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Interpretable Molecular Graph Generation via
Monotonic Constraints
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Abstract

Designing molecules with specific properties is a
long-lasting research problem and is central to advanc-
ing crucial domains such as drug discovery and ma-
terial science. Recent advances in deep graph gener-
ative models treat molecule design as graph genera-
tion problems which provide new opportunities toward
the breakthrough of this long-lasting problem. Ex-
isting models, however, have many shortcomings, in-
cluding poor interpretability and controllability toward
desired molecular properties. This paper focuses on
new methodologies for molecule generation with inter-
pretable and controllable deep generative models, by
proposing new monotonically-regularized graph varia-
tional autoencoders. The proposed models learn to rep-
resent the molecules with latent variables and then learn
the correspondence between them and molecule prop-
erties parameterized by polynomial functions. To fur-
ther improve the intepretability and controllability of
molecule generation towards desired properties, we de-
rive new objectives which further enforce monotonicity
of the relation between some latent variables and target
molecule properties such as toxicity and clogP. Exten-
sive experimental evaluation demonstrates the superi-
ority of the proposed framework on accuracy, novelty,
disentanglement, and control towards desired molec-
ular properties. The code is anonymized at https:
//anonymous . 4open. science/r/MDVAE-FD2C.

1 Introduction

Designing molecules with specific structural and
functional properties is central to advancing drug dis-
covery and material science [1]. Decades of research
in medicinal chemistry shows that finding novel drugs
remains an outstanding challenge [2], since the search
space is vast and highly rugged; small perturbations in
the chemical structure may result in great changes in
desired properties.
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While for many years computational screening was
primarily dominated by similarity search [3], recent ad-
vances in deep generative models are showing promise
in tackling de-novo molecule design. The first effort
addressed the problem as a string generation task by
utilizing the SMILES representation [4, 5]. However,
SMILES is not designed to capture molecular similarity
and prevents generative models (e.g., variational auto-
encoders (VAE)) from learning smooth molecular em-
beddings. More importantly, essential chemical proper-
ties, such as molecular weight, cannot be expressed and
preserved by the SMILES representation.

Recent advances in deep generative models on
graphs have opened a new research direction for de-
novo molecular design. Specifically, these models lever-
age more expressive representations of molecules via the
concept of graphs, which is a natural formulation of
molecule where atoms are connected by bonds. Graph-
generative models hold much promise in generating
credible molecules [6, 7, 8]. The state-of-the-art deep
generative models for molecule generation consist of two
complementary subtasks: (1) the encoding, which refers
to learning to represent molecules in a continuous man-
ner that facilitates the preservation or optimization of
their properties; (2) the decoding, which refers to learn-
ing to map an optimized continuous representation back
into a reconstructed or novel molecule.

Despite promising results, the existing models have
several limitations: (1) The molecule generation
process is obscure. Learning the correspondence be-
tween a molecule’s structural patterns and its functional
properties is one of the core issues in molecular model-
ing and design. However, although existing deep gen-
erative models for graphs can map the graph structural
information into continuous representations, they are
latent variables with no real-world meaning. Moreover,
the latent variables may have mutual correlations with
each other which further prevents us from understand-
ing their meanings. Models that can characterize the
correspondence between the molecule structure, latent
variables, and molecule properties with better trans-
parency are imperative and have not been well explored.
(2) Difficulty in controlling the properties of the
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Figure 1: (a) Image generation without control: Age control is difficult, since the latent variable is not monotonically
correlated with it. (b) Image generation with control: Pose control is now easy, since the latent variable is monotonically

correlated with it. (c¢) Molecule generation without control:
variable is not monotonically correlated with it. (d) Molecule
since the latent variable is monotonically correlated with it.

generated molecule graphs. It is important to gener-
ate molecules with desired biophysical and biochemical
properties, such as toxicity, mass, and clogP [9]; How-
ever, this is a very challenging and promising domain
that has not been well explored historically. The few
existing works typically formulate this as a conditional
graph generation problem where the targeted proper-
ties are treated as conditions. However, it is difficult to
assume the distributions of the properties as most the
distribution of the real-world properties are unknown
or too sophisticated to be predefined. Moreover, exist-
ing works need to assume the independency among the
properties which usually is also not true, for example,
cLogP and cLogS are highly correlated. Thus, more
powerful methods that can automatically estimate the
distributions of the inter-correlated properties are im-
perative. Moreover, the correspondence between latent
variables and properties learned by the models need to
be simple (e.g., monotonic and smooth) and hence eas-
ily controllable. For example, if the correspondence is
a monotonic mapping then we can enlarge the latent
variable’s value to increase (or descrease) the value of a
property. As shown in Fig. 1(a), tuning the age in the
generated image is not easy since increasing z may or
may not increase or decrease the age. Similar trouble is
also in Fig. 1(c). But in Fig. 1(b) and (d), it is much
easier to tune the properties thanks to the monotonic
relation between latent variables and targeted proper-
ties.

In this paper, we address the above limitations by
proposing a Monotonic Disentangled VAE, (MDVAE),
which is a new framework that enhances the inter-
pretability and controllability of deep graph generation
of molecules. Specifically, a disentanglement loss is first
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generation with control: Drug-likeness control is now easy,

introduced to enforce the disentanglement of latent vari-
ables for capturing more interpretable, factorized latent
variables. In order to generate molecules with the de-
sired properties, we then enforce a monotonic constraint
over the correspondence between some latent variables
and the targeted properties. Multiple strategies have
also been proposed to instantiate the correspondence in-
cluding linear and polynomial for the trade-off between
model controllability and expressiveness. The contribu-
tions of this work are summarized as follows:

e A new framework of monotonically-
constrained graph VAE is proposed for
controllable generation. The proposed model
encodes the molecule structure into the latent
disentangled variables, which can be used to
reversely generate the molecules with desired
properties with potential inter-correlations.

e A polynomial parametrization for mapping
latent variables to properties is introduced.
Our proposed polynomial parametrization explic-
itly enables the model to learn the linear and non-
linear relationship between the latent variables and
the desired properties with better trade-off between
model capacity and transparency.

e Various monotonic constraint strategies are
proposed for regularizing the mapping be-
tween latent variables and molecule proper-
ties toward better controllability. Gradient-
based and direction-based monotonic constraints
are both proposed to regularize the mapping be-
tween latent variables and molecule properties.
Such constraints have further been generalized to
handle the situation when molecule properties are
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correlated.

e Extensive experiments demonstrated the ef-
fectiveness, interpretability, and controlla-
bility of our proposed models. Qualitative and
quantitative evaluations on multiple benchmark
datasets demonstrated that the proposed models
have outperformed the state-of-the-art methods by
generating more accurate and better molecules by
up to 68% improvement in learning a more accu-
rate molecular property distribution, up to 43% im-
provement in interpretability, and up to 34% im-
provement in controlling the molecular properties.

2 Related Work

Early deep learning-based works in [4, 10, 11] built
generative models of SMILES strings with recurrent de-
coders. SMILES is a formal grammar that describes
molecules with an alphabet of characters. For in-
stance, ‘c’ and ‘C’ denote aromatic and aliphatic carbon
atoms; ‘O’ denotes the oxygen atom; ‘-’ denotes sin-
gle bonds; ‘=" denotes double bonds, and so on. Since
initial models could generate invalid molecules, later
works [5, 12] introduced syntactic and semantic con-
straints by context-free and attribute grammars; yet,
the resulting models could not fully capture chemi-
cal validity. Other methods aimed to generate valid
molecules by leveraging active learning [13] and rein-
forcement learning [14].

Graph-generative models now present an alterna-
tive approach to molecule generation. For example,
work in [6] generates molecular graphs by predict-
ing their adjacency matrices. Work in [15] generates
molecules through a constrained graph generative model
that enforces validity by generating the molecule atom
by atom. The majority of existing models are based
on the VAE framework [6, 16, 17, 18, 19, 20, 21, 22]
or generative adversarial networks (GANSs) [23, 24, 25],
and others [26, 15, 27]. For instance, GraphRNN [26]
builds an autoregressive generative model based on a
generative recurrent neural network (RNN) by repre-
senting the graph as a sequence and generating nodes
one by one. In contrast, GraphVAE [6] represents each
graph in terms of its adjacent matrix and feature vec-
tors of nodes. A VAE model is then utilized to learn
the distribution of the graphs conditioned on a latent
representation at the graph level. Other works [28, 29]
encode the nodes of each graph into node-level embed-
dings and predict the links between each pair of nodes
to generate a graph.

In this work, we leverage recent advances in dis-
entangled representation learning to further advance
molecule generation.

Currently, disentangled representation learning

based on VAE is mainly limited in the domain of image
representation learning [30, 31, 32, 33]. The goal is to
learn representations that separate out the underlying
explanatory factors responsible for formalizing the data.
Disentangled representations are inherently more inter-
pretable and can, thus, potentially facilitate debugging
and auditing [30, 31, 34, 33, 35, 36].

However, how to best learn representations that
disentangle the latent factors behind a graph remains
largely unexplored. Though few works are proposed for
interpreting the graph representations [37], they do not
focus on the graph generation task. In addition, uti-
lizing disentanglement learning for molecule generation
with desired properties is critical yet seldom explored.

3 Methods

3.1 Problem Formulation The structure of a
molecule can be defined as a graph G = (V,&,E,F),
where V is the set of N nodes (the atoms) and £ C VxV
is the set of M edges (the bonds that connect pairs of
atoms). €; ; € £ is an edge connecting nodes v; € V and
v; € V. E € RV*N*K refors to the edge type tensor
(ie. bond type), where E; ; € R'¥ is an one-hot vec-
tor encoding the type of edge €; ;. K is the number of

r
RN*E" rofers to a node’s feature ma-

edge types. F €
trix, where F; € R*K " is the one-hot encoding vector
denoting the type of atom v; € V, and K’ is the total
number of atom types. We also pre-define a set of molec-
ular properties, such as clogP and molecular weight, as
a vector of real-valued variables Y = {Y(1) .. [ Y())},
where Y () is the value of the j-th property.

Our goal is to learn the generative process
p(G,Y|Z) of a molecule G and its properties Y, char-
acterized by latent variables Z. Considering that this
process is obscure to be fully prescribed, we aim at char-
acterizing it in a data-driven manner by latent variables
Z learned automatically by end-to-end deep generative
models (e.g., VAEs and GANs). To further enhance the
interpretability and controllability of Z, we will also aim
to disentangle the latent variables and maximize the
correspondence between (some of) them and the real
molecule properties.

3.2 Monotonically Disentangled VAE (MD-
VAE) Here we first introduce the proposed MDVAE
model and its inference. Then we describe how to fur-
ther enforce disentanglement among latent variables as
well as their monotonic relation to molecule properties.

3.2.1 Disentangled Deep Generative Models
for Molecule Graphs. Learning ps(G,Y|Z) re-
quires the inference of its posterior ps(Z|G,Y). Be-
cause this inference is intractable, we need to de-
fine an approximated posterior g4(Z|G,Y) that is
computationally tractable. We then minimize the
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Figure 2: (a) The conditional models of the baseline models and our proposed models, including the encoder (left) and
the decoder (right). The encoder encodes a molecular graph to a smooth latent representation. The decoder decodes
a novel molecular graph from the latent representation (and a property Y). Dotted node represents disentangled latent
representation, dotted line denotes polynomial and monotonic constraints. (b) MDVAE Framework. Molecule is represented
as a graph, atom as a node, bond as a edge. The encoder encodes the graph into latent representation z, characterized by
mean z, and z, where disentalgment is enhanced. The decoder decodes the novel molecule from the latent representation.
(c) Monotonic constraint is enforced in the latent representation z to control the relationship between the latent variables

and the observed properties.

Kullback-Leibler divergence (KLD) between them
Dir(94(Z|G,Y)||pe(Z|G,Y)) to ensure that the ap-
proximated posterior is close to the true posterior. This
is well-known to amount to maximizing the evidence
lower-bound ([38]), as follows:

(3.1) max Eq,(2G,Y )[logpe(G,Y|Z)]
Y Dilag(Zi1G.Y)|p(20)

where ¢ is the parameter of the approximated pos-
terior g4. The prior p(Z) follows an isotropic Gaus-
sian such that each Z; is independent of the others.
Hence, the KL Divergence in the second term be-
tween g4(Z|G,Y) and p(Z) will encourage the disen-
tanglement among the variables in Z in the inferred
45(Z|G,Y). Here A can control the strength of this en-
forcement, and the lager it is, the more independence
different variables in Z will have. This can be achieved
if we set the prior to be an isotropic unit Gaussian,
i.e. p(Z) = N(0,I), leading to the constrained optimiza-
tion problem maxg 4 Ecp [E%(Z|G,y)£ogpg(G, Y|Z)] un-
der the condition that Dy (q,:(Z|G,Y)||p(Z)) < e,
where € specifies the strength of the applied constraint;
D refers to the observed set of molecules, and D, (+)
denotes the Kullback—Leibler divergence (KLD) be-
tween two distributions. Considering Z is conditionally
independent to Y given G yields ¢4(Z|G,Y) = ¢4(Z|G)
and DIP-VAE [39] introduces disentanglement enforce-
ment term D(g4(Z)||p(Z)) with loss:

(3.2)

+Eq,(z|c)llogpe(Y|G, Z)] —

max Eyy 210 logp(GI2)] — aD(a5(2)]p(2)

AY", Drcr(ao(Z1G)l1p(Z0)

76

which enforces the monotonicity of the relation between
Z and Y in the following:

3.2.2 Monotonic Correlation towards Targeted
Properties Disentanglement among latent variables
Z is deemed to improve the interpretability of VAE
models ([40]). Here we go beyond this to correlate
a subset of latent variables to important molecular
properties (e.g., drug-likeness, water solubility, and
clogP) to further enhance the interpretability of our
latent variable, as well as better control the generated
molecule’s properties via tuning of the latent variables.

Specifically, we have two aims: (1) Aim 1: Cor-
relating latent variables and real properties: We
explicitly relate one of the latent variables Z; € Z in
the disentangled latent representation to the predefined
property set Y; in a pairwise style; (2) Aim 2: En-
forcing monotonic correlation: We accommodate
the non-linearity of the correlation between latent vari-
ables and targeted properties but encourage monotonic
correlation, in order to ensure that the correlation is
either positive or negative for effective control. This
means that if we want to increase (or decrease) a given
property, we can just increase (or decrease) the corre-
sponding latent variable’s value accordingly.

For the first aim, we first consider the scenario
where the molecule properties are independent with
each other:

(3:3) Ve Eq,(z|c)llogpe(G|Z)] — aD(g4(Z)|Ip(Z))
+ 3 By zicllogpo(517,)

—AY) Dru(ao(Zi1G) 1p(2)
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where each property Y; corresponds to each latent
variable Z;, meaning p(Y;|Z) = p(Y;|Z;). This also
leads to conditional independence between G and Y;
given Z;, meaning ps(Y;|G, Z;) = pe(Y;|Z;).

For the second aim, to enforce the monotonic
relationship between properties and latent variables,
we require for any property j that we have VZ:EI) <

Z}Z} : Yj(l) < Yj(z), where Zgl), Z? are two values of
latent variable Z; from g4(Z;|G), while Y; refers to any
molecule property. The overall objective of our model
is now reformulated as:

(3-4) max Ey, (zi6) logpe(G|Z)] — aD(g4(2)||p(2))

+ Zj Eq,(z16)llogpe (¥;1Z;)
=AY Dci (as(ZilG)Ip(Z:)

stvz{) <7 v0 <v®, 70,2 ~ 44(216).

As mentioned above, Y; is dependent merely on Zj, so
we can define a function mapping F; : R — R from Z;
to Y;. F; can be any function such as polynomial or
multi-layer perceptron that can effectively fit arbitrar-
ily complex (non-)linear mapping. Enforcing the con-
straint of Equation (3.4) is equivalent to enforcing the
monotonicity of function Fj.

3.3 Monotonic Regularization of MDVAE As
mentioned in the discussion under Equation (3.4), we
need to enforce the monotonicity of Fj, j ={1,---,J}.
This amounts to penalizing the violation of constraints
via an additional regularization term R together with
the original objective in Equation (3.4). In the follow-
ing, we propose two different ways.

Gradient-based monotonic regularization. In this
way, we enforce that the gradient of function Fj(Z;) is
always positive or negative to enforce its monotonicity.
Without loss of generality, here we require the derivative
to be always positive. That means we want to enforce
that d%ﬁ > 0, where Z; is any of the latent variables.

Hence, the following regularization term will punish its
dF;(Z;) )
dZ; -
This term can be implemented using the following
regularization term R(Z) using ReLU [41], as in:

Z Eq,(zc)ReLU[— déz )

violation: max(0, —

35) R(Z)=

where J refers to the number of the targeted molecule
properties. Note that without loss of generality, we
only consider Z; as a scalar here. However, our

framework can be easily extended to handle multiple
latent variables by generalizing it as a vector; for
each element in this vector, one can perform a ReLU
operation the same as that in Eq. 3.5 and then sum
up all of those corresponding to the multiple variables
involved.

Direction-based monotonic regularization. The
second way starts from the standard definition of mono-
tonicity: (Fj(zq) — Fj(z3)) - (z1 — z3) = 0, where
x1, Tg are any latent variables. Such nonlinear con-
straint is difficult to enforce, so we instead penalize
the following term in the objective as an equivalence:
max(0, —(Fj(z1) — Fj(z2)) - (z1 — z2)), which can be
implemented using the following regularization term
R(y, Z) via ReLlU function as well as additional deno-

tations:

J
R(Y,2) =3 Ec,compe(c2)

(36) [, ReLU-(YS" — V) (2" - 287)),
where J refers to the number of the molecule properties,
and YJ.G" refers to the j-th molecule property of the
molecule G. The molecule G; and G are two arbitrary
molecules sampled from the distribution of the observed
graphs, and Zf‘ , Zf 2 are j-th latent variable of them.
Note that without loss of generality, our denotation here
only considers Z Gk as a scalar, but our framework can
be easily extended to handle multiple latent variables by
generalizing it as a vector, similar to the Gradient-based
approach.

Generalization of group-based correlated prop-
erties. To handle the situations when some molecule
properties are correlated, we generalize the above frame-
work to the group-based disentanglement strategy.

We define j-th group of variables Z; C Z which
correlate to a group of molecule properties J; C Y.
Hence, the overall learning objective for the group-based
disentanglement learning (Eq. (3.4) + Eq. (3.5)) is:

(3.7)  max Eq, z|c)[logpe(G|2)] — aD(a4(2)llp(2))

~AY) Dru(ag(Zi1G)1p(2)

+ 8 Zj Zi Eq,z16)llog pe(V;.il Z5)

OF;(2;)
=72, 2, Bayzio)ReLU[- oz, ”

4 Results

This section reports on qualitative and quantitative
experiments carried out to evaluate the performance
of the proposed MDVAE model. All experiments are
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Table 1: Novelty, uniqueness, and validity are measured on molecule datasets generated by the various models under

comparison. The highest value on a metric is highlighted in bold font.

Dataset Metric ChemVAE GrammarVAE GraphVAE GraphGMG LSTM CGVAE DVAE MDVAE
% Validity 10.00 30.00 61.00 - 94.78 100.00 100.00 100.00

QM9 % Novelty 90.00 95.44 85.00 - 82.98 96.33 98.10 98.23

% Unique 67.50 9.30 40.90 - 96.94 98.03 99.10 99.46

% Validity 17.00 31.00 14.00 89.20 96.80 100.00 100.00 100.00

ZINC % Novelty 98.00 100.00 100.00 89.10 100.00 100.00 100.00 100.00

% Unique 30.98 10.76 31.60 99.41 99.97 99.82 99.84 99.98

conducted on a 64-bit machine with an NVIDIA GPU
(GeForce RTX 2080Ti, 1545MHz, 11GB GDDRS).

Experiment Set-up We compare MDVAE with
6 state-of-the-art deep generative models on molecules:
CGVAE [42], GraphGMG [43], SMILES-LSTM [44],
ChemVAE [4], GrammarVAE [5], GraphVAE [6],
detailed in Supplementary Material. @We use the
gradient-based approach for MDVAE during the exper-
iments. Further, we add to this list the Disentangled
VAE (DVAE) to serve as a baseline model. DVAE
shares a similar objective with MDVAE but utilizes
a linear reparametrization function rather than MD-
VAE’s monotonic regularization term and polynomial
reparametrization. It is worth noting that CGVAE [42]
has a similar encoder and decoder to the proposed MD-
VAE and DVAE models but does not contain the pro-
posed disentanglement and monotonic enforcement. So,
the comparison of MDVAE with CGVAE represents
an ablation study that allows us to test the effective-
ness of the proposed disentanglement and monotonic
enforcement in MDVAE and the comparison of MD-
VAE with DVAE represent an ablation study that test
the effectiveness of polynomial reparametrization and
monotonic enforcement. Detailed model hyperparame-
ters and architectures can be found in Supplementary
Material.

Datasets We consider two popular benchmark
datasets. (1) The QM9 Dataset [45] consists of around
134k stable small organic molecules with up to 9 heavy
atoms (Carbon (C), Oxygen (O), Nitrogen (N) and Flu-
orine (F)), with a 120k/20k split for training versus val-
idation. (2) The ZINC Dataset [46] contains around
250k drug-like chemical compounds with an average of
around 23 heavy atoms, with a 60k/10k split for train-
ing versus validation.

4.1 Comparison with State-of-the-art Methods
We first evaluate and compare the quality of gener-
ated molecules across the various deep generative mod-
els. All models are trained on each of the two bench-
mark datasets, and 30,000 molecules are then gener-
ated /sampled from each trained model for the purpose
of evaluation.

Table 1 reports on three popular metrics: nov-
elty, which measures the fraction of generated molecules

that are not in the training dataset; uniqueness, which
measures the fraction of generated molecules after and
before removing duplicates; and wvalidity, which mea-
sures the fraction of generated molecules that are chem-
ically valid. As Table 1 shows, CGVAE, MDVAE, and
DVAE achieve 100% validity; that is, 100% of gen-
erated molecules are chemically-valid, which is signif-
icantly higher than other methods. This is due to the
sequence decoding process, which takes a valency check
step by step and so ensures that generated molecules
are valid.

Table 1 also shows that MDVAE and DVAE gen-
erate up to 100% novel molecules, which is higher than
other methods, including CGVAE. Note that CGVAE
shares a similar architecture with MDVAE and DVAE
but without the disentanglement enforcement. This al-
lows us to conclude that the higher novelty achieved by
MDVAE and DVAE is due to the disentangled repre-
sentation, which can fully explore molecular patterns.
In particular, adding the disentanglement regulariza-
tion does not affect the reconstruction error and so does
not sacrifice the quality of generated molecules. We
note that the LSTM method also works well on the
ZINC dataset but worse on the QM9 dataset, which
has a more complex data distribution with drug-like
molecules. Our models and CGVAE have the highest

performance on uniqueness, over 99%.

Table 2: Evaluation of disentanglement on the QM9 and
ZINC datasets.

Dataset | Model  A-M (%)T F-M(%)T DCIT Modf
CGVAE 100 72.0 0.151 0.634

QM9 DVAE 100 T6.4 0.152 0.671
MDVAE 100 TR.8 0.209 0.690

CGVAE 100 61.6 0.109 0.604

ZINC DVAE 100 62.4 0.111 0.611
MDVAE 100 64.4 0.156 0.621

4.2 Evaluating Impact of Disentanglement We
now further compare CGVAE, DVAE, and MDVAE
in Table 2 on disentanglement of the learned latent
distributions. We utilize four popular metrics to do
so: B-MJ[32], F-M[33], MOD [47], DCI [48], detailed
explanations can be found in Supplementary Material.

Table 2 shows that our models achieve the best

overall disentanglement scores. Specifically, all models
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Figure 3: MI heatmaps between latent variables and molecular properties (cLogP, cLogS, molecular weight, and drug-
likeness. MI is normalized between O and 1) (better seen in color).

achieve 100 on the 8-M score on both datasets. On the
F-M score, on both datasets, MDVAE performs best,
followed by DVAE, and CGVAE in this order. Sim-
ilar ranking is observed on the DCI and Mod scores
on both datasets. On the DCI score, DVAE performs
slightly higher than CGVAE, with MDVAE performing
much better than both. Similar observations hold on
the Mod score comparison. It is worth noting that all
three models are challenged more by the ZINC than the
QM9 dataset with regards to the DCI score; the ZINC
dataset is larger and contains larger molecules, as well,
and it is possible that this results in more latent vari-
ables. Altogether, these results show that the proposed
MDVAE and DVAE can successfully learn the disentan-
gled latent representations better than CGVAE.

4.3 Performance in Molecular Property Con-
trol Here, CGVAE, DVAE, and MDVAE are evalu-
ated on whether the latent variables capture desired
properties. First, we identify four properties, cLogP,
cLogS, molecular weight, and drug-likeness to evaluate
further (the linear correlation of paired molecular prop-
erties is visualized in Supplementary Material; specifi-
cally, we utilize mutual information (MI), implemented
via the the scikit-learn library, to measure the mutual
dependency between each latent variable and each of
the four above properties. These results are related via
heatmaps in Figure 3, which shows the MI for the pairs
(z0, clogP), (z1, cLogS), (z2, molecular weight), and
(23, drug-likeness). To make CGVAE comparable to
our polynomial reparameterization and monotonic con-
straint, we implement a linear control over the latent
representation z and properties p. It is clear that the
polynomial function greatly increases property control;
a much larger MI is achieved with all four properties.
DVAE ranks second, which shows that disentanglement
enhancement improves controllability. The other latent
variables do not interfere with the properties with which
we pair the specific latent variables zg — z4. The con-
ditioning on drug-likeness has a strong control over the
cLogP property; even though we do not observe a linear
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correlation between these two properties, drug discov-
ery literature shows that drug-likeness is correlated to
cLogP [9].

4.4 Qualitative Evaluation for Disentangle-
ment and Property Control We demonstrate qual-
itatively that MDVAE and DVAE consistently discover
latent variables and use them to control molecular prop-
erties in a monotonous fashion. By jointly changing the
value of one latent variable continuously and fixing the
remaining latent variables, we can visualize the corre-
sponding variation of molecular properties in the gener-
ated graphs. Figure 4 plots the variation of each prop-
erty along with the change of its target latent variable.
More results can be found in Supplementary Material.

|latent variable z vs clogs curve latent variable z vs drug-likeness curve
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Figure 4: The relationship between the latent variable
z; and properties of the molecules generated by CGVAE,
DVAE, and MDVAE.

Figure 4 shows that MDVAE monotonically cap-
tures the disentangled latent variables that control
molecular weight and drug-likeness. There are obvious
fluctuations of all four properties when controlled by the
latent variables learned from DVAE and CGVAE (see
the green and blue lines). This is most visible in the
steep decrease and increase of clogS when z ranges from
—4 to —1, while the property of the generated molecules
by MDVAE monotonically decreases (see the red solid
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line). This demonstrates that the proposed monotonic
correlation regularization term is necessary and effective
in preserving the monotonic correlation between each
molecule property and its relevant latent variable for
better control of the molecule generation to obtain the
desired properties.

Finally, in Figure 5 we show how generated
molecules change when the value of the latent variable
zp and z; changes from —5 to 5 and 5 to —5. The
molecular weight scores are shown at the bottom of each
molecule. Compared to DVAE, the proposed MDVAE
model is more powerful at generating valid and high-
quality molecules along with the variation of the latent
variables. We can observe that molecular weight in-
creases with the increase of the value of one of the latent
variables. More results can be found in Supplementary

Material.
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Figure 5: Molecules generated by MDVAE (top row) and
DVAE (bottom row) as we increase the value of the latent
variable for molecular weight.

5 Conclusion

This paper proposes a new disentangled deep gen-
erative framework for interpretable molecule generation
with property control via a graph-based disentangled
VAE. We derive new objectives which further enforce
non-linearity and monotonicity of the relation between
some latent variables and target molecule properties.
The proposed models are validated on two real-world
molecule datasets for three tasks: molecule generation,
disentangled representation learning, and control of the
generation process. Quantitative and qualitative evalu-
ation results show the promise of disentangled represen-
tation learning in interpreting and controlling molecular
properties during the generation process.
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