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ABSTRACT: Extreme precipitation across multiple time scales is a natural hazard that creates a significant risk to life,

with a commensurately large cost through property loss. We devise a method to create 14-day extreme-event windows that

characterize precipitation events in the contiguousUnited States (CONUS) for the years 1915–2018.Our algorithm imposes

thresholds for both total precipitation and the duration of the precipitation to identify events with sufficient length to

accentuate the synoptic and longer time scale contribution to the precipitation event. Kernel density estimation is employed

to create extreme-event polygons that are formed into a database spanning from 1915 through 2018. Using the developed

database, we clustered events into regions using a k-means algorithm. We define the ‘‘hybrid index,’’ a weighted composite

of silhouette score and number of clustered events, to show that the optimal number of clusters is 15. We also show that

14-day extreme precipitation events are increasing in the CONUS, specifically in the Dakotas and much of New England.

The algorithm presented in this work is designed to be sufficiently flexible to be extended to any desired number of days on

the subseasonal-to-seasonal (S2S) time scale (e.g., 30 days). Additional databases generated using this framework are

available for download from our GitHub. Consequently, these S2S databases can be analyzed in future works to determine

the climatology of S2S extreme precipitation events and be used for predictability studies for identified events.
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1. Introduction

Extreme precipitation is a natural hazard that poses signifi-

cant risk to life and property globally. Between 1980 and 2019,

there were 49 flooding and winter storm events affecting much

of the contiguous United States (CONUS) with losses ex-

ceeding $1 billion in inflation-adjusted damages (NCEI 2020).

These events totaled nearly $200 billion in consumer price

index–adjusted damages and caused 1603 fatalities throughout

the CONUS. Impacts from extreme precipitation affect a

myriad of sectors, such as water resources (e.g., Piao et al.

2010), agriculture (e.g., Klemm and McPherson 2017), energy

(e.g., Schaeffer et al. 2012), and ecosystems (e.g., Knapp et al.

2008). To date, there has been an abundance of studies ex-

amining the trends, dynamics, and thermodynamics of extreme

precipitation on 24- (e.g., Bradley and Smith 1994; Schumacher

and Johnson 2005; Grotjahn and Faure 2008; Kunkel et al.

2012;Moore et al. 2015) and 48-h (e.g., Keim 1996;Moore et al.

2012;Warner et al. 2012) time scales. However, there remains a

gap in our knowledge about the identification and dynami-

cal characterization of extreme precipitation events on the

subseasonal-to-seasonal (S2S) time scale, defined as the period

ranging from 14 days to about 2 or 3 months (Vitart et al. 2017;

NOAA 2018). Considerable research has been published on

short-duration extreme precipitation events, as noted in a

recent review by Barlow et al. (2019). Yet, 14 of the 49

aforementioned billion-dollar disasters occurred over periods

of 14 days or longer, demonstrating the ability of longer-

duration events to cause significant societal impacts.

Accurately predicting extremes, and communicating the

appropriate risks, at any time scale is an immensely difficult

problem. Forecasting precipitation extremes are particularly

challenging owing to complex interactions between planetary,

synoptic, and mesoscale drivers and surface hydrologic re-

sponses that determine the spatial location, scale, magnitude,

and duration of the event. Forecasts of extreme precipitation

have improved over time (Sukovich et al. 2014) through in-

creased understanding of the dynamics of extreme precipita-

tion and improvements in numerical modeling (e.g., Iyer et al.

2016), among other factors. However, improvements in short-

term precipitation forecasts have not translated to the S2S time

scale. Indeed, the Climate Prediction Center’s week 3–4 pre-

cipitation outlook remains experimental owing to skill re-

maining relatively limited (CPC 2020). Pan et al. (2019)

additionally showed little skill beyond 2 weeks on the West

Coast in S2S model hindcasts. There have been recent im-

provements in precipitation forecasts beyond week 2 by

leveraging large-scale climate modes such as the Madden–

Julian oscillation, the quasi-biennial oscillation, and El Niño–
Southern Oscillation (DelSole et al. 2017; Vigaud et al. 2017;

Nardi et al. 2020). However, forecast products remain limited

to tercile-like approaches (i.e., below normal, normal, above

normal), providing decision-makers little information on the

potential for high-impact events on such scales. Accordingly,

current capabilities in predicting extreme precipitation events

at the S2S time scale are low, leading to inadequate conveyance

of risk to stakeholders. The development of a method to catalog

S2S extreme precipitation events is the first step in extending

forecast skill and ultimately improving societal responses to
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extreme precipitation events. These S2S extreme precipitation

databases can then be used to identify forecasts of opportunity,

calibrate and constrain S2S dynamical prediction systems, and to

develop statistical models leading to more skillful forecasts of

such events on the S2S time scale.

What is considered ‘‘extreme’’ is often subject to the spatial

and temporal scale being analyzed; Barlow et al. (2019) doc-

ument 25 different definitions of extreme precipitation in

various prior studies. Here, we introduce a method for iden-

tifying extreme events that can be consistently applied across

time and space. One definition of an extreme precipitation

event on the S2S time scale came from Jennrich et al. (2020)

where their extreme threshold was the 95th percentile of all

14-day windows between 1981 and 2010. After dividing the

CONUS into six regions, using geopolitical boundaries and

latitude/longitude lines, they defined an event by considering

the areal extent within the region of grid boxes that exceed the

95th percentile, ensuring the areal-averaged precipitation was

greater than 10mmday21 for five or more days, and requiring

the day of heaviest precipitation and surrounding days to not

be greater than 50% of the total precipitation. However, the

division of the CONUS into regions that are not defined by the

statistical properties of precipitation causes events that span

across regional borders to potentially be missed, distorting the

shapes of extreme events. Additionally, the continuity of grid

boxes that exceed the 95th percentile was not considered, po-

tentially merging two groups meeting their extreme criteria

into one extreme event despite several hundreds of kilometers

or more of geographical separation. The dynamics driving the

two groups to be extreme would likely be distinct, thereby

confounding the linkages in subsequent composite analysis.

The present study builds on the work by Jennrich et al.

(2020) by relaxing the assumption of political boundary regions

within the CONUS and extending the temporal study period.

To illustrate the details and implementation of the framework,

we develop a database of 14-day extreme precipitation events

and present a brief climatology of that database. Databases of

other lengths (e.g., 30-day events) are also available on our

GitHub. Section 2 presents the algorithm for defining an ex-

treme event with an example. Section 3 focuses on processing

and aggregating all potential events into a single database. The

temporal and spatial characteristics of the database are dis-

cussed in section 4. A summary and conclusions follow.

2. Event identification

a. Data

Weused daily precipitation data from the Livneh (Livneh et al.

2013) and Parameter–Elevation Regressions on Independent

Slopes Model (PRISM; Daly et al. 1994) datasets throughout

the analysis. Because the Livneh dataset ends in 2011, it was

augmented with PRISM through 2018 to complete the record

to near present. The PRISM precipitation data were bilinearly

interpolated using the Python library xESMF (Zhuang et al.

2020) from a native 4-km grid onto Livneh’s grid of about 6 km.

Cubic spline interpolation was tested and found to offer es-

sentially the same precipitation field as bilinear interpolation

when visually compared (not shown), and hence the simpler

method was adopted. To examine the interpolation error, we

took PRISM’s daily precipitation between 1981 and 2010, in-

terpolated to Livneh’s grid, interpolated back to PRISM’s grid,

and divided the difference between PRISM’s original value

and its twice-interpolated value by 2. The mean absolute error

over the CONUS wasO(1022) mm orO(1023) mm depending

on the month. However, errors approached O(101) mm in the

Sierra Nevada and Cascade Range mountains during boreal

winter. Although both the interpolation error and difference

between the Livneh and PRISM datasets may become rela-

tively large, particularly in the western one-third of the

CONUS, the Livneh dataset, at least partially, is a function of

the 1981–2010 PRISM climatology. This dependence makes

PRISM the best choice of precipitation datasets to append to

the Livneh dataset. The mean error between the Livneh and

PRISM datasets is O(1023) mm (not shown), with Livneh

generally being larger than PRISM, albeit by small amounts.

Accordingly, our database extends through 31December 2018,

giving a total of 104 years for the analysis.

Rainfall in the Livneh and PRISM datasets, and thus the

calculated extreme-value statistics, are affected by the number

of rain gauges used by themodels. Figure 1 depicts a time series

of the number of stations employed in calculating monthly

precipitation in PRISM; the Livneh dataset does not come

with a metafield showing the number of gauges used in

processing a given day’s precipitation field. The primary pre-

cipitation data source for both datasets is theNationalWeather

Service Cooperative Observer Program (Daly et al. 2008;

Livneh et al. 2013; Henn et al. 2018); thus it is very likely that

magnitude and trend in Fig. 1 are similar for the Livneh

dataset. Over time, the number of rain gauges in the network

increased from under 2500 stations to about 18 000 stations.

Girons Lopez et al. (2015) found that having fewer rain gauges

led to decreased accuracy in estimating higher rainfall rates.

Therefore, in the early twentieth century, the decreased spatial

density of the rain gauges likely led to many areas having un-

derestimated precipitation amounts relative to later in the

twentieth century and beyond. Thus, a positive trend in the

number of identified events, when using a stationary threshold,

FIG. 1. Total number of stations used in processing monthly pre-

cipitation data from PRISM as a function of time.
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in the database may be due, at least to some degree, to station

density.

b. Extreme criteria

We began by finding all grid points within the CONUS that

experienced extreme precipitation conditions over a given

14-day window. A point was flagged as having experienced

extreme precipitation if it passed two criteria. First, total pre-

cipitationmustmeet or exceed the 99th percentile.We selected

the 99th percentile to identify extreme events in the far-right

tail of the precipitation distribution as these events are very

likely to be coincident with major socioeconomic impacts. The

99th percentile was calculated using each 14-day sum over all

104 years for each grid point and each overlapping 14-day

window (i.e., 1–14 January, 2–15 January, etc.). The black

line in Fig. 2 depicts the derived percentiles as a function of

calendar day for six points across the CONUS: Norman,

Oklahoma; Sedona, Arizona; 18 longitude east of Seattle,

Washington; 18 longitude west of Port Huron, Michigan;

Colombia, South Carolina; and Cheyenne, Wyoming. The

large degree of window-to-window noise in precipitation is

apparent in the corresponding percentiles, with oscillations

of $50mm seen in the span of 2 weeks at every grid point.

Therefore, we smoothed the raw percentiles by decompos-

ing each time series into its Fourier coefficients. We tested

reconstructed time series by retaining harmonics ranging

from two to six and subjectively determined that three

harmonics led to the best smoothed signal (see the green line

in Fig. 2; see Figs. S1 and S2 in the online supplemental

material for results of sensitivity testing). Furthermore,

numerous studies have examined precipitation seasonality

and shown that the first three harmonics generally explain

the majority of the variance in the precipitation distribution

(e.g., Scott and Shulman 1979; Kirkyla and Hameed 1989;

Epstein and Barnston 1990). Figure 3 displays the total

thresholds for one day in each season. Each window and

each grid point in the CONUS will have its own threshold

criterion. To illustrate, consider a precipitation field over

the example window of 12–25 January 1937 (Fig. 4a). Points

that pass the first criterion are where values in Fig. 4a exceed

the extreme threshold values in Fig. 4b (e.g., parts of

Arkansas, Tennessee, Kentucky, and Indiana).

The next criterion considers the duration of the precipitation

during the event. Although a duration check may eliminate

FIG. 2. Raw 99th percentile for each 14-day window and smoothed percentiles using the first three Fourier harmonics (green) for six

selected grid points across the CONUS. The plotted date is the start date of each window.
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short duration events with exceptionally heavy precipitation

totals, we aim to identify events with persistent synoptic-scale

forcing to maximize potential predictability at meaningful (i.e.,

S2S) lead times to decision-makers. Given the importance of

defining persistently forced extreme precipitation events, for a

grid point to be considered extreme, at least 7 of the days (i.e.,

half of the duration of the event) must receive greater than or

equal to the long-term mean daily precipitation. We defined

the climatological daily precipitation as the long-term mean of

all days in a given 14-day window over all 104 years. In other

words, we calculated the mean daily precipitation using all

1456 days in our period of record. The relatively large sample

size used in calculating the climatological mean led to more

stable intraseasonal variability. The mean and median differ-

ences between one calendar day’s long-termmean and the next

day’s mean are O(1025) mm, and the maximum value is a

mere 2.3mm. Accordingly, we did not smooth further using

Fourier harmonics. Grid points that meet or exceed the dura-

tion criterion are shown asmedium and dark blue in Fig. 4c and

are also outlined by the solid black contour.

c. Finding an extreme region

The two aforementioned criteria were applied to each grid

point in the domain independently, and the points that met

both criteria were flagged as extreme (e.g., Fig. 4d). See Fig. 5

for a summary of the logic. Once grid points were identified as

extreme, the next step was to consider the spatial continuity of

these points in defining an extreme region. To objectively

identify extreme regions, kernel density estimation (KDE;

Rosenblatt 1956), a nonparametric technique that fits a prob-

ability density function (PDF) to a given set of observations,

was employed. Here, the geospatial coordinates of all points

flagged as extreme were used to define a 3D PDF over the

CONUS where the vertical coordinate (i.e., density) is greater

where more extreme points are in close proximity. The density

of a given point ywith observations xi, i5 1, 2, . . . , n is given by

r(y)5
1

nh
�
n

i51

K
�y2 x

i

h

�
, (1)

whereK is the kernel, a prescribed weighting function, and h is

the bandwidth (i.e., a smoother for the resulting PDF). After

considering the advantages and disadvantages of a number of

kernels, we concluded the Epanechnikov kernel was best

suited for both this study and future studies with globally

gridded precipitation data. The Epanechnikov kernel for a

random variable u is given by

K(u)5

8><
>:

3

4
(12u2) juj# 1

0 otherwise

. (2)

The Epanechnikov kernel was selected for its parabolic shape

and the assignment of zero density outside of juj # 1 (i.e., its

FIG. 3. The 99th percentile of precipitation in the CONUS for one 14-day window in each meteorological season.
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support). Other kernel options, such as Gaussian and expo-

nential, do not impose a support, which leads to a smoother

density field. One benefit of Epanechnikov’s more rigid kernel

is its ability to effectively outline areas outside the CONUS

where Livneh and PRISM lack data. Hence, polygons tend to

follow the boundary and have little extent into the oceans. A

Gaussian kernel, for instance, will still lack significant extent

over oceans, but its smoother density field would produce a

lesser gradient; however, we have no data over the oceans to

support such a gradient. Cross-validation tests were conducted

to determine the optimal bandwidth on a number of test

events, with varying times and locations. These tests consis-

tently gave bandwidths from 0.01 to 0.03. Therefore, we used a

bandwidth of 0.02.

The resulting density was fit on a grid with 0.18 resolution in

the domain 248–508N; 1288–668W, where the great circle dis-

tance calculated using the Haversine formula is used as the

distance metric. In the midlatitudes, a bandwidth of 0.02

equates to a point on the grid having nonzero density if it is

within roughly 1.258 of an extreme point. Next, the density was

normalized by dividing by the maximum value to facilitate

direct comparison of potential events from different regions of

the CONUS and during different times of the year (Fig. 6a).

Subsequently, an extreme precipitation event region was

developed using a discrete normalized density value.We found

that a density value of 0.2710, the 99th percentile of all density

fields between 1915 and 2018, produced representative and

consistent polygons across both time and space. Figure 6b

displays the polygon drawn using the single contour, outlining

the area defined as extreme for the 14-day window. A 14-day

extreme precipitation event was then defined to have occurred

if the area inside the polygon, calculated using Green’s theo-

rem, exceeds 200 000 km2. We calculated the areas of every

KDE-derived polygon between 1915 and 2018 and examined

the distribution of areal extents. An areal extent of 200 000 km2

records the largest 5% of all areas captured and represents a

‘‘critical’’ point where the derivative of areas as a function of

percentiles changes rapidly (see Fig. S3 in the online supple-

mental material).

3. Cataloging extreme events

Section 2 outlined how to identify an extreme precipitation

event given a single window. The database was generated by

considering all windows in the period of record and aggregat-

ing all identified events. We used a Python program (https://

github.com/tydickinson29/PRES2iPpy/blob/master/pres2ippy/

analysis/rainpy.py) that constructs a unique object based on

FIG. 4. (a) Total recorded precipitation (mm) between 12 and 25 Jan 1937. (b) The 99th percentile of precipitation

(mm) derived for 12–25 Jan. (c) Number of days with above-normal daily precipitation during 12–25 Jan 1937. The

black contour outlines 7 days, which is the threshold for our second criterion in event selection (see the text).

(d) Points flagged as extreme per our algorithm (see the text for details).
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input day, month, and year. The program is available for users

to explore any date; for example, other researchers may want

to define their own regional database of events using the same

method but with a smaller areal extent. The database was

generated by inputting every possible start date from 1 January

1915 to 31 December 2018 (excluding leap days) and archiving

identified extreme events to a text file. However, a conse-

quence of simply moving a window in increments of a single

day is the database contained extreme events with polygons

over virtually the same area for several consecutive days. Thus,

we developed an objective postprocessing algorithm to group

‘‘repeat’’ events, label one of the events in the group as the

extreme event, and discard all others.

The postprocessing algorithm that discards all repeats be-

gan by considering the event in the first row of the pre-

processed text file (denoted as E0; see Fig. 7). A smaller,

subset file was constructed in which only the events with

starting dates on or before the ending date of E0 are consid-

ered. For example, if E0 is 1–14 January, then we found all

events that have a start date on or before 14 January. Then,

events were grouped by the location and shape of their

polygons. A binary matrix with the same domain and reso-

lution as the KDE density (see section 2c) was constructed for

all events in the subset file, where ‘‘1’’ denotes a grid point

inside the event polygon and ‘‘0’’ denotes a grid point outside

the polygon. The correlation coefficient r was calculated be-

tween all events in the subset file with respect to E0; extreme

precipitation events are considered to be representative of

the same event if r $ 0.5. The events are then placed into a

group of similar events.

Within this subsetted group, we chose the ‘‘most extreme’’

precipitation event to label as the extreme event for the da-

tabase. To make this choice, we define the total over extreme

(TOE) as

FIG. 5. Flowchart describing the logic in determining if any given point is labeled extreme. See

the text for details.
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TOE5�
n

i51

(Pi
total 2Pi

q99) , (3)

where i denotes a particular grid point that was flagged as ex-

treme, n is the total number of flagged grid points within the

event’s polygon, Ptotal is the grid point’s total 14-day precipi-

tation, and Pq99 is the grid point’s 14-day 99th-percentile

threshold. TOE considers the extremity of the event and

considers the areal extent of the event indirectly since larger

polygons tend to have more points inside flagged as extreme.

The event with the largest TOE within the group was deter-

mined to be ‘‘extreme’’ and is retained for the database,

whereas all other events in the group are discarded. This pro-

cess of forming groups of similar events, based on the r , 0.5

criterion, was recursive until all events in the file either do not

overlap temporally or do not have a correlation coefficient

above 0.5. After postprocessing, the 14-day database contains

851 unique events.

Table 1 lists a few events identified in the database with

various statistics describing each event. A full table can be

accessed online (http://pres2ip.com/extreme-event-tables)

where users can apply filters to find specific events based on

time and/or location. The database in .csv and .shp formats

and the scripts used to generate and postprocess the data-

base are also available online (https://github.com/tydickinson29/

PRES2iPpy/tree/master/pres2ippy/databases).

4. Statistical characteristics of 14-day extreme events

a. Event regionalization

Another research goal is to objectively define regions

of extreme 14-day precipitation. Classifying the events in

the database into geographically similar clusters allows for the

identification of typical extreme-event shapes across the

CONUS, as well as labeling specific extreme events as being

shaped exceptionally anomalous. In addition, characteristic

patterns associated with the events can be diagnosed for each

region, which is the focus of a future paper.

Two commonly applied types of clustering algorithms

that are implemented on gridded data are hierarchical and

nonhierarchical. Hierarchical clustering tends to use an

agglomerative approach where each observation begins as

its own cluster and observations recursively are merged

together, with the end result being visualized as a tree.

Nonhierarchical methods utilize other recursive algorithms

that do not form a hierarchy. In a rigorous examination of

clustering techniques applied on precipitation data in the

eastern two-thirds of the United States, Gong and Richman

(1995) found nonhierarchical methods to outperform hier-

archical methods. Therefore, we apply the k-means clus-

tering (Forgy 1965; Lloyd 1982) implementation in the

Python library scikit-learn (Pedregosa et al. 2011). The

k-means algorithm clusters data into k groups of equal

variance, attempting to minimize the intracluster sum of

squares (i.e., inertia) using Euclidean distance. After events

are clustered, the silhouette score (Rousseeuw 1987) is

calculated as a metric for how well an event fits its assigned

cluster. The silhouette score for a given sample is given by

s5
b2 a

max(a,b)
, (4)

where a is the mean distance between a sample and all other

samples in the cluster, b is the mean distance between a sample

and all other samples in the next nearest cluster, and max(a, b)

is a function that returns the higher value of a and b. From

Eq. (4), the silhouette score can range from 21 to 11, where

higher positive numbers indicate a good match to the assigned

cluster. Events with negative silhouette scores are removed

because they indicate that a sample was likely misclassified

and/or is highly anomalous relative to all other events in the

cluster (Rousseeuw 1987). The silhouette score has been ap-

plied to meteorological applications to remove misclassified

events (e.g., Richman and Adrianto 2010; Mercer et al. 2012).

For each event, a vector consisting of 0s and 1s is con-

structed, where a grid point inside the polygon is assigned a 1,

with the same resolution as the KDE density field. K-means

clustering is then applied iteratively in the following manner:

1) Cluster n events into k clusters.

2) Calculate the silhouette score s for all n events.

FIG. 6. (a) Full KDE normalized density field using the Epanechnikov kernel and 0.02 bandwidth for the 12–25 Jan

1937 window. (b) Extreme-event polygon drawn using the 0.2710 contour.
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FIG. 7. Flowchart describing the logic during postprocessing of extreme precipitation

events. See the text for details.
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3) Find the number of eventswith negative silhouette scores (n*).

4) If n* 6¼ 0, remove the events with s, 0 and repeat from step

1; otherwise, end.

Choosing the optimal value for k is the most difficult and

subjective decision when implementing any clustering algo-

rithm. The elbow method (Thorndike 1953) and the silhouette

method (Rousseeuw 1987) are two popular tools that are used

as guidance to determine the best value for k. In both

methods, a range of values for k is tested; in this study, we test

k5 5, 6, . . . , 30. However, neither method depicts a clear signal

as a tool in deciding which k to choose (Figs. 8a,b). Although

the inertia continues to decrease with increasing k, there is no

cusp present. Similarly, the average silhouette scores generally

increase with increasing k, though a major reason for the

positive correlation is from the lower number of events being

clustered. In comparing Figs. 8b and 8c, it is seen that there is

an inverse relationship between the average silhouette and the

number of clustered events. Consequently, we define an index,

which we name the hybrid index (HI), that is composed of the

product of the average silhouette and number of clustered

events. The best value for k is determined to be the one for

which the maximum HI value occurs; for our 14-day database,

the optimal number of clusters is k 5 15 (Fig. 8d).

Figure 9 depicts the ‘‘average’’ polygons for each cluster.

The average polygon is created using all events in each cluster;

the average number of events per cluster is about 50. The

polygons in the cluster are rasterized to a grid with 0.018
spacing where the grid bounds are the minimum andmaximum

longitudes and latitudes from all polygons in the cluster. The

TABLE 1. A sample of events from version 1.0 of the 14-day extreme precipitations events database. PrecipAA denotes areal-averaged

precipitation in the region;Maxtotal is the greatest 14-day precipitation total from any point inside the region;Max1day is the greatest single-

day precipitation total from any point inside the region from any of the 14 days. Area and TOE are rounded to the nearest square

kilometer and millimeter, respectively, and all other entries are rounded to two decimal places.

Begin date End date Area (km2) TOE (mm) PrecipAA (mm) Maxtotal (mm) Max1day (mm) LonC (8E) LatC (8N) Cluster

12 Jan 1937 25 Jan 1937 881 375 1 558 392 188.45 541.00 138.07 275.90 38.51 12

19 Nov 1998 2 Dec 1998 244 172 298 550 312.32 1366.15 286.08 237.52 44.28 3

7 May 2015 20 May 2015 234 242 277 190 233.28 458.09 228.37 263.36 34.58 13

FIG. 8. Various statistics as a function of number of clusters for 14-day extreme precipitation events:

(a) intracluster sum of squared distances (i.e., inertia), (b) average silhouette score, (c) total number of clustered

events, and (d) product of (b) and (c) (i.e., the HI). The dashed vertical red line in (d) marks the HI maximum.
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rasterized grid is normalized to represent a probability that

any given grid point is within a polygon, ranging from 0 (no

coverage) to 1 (total coverage). This grid is then convolved

with a Gaussian kernel with a radius of 100 grid points to

smooth the normalized grid. The final smoothed polygon is

the quantile threshold of 0.2, thus depicting the area that

is covered by $20% of the events assigned to the cluster.

Although there are some gaps in areas of cluster coverage, the

majority of the CONUS is described with the chosen number

of clusters, with the gaps likely arising from geographical

limitations of employing KDE on a dataset only defined over

land.Maps with a smaller value for k than chosen herein leave

large parts of the CONUS outside a cluster or are too general

in their shapes, whereas larger values for k yield clusters that

have extensive spatial overlap (i.e., large cluster intercorrela-

tions). Overall, 102 of 851 events (;12.0%) are not assigned

to a cluster.

Gong and Richman (1995) found the biggest limitation to

the physical validity of k-means results is its sensitivity to the

initial cluster center locations. To minimize such a problem,

cluster centers are initialized using the ‘‘k-means11’’ method

(Arthur and Vassilvitskii 2006). This method begins by placing a

random cluster center, but then uses a probabilistic ap-

proach to effectively disperse the other centers among at-

tributes to yield improved cluster assignments. Nevertheless,

after choosing k, we test 10 different seed initializations to

examine the spatial stability and/or reliability in each of the

clusters where the final assignments are from the seed with the

largest product between events clustered and average silhou-

ette. In general, each of these seeds produced maps that are

similar to those in Fig. 9 (see Fig. S4 in the online supplemental

material). Although three seeds moved a cluster from the

Mountain West to the Southeast (Figs. S4c,e,g), the remaining

seeds yielded consistent results.

To examine cluster stability further, we also test hierarchical

clustering methods using Ward’s linkage and average linkage.

Ward’s linkage produces clusters that are mostly similar to

k-means but with a few differences (see Fig. S5 in the online

supplemental material). Cluster 3 is centered farther north

and extends farther east than the k-means solution, and

cluster 10 stretches close to the southernmost point in Texas.

Cluster 5 is the most different (see the orange region in

Fig. S5) between Ward’s linkage and k-means with the

Ward’s cluster shifted northwest with a nearly zonal major

axis as compared with a nearly circular region in the

k-means case. The remaining clusters are very similar between

the two algorithms. Conversely, average linkage produced

chained results; 92% of clustered events are assigned to 1

cluster, a consequence of its minimization criterion. Such

behavior was also noted in Gong and Richman (1995) for

certain average linkage implementations. Seasonality is also

not expected to significantly affect cluster assignments since

accumulation thresholds are different for each window

throughout the year and events are recorded in all clusters’

warm and cool seasons.

Figure 9 displays potential weaknesses in defining regions

before identifying events. Several clusters have significant

portions of the average polygon in two or more regions used by

Jennrich et al. (2020) (e.g., clusters 1, 11, 12, and 13). Events in

these clusters may have been completely missed, owing to the

event’s areal extent being distributed among several regions, or

counted twice but in different regions. Although the event

depicted in Fig. 6b occurred before the analysis of Jennrich

et al. (2020), the event polygon lies in theGreat Plains, Southeast,

Great Lakes, and Northeast. Additionally, some of the regions

used in Jennrich et al. (2020) seem overly extensive, depicted

by several of our clusters inside of a single region. For instance,

clusters 2, 4, 5, 6, and a portion of 10 are inside the Mountain

FIG. 9. Average polygons (colored contours) for k 5 15 clusters across the CONUS for

14-day extreme precipitation events. Also shown are the regional boundaries defined by

Jennrich et al. (2020) (gray outlines).
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West, and several clusters cross into the Great Plains region.

Our clusters suggest that the Great Plains should be divided

into subregions, likely owing to contrasting atmospheric

drivers for the northern and southern Great Plains (Flanagan

et al. 2018). Conversely, cluster 15 is nearly identical to the

Jennrich et al. (2020) Northeast region.

Although the framework here was able to eliminate most of

the geopolitical boundaries within the CONUS, we are still

bounded by the physical (i.e., oceans) and international bor-

ders of the CONUS. Nevertheless, the geographical locations

and orientations of the clusters suggest favorable general

synoptic drivers. Clusters 1, 2, and 7 likely have similar synoptic

characteristics, such as the region being centered near an

anomalous trough–ridge inflection point, with slightly differing

phase and amplitude of the upper-level wave; Konrad (2001)

showed 500-hPa cyclone centers were commonly observed

upstream from extreme precipitation regions when considering

2-day extreme events. Additionally, Jennrich et al. (2020) and

Zhao et al. (2017) showed similar trough–ridge dipoles across

nearby areas, such as the Great Plains, Great Lakes, and

northeastern United States. Clusters 8, 11, 12, 13, and 15

have a southwest–northeast orientation and have less poly-

gon variability in the clusters, signaling the synoptic influence

of a longwave trough and strong surface baroclinicity asso-

ciated with extratropical cyclones. Conversely, cluster 9 has

larger variability in event shape, suggesting a larger meso-

scale influence within the synoptic signal (e.g., upslope flow,

mesoscale convective systems; Schumacher and Johnson

2006). The broad shapes seen in clusters 6 and 10 likely have

monsoonal-type flow with strong vapor transport from the

south and southwest (Zhao et al. 2017; Jennrich et al. 2020).

Similarly, clusters in the southeast CONUS presumably rely

on strong moisture transport from the Gulf of Mexico and

Atlantic Ocean and are influenced by the subtropical jet

(Jennrich et al. 2020).Work is ongoing to elaborate further on

these characteristics and build on the results from Jennrich

et al. (2020) using these cluster regions.

b. Event frequency

The temporal characteristics of the 14-day extreme precip-

itation events are next examined. The median number of

events per year within the CONUS is 8, and the mean number

of events is about the same (8.2). However, these statistics are

not time invariant. Figure 10 depicts the number of extreme

events over time in our database and the trends in the 10th,

50th, and 90th percentiles (i.e., t 5 0.1, t 5 0.5, and t 5 0.9

quantiles) calculated using quantile regression (QR; Koenker

and Bassett 1978); QR is an extension of ordinary linear re-

gression that incorporates a loss function such that the re-

gression line can be fit to any part of the probability

distribution. Furthermore, QR makes no distributional as-

sumption of the predictand and inherits the same assumptions

on the error terms as ordinary linear regression. All three

quantiles have a positive trend with the median number of

observed events increasing at a rate of about one event per

50 years. Statistical significance of the slopes was tested

using bias-corrected and accelerated (BCa) bootstrapping

(Efron 1987) with 10 000 replications at p , 0.05 and a null

FIG. 10. Total yearly counts (black) of recorded 14-day extreme precipitation events

throughout the CONUS as a function of time. QRmodels are fit on t5 0.1 (green), t5 0.5 (i.e.,

median; red), and t 5 0.9 (blue) quantiles of the time series. Slopes are listed as the second

number in the legend, and the 95% confidence intervals on the slope are shown in square

brackets thereafter. Confidence intervals were calculated using BCa bootstrapping. Slopes and

confidence interval bounds were rounded to three decimal places.

15 SEPTEMBER 2021 D I CK IN SON ET AL . 7581

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 07/25/22 01:36 PM UTC



hypothesis of no trend. The 95% confidence intervals on the

slopes are given in the caption of Fig. 10. Although we

cannot reject the null hypothesis for the 10th percentile, the

null hypothesis can be rejected for the 50th and 90th re-

gression models as the associated lower bounds are positive.

Furthermore, a permutation test on the means of the first

and second halves of the time series yielded p ’ 0.02, sug-

gesting there was a significant increase in the mean number

of events CONUS-wide between 1967 and 2018 relative to

1915 and 1966. The median number of grid points within

extreme-event polygons has also increased over time and is

significant at p, 0.05 (Fig. 11). Although the 10th percentile

is also increasing at a statistically significant rate, a permu-

tation test on the areas of events in the first and second

halves of our period of record yielded p ’ 0.78. Thus, the

increasing number of grid points in extreme events cannot

be attributed to increasing event size and corroborates the

finding that the frequency of extreme precipitation events,

defined by the 99th percentile, in the CONUS is increasing.

The increased station density noted in Fig. 1 may also be a

factor in the increasing frequency of extreme precipitation

events, a possibility left for future research.

Note also that two of the three years with the highest number

of events occurred in 1983 and 1998, corresponding to two of

the strongest El Niños on record. The strongest El Niño on

record occurred in 2015/16, and, although less apparent than

the aforementioned years, 2015 was another active year for

extreme precipitation events as it lies nearly on the t5 0.9 QR

model. Influences from large scale modes of variability may

be a factor in driving more, or less, extreme precipitation

events in the CONUS, and exploring such links is the topic of

ongoing work.

Spatially, there are relative maxima in event frequency in

Idaho, Oregon, and northern Nevada and across Arkansas and

western Tennessee and Kentucky (Fig. 12). There is a mini-

mum in event frequency in central Wyoming that is collocated

with the largest gap in the interior CONUS for our developed

clusters (Fig. 9). There are no discontinuities in the event fre-

quency throughout the CONUS, which would not be the case if

geopolitical or latitudinal/longitudinal delineations were cho-

sen before identifying events. The sharp gradient near the

coasts and international borders arises due to both Livneh and

PRISM being masked outside of the CONUS and partially

from the choice of the Epanechnikov kernel (see section 2c).

The use of a globally gridded dataset, such as a reanalysis

product, would improve this aspect of the frequency analysis

along the borders of the CONUS. However, reanalysis pre-

cipitation rates are largely model derived and are thus con-

sidered to have more uncertainty (e.g., Kalnay et al. 1996).

Furthermore, the much larger horizontal grid spacing means

these products will be unable to resolve small-scale features as

accurately as Livneh and PRISM (Slinskey et al. 2019).

The increased frequency of grid points CONUS-wide being

in extreme-event polygons is fueled largely by increasing

trends in the high plains, northern Nevada, southernMichigan,

and themajority of New England (Fig. 13). There are twomain

regions of decreasing trends: Southern California and Nevada,

and Wyoming. Trends here were calculated using ordinary

linear regression as bootstrapping QR trends to assess statis-

tical significance was too computationally expensive when

considering a spatial field. Bootstrapping was performed by

randomly generating 10 000 new time series, sampling with

replacement, forming a distribution of slopes using ordinary

linear regression, and comparing the point estimate contoured

FIG. 11. As in Fig. 10, but for the total number of grid points inside extreme events as a function

of time.
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in Fig. 13 with the distribution. Roughly 9.8% of the grid points

over the CONUS have significant trends (8.8% positive; 1.0%

negative).

5. Summary and conclusions

This research is motivated by a dearth of published research

examining the characteristics of extreme precipitation with

time scales beyond about 7 days. Furthermore, a large number

of different definitions of ‘‘extreme’’ exist in the literature. For

these reasons, we developed an algorithm for identifying

14-day extreme precipitation events. The algorithm is designed

to be easily adaptable within the S2S time scale (e.g., 30-day,

45-day, and 60-day, all of which are currently being computed

and archived).We applied this framework to generate multiple

databases available for public use. These databases are unique

catalogs of extreme precipitation events in that they are

identifying S2S extremes as opposed to short-term extremes

within an S2S window. Grid points are designated as being

extreme if they satisfy two criteria. The first criterion involves

accumulation: a grid point must exceed the 99th percentile

over the window being considered (e.g., 14 days). The second

criterion involves duration: a grid point must record greater

than normal daily precipitation on at least half of the number

of days in a specified time window (e.g., 7 days). Average daily

precipitation is calculated by aggregating all days in a window

between 1915 and 2018 in the Livneh and PRISM datasets and

calculating a mean. The combination of these two criteria en-

sures the database identifies periods throughout the CONUS

during which anomalously heavy precipitation occurs for more

than a few days. Thus, events in our databases likely have more

significant, persistent global and synoptic forcings, which may

be leveraged to provide forecasts of opportunity for extreme

precipitation on the S2S time scale.

Grid points labeled as extreme are grouped into an extreme

region using KDE. A three-dimensional KDE PDF is fit over

the CONUS, with 0.18 resolution, where a larger density

(normalized by the maximum value) denotes more points la-

beled as extreme are in close proximity. An extreme-event

polygon is developed from the density field using the 0.2710

contour level. If such a polygon is greater than 200 000 km2 in

areal extent, it is identified as an extreme event.

We apply the above criteria to build a database of 14-day

extreme precipitation events between 1915 and 2018. In any

given year, the typical number of events CONUS-wide is eight.

However, the typical number of events is increasing through-

out our period of record (Figs. 10 and 11), particularly in the

Dakotas and throughout much of the Northeast (Fig. 13). This

increasing trend is consistent with other literature that has

found increases in extreme precipitation in the CONUS (e.g.,

Kunkel et al. 1999; Groisman et al. 2004; Hoerling et al. 2016;

Stegall and Kunkel 2019; Kirchmeier-Young and Zhang 2020).

However, caution should be used since many observational-

based precipitation datasets do not homogenize station rec-

ords, which may affect the trends in the datasets. Nevertheless,

since there are well-documented changes in extreme precipi-

tation, future works may explore the possibility of detrending

before identifying extreme precipitation events.

We also applied k-means clustering to objectively divide the

CONUS into regions. Although the masking of data in Livneh

and PRISM outside the CONUS presents a challenge when

identifying and clustering events, the majority of the CONUS

is described by the clusters, and these clusters have fewer

boundary effects relative to defining regions a priori. Every

cluster has events in at least nine months of the year, and many

clusters qualitatively show little to no seasonality, although

more work is being done to quantify the climatologies of each

individual cluster. Developing the regions is key not only to

identify groups of events that are similarly shaped and posi-

tioned geographically but also to isolate events that are ex-

ceptionally anomalous in that they are shaped very differently.

Removing these anomalously shaped events improves regional

definitions and will yield more stable climatological statistics

for each cluster, which is work currently being conducted. The

next step is to diagnose the large-scale characteristics that force

extreme events within each cluster and compare and contrast

FIG. 12. Total number of times that a grid point is within an

extreme-event polygon over the period 1915–2018.

FIG. 13. Trend (number per year; shading) in yearly frequency of

grid points falling inside 14-day extreme-event polygons using or-

dinary linear regression. The black contour delineates statistical

significance of the slope at p , 0.05 using bootstrapping.
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patterns among regions in a manner similar to Jennrich et al.

(2020). Our approach to objectively define regions may better

isolate the dynamical signal within the extreme events.

Defining regions before identifying events ignores the pro-

cesses that cause the event, whereas our method is likely

grouping events that have similar large-scale characteristics.

Our clusters are also more representative of the atmosphere

as we remove many latitude/longitude bounds used to de-

lineate regions, though we are constrained by the CONUS

geopolitical boundary. Overall, our approach provides a

strong foundation to diagnose the atmospheric drivers across

the CONUS, both in the wet and dry seasons, while also al-

lowing us to isolate the physical reasons why unclustered

events were atypical. Despite the continued constraint of the

CONUS boundary, the orientation of the clusters follows

physical intuition in many cases. For instance, many of the

clusters in the southern plains into the Ohio River valley and

the Northeast have their major axis in a southwest–northeast

direction, consistent with upstream longwave troughing and

aligned with the North American storm track.

Examination of such large-scale characteristics should be

undertaken in both reanalysis and model datasets. Work is

underway to outline any potential changes to the grid that

the KDE-derived PDF is fit to and the KDE bandwidth

needed to seamlessly apply our framework across multiple

datasets. With these adaptations, additional databases are

being developed in reanalysis datasets, such as ERA5

(Hersbach et al. 2020), operational seasonal forecasting

models, such as the North AmericanMulti-Model Ensemble

(Kirtman et al. 2014), and climate models, such as those in

phase 6 of the Coupled Model Intercomparison Project

(CMIP6; Eyring et al. 2016). Because the algorithm can be

applied consistently between observations and models, the

characteristics that drive S2S extreme precipitation can be

compared for observed and simulated events. Diagnosing

the three-dimensional dynamics and thermodynamics, and

analyzing the capabilities of models to reproduce these

drivers, are important to gaining a more comprehensive

understanding of S2S extreme precipitation. In addition,

quantifying trends in the frequency of these drivers will

yield insights into regional changes in extreme precipitation.

Defining databases and diagnosing large-scale characteris-

tics, and how they may change in the future, is important as

it will lend insights into predictability potential of the events

to extend the current boundary in prediction of S2S extreme

precipitation and perhaps other hazards.
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