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ABSTRACT: Extreme precipitation across multiple time scales is a natural hazard that creates a significant risk to life,
with a commensurately large cost through property loss. We devise a method to create 14-day extreme-event windows that
characterize precipitation events in the contiguous United States (CONUS) for the years 1915-2018. Our algorithm imposes
thresholds for both total precipitation and the duration of the precipitation to identify events with sufficient length to
accentuate the synoptic and longer time scale contribution to the precipitation event. Kernel density estimation is employed
to create extreme-event polygons that are formed into a database spanning from 1915 through 2018. Using the developed
database, we clustered events into regions using a k-means algorithm. We define the “‘hybrid index,” a weighted composite
of silhouette score and number of clustered events, to show that the optimal number of clusters is 15. We also show that
14-day extreme precipitation events are increasing in the CONUS, specifically in the Dakotas and much of New England.
The algorithm presented in this work is designed to be sufficiently flexible to be extended to any desired number of days on
the subseasonal-to-seasonal (S2S) time scale (e.g., 30 days). Additional databases generated using this framework are
available for download from our GitHub. Consequently, these S2S databases can be analyzed in future works to determine
the climatology of S2S extreme precipitation events and be used for predictability studies for identified events.
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1. Introduction aforementioned billion-dollar disasters occurred over periods
of 14 days or longer, demonstrating the ability of longer-
duration events to cause significant societal impacts.
Accurately predicting extremes, and communicating the
appropriate risks, at any time scale is an immensely difficult
problem. Forecasting precipitation extremes are particularly
challenging owing to complex interactions between planetary,
synoptic, and mesoscale drivers and surface hydrologic re-
sponses that determine the spatial location, scale, magnitude,
and duration of the event. Forecasts of extreme precipitation
have improved over time (Sukovich et al. 2014) through in-
creased understanding of the dynamics of extreme precipita-
tion and improvements in numerical modeling (e.g., Iyer et al.
2016), among other factors. However, improvements in short-
term precipitation forecasts have not translated to the S2S time
scale. Indeed, the Climate Prediction Center’s week 3—4 pre-
cipitation outlook remains experimental owing to skill re-
maining relatively limited (CPC 2020). Pan et al. (2019)
additionally showed little skill beyond 2 weeks on the West
Coast in S2S model hindcasts. There have been recent im-
provements in precipitation forecasts beyond week 2 by
leveraging large-scale climate modes such as the Madden—
Julian oscillation, the quasi-biennial oscillation, and El Nifio—
Southern Oscillation (DelSole et al. 2017; Vigaud et al. 2017
Nardi et al. 2020). However, forecast products remain limited
to tercile-like approaches (i.e., below normal, normal, above
normal), providing decision-makers little information on the
potential for high-impact events on such scales. Accordingly,
current capabilities in predicting extreme precipitation events
at the S28 time scale are low, leading to inadequate conveyance

Extreme precipitation is a natural hazard that poses signifi-
cant risk to life and property globally. Between 1980 and 2019,
there were 49 flooding and winter storm events affecting much
of the contiguous United States (CONUS) with losses ex-
ceeding $1 billion in inflation-adjusted damages (NCEI 2020).
These events totaled nearly $200 billion in consumer price
index—adjusted damages and caused 1603 fatalities throughout
the CONUS. Impacts from extreme precipitation affect a
myriad of sectors, such as water resources (e.g., Piao et al.
2010), agriculture (e.g., Klemm and McPherson 2017), energy
(e.g., Schaeffer et al. 2012), and ecosystems (e.g., Knapp et al.
2008). To date, there has been an abundance of studies ex-
amining the trends, dynamics, and thermodynamics of extreme
precipitation on 24- (e.g., Bradley and Smith 1994; Schumacher
and Johnson 2005; Grotjahn and Faure 2008; Kunkel et al.
2012; Moore et al. 2015) and 48-h (e.g., Keim 1996; Moore et al.
2012; Warner et al. 2012) time scales. However, there remains a
gap in our knowledge about the identification and dynami-
cal characterization of extreme precipitation events on the
subseasonal-to-seasonal (S2S) time scale, defined as the period
ranging from 14 days to about 2 or 3 months (Vitart et al. 2017,
NOAA 2018). Considerable research has been published on
short-duration extreme precipitation events, as noted in a
recent review by Barlow et al. (2019). Yet, 14 of the 49
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extreme precipitation events. These S2S extreme precipitation
databases can then be used to identify forecasts of opportunity,
calibrate and constrain S2S dynamical prediction systems, and to
develop statistical models leading to more skillful forecasts of
such events on the S2S time scale.

What is considered ‘“‘extreme’ is often subject to the spatial
and temporal scale being analyzed; Barlow et al. (2019) doc-
ument 25 different definitions of extreme precipitation in
various prior studies. Here, we introduce a method for iden-
tifying extreme events that can be consistently applied across
time and space. One definition of an extreme precipitation
event on the S2S time scale came from Jennrich et al. (2020)
where their extreme threshold was the 95th percentile of all
14-day windows between 1981 and 2010. After dividing the
CONUS into six regions, using geopolitical boundaries and
latitude/longitude lines, they defined an event by considering
the areal extent within the region of grid boxes that exceed the
95th percentile, ensuring the areal-averaged precipitation was
greater than 10 mm day ~* for five or more days, and requiring
the day of heaviest precipitation and surrounding days to not
be greater than 50% of the total precipitation. However, the
division of the CONUS into regions that are not defined by the
statistical properties of precipitation causes events that span
across regional borders to potentially be missed, distorting the
shapes of extreme events. Additionally, the continuity of grid
boxes that exceed the 95th percentile was not considered, po-
tentially merging two groups meeting their extreme criteria
into one extreme event despite several hundreds of kilometers
or more of geographical separation. The dynamics driving the
two groups to be extreme would likely be distinct, thereby
confounding the linkages in subsequent composite analysis.

The present study builds on the work by Jennrich et al.
(2020) by relaxing the assumption of political boundary regions
within the CONUS and extending the temporal study period.
To illustrate the details and implementation of the framework,
we develop a database of 14-day extreme precipitation events
and present a brief climatology of that database. Databases of
other lengths (e.g., 30-day events) are also available on our
GitHub. Section 2 presents the algorithm for defining an ex-
treme event with an example. Section 3 focuses on processing
and aggregating all potential events into a single database. The
temporal and spatial characteristics of the database are dis-
cussed in section 4. A summary and conclusions follow.

2. Event identification
a. Data

We used daily precipitation data from the Livneh (Livneh et al.
2013) and Parameter—FElevation Regressions on Independent
Slopes Model (PRISM; Daly et al. 1994) datasets throughout
the analysis. Because the Livneh dataset ends in 2011, it was
augmented with PRISM through 2018 to complete the record
to near present. The PRISM precipitation data were bilinearly
interpolated using the Python library XESMF (Zhuang et al.
2020) from a native 4-km grid onto Livneh’s grid of about 6 km.
Cubic spline interpolation was tested and found to offer es-
sentially the same precipitation field as bilinear interpolation
when visually compared (not shown), and hence the simpler
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FIG. 1. Total number of stations used in processing monthly pre-
cipitation data from PRISM as a function of time.

method was adopted. To examine the interpolation error, we
took PRISM'’s daily precipitation between 1981 and 2010, in-
terpolated to Livneh’s grid, interpolated back to PRISM’s grid,
and divided the difference between PRISM’s original value
and its twice-interpolated value by 2. The mean absolute error
over the CONUS was O(102) mm or O(10~>) mm depending
on the month. However, errors approached O(10") mm in the
Sierra Nevada and Cascade Range mountains during boreal
winter. Although both the interpolation error and difference
between the Livneh and PRISM datasets may become rela-
tively large, particularly in the western one-third of the
CONUS, the Livneh dataset, at least partially, is a function of
the 19812010 PRISM climatology. This dependence makes
PRISM the best choice of precipitation datasets to append to
the Livneh dataset. The mean error between the Livneh and
PRISM datasets is O(107®) mm (not shown), with Livneh
generally being larger than PRISM, albeit by small amounts.
Accordingly, our database extends through 31 December 2018,
giving a total of 104 years for the analysis.

Rainfall in the Livneh and PRISM datasets, and thus the
calculated extreme-value statistics, are affected by the number
of rain gauges used by the models. Figure 1 depicts a time series
of the number of stations employed in calculating monthly
precipitation in PRISM; the Livneh dataset does not come
with a metafield showing the number of gauges used in
processing a given day’s precipitation field. The primary pre-
cipitation data source for both datasets is the National Weather
Service Cooperative Observer Program (Daly et al. 2008;
Livneh et al. 2013; Henn et al. 2018); thus it is very likely that
magnitude and trend in Fig. 1 are similar for the Livneh
dataset. Over time, the number of rain gauges in the network
increased from under 2500 stations to about 18000 stations.
Girons Lopez et al. (2015) found that having fewer rain gauges
led to decreased accuracy in estimating higher rainfall rates.
Therefore, in the early twentieth century, the decreased spatial
density of the rain gauges likely led to many areas having un-
derestimated precipitation amounts relative to later in the
twentieth century and beyond. Thus, a positive trend in the
number of identified events, when using a stationary threshold,
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FIG. 2. Raw 99th percentile for each 14-day window and smoothed percentiles using the first three Fourier harmonics (green) for six
selected grid points across the CONUS. The plotted date is the start date of each window.

in the database may be due, at least to some degree, to station
density.

b. Extreme criteria

We began by finding all grid points within the CONUS that
experienced extreme precipitation conditions over a given
14-day window. A point was flagged as having experienced
extreme precipitation if it passed two criteria. First, total pre-
cipitation must meet or exceed the 99th percentile. We selected
the 99th percentile to identify extreme events in the far-right
tail of the precipitation distribution as these events are very
likely to be coincident with major socioeconomic impacts. The
99th percentile was calculated using each 14-day sum over all
104 years for each grid point and each overlapping 14-day
window (i.e., 1-14 January, 2-15 January, etc.). The black
line in Fig. 2 depicts the derived percentiles as a function of
calendar day for six points across the CONUS: Norman,
Oklahoma; Sedona, Arizona; 1° longitude east of Seattle,
Washington; 1° longitude west of Port Huron, Michigan;
Colombia, South Carolina; and Cheyenne, Wyoming. The
large degree of window-to-window noise in precipitation is
apparent in the corresponding percentiles, with oscillations
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of =50 mm seen in the span of 2 weeks at every grid point.
Therefore, we smoothed the raw percentiles by decompos-
ing each time series into its Fourier coefficients. We tested
reconstructed time series by retaining harmonics ranging
from two to six and subjectively determined that three
harmonics led to the best smoothed signal (see the green line
in Fig. 2; see Figs. S1 and S2 in the online supplemental
material for results of sensitivity testing). Furthermore,
numerous studies have examined precipitation seasonality
and shown that the first three harmonics generally explain
the majority of the variance in the precipitation distribution
(e.g., Scott and Shulman 1979; Kirkyla and Hameed 1989;
Epstein and Barnston 1990). Figure 3 displays the total
thresholds for one day in each season. Each window and
each grid point in the CONUS will have its own threshold
criterion. To illustrate, consider a precipitation field over
the example window of 12-25 January 1937 (Fig. 4a). Points
that pass the first criterion are where values in Fig. 4a exceed
the extreme threshold values in Fig. 4b (e.g., parts of
Arkansas, Tennessee, Kentucky, and Indiana).

The next criterion considers the duration of the precipitation
during the event. Although a duration check may eliminate
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FIG. 3. The 99th percentile of precipitation in the CONUS for one 14-day window in each meteorological season.

short duration events with exceptionally heavy precipitation
totals, we aim to identify events with persistent synoptic-scale
forcing to maximize potential predictability at meaningful (i.e.,
S2S) lead times to decision-makers. Given the importance of
defining persistently forced extreme precipitation events, for a
grid point to be considered extreme, at least 7 of the days (i.e.,
half of the duration of the event) must receive greater than or
equal to the long-term mean daily precipitation. We defined
the climatological daily precipitation as the long-term mean of
all days in a given 14-day window over all 104 years. In other
words, we calculated the mean daily precipitation using all
1456 days in our period of record. The relatively large sample
size used in calculating the climatological mean led to more
stable intraseasonal variability. The mean and median differ-
ences between one calendar day’s long-term mean and the next
day’s mean are O(10~°) mm, and the maximum value is a
mere 2.3 mm. Accordingly, we did not smooth further using
Fourier harmonics. Grid points that meet or exceed the dura-
tion criterion are shown as medium and dark blue in Fig. 4c and
are also outlined by the solid black contour.

c. Finding an extreme region

The two aforementioned criteria were applied to each grid
point in the domain independently, and the points that met
both criteria were flagged as extreme (e.g., Fig. 4d). See Fig. 5
for a summary of the logic. Once grid points were identified as
extreme, the next step was to consider the spatial continuity of
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these points in defining an extreme region. To objectively
identify extreme regions, kernel density estimation (KDE;
Rosenblatt 1956), a nonparametric technique that fits a prob-
ability density function (PDF) to a given set of observations,
was employed. Here, the geospatial coordinates of all points
flagged as extreme were used to define a 3D PDF over the
CONUS where the vertical coordinate (i.e., density) is greater
where more extreme points are in close proximity. The density
of a given point y with observations x;,i = 1,2, ..., nis given by

1%, y—x
0= 2K () M
where K is the kernel, a prescribed weighting function, and 4 is
the bandwidth (i.e., a smoother for the resulting PDF). After
considering the advantages and disadvantages of a number of
kernels, we concluded the Epanechnikov kernel was best
suited for both this study and future studies with globally
gridded precipitation data. The Epanechnikov kernel for a
random variable u is given by

3 R _
K(w) = F1-w) Jul=1 )

0 otherwise

The Epanechnikov kernel was selected for its parabolic shape
and the assignment of zero density outside of |u| =1 (i.e., its
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FIG. 4. (a) Total recorded precipitation (mm) between 12 and 25 Jan 1937. (b) The 99th percentile of precipitation
(mm) derived for 12-25 Jan. (c¢) Number of days with above-normal daily precipitation during 12-25 Jan 1937. The
black contour outlines 7 days, which is the threshold for our second criterion in event selection (see the text).
(d) Points flagged as extreme per our algorithm (see the text for details).

support). Other kernel options, such as Gaussian and expo-
nential, do not impose a support, which leads to a smoother
density field. One benefit of Epanechnikov’s more rigid kernel
is its ability to effectively outline areas outside the CONUS
where Livneh and PRISM lack data. Hence, polygons tend to
follow the boundary and have little extent into the oceans. A
Gaussian kernel, for instance, will still lack significant extent
over oceans, but its smoother density field would produce a
lesser gradient; however, we have no data over the oceans to
support such a gradient. Cross-validation tests were conducted
to determine the optimal bandwidth on a number of test
events, with varying times and locations. These tests consis-
tently gave bandwidths from 0.01 to 0.03. Therefore, we used a
bandwidth of 0.02.

The resulting density was fit on a grid with 0.1° resolution in
the domain 24°-50°N; 128°-66°W, where the great circle dis-
tance calculated using the Haversine formula is used as the
distance metric. In the midlatitudes, a bandwidth of 0.02
equates to a point on the grid having nonzero density if it is
within roughly 1.25° of an extreme point. Next, the density was
normalized by dividing by the maximum value to facilitate
direct comparison of potential events from different regions of
the CONUS and during different times of the year (Fig. 6a).
Subsequently, an extreme precipitation event region was
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developed using a discrete normalized density value. We found
that a density value of 0.2710, the 99th percentile of all density
fields between 1915 and 2018, produced representative and
consistent polygons across both time and space. Figure 6b
displays the polygon drawn using the single contour, outlining
the area defined as extreme for the 14-day window. A 14-day
extreme precipitation event was then defined to have occurred
if the area inside the polygon, calculated using Green’s theo-
rem, exceeds 200000km?. We calculated the areas of every
KDE-derived polygon between 1915 and 2018 and examined
the distribution of areal extents. An areal extent of 200 000 km?
records the largest 5% of all areas captured and represents a
““critical”” point where the derivative of areas as a function of
percentiles changes rapidly (see Fig. S3 in the online supple-
mental material).

3. Cataloging extreme events

Section 2 outlined how to identify an extreme precipitation
event given a single window. The database was generated by
considering all windows in the period of record and aggregat-
ing all identified events. We used a Python program (https:/
github.com/tydickinson29/PRES2iPpy/blob/master/pres2ippy/
analysis/rainpy.py) that constructs a unique object based on
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Consider a given grid
point in the CONUS

NOT EXTREME

Did the point exceed the 99th
percentile for the window?

YES

Did the point experience
>7 days of above normal daily
precipitation?

EXTREME

FI1G. 5. Flowchart describing the logic in determining if any given point is labeled extreme. See
the text for details.

input day, month, and year. The program is available for users
to explore any date; for example, other researchers may want
to define their own regional database of events using the same
method but with a smaller areal extent. The database was
generated by inputting every possible start date from 1 January
1915 to 31 December 2018 (excluding leap days) and archiving
identified extreme events to a text file. However, a conse-
quence of simply moving a window in increments of a single
day is the database contained extreme events with polygons
over virtually the same area for several consecutive days. Thus,
we developed an objective postprocessing algorithm to group
“repeat” events, label one of the events in the group as the
extreme event, and discard all others.

The postprocessing algorithm that discards all repeats be-
gan by considering the event in the first row of the pre-
processed text file (denoted as Ep; see Fig. 7). A smaller,
subset file was constructed in which only the events with
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starting dates on or before the ending date of E, are consid-
ered. For example, if E, is 1-14 January, then we found all
events that have a start date on or before 14 January. Then,
events were grouped by the location and shape of their
polygons. A binary matrix with the same domain and reso-
lution as the KDE density (see section 2¢) was constructed for
all events in the subset file, where ““1”” denotes a grid point
inside the event polygon and ““0” denotes a grid point outside
the polygon. The correlation coefficient » was calculated be-
tween all events in the subset file with respect to Ey; extreme
precipitation events are considered to be representative of
the same event if » = 0.5. The events are then placed into a
group of similar events.

Within this subsetted group, we chose the “most extreme”
precipitation event to label as the extreme event for the da-
tabase. To make this choice, we define the total over extreme
(TOE) as
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FIG. 6. (a) Full KDE normalized density field using the Epanechnikov kernel and 0.02 bandwidth for the 12-25 Jan
1937 window. (b) Extreme-event polygon drawn using the 0.2710 contour.

TOE = Z] (P:otal - qu99) ’ (3)
where i denotes a particular grid point that was flagged as ex-
treme, n is the total number of flagged grid points within the
event’s polygon, Py, is the grid point’s total 14-day precipi-
tation, and Pgoo is the grid point’s 14-day 99th-percentile
threshold. TOE considers the extremity of the event and
considers the areal extent of the event indirectly since larger
polygons tend to have more points inside flagged as extreme.
The event with the largest TOE within the group was deter-
mined to be ‘“‘extreme” and is retained for the database,
whereas all other events in the group are discarded. This pro-
cess of forming groups of similar events, based on the r < 0.5
criterion, was recursive until all events in the file either do not
overlap temporally or do not have a correlation coefficient
above 0.5. After postprocessing, the 14-day database contains
851 unique events.

Table 1 lists a few events identified in the database with
various statistics describing each event. A full table can be
accessed online (http://pres2ip.com/extreme-event-tables)
where users can apply filters to find specific events based on
time and/or location. The database in .csv and .shp formats
and the scripts used to generate and postprocess the data-
base are also available online (https:/github.com/tydickinson29/
PRES2iPpy/tree/master/pres2ippy/databases).

4. Statistical characteristics of 14-day extreme events
a. Event regionalization

Another research goal is to objectively define regions
of extreme 14-day precipitation. Classifying the events in
the database into geographically similar clusters allows for the
identification of typical extreme-event shapes across the
CONUS, as well as labeling specific extreme events as being
shaped exceptionally anomalous. In addition, characteristic
patterns associated with the events can be diagnosed for each
region, which is the focus of a future paper.

Two commonly applied types of clustering algorithms
that are implemented on gridded data are hierarchical and
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nonhierarchical. Hierarchical clustering tends to use an
agglomerative approach where each observation begins as
its own cluster and observations recursively are merged
together, with the end result being visualized as a tree.
Nonhierarchical methods utilize other recursive algorithms
that do not form a hierarchy. In a rigorous examination of
clustering techniques applied on precipitation data in the
eastern two-thirds of the United States, Gong and Richman
(1995) found nonhierarchical methods to outperform hier-
archical methods. Therefore, we apply the k-means clus-
tering (Forgy 1965; Lloyd 1982) implementation in the
Python library scikit-learn (Pedregosa et al. 2011). The
k-means algorithm clusters data into k groups of equal
variance, attempting to minimize the intracluster sum of
squares (i.e., inertia) using Euclidean distance. After events
are clustered, the silhouette score (Rousseeuw 1987) is
calculated as a metric for how well an event fits its assigned
cluster. The silhouette score for a given sample is given by

o= b—a
max(a,b)’

4)

where a is the mean distance between a sample and all other
samples in the cluster, b is the mean distance between a sample
and all other samples in the next nearest cluster, and max(a, b)
is a function that returns the higher value of a and b. From
Eq. (4), the silhouette score can range from —1 to +1, where
higher positive numbers indicate a good match to the assigned
cluster. Events with negative silhouette scores are removed
because they indicate that a sample was likely misclassified
and/or is highly anomalous relative to all other events in the
cluster (Rousseeuw 1987). The silhouette score has been ap-
plied to meteorological applications to remove misclassified
events (e.g., Richman and Adrianto 2010; Mercer et al. 2012).

For each event, a vector consisting of Os and 1s is con-
structed, where a grid point inside the polygon is assigned a 1,
with the same resolution as the KDE density field. K-means
clustering is then applied iteratively in the following manner:

1) Cluster n events into k clusters.
2) Calculate the silhouette score s for all n events.
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events. See the text for details.
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TABLE 1. A sample of events from version 1.0 of the 14-day extreme precipitations events database. Precipa o denotes areal-averaged
precipitation in the region; Maxa is the greatest 14-day precipitation total from any point inside the region; Max, 4,y is the greatest single-
day precipitation total from any point inside the region from any of the 14 days. Area and TOE are rounded to the nearest square
kilometer and millimeter, respectively, and all other entries are rounded to two decimal places.

Area (km®*) TOE (mm) Precipaa (mm) Max (mm) Maxi4ay (mm) Lonc (°E) Late (°N) Cluster

Begin date  End date

12 Jan 1937 25 Jan 1937 881375 1558392 188.45
19 Nov 1998 2 Dec 1998 244172 298550 312.32
7 May 2015 20 May 2015 234242 277190 23328

541.00 138.07 275.90 38.51 12
1366.15 286.08 237.52 44.28 3
458.09 228.37 263.36 34.58 13

3) Find the number of events with negative silhouette scores (7*).
4) If n* #0, remove the events with s < 0 and repeat from step
1; otherwise, end.

Choosing the optimal value for k is the most difficult and
subjective decision when implementing any clustering algo-
rithm. The elbow method (Thorndike 1953) and the silhouette
method (Rousseeuw 1987) are two popular tools that are used
as guidance to determine the best value for k. In both
methods, a range of values for k is tested; in this study, we test
k=5,6,...,30. However, neither method depicts a clear signal
as a tool in deciding which k to choose (Figs. 8a,b). Although
the inertia continues to decrease with increasing k, there is no
cusp present. Similarly, the average silhouette scores generally
increase with increasing k, though a major reason for the

1e6 (a) Sum of Squared Distances by k Clusters

positive correlation is from the lower number of events being
clustered. In comparing Figs. 8b and 8c, it is seen that there is
an inverse relationship between the average silhouette and the
number of clustered events. Consequently, we define an index,
which we name the hybrid index (HI), that is composed of the
product of the average silhouette and number of clustered
events. The best value for k is determined to be the one for
which the maximum HI value occurs; for our 14-day database,
the optimal number of clusters is k = 15 (Fig. 8d).

Figure 9 depicts the “average” polygons for each cluster.
The average polygon is created using all events in each cluster;
the average number of events per cluster is about 50. The
polygons in the cluster are rasterized to a grid with 0.01°
spacing where the grid bounds are the minimum and maximum
longitudes and latitudes from all polygons in the cluster. The

(b) Average Silhouette by k Clusters

0.26
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11

Average Silhouette

5 7 9 1 13 15 17 19 21 23 25 27 29
Number of Clusters

(c) Number of Events Retained by k Clusters

0.10 T T T y T ™ T
5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Clusters

(d) Product of Events and Silhouette by k Clusters

Hybrid Index (HI)

5 7 9 11 13 15 17 19 21 23 25 27 29
Number of Clusters

5 7 9 11 13 15 17 19 21 23 25 27 29
Number of Clusters

FIG. 8. Various statistics as a function of number of clusters for 14-day extreme precipitation events:

(a) intracluster sum of squared distances (i.e., inertia), (b) average silhouette score, (c) total number of clustered
events, and (d) product of (b) and (c) (i.e., the HI). The dashed vertical red line in (d) marks the HI maximum.
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14-Day Extreme Precipitation Event Clusters (k= 15)

!

FIG. 9. Average polygons (colored contours) for k = 15 clusters across the CONUS for
14-day extreme precipitation events. Also shown are the regional boundaries defined by

Jennrich et al. (2020) (gray outlines).

rasterized grid is normalized to represent a probability that
any given grid point is within a polygon, ranging from 0 (no
coverage) to 1 (total coverage). This grid is then convolved
with a Gaussian kernel with a radius of 100 grid points to
smooth the normalized grid. The final smoothed polygon is
the quantile threshold of 0.2, thus depicting the area that
is covered by =20% of the events assigned to the cluster.
Although there are some gaps in areas of cluster coverage, the
majority of the CONUS is described with the chosen number
of clusters, with the gaps likely arising from geographical
limitations of employing KDE on a dataset only defined over
land. Maps with a smaller value for £ than chosen herein leave
large parts of the CONUS outside a cluster or are too general
in their shapes, whereas larger values for k yield clusters that
have extensive spatial overlap (i.e., large cluster intercorrela-
tions). Overall, 102 of 851 events (~12.0%) are not assigned
to a cluster.

Gong and Richman (1995) found the biggest limitation to
the physical validity of k-means results is its sensitivity to the
initial cluster center locations. To minimize such a problem,
cluster centers are initialized using the “k-means++"" method
(Arthur and Vassilvitskii 2006). This method begins by placing a
random cluster center, but then uses a probabilistic ap-
proach to effectively disperse the other centers among at-
tributes to yield improved cluster assignments. Nevertheless,
after choosing k, we test 10 different seed initializations to
examine the spatial stability and/or reliability in each of the
clusters where the final assignments are from the seed with the
largest product between events clustered and average silhou-
ette. In general, each of these seeds produced maps that are
similar to those in Fig. 9 (see Fig. S4 in the online supplemental
material). Although three seeds moved a cluster from the
Mountain West to the Southeast (Figs. S4c,e,g), the remaining
seeds yielded consistent results.
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To examine cluster stability further, we also test hierarchical
clustering methods using Ward’s linkage and average linkage.
Ward’s linkage produces clusters that are mostly similar to
k-means but with a few differences (see Fig. S5 in the online
supplemental material). Cluster 3 is centered farther north
and extends farther east than the k-means solution, and
cluster 10 stretches close to the southernmost point in Texas.
Cluster 5 is the most different (see the orange region in
Fig. S5) between Ward’s linkage and k-means with the
Ward’s cluster shifted northwest with a nearly zonal major
axis as compared with a nearly circular region in the
k-means case. The remaining clusters are very similar between
the two algorithms. Conversely, average linkage produced
chained results; 92% of clustered events are assigned to 1
cluster, a consequence of its minimization criterion. Such
behavior was also noted in Gong and Richman (1995) for
certain average linkage implementations. Seasonality is also
not expected to significantly affect cluster assignments since
accumulation thresholds are different for each window
throughout the year and events are recorded in all clusters’
warm and cool seasons.

Figure 9 displays potential weaknesses in defining regions
before identifying events. Several clusters have significant
portions of the average polygon in two or more regions used by
Jennrich et al. (2020) (e.g., clusters 1, 11, 12, and 13). Events in
these clusters may have been completely missed, owing to the
event’s areal extent being distributed among several regions, or
counted twice but in different regions. Although the event
depicted in Fig. 6b occurred before the analysis of Jennrich
et al. (2020), the event polygon lies in the Great Plains, Southeast,
Great Lakes, and Northeast. Additionally, some of the regions
used in Jennrich et al. (2020) seem overly extensive, depicted
by several of our clusters inside of a single region. For instance,
clusters 2, 4, 5, 6, and a portion of 10 are inside the Mountain
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14-Day Extreme Precipitation Events Yearly Frequency
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F1G. 10. Total yearly counts (black) of recorded 14-day extreme precipitation events
throughout the CONUS as a function of time. QR models are fit on 7 = 0.1 (green), 7 = 0.5 (i.e.,
median; red), and 7 = 0.9 (blue) quantiles of the time series. Slopes are listed as the second
number in the legend, and the 95% confidence intervals on the slope are shown in square
brackets thereafter. Confidence intervals were calculated using BCa bootstrapping. Slopes and
confidence interval bounds were rounded to three decimal places.

West, and several clusters cross into the Great Plains region.
Our clusters suggest that the Great Plains should be divided
into subregions, likely owing to contrasting atmospheric
drivers for the northern and southern Great Plains (Flanagan
et al. 2018). Conversely, cluster 15 is nearly identical to the
Jennrich et al. (2020) Northeast region.

Although the framework here was able to eliminate most of
the geopolitical boundaries within the CONUS, we are still
bounded by the physical (i.e., oceans) and international bor-
ders of the CONUS. Nevertheless, the geographical locations
and orientations of the clusters suggest favorable general
synoptic drivers. Clusters 1,2, and 7 likely have similar synoptic
characteristics, such as the region being centered near an
anomalous trough-ridge inflection point, with slightly differing
phase and amplitude of the upper-level wave; Konrad (2001)
showed 500-hPa cyclone centers were commonly observed
upstream from extreme precipitation regions when considering
2-day extreme events. Additionally, Jennrich et al. (2020) and
Zhao et al. (2017) showed similar trough-ridge dipoles across
nearby areas, such as the Great Plains, Great Lakes, and
northeastern United States. Clusters 8, 11, 12, 13, and 15
have a southwest-northeast orientation and have less poly-
gon variability in the clusters, signaling the synoptic influence
of a longwave trough and strong surface baroclinicity asso-
ciated with extratropical cyclones. Conversely, cluster 9 has
larger variability in event shape, suggesting a larger meso-
scale influence within the synoptic signal (e.g., upslope flow,
mesoscale convective systems; Schumacher and Johnson
2006). The broad shapes seen in clusters 6 and 10 likely have
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monsoonal-type flow with strong vapor transport from the
south and southwest (Zhao et al. 2017; Jennrich et al. 2020).
Similarly, clusters in the southeast CONUS presumably rely
on strong moisture transport from the Gulf of Mexico and
Atlantic Ocean and are influenced by the subtropical jet
(Jennrich et al. 2020). Work is ongoing to elaborate further on
these characteristics and build on the results from Jennrich
et al. (2020) using these cluster regions.

b. Event frequency

The temporal characteristics of the 14-day extreme precip-
itation events are next examined. The median number of
events per year within the CONUS is 8, and the mean number
of events is about the same (8.2). However, these statistics are
not time invariant. Figure 10 depicts the number of extreme
events over time in our database and the trends in the 10th,
50th, and 90th percentiles (i.e., 7 = 0.1, 7 = 0.5, and 7 = 0.9
quantiles) calculated using quantile regression (QR; Koenker
and Bassett 1978); QR is an extension of ordinary linear re-
gression that incorporates a loss function such that the re-
gression line can be fit to any part of the probability
distribution. Furthermore, QR makes no distributional as-
sumption of the predictand and inherits the same assumptions
on the error terms as ordinary linear regression. All three
quantiles have a positive trend with the median number of
observed events increasing at a rate of about one event per
50 years. Statistical significance of the slopes was tested
using bias-corrected and accelerated (BCa) bootstrapping
(Efron 1987) with 10000 replications at p < 0.05 and a null
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FIG. 11. Asin Fig. 10, but for the total number of grid points inside extreme events as a function
of time.

hypothesis of no trend. The 95% confidence intervals on the
slopes are given in the caption of Fig. 10. Although we
cannot reject the null hypothesis for the 10th percentile, the
null hypothesis can be rejected for the 50th and 90th re-
gression models as the associated lower bounds are positive.
Furthermore, a permutation test on the means of the first
and second halves of the time series yielded p ~ 0.02, sug-
gesting there was a significant increase in the mean number
of events CONUS-wide between 1967 and 2018 relative to
1915 and 1966. The median number of grid points within
extreme-event polygons has also increased over time and is
significant at p < 0.05 (Fig. 11). Although the 10th percentile
is also increasing at a statistically significant rate, a permu-
tation test on the areas of events in the first and second
halves of our period of record yielded p =~ 0.78. Thus, the
increasing number of grid points in extreme events cannot
be attributed to increasing event size and corroborates the
finding that the frequency of extreme precipitation events,
defined by the 99th percentile, in the CONUS is increasing.
The increased station density noted in Fig. 1 may also be a
factor in the increasing frequency of extreme precipitation
events, a possibility left for future research.

Note also that two of the three years with the highest number
of events occurred in 1983 and 1998, corresponding to two of
the strongest El Nifios on record. The strongest El Nifio on
record occurred in 2015/16, and, although less apparent than
the aforementioned years, 2015 was another active year for
extreme precipitation events as it lies nearly on the 7 = 0.9 QR
model. Influences from large scale modes of variability may
be a factor in driving more, or less, extreme precipitation
events in the CONUS, and exploring such links is the topic of
ongoing work.
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Spatially, there are relative maxima in event frequency in
Idaho, Oregon, and northern Nevada and across Arkansas and
western Tennessee and Kentucky (Fig. 12). There is a mini-
mum in event frequency in central Wyoming that is collocated
with the largest gap in the interior CONUS for our developed
clusters (Fig. 9). There are no discontinuities in the event fre-
quency throughout the CONUS, which would not be the case if
geopolitical or latitudinal/longitudinal delineations were cho-
sen before identifying events. The sharp gradient near the
coasts and international borders arises due to both Livneh and
PRISM being masked outside of the CONUS and partially
from the choice of the Epanechnikov kernel (see section 2c).
The use of a globally gridded dataset, such as a reanalysis
product, would improve this aspect of the frequency analysis
along the borders of the CONUS. However, reanalysis pre-
cipitation rates are largely model derived and are thus con-
sidered to have more uncertainty (e.g., Kalnay et al. 1996).
Furthermore, the much larger horizontal grid spacing means
these products will be unable to resolve small-scale features as
accurately as Livneh and PRISM (Slinskey et al. 2019).

The increased frequency of grid points CONUS-wide being
in extreme-event polygons is fueled largely by increasing
trends in the high plains, northern Nevada, southern Michigan,
and the majority of New England (Fig. 13). There are two main
regions of decreasing trends: Southern California and Nevada,
and Wyoming. Trends here were calculated using ordinary
linear regression as bootstrapping QR trends to assess statis-
tical significance was too computationally expensive when
considering a spatial field. Bootstrapping was performed by
randomly generating 10000 new time series, sampling with
replacement, forming a distribution of slopes using ordinary
linear regression, and comparing the point estimate contoured
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FIG. 12. Total number of times that a grid point is within an
extreme-event polygon over the period 1915-2018.

in Fig. 13 with the distribution. Roughly 9.8 % of the grid points
over the CONUS have significant trends (8.8% positive; 1.0%
negative).

5. Summary and conclusions

This research is motivated by a dearth of published research
examining the characteristics of extreme precipitation with
time scales beyond about 7 days. Furthermore, a large number
of different definitions of “extreme’ exist in the literature. For
these reasons, we developed an algorithm for identifying
14-day extreme precipitation events. The algorithm is designed
to be easily adaptable within the S2S time scale (e.g., 30-day,
45-day, and 60-day, all of which are currently being computed
and archived). We applied this framework to generate multiple
databases available for public use. These databases are unique
catalogs of extreme precipitation events in that they are
identifying S2S extremes as opposed to short-term extremes
within an S2S window. Grid points are designated as being
extreme if they satisfy two criteria. The first criterion involves
accumulation: a grid point must exceed the 99th percentile
over the window being considered (e.g., 14 days). The second
criterion involves duration: a grid point must record greater
than normal daily precipitation on at least half of the number
of days in a specified time window (e.g., 7 days). Average daily
precipitation is calculated by aggregating all days in a window
between 1915 and 2018 in the Livneh and PRISM datasets and
calculating a mean. The combination of these two criteria en-
sures the database identifies periods throughout the CONUS
during which anomalously heavy precipitation occurs for more
than a few days. Thus, events in our databases likely have more
significant, persistent global and synoptic forcings, which may
be leveraged to provide forecasts of opportunity for extreme
precipitation on the S2S time scale.

Grid points labeled as extreme are grouped into an extreme
region using KDE. A three-dimensional KDE PDF is fit over
the CONUS, with 0.1° resolution, where a larger density
(normalized by the maximum value) denotes more points la-
beled as extreme are in close proximity. An extreme-event
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Trend in 14-Day Extreme Precipitation Event Yearly Frequency
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FI1G. 13. Trend (number per year; shading) in yearly frequency of
grid points falling inside 14-day extreme-event polygons using or-
dinary linear regression. The black contour delineates statistical
significance of the slope at p < 0.05 using bootstrapping.

polygon is developed from the density field using the 0.2710
contour level. If such a polygon is greater than 200 000 km? in
areal extent, it is identified as an extreme event.

We apply the above criteria to build a database of 14-day
extreme precipitation events between 1915 and 2018. In any
given year, the typical number of events CONUS-wide is eight.
However, the typical number of events is increasing through-
out our period of record (Figs. 10 and 11), particularly in the
Dakotas and throughout much of the Northeast (Fig. 13). This
increasing trend is consistent with other literature that has
found increases in extreme precipitation in the CONUS (e.g.,
Kunkel et al. 1999; Groisman et al. 2004; Hoerling et al. 2016;
Stegall and Kunkel 2019; Kirchmeier-Young and Zhang 2020).
However, caution should be used since many observational-
based precipitation datasets do not homogenize station rec-
ords, which may affect the trends in the datasets. Nevertheless,
since there are well-documented changes in extreme precipi-
tation, future works may explore the possibility of detrending
before identifying extreme precipitation events.

We also applied k-means clustering to objectively divide the
CONUS into regions. Although the masking of data in Livneh
and PRISM outside the CONUS presents a challenge when
identifying and clustering events, the majority of the CONUS
is described by the clusters, and these clusters have fewer
boundary effects relative to defining regions a priori. Every
cluster has events in at least nine months of the year, and many
clusters qualitatively show little to no seasonality, although
more work is being done to quantify the climatologies of each
individual cluster. Developing the regions is key not only to
identify groups of events that are similarly shaped and posi-
tioned geographically but also to isolate events that are ex-
ceptionally anomalous in that they are shaped very differently.
Removing these anomalously shaped events improves regional
definitions and will yield more stable climatological statistics
for each cluster, which is work currently being conducted. The
next step is to diagnose the large-scale characteristics that force
extreme events within each cluster and compare and contrast
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patterns among regions in a manner similar to Jennrich et al.
(2020). Our approach to objectively define regions may better
isolate the dynamical signal within the extreme events.
Defining regions before identifying events ignores the pro-
cesses that cause the event, whereas our method is likely
grouping events that have similar large-scale characteristics.
Our clusters are also more representative of the atmosphere
as we remove many latitude/longitude bounds used to de-
lineate regions, though we are constrained by the CONUS
geopolitical boundary. Overall, our approach provides a
strong foundation to diagnose the atmospheric drivers across
the CONUS, both in the wet and dry seasons, while also al-
lowing us to isolate the physical reasons why unclustered
events were atypical. Despite the continued constraint of the
CONUS boundary, the orientation of the clusters follows
physical intuition in many cases. For instance, many of the
clusters in the southern plains into the Ohio River valley and
the Northeast have their major axis in a southwest-northeast
direction, consistent with upstream longwave troughing and
aligned with the North American storm track.

Examination of such large-scale characteristics should be
undertaken in both reanalysis and model datasets. Work is
underway to outline any potential changes to the grid that
the KDE-derived PDF is fit to and the KDE bandwidth
needed to seamlessly apply our framework across multiple
datasets. With these adaptations, additional databases are
being developed in reanalysis datasets, such as ERAS
(Hersbach et al. 2020), operational seasonal forecasting
models, such as the North American Multi-Model Ensemble
(Kirtman et al. 2014), and climate models, such as those in
phase 6 of the Coupled Model Intercomparison Project
(CMIP6; Eyring et al. 2016). Because the algorithm can be
applied consistently between observations and models, the
characteristics that drive S2S extreme precipitation can be
compared for observed and simulated events. Diagnosing
the three-dimensional dynamics and thermodynamics, and
analyzing the capabilities of models to reproduce these
drivers, are important to gaining a more comprehensive
understanding of S2S extreme precipitation. In addition,
quantifying trends in the frequency of these drivers will
yield insights into regional changes in extreme precipitation.
Defining databases and diagnosing large-scale characteris-
tics, and how they may change in the future, is important as
it will lend insights into predictability potential of the events
to extend the current boundary in prediction of S2S extreme
precipitation and perhaps other hazards.
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