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ABSTRACT

Axisymmetric disks of eccentric orbits in near-Keplerian potentials are unstable and undergo exponential
growth in inclination. Recently, Zderic et al. (2020) showed that an idealized disk then saturates to a lopsided
mode. Here we show, using N-body simulations, that this apsidal clustering also occurs in a primordial scattered
disk in the outer solar system which includes the orbit-averaged gravitational influence of the giant planets. We
explain the dynamics using Lynden-Bell (1979)’s mechanism for bar formation in galaxies. We also show surface
density and line of sight velocity plots at different times during the instability, highlighting the formation of

concentric circles and spiral arms in velocity space.

Keywords: celestial mechanics-minor planets, asteroids: general-planets and satellites: dynamical evolution and

stability

1. INTRODUCTION

Something odd is going on in the outer solar system: distant
bodies in orbit beyond Neptune appear clustered in argument
of perihelion (w; Trujillo & Sheppard 2014) and longitude of
perihelion (w; Batygin & Brown 2016). Some have extreme
inclinations that cannot be generated in the standard model of
solar system evolution (Gladman et al. 2009; Chen et al. 2016;
Becker et al. 2018; Kaib et al. 2019), and others are “detached”
in the sense that they have perhelia that lie far beyond the
gravitational reach of the giant planets (e.g., Brown et al.
2004). Observational biases have been carefully demonstrated
in outer solar system surveys (Shankman et al. 2017; Lawler
et al. 2017; Kavelaars et al. 2020; Napier et al. 2021) but
whether they can fully explain the anomalous orbital structure
of Trans-Neptunian objects (TNOs) remains a contentious
issue (Brown 2017; Brown & Batygin 2019). If they do not,
the outer solar system requires a new source of gravitational
perturbation. One such source could be a planet far beyond
the orbit of Neptune (for reviews see Batygin et al. (2019) and
Trujillo (2020)). We propose a different, internal source: the
self-gravity of the bodies themselves.

The collective gravity of bodies on eccentric orbits in an
axisymmetric near-Keplerian disk drives a dynamical instabil-
ity (Madigan & McCourt 2016; Madigan et al. 2018b). This
“inclination instability” exponentially grows the inclinations
of orbits while decreasing their eccentricities, raising their
perihelia and clustering their arguments of perihelion (w). In a
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recent paper, Zderic & Madigan (2020), we showed that O(20)
Earth masses are required for the instability to occur in a pri-
mordial scattered disk between ~ 10? — 10* AU in the solar
system under the orbit-averaged, gravitational influence of the
giant planets at their current locations. The instability can also
generate a gap in perihelion at ~ 50 — 75 AU, as observed in
the outer solar system (Kavelaars et al. 2020; Oldroyd & Tru-
jillo 2021). The saturation timescale, that is, the time at which
inclinations cease exponential growth, for the instability in a
20 Earth mass disk is far less than the age of the solar system.
Therefore, to connect to the present-day outer solar system
we need to understand the non-linear, saturated state of the
instability. We are further motivated by the results of Zderic
et al. (2020) where we discovered late-time apsidal clustering
of orbits in the disk plane, albeit in simulations with highly
idealized initial conditions. Here we show that the same late-
time clustering occurs in a primordial scattered disk between
~ 10% — 10 AU in the solar system under the gravitational
influence of the giant planets. We essentially take the more
realistic simulation conditions of Zderic & Madigan (2020)
and extend them past saturation to look for in-plane clustering.
We show that the apsidal clustering can be explained using
Lynden-Bell (1979)’s mechanism for bar formation in disk
galaxies.

Our paper proceeds as follows: in §2 we describe the
Lynden-Bell mechanism for bar formation and show how
it may be applied to near-Keplerian systems. In §3 we de-
scribe our numerical methods and in §4 present our results.
In §5 we show surface density and line of sight velocity plots
of our simulations at different times, and we conclude in §6.
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2. THE LYNDEN-BELL MECHANISM IN
NEAR-KEPLERIAN SYSTEMS

In 1979, Donald Lynden-Bell described a mechanism by
which bars may be formed in the centers of galaxies. We
reproduce the basic argument here.

In a general galactic potential, a typical orbit is a rosette
with an angle between 7 and 27 linking consecutive apocen-
ters. If we view an orbit from rotating axes, we may choose
the rotation speed v; such that the angle between apocenters
will be . The orbit will then be bisymmetric, like a centered
oval or ellipse. If v is the mean angular speed of a star about
the galaxy and « is its radial angular frequency, then we should
choose v; = v — «/2 > (. For near-circular orbits, v; will not
vary much over a large region of a galaxy (Binney & Tremaine
1987).

We now introduce a weak, bar-like potential, rotating with
pattern speed v, = v;, and consider its interaction with an
orbit. In the frame co-rotating with v,, the star’s orbit is an
almost closed oval which rotates at a slow rate v; — v, << v.
There is no time for the weak perturbing potential to affect the
star’s fast motion around the oval, so the orbit has an adiabatic
invariant, 1/2x f p-dq =2J; ~ const, where q is a vector of
polar coordinates (R, ¢), p is the polar conjugate momentum,
and the integral is taken over one closed, bi-symmetric orbit.
However, the potential will exert a persistent weak torque on
the oval as a whole because they move slowly with respect to
one another. Hence the oval will change to another oval with
the same J; but different angular momentum j.

If the orbit is ahead of the bar in its rotation, its angular
momentum will decrease due to the gravitational torque from
the bar. Normally, v; will increase in response such that the
orbit is repelled by the bar. In other words, the bar repels
the orbit because i/sjl;, (the Lynden-Bell derivative; Poly-
achenko 2004) is negative. In the abnormal case in which
the Lynden-Bell derivative is positive however, the orbit will
oscillate about the bar-like potential. In such cases, the orbit
adds to the strength of the potential which will then be able to
capture more and more orbits.

To discover what regions of a galaxy lead to the barring
of near-resonant orbits, Lynden-Bell calculated v;(J, j) for
an isochrone galactic potential which permits analytic expres-
sions for the angular frequencies « and v. He showed that
an abnormal region is associated with central regions in this
model where circular velocity rises with radius. Polyachenko
& Shukhman (2020) recently expanded upon Lynden-Bell’s
work by mapping the equilibria of orbits as a function of v;,
the Lynden-Bell derivative, and the orbit’s responsiveness to
the bar potential.

We now extend this argument to a near-Keplerian system,
where the gravitational potential is dominated by a central
mass. A typical orbit is an almost-closed ellipse. As in
Lynden-Bell (1979) we focus on the idealized planar problem,

though we note that our simulations in the next sections are
three-dimensional. The orientation of the ellipse in the orbital
plane is given by the longitude of pericenter, @, and its rate
of change @w = dw/dt = v — k indicates its precession rate.
If we view the orbit from rotating axes, we may choose the
rotation speed such that the angle between apocenters is zero,
v; = @ = 0. The orbit will then be a closed ellipse with the
central body occupying one focus.

Following Lynden-Bell’s argument, we now introduce a
weak, lopsided potential rotating with pattern speed v, = @&
and consider its gravitational influence on an orbit. Here the
precession rate of the orbit is by definition much less than the
orbital period even in an inertial frame. In this case, w < v
and v, < v, thus @ — v, < v. Therefore, the secular average
over mean anomaly is equivalent to Lynden-Bell’s average
over fast orbital motion, and J; — I where I = VGMa, M
is the central mass and a is the semi-major axis (see Merritt
2013; Fouvry et al. 2020).

The lopsided potential exerts a persistent torque on the orbit,
changing the orbit’s angular momentum at fixed semi-major
axis. The specific angular momentum of a Kepler orbit is
given by j = \/GMa(l — €?), where e is the magnitude of the
orbital eccentricity. At fixed semi-major axis, angular momen-
tum is a monotonically decreasing function of eccentricity.
In Kepler elements, the Lynden-Bell derivative ((')V,-/(') jl _]/) is
oc — 05/del,.

Lynden-Bell’s ‘abnormal region’ specifically refers to pro-
grade precession with magnitude increasing with increasing
angular momentum. In Kepler elements, this corresponds to a
region where precession is prograde with magnitude decreas-
ing with increasing eccentricity. The interpretation of ‘normal’
and ‘abnormal’ regions changes with context, e.g. the abnor-
mal region described above is actually typical in lopsided
eccentric disks (Madigan et al. 2018a). Therefore, we will
refer to regions where apsidal clustering is supported as clus-
tering regions, and regions where clustering is not supported
as anti-clustering regions.

We note that it is also possible to have a clustering re-
gion with retrograde precessing orbits: if precession is ret-
rograde and the magnitude of the precession rate increases
with increasing eccentricity then orbits will be attracted to
a perturbing potential. Orbits can be trapped in modes in
near-Keplerian systems provided that 9/ge|, < O regardless of
the sign of @; we define the clustering region to be any region
in the disk where 45/ae|, < 0.

3. N-BODY SIMULATIONS

Our N-body simulations use the open-source framework
REBOUND with the IAS15 adaptive timestep integrator (Rein
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Table 1. Model names and
parameters.

Model ID  J, N

N400 No 400
N800 No 800
J2N400  Yes 400
J2N800  Yes 800

& Liu 2012; Rein & Spiegel 2015)'. Additionally, we use
REBOUNDXx (Tamayo et al. 2020) to add a zonal harmonic,
Ja, to the central body to emulate the orbit-averaged effects of
the giant planets. All particles in our simulations are massive
and fully-interacting. In this paper, the Kepler elements semi-
major axis (a), eccentricity (e), inclination (i), argument of
pericenter (w), longitude of the ascending node (), and mean
anomaly (M) are used to describe the orbits.

The total disk mass used in the simulations is M, =
1073 M, and the number of particles is 400 or 800 (see Table
1). This unrealistically large disk mass is chosen to accelerate
secular dynamics (see Equation 1) within the disk reducing
the number of orbits we need to simulate. In addition, the
low N is required to reduce the simulation walltime per orbit.
The orbital distribution of our disks are initialized to approx-
imately model a primordial scattered disk in the outer solar
system (Duncan et al. 1987). The model is axisymmetric
with an order of magnitude spread in semi-major axis, ag, the
values of which are drawn from a 1D log-uniform distribution
between [10%, 10%] AU (this is equivalent to a surface density
distribution of a=%)%. All bodies have the same initial peri-
center distance, pyp = 30 AU. Inclination iy is drawn from a
Rayleigh distribution with a mean of 5°, and w, Q, and M are
chosen uniformly from 0 to 27 radians®.

We add a J, potential to the central body in half of our
simulations (see Table 1), and pick the J, moment to lie in
the “transition region” where the J, potential alters the incli-
nation instability without suppressing it (Zderic & Madigan
2020). Our chosen disk mass and number of particles, choices
forced by numerical limitations, are unrealistic. The insta-

! The fixed timestep WHFast integrator, while faster than IAS15, doesn’t
conserve energy and angular momentum well in this high eccentricity problem
(see also Rauch & Holman 1999). The performance of the MERCURIUS
integrator is similar to IAS15’s due to frequent close encounters between
particles.

2 We have simulated other 1D semi-major axis distributions, for example
a7 (Napier et al. 2021) and a~2> Duncan et al. (1987). The instability
proceeds similarly but its timescale decreases with increasing distribution
steepness.

3 Disks with larger initial inclinations also undergo the instability provided
that mean i is less than ~ 20°.

bility timescale and the max J, that the disk can resist (that
is, still undergo the instability) both depend on these key pa-
rameters. The low N in our simulations leads to artificially
strong self-stirring that weakens the secular torques that cause
the inclination instability and increases differential precession
by excessively spreading out the disk (Madigan et al. 2018b).
For the same total mass, a disk with more particles will be
able to resist a larger J, (that is, still undergo the instabil-
ity). We determined how the inclination instability timescale
scales with M,; and N in Madigan et al. (2018b). Then in
Zderic & Madigan (2020), we used that timescale scaling
along with simulations of these disks with added J; to find
that a ~ 20 Mg primordial scattered disk could resist the J, of
the giant planets. We found that this realistic system would
be in the transition region. The J2N400 and J2N800 models
in this paper are in the transition region too. Therefore, these
models, which have unrealistic J,, My, and N, are dynami-
cally similar to a 20 Earth mass primordial scattered disk, at
least with regards to J,.

For the sake of reproducibility, the J,R? used in these simu-
lations is 0.3 AU2. We use the same J,R? value for the J2N400
and J2N800 even though these simulations have different crit-
ical J, because this Jo,R? is sufficient to put both models in
the transition region. The JoR? for the solar system is 0.06
AU? and using solely a secular scaling (1073/20Mg ~ 16)
JoR? would be 0.96 AU? for a 1073 M, mass disk. This J,R?
is about 3 times larger than the actual J,R? used in our sim-
ulations. A N — oo disk can resist about 3 times more J,R?
than a N = 400 disk.

Simulation times are given in units of the secular timescale:

1 M,
21 Md

tSCC -

ey

where P is the orbital period at the innermost part of the disk.
For My = 1073 Mg, te. = 160 P ~ 0.16 Myr, where P(a =
100 AU) = 10° yr. We give timescales for a more realistic 20
Earth mass primordial scattered disk with in Section 6.

4. RESULTS

We measure apsidal clustering using the mean, normed
eccentricity vector,

N
€;
where .
¢ = i xji) , 3)

GM,

is the eccentricity vector of the ith orbit, and r;, v;, and j;
are the position, velocity, and specific angular momentum
of the ith particle. The eccentricity vector points from the
apocenter to the pericenter of the orbit. We use the cylindrical
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Figure 1. Model N400: Apsidal clustering occurring in the inner edge of a scattered disk model without added J, after the inclination instability
has saturated. The plotted quantities are binned by initial semi-major axis. Two noise floors are shown for ex and e, (see Section 4 for noise floor
definition). The inclination instability is shown by exponential growth in i, i,, and i, and a corresponding decrease in e to conserve total angular
momentum of the disk. The instability saturates at ¢ ~ 125 ... About 25 . later, ex for the inner bin (a, € [100, 180] AU) increases above the
noise floor indicating in-plane apsidal clustering. About 50 t,.. later, slight in-plane apsidal clustering appears in the next bin (ao € [180, 320]

AU).

coordinates of y; to look for apsidal clustering,

R = Mg, F Ky (4a)

Hey ] (4b)
Hé.x

€; = oz (4¢)

ey = arctan

The radial component, eg, quantifies in-plane apsidal clus-
tering, the azimuthal component, ey, is used to calculate the
pattern speed and direction of in-plane apsidal clustering, and
the z component, e,, quantifies out-of-plane apsidal clustering.
See Appendix B for a comparison to standard measures of
apsidal clustering.

We calculate the noise floor for eg and e, by creating one
thousand N = 400 or N = 800 axisymmetric disks. For each
disk, we draw argument of perihelia and longitude of the as-

cending node from a uniform distribution and inclination from
a Rayleigh distribution with mean inclination equal to the
mean inclination of the post-instability disk (e.g. ~ 50 deg).
We calculate e and e, for each disk to obtain an empirical
distribution for eg and for e, with N = 1000 samples. We
calculate the noise floors from these distributions (68th and
95th percentile centered on the mean, corresponding to one
and two standard deviations of the Gaussian distribution). The
noise floor is a function of N with lower N simulations having
higher noise floors. We show the noise floors in Figures 1,
2, 3 and 4 with grey bands. eg and e, values above the noise
floor indicate statistically significant apsidal clustering.

As first described in Madigan & McCourt (2016), the spatial
orientation of orbits can be quantified with the angles, i,, i,
and i, representing rotations of an orbit about its semi-major
(@) axis, semi-minor (b = } X &) axis, and angular momentum
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Figure 2. Model N800: Apsidal clustering occurring in the inner edge of an 800 particle scattered disk model without added J, after the
inclination instability has saturated. Same panels as in Figure 1. The plotted quantities are binned by initial semi-major axis, and ez and e,
noise floors are shown. Compared to N400, the instability saturates at an earlier time, t ~ 100 #, and, in-plane apsidal clustering (shown by
er) in the inner ay bin begins immediately after the instability saturates. Like N400, in-plane apsidal clustering propagates into the next a, bin
(ap € [180,320] AU) about 75 ¢, later. Apsidal clustering in the aq € [180, 320] AU bin is stronger and more consistent in N800 than in N400.

vector (J), respectively, such that

b,
i, = arctan | ——|, (5a)
V1 - b2
i, = arctan [—L} s (5b)
V1-a2
i, = arctan [&y, &X] . (5¢)

The subscripts x, y, and z denote an inertial Cartesian refer-
ence frame with unit vectors, X, §, and 2. The angles i,, iy, and
i, are equivalent to the roll, pitch and yaw of a boat or plane,
and are useful for understanding the net gravitational torque
acting on an orbit. The inclination instability is characterized
by the mean i, (roll) and i, (pitch) of all the orbits in the
disk growing exponentially with opposite signs. We use these

angles in upcoming plots to see how the inclination instability
proceeds in simulations with different parameters and how
that affects the subsequent growth of a lopsided mode.

4.1. Inclination Instability

The axisymmetric disks of eccentric orbits in our simula-
tions undergo a dynamical instability called the inclination
instability due to the secular gravitational torques between
orbits. The instability is characterized by exponential growth
in inclination and a corresponding decrease in eccentricity.
The initially thin disk expands into a cone or bowl shape*. As
the orbits’ inclinations grow, they tilt in the same way with
respect to the disk plane and oscillate coherently in i, and ij.

4 For a visualization of the bowl shape, the reader can jump ahead to the
second row, third panel from the left of Figure 9.
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Figure 3. Model J2N400: Apsidal clustering occurring in the inner edge of a scattered disk model with added J, after the inclination instability
has saturated. Same panels as in Figure 1. Compared to N400 and N80O, the inclination instability is delayed by the added J,, saturating at
~ 200 f,, and the innermost part of the disk barely undergoes the instability. Like in N400 and N800, a lopsided mode develops on the inner
edge of the disk shortly after the inclination instability has saturated. Unlike N400 and N800, apsidal clustering appears in both inner disk bins
ap < 320 AU simultaneously. In addition, apsidal clustering in the ay € [180, 320] bin is as strong as in the a, € [100, 180] bin.

We describe the physical mechanism behind the inclination
instability in Madigan et al. (2018b).

In Figures 1, 2, 3, and 4, we show the inclination instabil-
ity and its aftermath for models N400, N800, J2N400, and
J2N800, respectively. Particles are binned by their initial
semi-major axis, with the bin boundaries chosen such that the
number of particles per bin is approximately equal.’ Note that
the figures have different x-axes (time) but identical y-axes.

In Figures 1 and 2 (models N400 and N800), the largest
growth in inclination occurs in the two innermost semi-major
axis bins. In Figures 3 and 4 (models J2N400 and J2N800)
however, the innermost bin (a < 180 AU) flattens in inclina-
tion after a shorter exponential phase. This difference is seen
again in the eccentricity evolution; the innermost semi-major

5 We’ve verified that particles do not drift far from their initial semi-major
axis during integration.

axis bin drops to the lowest eccentricity values in the simula-
tions without added J, whereas the drop is suppressed in the
simulations with added J,. In addition, the inclination instabil-
ity saturates at later times in the J2N400 and J2N800 models
than in N400 and N800 models (~ 200 s vS. ~ 100 z,.). We
attribute the difference between the two models to the strong
differential apsidal precession in the innermost bin induced
by the gravitational influence of the giant planets. This effect
decreases the coherence time over which inter-orbit torques
can act.

The inclination instability produces out-of-plane apsidal
clustering, captured by both e, and i,. We note that the lon-
gitude of pericenter, @ = w + Q, fails to find this clustering
because it is sensitive only to in-plane clustering.

4.2. Apsidal Clustering in the Scattered Disk
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Figure 4. Model J2N800: Apsidal clustering occurring in the inner edge of an 800 particle scattered disk model with added J, after the inclination
instability has saturated. Same panels as in Figure 1. Compared to J2N400, apsidal clustering is weakened in this simulation. Statistically
significant clustering only occurs in the ao € [100, 180] AU bin and this clustering is weaker than in the J2N400. This is different than the
simulations without added J, where we saw similar to slightly more in-plane apsidal clustering as we increased the in particle number.

In Zderic et al. (2020), we found in-plane apsidal cluster-
ing after the inclination instability had saturated in a simple,
unrealistic orbital configuration. This “compact configuration”
is characterized by an axisymmetric, nearly-flat disk of Keple-
rian orbits in which all bodies have identical eccentricities and
nearly identical semi-major axes. Here, we report the same
findings for our scattered disk model with and without added
Ja.

In Figures 1 and 2, ey traces the development of apsidal
clustering in the x/y-plane at the inner edge (ay € [100, 180]
AU) of Models N400 and N800—a massive scattered disk
without giant planets. Values of eg above the noise floor
indicate statistically significant in-plane apsidal clustering.
As in Zderic et al. (2020), apsidal clustering appears in the
disk after the inclination instability has saturated. Note that
apsidal clustering only appears for bodies with a < 320 AU
with clustering first appearing in the a( € [100, 180] AU bin
and then travelling out into the gy € [180,320] AU bin at

later times. Comparing the two models, apsidal clustering
begins earlier, is more consistent (fewer oscillations), and is
stronger in the ay € [180,320] AU bin in the higher N model,
N800, than in the N400 model. Finally, note that the mode
strength regularly oscillates below the noise floor, particularly
in N400.

Figures 3 and 4 show the development of apsidal clustering
in the inner edge of our J, models, J2N400 and J2N800—a
massive scattered disk with giant planets. We get apsidal clus-
tering in both models (starting after ~ 200 7. ), though this
clustering is weaker than it is for the models without added J;.
Apsidal clustering appears at later times in the J, models be-
cause the inclination instability is slowed by the added J,, and
clustering does not appear until after the instability has satu-
rated. In J2N400, apsidal clustering in the ay € [180,320] AU
bin is stronger than it is in the N400 and N800 models. This
reflects a general trend of our J, results. The J, potential
disrupts the instability for the lowest a bodies (compare the
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Figure 5. Model N400: Contours of the time derivative of the longitude of pericenter, @, for the inner edge (a € [80, 200] AU) of the scattered
disk simulation without J, from Figure 1 at four times. The e and a of the disk particles are shown with black points and the mean i, of the disk at
the time is shown in the top left. There is a clustering region at t = 104 . and t = 151 #,.. for e € [0.25,0.60]. This clustering region is associated
with the bowl-shaped orbital configuration created by the inclination instability. Note that the region of prograde precession, e € [0.05,0.25], also
supports apsidal clustering as described in Section 2. Apsidal clustering doesn’t appear until after 151 #,... At 104 ¢, the region e € [0.05, 0.60]
is only occupied by ~ 20 particles, by 151 .. this has increased to ~ 65 particles. There aren’t enough particles in e € [0.05,0.60] at 104 #,.. for

apsidal clustering to begin earlier.

ap € [100, 180] AU bin in Figures 1 and 3), but it strengthens
the instability in the outer ay bins. Bodies with ay > 180 AU
attain higher mean i, lower mean e, and stronger apsidal clus-
tering post-instability in the J2N400 model than in N400 and
N800 models. In J2N800, statistically significant apsidal clus-
tering only appears in the ay € [100, 180] AU bin, and it’s
weaker and shorter-lived than all the other models. This is
unexpected—clustering was generally stronger in N800 than
in N400 so we expect J2N80O to show apsidal clustering sim-
ilar to or stronger than J2N400. We have multiple simulations
of the N = 400 models, all showing apsidal clustering. The
N800 and J2N800 simulations we show here are the only ones
of that particle number that were run long enough to show
apsidal clustering. In the N = 400 simulations, we find that
the strength of clustering varies from simulation to simulation
(being as weak as eg ~ 0.20 at peak). Thus, it is possible that

the weak apsidal clustering seen in J2N80O is just a peculiarity
of that simulation’s specific initial conditions.

In all models, in-plane apsidal clustering appears in the
inner semi-major axis bin(s) after the instability has saturated.
The occurrence of apsidal clustering shortly after the inclina-
tion instability in both models suggests that this instability is
responsible for the in-plane apsidal clustering.

4.3. Emergence of the clustering region

Apsidal clustering in our simulations occurs after a Lynden-
Bell clustering region appears. Here we show that the clus-
tering region appears during the saturation of the inclination
instability and is associated with the unique, ‘bowl’-shape of
the mass distribution post-instability.

We simulate test particles in the frozen gravitational poten-
tial of the disk to find @ as a function of a and e. The disk
particles from a fully interacting simulation are frozen onto
their orbits at a specific time and a test particle is integrated
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Figure 6. Model N400: @ contour plots for the innermost two a bins at ¢ = 151 f,.. The left panel is the same as the bottom right panel in
Figure 5, and it shows a large clustering region (e < 0.6). The right panel shows a small, underpopulated clustering region at the lowest a (note
that the e axes are different in the two panels). This explains why we only see strong apsidal clustering for a < 180 AU. The contour plots differ
at their boundary, 180 AU. This is due to the different mean test particle w in these two bins and it demonstrates the importance of w in forming

the clustering region.

in this background disk potential. We use these test particles
to make contour plots of @ in e-a space at specific instances
to find clustering regions, if any exist. In these test particle
simulations we have a test particle, a background disk, and a
central body (with/without added J,). The background disk
particles are given the REBOUND/MERCURY ‘small parti-
cle’ designation meaning they do not interact with each other;
they only interact with the test particle and the central body
(they do actually interact with each other indirectly through
the central body as mentioned in Peng & Batygin (2020); this
effect is small). Paradoxically, we must give the test particle
mass in order for it to interact with the background disk. The
mass of the test particle is set to be so small that it negligibly
affects the background disk bodies. The test particle simu-
lations are integrated for 10 orbits, and the test particles are
initialized with a and e drawn from a grid (96 X 96), w and i
calculated from the mean values of the local disk (same a bin),
and an Q of 0, 7/4, 7/2, or 37/4. The median @ is calculated
from each set of four test particle simulations. This is the
method used to create the contour plots shown in Figures 5,
6, and 7. We have checked the accuracy of our test particle
simulations with an alternative method which calculates the
instantaneous precession rate of the test orbit directly from the
torques and forces it experiences; the results are are consistent,
as shown in Appendix A. We only show @ for the N = 400
simulations as the N = 800 results are the same.

In Keplerian elements, a clustering region (see Section 2)
is defined by 99/s¢|, < 0. Apsidal precession within our
disks is initially retrograde (@ < 0) and with magnitude
decreasing with increasing eccentricity (99/se|, > 0). When
clustering regions appear within our disks, we see regions

where the precession is retrograde with increasing magnitude
and regions where precession is prograde with decreasing
magnitude. In the contour plots, clustering regions are regions
where, at fixed semi-major axis (a), the contours go from
warmer to cooler colors with increasing eccentricity (e).

In Figure 5, we show the development of a clustering region
in the inner edge of N400, the scattered disk model without
added J,. This figure shows the time derivative of the lon-
gitude of pericenter, @, in the scattered disk as a function
of semi-major axis a and orbital eccentricity e for the inner
edge of the disk. We show mean ij for the disk in the top
left of the panels. Initially, all bodies in the scattered disk
are on the line a(1 — e) = 30 AU (top left). Later, the in-
clination instability reduces the disk orbits’ eccentricity, e,
at roughly fixed semi-major axis, a (top right), and causes
the disk to buckle in to a bowl-shape. Notably, the @ con-
tours have changed to admit a clustering region (99/a|, < 0)
covering e € [0.25,0.60] and a € [80,200] AU. This ret-
rograde clustering region smoothly blends into a prograde
region (e € [0.05, 0.25]) which also facilitates apsidal cluster-
ing. Thus the whole region e € [0.05, 0.60] supports apsidal
clustering. Immediately after the instability saturates, the ap-
sidal clustering region is lightly populated. The eccentricity
continues to drop after the inclination instability leaves the
linear regime (bottom left). However, the clustering region
has disappeared. This is because the disk has precessed out
of the bowl-shape (mean i, ~ 0°). Finally, the orbits at the in-
ner edge have precessed through the ecliptic and inverted the
bowl-shaped mass distribution (mean i, > 0) (bottom right).
Again, the clustering region appears, but now it is sufficiently
populated for in-plane apsidal clustering to take hold.
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Figure 7. Model J2N400: The emergence of a clustering region post-instability in a scattered disk model including J, (the same simulation as
shown in Figure 3). We show contours of @ from three different a bins (ay € [100, 180] AU, a, € [180, 320] AU and a, € [320, 560] AU) at three
different times. Mean i, for the disk is shown in the top left of the top panel. Peak mean i, is attained at 190 #,, and a corresponding, populated
clustering region is shown for e € [0.05,0.55] and a € [125,300] AU. The deep trough of prograde precession at high e and low a in the bottom

row of panels is due to the J, potential.

Two things are apparent from this sequence. First, the clus-
tering region coincides with the bowl-shaped orbital distribu-
tion (large mean #;). Second, in-plane apsidal clustering only
appears once the clustering region is sufficiently populated.

Once apsidal clustering has been established and the lop-
sided mode has grown, it is no longer reliant on the clustering
region produced by the bowl-shape to exist. The bowl-shape
is not actively maintained after the inclination instability satu-
rates. In Figure 1, differential precession slowly erodes mean
ip in the disk, and will eventually erase the bowl-shape alto-
gether. However, ep appears unaffected by this, and apsidal
clustering actually reaches peak strength by the end of the
simulation even though the mean i, has dropped quite low.
The bowl-shape seeds the lopsided mode, but, once seeded,
the mode is self-sustaining even though the strength of the
mode oscillates.

The clustering region appears towards the inner edge of the
disk in N400. In Figure 6, we show the inner two semi-major
axis bins of the disk (a € [100,320] AU) at 151 .. The
clustering region extends to @ > 200 AU, but it is largest at
lower a and it’s unpopulated for a > 250 AU. This explains
why apsidal clustering is primarily only seen in the inner
two bins of these simulations, and why apsidal clustering is
slightly weaker for ag > 180 AU. The precession rates are
discontinuous at 180 AU (top of the left panel and bottom
of the right panel), and the two panels have different x axes,
exacerbating the apparent discontinuity. The discontinuity is
due to the test particles in these two panels having different
bin-averaged wy and iy.

The general features found in the N400 model are repeated
in the J2N400 model: the clustering region appears around
peak mean i, (in the ‘bowl’-shape), the semi-major axis loca-
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tion of the clustering region traces apsidal clustering, and the
clustering region precedes apsidal clustering. In Figure 7, we
show contours of @ across the disk at three distinct times for
model J2N400, the same simulation depicted in Figure 3. A
deep trough of prograde @ precession from the added J; is
seen at large eccentricity and small semi-major axis. Bodies
near this trough do not undergo the inclination instability and
their eccentricities are stable. The clustering region still forms
(middle column), but at slightly larger semi-major axis be-
cause the lower semi-major axis portion of the disk is too dis-
rupted by the J, potential. This is reflected in Figure 3 by ap-
sidal clustering in ag € [100, 180] AU and a, € [180,320] AU.
The mean i, of the inner edge of the disk is ~ 0 (due to the
added J, precession), but mean i;, > 0.

In our simulations, the formation of the clustering region
coincides with peak mean ij, signifying that the unique out-
of-plane orbital distribution resulting from the inclination
instability is responsible for the in-plane apsidal clustering.
The post-instability bowl-shaped potential creates a clustering
region at low eccentricity, and this region is simultaneously
populated by the circularizing effect of the instability.

A particle’s precession rate depends on the forces it expe-
riences throughout its orbit. From equation (A1) the orbital
precession rate is

Vi_e?
&~ ()~ ©)

where (f,(r)) is the orbit-averaged specific, radial force. This
is negative if the force is radially inwards, such that precession
will be retrograde. For retrograde precession, the magnitude
of @ must increase with eccentricity in a clustering region.
In contrast, the second term on the right-hand-side of equa-
tion (6) decreases monotonically with eccentricity. Therefore,
the orbit-averaged force must increase with eccentricity in a
retrograde clustering region. This is somewhat unusual con-
sidering that typically in a Keplerian potential (i) precession
is dominated by the forces near apocenter and (ii) these forces
will be smaller at larger apocenters. However, this is not the
case in the post-instability bowl-shaped orbital distribution.

In Appendix A, we measure the precession rates of orbits
in the clustering region, by calculating the forces and torques
at many points along the orbit. We find that changes in the
precession rate (with eccentricity) can be dominated by points
near pericenter. Additionally, forces can increase with apoc-
enter. This behavior allows a clustering region to appear.

For prograde precession, clustering will occur if the mag-
nitude of @ decreases with eccentricity, which is typical for
a Keplerian potential. In fact this will occur for any external
force that decreases with radius (see equation 6).

4.4. Mode direction

In galaxies, the slowness condition, v; — v, < v, will only
be satisfied if the mode and the orbits precess in the same

direction because v; < v (galactic orbits are generally rosettes
in the inertial frame). If sgn(v;) = —sgn(v,)) then v; — v, ~ v;
and the orbits are not nearly closed in the rotating frame of
the bar perturbation. However, in near-Keplerian systems,
both @; and v, are much less than v and @; — v, < v is
true even if sgn(@;) = —sgn(v,). If the mode and the orbits
precess in opposing directions, the relative orbital precession
rate in the frame rotating with the mode will be greater than if
the mode and orbit precess in the same direction. However,
the relative orbital precession rate will still be O(r;l), and
secular torques between the orbit and the mode can still be
dynamically important. Therefore, in near Keplerian systems,
it is not dynamically forbidden for a mode to form via the
Lynden-Bell mechanism with a precession direction opposite
the orbital precession direction. Indeed, we generally see the
mode precess opposite to that of the orbits in our simulations.
In Figure 8, we show a 2d-histogram of @ as a function of
time for all particles in inner ay bin (ay € [100, 180] AU) of
model N800. We see from this figure that the individual orbits
precess retrograde, and cluster together to form a mode start-
ing around 100 #,.. The figure shows that the mode generally
precesses prograde with a pattern speed of ~ 1.5°#_.. The
mode is capable of capturing orbits that precess counter to it.
The captured orbits then librate within the mode, precessing
prograde then retrograde within the mode. Eventually, orbits
leave the mode and precess retrograde again within the disk.

5. SIMULATED OBSERVATIONS

While the inclination instability appears to be promising
in explaining the clustered, detached orbits of extreme Trans-
Neptunian Objects in the outer Solar System, it should also
occur in exoplanet systems with at least one giant planet that
can form a massive scattered disk. In particular, it provides
a mechanism for creating asymmetric debris disk structures
such as the wing-like features in HD 61005 (MacGregor et al.
2019).

In Figure 9, we plot snapshots of the J2N400 simulation—a
primordial scattered disk with orbit-averaged gravitational
influence of the giant planets. We first populate each orbit of
the simulation with 100 particles spaced uniformly in mean
anomaly to increase the effective resolution. We then make
maps of surface density and velocity along the line of sight
with a pixel resolution of 20 AU. The surface density, X, of
the disk in face-on (top frames) and edge-on (bottom frames)
orientations are plotted in the left-hand columns. Time is
increasing from left to right and down the column. In the x/y-
plane the particles orbit in the counter-clockwise direction.
Except for the innermost edge of the disk, the orbits precess
in the clockwise direction. The initially thin, axisymmetric
disk undergoes the inclination instability, buckling above and
below the plane (r = 196-303 #,..). The lopsided mode devel-
ops in the x/y-plane as differential precession disperses the
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Figure 8. Model N80O: Clustering in @ as it evolves over time in the inner aq bin (ay € [100, 180] AU). This figure shows a 2d-histogram of @
as a function of time for all particles in this bin, and the colors represent the density of points (normalized to the densest area). We identify
the mode as the highly dense region in this figure that generally precesses prograde, opposite to the individual orbits that precess retrograde.
Retrograde precessing orbits can be captured in the prograde precessing mode, and orbits actually caught in the mode librate within the mode.
The pattern speed of the mode is ~ 1.5° £} which is of the same order of magnitude as the precession rate of the orbits in the disk.

sec

asymmetric distribution of orbits in the x/z-plane. At early
times, a spiral arm links the inner disk to the most over-dense
region of the mode in the outer disk.

To the right of the surface density plots, we plot the cor-
responding velocity along the line of sight, v,s. Red and
blue colors illustrate red-shifted and blue-shifted velocities
with respect to the observer. The initial velocity distribution
is dominated by rotation around the Sun, as shown in the
x/z-plane. The collective rolling and pitching of the orbits
about their major and minor axes (captured by the angles i,
and iy, in Figure 3) is apparent in the velocity map at 196 f..
which shows resulting concentric circles of red-shifted and
blue-shifted velocities. We note that this is equivalent to the
clustering of the orbits in argument of pericenter (w).

At t ~ 303 1, a spiral arm in velocity space appears in the
x/y-plane. This occurs as the amplitude of i, for the inner
orbits (a < 500 AU) passes through zero but their i;, values are
significantly non-zero, as seen in Figure 2 at t = 303 ... The
lopsided mode in the x/y-plane is apparent in surface density
before we see the spiral arm in velocity space. The over-dense
cluster of orbits leads to positive line of sight velocities on
one side of the clump and negative on the other, leading to the
appearance of a spiral.

Another spiral arm appears in velocity space when the orbits
in the disk pass through i, = 0 again at t =~ 480t as seen in
Figure 2. At all other times we see the concentric circles of
red-shifted and blue-shifted velocities, alternating as the orbits
coherently precess above and below the mid-plane. Velocities
in the x/z-plane continue to show rotation in an increasingly
thick disk.

6. CONCLUSIONS

In this paper, we demonstrate the spontaneous apsidal clus-
tering of orbits of low mass bodies in N-body simulations
of a primordial scattered disk between ~100-1000 AU. As
in Zderic et al. (2020), we find that apsidal clustering begins
after the inclination instability has saturated, and that the in-
clination instability is key to the formation of the lopsided
mode. In simulations where the orbit-averaged, gravitational
influence of the giant planets is included, we find that apsidal
clustering occurs provided that the inclination instability is not
suppressed. We also find that apsidal clustering only forms
near the inner edge of the disk in the 100-320 AU range with
the specific range depending on the model, but we caution that
our simulations have low numbers of particles particularly at
large semi-major axes. The fast orbital precession caused by
the giant planets pushes the location of apsidal clustering out
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Figure 9. Snapshots in time of the J2N400 simulation—a primordial scattered disk with the orbit-averaged gravitational influence of the giant
planets. Surface density, Z, and velocity along the line of sight, v, are plotted for face-on and edge-on orientations. The inclination instability
occurs around 196 f.. At 303 7., we observe a spiral in the line of sight velocity when the disk is viewed face-on.
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to larger semi-major axis. Finally, we find that the resulting
lopsided mode strength oscillates, but appears long-lasting.

Lynden-Bell (1979) proposed a mechanism to explain stel-
lar bar formation in the center of galaxies that we extend here
to near-Keplerian systems to explain the apsidal clustering
that occurs in our simulations. Orbit-averaged torques from
a weak, lopsided mode encourages orbits into precessing to-
wards alignment with the mode.® In a Keplerian system, if
93/5e|, < O then orbits will tend to align with and reinforce
the mode. We call regions of e-a space where 99/s|, < O
clustering regions.

We have created contour plots of @ as a function of eccen-
tricity and semi-major axis within the disk at different times.
We find that a clustering region forms during the peak of the
inclination instability when the disk has formed a bowl-shape.
The clustering region appears just before apsidal clustering
begins, and it appears at the inner edges of the disk. In simu-
lations with the orbit-averaged gravitational influence of the
giant planets, the added J; inhibits circularization of the inner
edge of the disk during the instability and amplifies circular-
ization at larger semi-major axis. As a result, the clustering
region is populated by bodies with larger semi-major axis in
the J, models and apsidal clustering correspondingly occurs
at larger semi-major axes.

The clustering region is directly correlated with the unique
bowl-shaped orbital distribution created by the inclination
instability. Due to orbital precession, the bowl-shaped distri-
bution oscillates back and forth across the original plane of the
disk, causing the clustering region to repeatedly disappear and
reappear, and eventually, the bowl-shape disappears. How-
ever, we find that the lopsided mode created by the clustering
region persists. We hypothesize that the mode eventually be-
comes massive enough to trap orbits without the help of the
background disk potential.

Surface density plots of our disks during the inclination
instability show edge-on wing-like structures reminiscent of
some debris disks (e.g. HD61005), and a lopsided mode
in face-on views after the instability has saturated. In line-
of-sight velocity, we see concentric circles of alternating
sign associated with the bowl-shaped orbital distribution post-
instability. Later, the lopsided mode creates spiral arms in
line-of-sight velocity. Observational signatures like this in
exoplanet disks could be caused by the inclination instability
provided there is something to pump-up the orbital eccentric-
ity of the bodies in the disk (e.g. a giant planet).

In Zderic & Madigan (2020), we found that ~20 Earth
masses is required for a primordial scattered disk to resist

© We assume an initial small mode is seeded by random fluctuations within
the disk.

the orbit-averaged quadrupole potential of the giant planets at
their current locations and undergo the inclination instability”.

The e-folding timescale for the inclination instability in a
scattered disk configuration with N — oo and without added
Jy is (Zderic & Madigan 2020),

2.4 My

Te—fold ~ 7m . (N

For a 20 Earth mass disk, fe_foq = 1.3 X 10* P. Based on
Zderic & Madigan (2020) Figure 3, we expect this timescale
to be increased by a factor of ~4 in simulations with added
Jr» < Jaogit. With the inner edge semi-major axis being
100 AU, P = 1000yr, and the e-folding timescale for the
inclination instability in a 20 Earth mass Scattered Disk in the
outer solar system is ~50 Myr. It takes about five e-folding
timescales for the inclination instability to saturate. There-
fore, the inclination instability in this primordial scattered
disk should saturate after ~250 Myr.

We can estimate the duration of w and @ clustering in the
20 Earth mass primordial scattered disk using the J2N400 and
J2N800 simulations. We set the saturation time in these simu-
lations to be 250 Myr and scale the subsequent evolution of the
disk using the secular timescale. For example, ;. = 2.6 Myr
(see Equation 1) for a 20 Earth mass disk. The J2N800 sim-
ulations runs for ~400 t,. ~ 1050 Myr after the saturation
of the instability. We stress that this scaling is approximate
and meant to provide a qualitative, order-of-magnitude es-
timate for the duration of angular clustering in an unstable
primordial scattered disk. In Figures 10 and 11, we show
the p-values for the Rayleigh z test for uniformity (Mardia
& Jupp 2000) on w and @ for the J2N400 and J2N800 mod-
els as a function of time in Myr using this proposed scaling.
Rayleigh z test p-values less than 0.05 signify that the angular
distribution is not consistent with a uniform distribution, i.e.
that the distribution is clustered. We chose the Rayleigh test
as it is sensitive to unimodal deviations from uniformity. In
both models, w-clustering begins after just a few tens of Myr
and persists for the duration of the simulation except in the
inner semi-major axis bin (100-180 AU) where differential
precession is the strongest. Intermittent clustering in @ begins
after the inclination instability has saturated in the inner two
bins in both simulations. Note that binning the results by ag
partially mitigates the effects of differential precession, pro-
longing the duration of angular clustering. Overall, we expect
a 20 Earth mass primordial scattered disk to be able to sustain
w-clustering for a > 180 AU (if binned by semi-major axis)

7 Twenty earth masses is extreme for a primordial scattered disk (indeed
perhaps too massive for the instability to have occurred in our solar system).
While hundreds of earth masses may have been present in the early planetesi-
mal disk beyond ~ 5 AU, only a fraction appears to pass through the scattered
disk region (Nesvorny 2018).
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Figure 10. Rayleigh test results for w and @ binned by initial semi-major axis as a function of time for the J2N400 model scaled such that the
inclination instability saturates (ceases exponential growth) at 250 Myr. Rayleigh test p-values less than 0.05 indicate that the distribution of w or
@ is not uniform (i.e. it is clustered) and smaller p-values indicate stronger clustering. w-clustering begins after ~10 Myr and persists until the
end of the simulation at ~1300 Myr, except for bodies with ag € [100, 180] AU. w-clustering occurs for bodies with ay € [100,320] AU after the
inclination instability has saturated at ~250 Myr, and it disappears and reappears intermittently.

and intermittent periods of @w-clustering for a € [100, 320] AU
for Gyr timescales.

The inclination instability can raise perihelia and inclina-
tions of bodies in the outer solar system. As such, it can effec-
tively trap planetesimal mass at semi-major axes of hundreds
of AU as bodies are isolated from strong scattering encounters
with the giant planets. In Zderic & Madigan (2020) we show
that orbits with semi-major axes between ~ 200 — 500 AU end
up with a (rather extraordinary) median perihelion distance
of 150 AU post-instability; see e.g., Figure 6. The observed
Sednoids in this scenario mark the inner edge of a massive
reservoir of extremely detached bodies originating from the
primordial scattered disk.

The mass remaining at hundreds of AU today is an open
question that we are actively exploring. Our simulations show
that, post-instability, inter-orbit torques induce eccentricity
(but not necessarily inclination) oscillations on particles in this

structure. In future work we will calculate the flux of particles
back into the inner solar system through these oscillations
(which can cause perihelia to drop below the orbit of Neptune)
and ultimately the mass loss rate.
ACKNOWLEDGEMENTS

We thank the referees for their insightful comments
and suggested changes which improved the quality of our
manuscript. AM gratefully acknowledges support from
the David and Lucile Packard Foundation. This work
was supported by a NASA Solar System Workings grant
(8ONSSC17K0720) and a NASA Earth and Space Science
Fellowship (8ONSSC18K1264). This work utilized resources
from the University of Colorado Boulder Research Computing
Group, which is supported by the National Science Founda-
tion (awards ACI-1532235 and ACI-1532236), the University
of Colorado Boulder, and Colorado State University.

Software: REBOUND (Rein & Liu 2012), REBOUNDX
(Tamayo et al. 2020), GNU Parallel (Tange 2011)



16 7ZDERIC ET AL.

Rayleigh test for uniformity, J2N800
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Figure 11. Rayleigh test results for w and @ binned by initial semi-major axis as a function of time for the J2N800 model scaled such that the
inclination instability saturates (ceases exponential growth) at 250 Myr. Rayleigh test p-values less than 0.05 indicate that the distribution of
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APPENDIX
A. FINDING THE CLUSTERING REGION

In Section 4.3, we show the clustering region within the disk using contour plots of @r in e-a space. In these plots, @ is calculated
using test particle simulations described in the same section. Alternatively, we can calculate instantaneous precession rate of a test
orbit can be directly from the torques and forces it experiences without integrating the orbit. In particular, the orbital precession
rate can be computed from the torque and the time derivative of the eccentricity vector, viz.

Xj vXxT
.Y

é= : (A1)
GM  GM

where f and T are the specific force and torque on the test orbit; v is the velocity; M is the central mass (see equation 1 in Madigan
et al. 2017 and surrounding discussion).

In order to validate the results of § 4.3, we use equation (A1) to calculate the precession rates of test orbits injected into N-body
simulations. Specifically, we

1. Discretize each orbit into one thousand, equal mass points, evenly-spaced in mean anomaly.
2. Compute the total force and torque (7) on each point along the test orbit from all of the disk orbits.
3. Use equation (A1) to determine é at each point along the test orbit.

4. Average T and é over the test orbit.
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Figure 12. Comparison of the two methods used to calculate the precession rate in the frozen disk potential. The left panel shows dw/dt
calculated from a test particle simulation on a 100 by 100 e-a grid while the right panel shows dw/dt calculated with the torque method from
Appendix A on a 10 x 10 grid. The two methods agree qualitatively, though the torque calculation gives faster precession rates than the test
particle simulations. Both plots were made using data from an N = 400 compact configuration simulation without added J;.

5. Check for convergence by repeating the above steps with a new set of discretrized point (evenly spaced in mean anomaly
between existing ones). With one thousand points, the results are always converged within 10%. (And usually it is much
better: for 90% of test orbits we obtain convergence within 3%.)

Similar methods have previously been used in studies of resonant relaxation in the Galactic center (e.g. Giirkan & Hopman 2007).
To compare to the precession rate in the preceding section it is necessary to convert from é and 7 to @ = Q + @.® The Kepler
orbital angles, Q2 and w, are related to the eccentricity and angular momentum vectors as follows

ity
Q = arctan | — |,

X
w = arccos (7 - &),
n=2xj. (A2)

Then Q and @ can be approximated as

O~ Qj(t + 1), e(t + 61)) — Qj(2), e(1))
~ 5 ,

o~ w(j(t + o1), e(t + 6t)) — w(j(?), e(1))
~ 6[‘ 2

J(t+61) = j(t) + 76t,

e(t +61) ~ e(t) + €' 6t, (A3)

where 6t is a small time interval. Here we use 6t = 1079 jl/|T]. We have verified that the results do not depend on 6¢.

The precession rate calculated using this torque method is compared to the precession rate from the test particle simulations in
Figure 12. Note that this plot shows results from a compact orbital configuration not a scattered disk orbital configuration. The
compact configuration is an axisymmetric, nearly-flat disk of Keplerian orbits in which all bodies have identical eccentricities and
nearly identical semi-major axes. This limited radial structure simplifies analysis. The two methods qualitatively agree, however,
the test particle simulation method gives slower precession rates than the torque calculation. This is because two-body interactions
in the test particle simulations (not accounted for in the torque calculation) weaken secular torques.

8 Note that @ = Q — & for retrograde orbits, which are not considered here.
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Figure 13. Post-instability apsidal clustering in a compact orbital configuration. The top row shows e, on the left and a histogram of each
particle’s w on the right at the two times marked by colored vertical lines in the e, plot. The bottom row shows e on the left and a histogram of
each particle’s @ on the right at the two times marked in the eg plot. This shows that the peaks in eg correspond to @ clustering, and that zero e,
can still be w-clustered. The inclination instability saturates at around 10 . in this simulation. This data comes from a 400 particle compact
configuration simulation without added J,.
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Figure 14. Orbital angles of bodies from the compact configuration simulation shown in Figure 13 at # = 11 #,.. Arguments of pericenter w are
highly clustered, while Q and @ show no clustering and are statistically consistent with a uniform distribution (Kuiper’s test). This is what the
bowl-shape driven by the inclination instability looks like in Kepler angles.

B. MEASURING APSIDAL CLUSTERING

Here we demonstrate the connection between the components of the mean, normed eccentricity vector, ez and e, (see equation 4),
and the Kepler elements argument of pericenter, w, and longitude of pericenter, @ . In Figure 13, we reproduce a result from
Zderic et al. (2020) in which we demonstrate the appearance of apsidal clustering in a simulation of particles in a compact orbital
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configuration. Initially, the disk is axisymmetric; eg is below the noise floor. As the top panel shows, the inclination instability
begins at ¢ < f. and saturates at ~ 10 ... After the instability saturates and orbits apsidally precess back through the mid-plane
(e; = 0), we begin to see statistically significant eg, indicating in-plane apsidal clustering. The right panels show histograms of w
and @ of all bodies at two times which are marked using colored-matching dashed lines. An eg above the noise floor corresponds
to @w-clustering but an e, below the noise floor can still be w-clustered.

Using the mean unit eccentricity vector instead of @ to measure apsidal clustering has two advantages: the mean unit eccentricity
vector is 3D and can capture out-of-plane clustering, and statistical analyses on compound angles like @ can be misleading. We
demonstrate the first point in Figure 14. At ¢ ~ 10 #, the bodies in the disk have a uniform @ distribution suggesting that there is
no apsidal clustering. However, the z component of the mean unit eccentricity vector is large (see top left panel of Figure 13),
indicating that the orbits apses are strongly clustered perpendicular to the plane.

Statistics on a compound angle can be misleading. If either w or Q is uniformly distributed, and w and € are independent and
have continuous distributions, then @ will also be uniformly distributed. In essence, w or Q, whichever is uniformly distributed,
has the capacity to erase the others distribution in @. This can be seen in Figure 14. At 11 ¢, w is highly clustered, nearly a delta
function, while both Q and @ are uniformly distributed.

We now prove this. We define the normalized distributions of @, w, and Q as f(w), g(w), and h(Q), and recall that @ = w + Q.
These distributions are periodic, e.g., f(@w) = f(w + 2m1). The distribution of the sum of two continuous, independent random
variables is given by the convolution of the two distributions,

27
f(@) :f g (@ —Q)h(Q)dAQ. (B4)
0
If the distribution of Q is uniform, 4(Q) = 1/2x, then,
1 21
f(@) = Ef g (@ —Q)dQ. (B5)
0
Switching back to w,
1 (3
f(@) = " f g(w)dw, (B6)
w-2r
1 wo+2m
=5 g(w - 2m)dw, B7)
1 ww+27r
o (B8)
1 27
= 7 fo g(w)dw, (B9)
1
= 7 (B10)

where we’ve used the normalization of g(w),

27
1= f g(w)dw,
0

V421 21
f F(x)dx = f F(x)dx,
¥ 0

which holds for any y € R and function F(x) periodic with period 2x. This proof holds in the case where w and/or Q is uniformly
distributed.

and the identity,
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