)s +
μs

μ
∂yUφ(0, θ)− ∂yUφ(0, θ)

(λs

λ
+ 1

)
(2 + γ)(5.13)

− ∂y(Mφ
F (∂yU

φ))
∣∣∣
y=0

= 0.

In addition, from ΦF = 1
4α sin(2θ)L12(αF∗) + Φg with Φg(0) = 0 and

L12(F∗)(0) = 4α, we deduce that

U(ΦF )(0) = −3 sin(2θ), V (ΦF )(0) = 3 cos(2θ)− 1, R(ΦF )(0) = 2.
(5.14)

Let’s compute the linear terms ∂yMφ
F (∂yUφ)

∣∣∣
y=0

:

∂yMφ
F (∂yU

φ)
∣∣∣
y=0

(5.15)
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=
(
γ − 4α+ 6(1 + α) cos2(θ)

)
∂yUφ(0, θ)− 3 sin(2θ)∂θ∂yUφ(0, θ).

Hence,

∂yUφ(0, θ)s +
(
γ − 4α+ 6(1 + α) cos2(θ)

)
∂yUφ(0, θ)−3 sin(2θ)∂θ∂yUφ(0, θ)

(5.16)

= 0.

Since ∂yUφ(0, θ) is transported through the previous equation it is clear that
if ∂yUφ(0, θ) was 0 initially it will stay for all s ≥ 0.

To get the law on λ we apply L12 to the equation of ε in (2.19) and take
the trace at y = 0.

∂sL12(ε)(0) +
μs

μ
L12(y∂yε)(0)−

(λs

λ
+ 1

)
L12(Sδ(ε))(0)

= L12(E)(0)− L12(MF ε)(0) + L12(N2(ε)) + L12(N3(Uφ))(0).

We compute first L12(E)(0) by using that F = F∗+α2g with L12(g)(0) = 0,

L12(E)(0) =
(λs

λ
+ 1

)
L12(F∗)(0) = α

(λs

λ
+ 1

)
.

We use from Proposition 3.3 that

MF ε = LF∗ε−
3 sin(2θ)

(1 + y)
∂θε+

√
αL̃ε,(5.17)

where LF∗ε := ε+ z∂zε− 2 ε
1+z − 2zΓ(θ)

c(1+z)2L12(ε). It follows that,

L12(MF ε)(0) = L12(LF∗ε)(0)− L12(
3 sin(2θ)

(1 + y)
∂θε)(0) +

√
αL12(L̃ε)(0).

To prove that some terms are zero we will use the following identity.

L12

(
LF∗(f)

)
= L

(
L12(f)

)
(5.18)

L(g)w = gw + z∂z(gw).(5.19)

where Lε := f + z∂zf − 2 f
1+z . By using the previous identity and εy(0, θ) =

L12ε(0) = 0 we deduce that L12(LF∗ε)(0) = 0 as well as L12(Sδ(ε))(0) = 0.



On the stability of self-similar blow-up for C1,α solutions 1063

Finally we obtain the following second law,

−α
(λs

λ
+ 1

)
+ 3L12(

sin(2θ)

1 + y
∂θε)(0)(5.20)

=
√
αL12(L̃ε)(0) + L12(N2(ε))(0) + L12(N3(Uφ))(0).

Hence, by using Proposition 3.3, Proposition A.2 and Proposition A.3 we
deduce that

∣∣∣∣∣α
(λs

λ
+ 1

)
− 3L12(

sin(2θ)

1 + y
∂θε)(0)

∣∣∣∣∣ �
√
α‖ε‖H2 + α‖ε‖2H2 + ‖Uφ‖2H2 .

(5.21)

There is also a rough bound

∣∣∣λs

λ
+ 1

∣∣∣ � 1

α

∣∣∣L12(
sin(2θ)

1 + y
∂θε)(0)

∣∣∣ � 1

α
‖ε‖H2 .(5.22)

6. Elliptic estimates

We now prove elliptic estimates in all Hk spaces. This was done in the case
k = 2 in [7]. We consider solutions to the following elliptic boundary value
problem.

Given F satisfying that (F,K)L2
θ
≡ 0, we solve

−α2D2
RΨ− αDRΨ− ∂θθΨ+ ∂θ

(
tan(θ)Ψ

)
− 6Ψ = F.(6.1)

We couple this equation with the natural boundary conditions on Ψ:

Ψ(R, 0) = Ψ(R, π/2) = 0, lim
R→∞

Ψ(R, θ) = 0.

We will show that

α2|D2
RΨ|Hk + α|DRΨ|Hk + |∂2

θΨ|Hk ≤ Ck|F |Hk .

This has already been established in the case k = 2. Observe that DR

commutes with (6.1), so this allows us to prove higher elliptic regularity
estimates for the radial derivatives. Now let us rewrite (6.1) as:

−∂θθΨ+ ∂θ(tan(θ)Ψ) = F + 6Ψ + α2D2
RΨ+ αDRΨ := G.
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Since estimates on the radial derivatives are relatively simple to get, it suf-
fices to establish Hk estimates on just the angular part of the equation:

−∂θθΨ+ ∂θ(tan(θ)Ψ) = G,

for |G|Hk ≤ Ck|F |Hk . Now we wish to show that the following quantity is
non-positive up to lower order terms

(∂k+1
θ (tan(θ)Ψ), ∂k+2

θ Ψsin(2θ)2k−γ)L2
θ
.

It is natural to consider Ψ̃ = Ψ
cos(θ) so that we wish to study:

(∂k+1
θ (sin(θ)Ψ̃), ∂k+2

θ (cos(θ)Ψ̃) sin(2θ)2k−γ)L2
θ
.

By induction on k, it suffices to consider only the following three terms:

1

2

∫
∂k+1
θ Ψ̃∂k+2

θ Ψ̃ sin(2θ)2k+1−γ − (k + 2)

∫
sin2(θ)

(
∂k+1
θ Ψ̃

)2
sin(2θ)2k−γ

+ (k + 1)

∫
cos2(θ)∂k

θ Ψ̃∂k+2
θ Ψ̃ sin(2θ)2k−γ

=
2k + 1− γ

4

∫
(∂k+1

θ Ψ̃)2 cos(2θ) sin(2θ)2k−γ

− (k + 2)

∫
sin2(θ)

(
∂k+1
θ Ψ̃

)2
sin(2θ)2k−γ

− (k + 1)

∫
cos2(θ)

(
∂k+1
θ Ψ̃

)2
sin(2θ)2k−γ + E,

where E is lower order and satisfies

|Ew2
r |L1

R
≤ C|F |Hk .

On the other hand, we have:

2k + 1− γ

4

∫
(∂k+1

θ Ψ̃)2 cos(2θ) sin(2θ)2k−γ

− (k + 2)

∫
sin2(θ)

(
∂k+1
θ Ψ̃

)2
sin(2θ)2k−γ

− (k + 1)

∫
cos2(θ)

(
∂k+1
θ Ψ̃

)2
sin(2θ)2k−γ ≤ 0.

By induction on k we now have the following theorem.
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Theorem 3. Let k ≥ 2 and assume F ∈ Hk satisfies (F,K)L2
θ
≡ 0. Then,

α2|D2
RΨ|Hk + α|DRΨ|Hk + |∂2

θΨ|Hk ≤ Ck|F |Hk .

7. Final energy estimates

Recall the equation solved by (ε,Uφ,Φε):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uφ
s + μs

μ y∂yUφ − 1
2

(
λs

λ + 1
)
Sδ(Uφ) +Mφ

FUφ = N1(Φε,Uφ)

εs +
μs

μ y∂yε− 1
2

(
λs

λ + 1
)
Sδ(ε) +MF ε = E +N2(ε) +N3(Uφ),

−α2y2∂yyΦε − α(5 + α)z∂zΦε − ∂θθΦε + ∂θ
(
tan(θ)Φε

)
− 6Φε = ε.

(7.1)

As alluded to in the bootstrap section 4, our goal will be to now control
the following total energy:

E = E(ε, Uφ) = |ε|Hk + |Uφ|Hk+1 + |∂θUφ|Hk + | tan(θ)Uφ|Hk .

Strictly speaking, we only now have linear coercivity for ε and Uφ in Hk

and Hk+1 respectively; however, it turns out that because of the structure
of the equations we will also get linear damping on the second to terms in
the energy. Our goal will be to now show that E decays exponentially if E0
is sufficiently small. In the coming sections we will compute d

dsE term by
term.

7.1. Bound on d
ds
(ε, ε)Hk

We have that

1

2

d

ds
(ε, ε)Hk

≤ −(MF ε, ε)Hk + (E, ε)Hk +
∣∣∣μs

μ

∣∣∣|(y∂yε, ε)Hk |+
∣∣∣λs

λ
+ 1

∣∣∣|(Sδ(ε), ε)Hk |

+ (N2(ε), ε)Hk + (N3(U
φ), ε)Hk .

Coercivity from MF . We first write:

−(MF ε, ε)Hk + (E, ε)Hk

= −(MF (ε)−
Γ(θ)

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0), ε)Hk
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+ (E − Γ(θ)

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0), ε)Hk

Now, from Proposition 3.5, we have that:

(MF ε−
Γ(θ)

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0), ε)Hk ≥ c|ε|2Hk .

Estimate of the error term. In addition, recall that

E − Γ(θ)

c

2y2

(1 + y)2
L12(

3

1 + y
sin(2θ)∂θε)(0)

(7.2)

= −μs

μ
y∂yF +

(λs

λ
+ 1

)
Sδ(F )− Γ(θ)

c

2y2

(1 + y)2
L12(

3

1 + y
sin(2θ)∂θε)(0).

By using μs

μ = (2 + δ)(λs

λ + 1) we get that,

E − Γ(θ)

c

2y2

(1 + y)3
L12(ε)(0)(7.3)

=
(λs

λ
+ 1

)
(F − y∂yF )− Γ(θ)

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0).

Since, F = F∗ + α2g with F∗ = 4αΓy
c(1+y)2 and F∗ − y∂yF∗ = 8αy2

(1+y)2 we deduce

that

E − Γ(θ)

c

2y2

(1 + y)3
L12(

3

1 + y
sin(2θ)∂θε)(0)(7.4)

=
4Γy2

c(1 + y)3

(
α
(λs

λ
+ 1

)
− L12(

3

1 + y
sin(2θ)∂θε)(0)

)

+
α2

2

(λs

λ
+ 1

)
(g − y∂yg).

Hence, by using (5.21) and (5.22) we deduce that

∣∣∣
(
E − Γ(θ)

c

2y2

(1 + y)3
L12(

3 sin(2θ)

1 + y
∂θε)(0), ε

)
Hk

∣∣∣(7.5)

� ‖ε‖Hk

(√
α‖ε‖H2 + α‖ε‖2H2

)
+ α‖g‖Hk‖ε‖2Hk .
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Nonlinear terms. We have that

|(y∂yε, ε)Hk | = |(Dyε, ε)Hk | ≤ C√
α
|ε|2Hk ,

∣∣∣μs

μ

∣∣∣ ≤ C

α
|ε|Hk ,

where the bound on μs

μ comes from Proposition 5.1. In particular,

∣∣∣μs

μ

∣∣∣(y∂yε, ε)Hk ≤ C

α3/2
|ε|3Hk .

Using identical reasoning and recalling that Sδ(ε) = ε+(1+ δ)y∂yε, we get:

∣∣∣λs

λ
+ 1

∣∣∣|(Sδ(ε), ε)Hk | ≤ C

α3/2
|ε|3Hk .

Next,

(N2(ε), ε)Hk = (− UΦε

sin(2θ)
Dθε, ε)Hk − α(V (Φε)Dyε, ε)Hk + (R(Φε)ε, ε)Hk .

Observe that using Theorem 3 and separating the L12 part, we have

∣∣∣ UΦε

sin(2θ)

∣∣∣
Hk

+
∣∣∣VΦε

∣∣∣
Hk

+ |R(Φε)|Hk ≤ C

α
|ε|Hk

In particular, using the product and transport estimates from Section A, we

get6:

|(N2(ε), ε)Hk | ≤ C

α3/2
|ε|3Hk .

Finally, we need to look at N3(Uφ) = 2Uφ tan(θ)αDyUφ + 2Uφ∂θUφ. It

is clear that

|N3(Uφ)|Hk ≤ C

α1/2
(| tan(θ)Uφ|Hk + |∂θUφ|Hk)|Uφ|Hk+1 ≤ C

α1/2
E2.

In conclusion, we see that

d

ds
(ε, ε)Hk ≤ −c‖ε‖2Hk +

C

α3/2
E3.

6This can be improved to α−1, but it is not important.
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7.2. Bound on d
ds
(Uφ,Uφ)Hk+1

U0

1

2

d

ds
(Uφ,Uφ)Hk+1

U0

≤ −(Mφ
FU

φ, Uφ)Hk+1
U0

+
∣∣∣μs

μ

∣∣∣|(y∂yUφ,Uφ)Hk+1
U0

|

+
∣∣∣λs

λ
+ 1

∣∣∣|(Sδ(Uφ),Uφ)Hk+1
U0

|+ |(N1(Φε,Uφ),Uφ)Hk+1
U0

|.

Now, we know from (3.5) that

(Mφ
FU

φ, Uφ)Hk+1
U0

≥ c|Uφ|2Hk+1 .

Moreover, as before, we have:

∣∣∣μs

μ

∣∣∣|(y∂yUφ,Uφ)Hk+1
U0

|+
∣∣∣λs

λ
+ 1

∣∣∣|(Sδ(Uφ),Uφ)Hk+1
U0

| ≤ C

α3/2
E3.

Now let us engage with the term |(N1(Φε,Uφ),Uφ)Hk+1
U0

|. We need to be a

little careful with this term since we are only allowed to put ε in Hk. What

saves us is that we have bounds on tan(θ)Uφ and ∂θU
φ and not just Uφ.

|(N1(Φε,Uφ),Uφ)Hk+1
U0

|

≤ |(U(Φε)∂θUφ,Uφ)Hk+1
U0

|+|(V (Φε)DyUφ,Uφ)Hk+1
U0

+|(R(Φε)Uφ,Uφ)Hk+1
U0

|

+ |(V (Φε)Uφ,Uφ)Hk+1
U0

|

Observe that by a direct computation, we have:

|(U(Φε)∂θUφ,Uφ)Hk+1
U0

|

≤ C|Uφ|Hk+1 |∂θUφ|L∞ |U(Φε)|Hk+1+
C

α3/2
|Uφ|2Hk+1 |∂θU(Φε)|Hk ≤ C

α3/2
E3,

since Φε contains a 1
α in it and using the embedding proven in Proposi-

tion A.1. Similarly,

|(V (Φε)DyUφ,Uφ)Hk+1
U0

| ≤ C

α3/2
E3.
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Next, we need to look carefully at |(R(Φε),Uφ)Hk+1
U0

|:

|(R(Φε),Uφ)Hk+1
U0

| = 2
∣∣∣
(
(tan(θ)Φε + α tan(θ)DyΦε + ∂θΦε)Uφ,Uφ

)
Hk+1

U0

∣∣∣
The only non-trivial term is:

|(tan(θ)DyΦεUφ,Uφ)Hk+1
U0

|

≤ C(|DyΦε|Hk+1 | tan(θ)Uφ|L∞ |Uφ|Hk+1 +
C

α3/2
|Uφ|2Hk+1 |ε|Hk) ≤ C

α3/2
E3.

Putting the above together, we see that:

d

ds
(Uφ,Uφ)Hk+1

U0

≤ −c‖Uφ‖2Hk+1 + CE3.

7.3. Bounds on d
ds
(∂θUφ, ∂θUφ)Hk

U1
and d

ds
(tan(θ)Uφ, tan(θ)Uφ)Hk

U2

The non-linear estimates here are very similar to the above, so we omit
them. We have to be very careful about the linear estimates, however, since
∂θ and tan(θ) do not commute with the linear operator Mφ

F . The important
fact is that the commutator will have a good sign in both cases. Let us recall
(from Subsection 3.3):

Mφ
F (f) = Mφ

F (f) = y + y∂yf − 3

1 + y
sin(2θ)∂θf +

4− 6 sin2(θ)

1 + y
f + l.o.t.

∂θMφ
F (f) = y∂θf + y∂yf +

3

1 + y
sin(2θ)∂θ∂θf +

(4− 6 sin2(θ))

1 + y
∂θf

− 6

1 + y
cos(2θ)∂θf − 6 sin(2θ)

1 + y
f + l.o.t.

= y∂θf + y∂yf +
3

1 + y
sin(2θ)∂θ∂θf +

(−2 + 6 sin2(θ))

1 + y
∂θf

− 6 sin(2θ)

1 + y
f + l.o.t.

= LF∗(∂θf) +
6 sin2(θ)

1 + y
∂θf + l.o.t.

It is then easy to show, as before, that we can find an inner product (·, ·)Hk
U1

so that

(∂θMφ
F (f), ∂θf)Hk

U1
≥ c|∂θUφ|2Hk .
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It then follows that

d

ds
(∂θUφ, ∂θUφ)Hk

U1
≤ −c|∂θUφ|2Hk +

C

α3/2
E3.

Now we check what happens when we multiply by tan(θ). In this case
we get:

tan(θ)Mφ
F (f) = Mφ

F (tan(θ)f) +
3

1 + y
sin(2θ) sec2(θ)f + l.o.t.

= Mφ
F (tan(θ)f) +

6

1 + y
tan(θ)f + l.o.t.

This again implies that

(tan(θ)Mφ
F (f), tan(θ)f)Hk

U2
≥ c|f |2Hk ,

with the inner product giving a norm equivalent to the Hk norm. Thus it is
not difficult to see that

d

ds
(tan(θ)Uφ, tan(θ)Uφ)Hk

U2
≤ −c| tan(θ)Uφ|2Hk +

C

α3/2
E3.

7.4. Final estimate

Putting together what we gained from the preceding calculations and defin-
ing

Ē = (ε, ε)Hk + (Uφ,Uφ)Hk+1
U0

+ (∂θUφ, ∂θUφ)Hk
U1

+ (tan(θ)Uφ, tan(θ)Uφ)Hk
U2
,

we get:

d

ds
Ē ≤ −cĒ +

C

α3/2
Ē3/2,

with c and C independent of α. Note that Ē ≈ E2 with constants independent
of α. Theorem 2 follows directly from this bound.
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Appendix A. Product rules

We now move to establish energy estimates in Hk. First recall from [7] that
Hk embeds continuously in L∞. Let us also observe the following lemma
that implies the embedding.

Lemma A.1. For all z, we have

sup
θ

|g(z, θ)|2 ≤ C√
γ − 1

∫ π/2

0
|∂θg(z, θ)|2 sin(2θ)2−γdθ.

And for all θ we have

sup
z

|g(z, θ)|2 ≤ C

∫ ∞

0
|Dzg(z, θ)|2

(1 + z)4

z4
dz.

As a consequence, we have the following result.

Proposition A.2 (First Product Rule). Let k ≥ 4 and assume f, g ∈ Hk.
Then, fg ∈ Hk and

|fg|Hk ≤ C√
γ − 1

|f |Hk |g|Hk .

Let us focus our discussion on the case k = 4. Most of the terms can
be controlled trivially using the embedding of Hk in L∞ (except one). The
point is that if we take four derivatives of the product fg, one of the two
must always have at most two derivatives on it and in that case we just put
it in L∞ and pull it out of the integral. The only awkward term to handle
is the following (due to the discrepancy in the angular weights):

I :=

∫ ∫
(D3

zf)
2(∂θg)

2 sin(2θ)2−γ (1 + z)4

z4
dzdθ.

To handle this term, we make use of Lemma A.1. Indeed,

I ≤
(∫ π/2

0
sup
z

|∂θg|2 sin(2θ)2−γdθ
)(∫ ∞

0
sup
θ

|D3
zf |2

(1 + z)4

z4
dz

)
.

Thus, by Lemma (A.1), we get:

I ≤ C|g|2H4 · C

γ − 1
|f |2H4 .

As in [7], we need a second product rule.
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Proposition A.3 (Second Product Rule). Let f ∈ Hk and g ∈ Wk,∞.
Then, fg ∈ Hk and

|fg|Hk ≤ C√
γ − 1

|f |Hk |g|Wk,∞ .

Proof. As in [7], whenever derivatives fall onto g we can take them out of
the integral (this is easy to see in I above, for example).

Proposition A.4 (First Transport Estimate). Assume k ≥ 4 and that
u, v, g ∈ Hk. Then,

|(uDθg, g)Hk | ≤ C√
γ − 1

|u|Hk |g|2Hk

and

|(vDzg, g)Hk | ≤ C√
γ − 1

|v|Hk |g|2Hk

Proof. This is essentially an application of the product rules. It is important
to note that, since k ≥ 4, we have |Djg|L∞ ≤ C√

γ−1
|g|Hk , whenever j ≤

k − 2.

Similarly, we have the second transport estimate.

Proposition A.5 (Second Transport Estimate). Assume k ≥ 4 and that
Dθu,Dzv ∈ Wk,∞ and g ∈ Hk Then,

|(uDθg, g)Hk | ≤ C√
γ − 1

|u|Wk,∞ |g|2Hk

and

|(vDzg, g)Hk | ≤ C√
γ − 1

|v|Wk,∞ |g|2Hk .

For the cut-off procedure we also make use of the following lemma.

Lemma A.6. Let φ ∈ Ck([0,∞)) and assume that sup0≤j≤k |Dj
zφ|L∞ =

Cφ < ∞. Then, if f ∈ Hk, we have that φf ∈ Hk and

|fφ|Hk ≤ CkCφ|f |Hk .

Remark A.7. The important point is that we do not get the 1√
γ−1

loss in

this estimate.
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Remark A.8. Observe that if χ is a radial smooth cut-off function, if we
consider χM (z) := χ( z

M ), then |Dj
z(χM )|L∞ ≤ Cj , for all j ≤ k (the bound

is independent of M).

Proof. Observe that ifDj consists of j derivatives (eitherDθ orDz), let us let

WDj denote either the weight sin(2θ)−η (1+z)4

z4 or sin(2θ)−γ (1+z)4

z4 depending
on whether Dj contains a Dθ or not. Observe also thatDθ derivatives cannot
hit φ since φ is radial. As a consequence,

∫
|Dj(fφ)|2WDj ≤ CjCφ

∑
|β|<j

|Dβf |2WDβ ≤ CjCφ|f |Hk .

Now summing over all |j| ≤ k we get the result.
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