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ABSTRACT

Localizing the source of graph diffusion phenomena, such as misin-
formation propagation, is an important yet extremely challenging
task in the real world. Existing source localization models typi-
cally are heavily dependent on the hand-crafted rules and only
tailored for certain domain-specific applications. Unfortunately, a
large portion of the graph diffusion process for many applications
is still unknown to human beings so it is important to have ex-
pressive models for learning such underlying rules automatically.
Recently, there is a surge of research body on expressive models
such as Graph Neural Networks (GNNs) for automatically learn-
ing the underlying graph diffusion. However, source localization
is instead the inverse of graph diffusion, which is a typical inverse
problem in graphs that is well-known to be ill-posed because there
can be multiple solutions and hence different from the traditional
(semi-)supervised learning settings. This paper aims to establish a
generic framework of invertible graph diffusion models for source
localization on graphs, namely Invertible Validity-aware Graph
Diffusion (IVGD), to handle major challenges including 1) Difficulty
to leverage knowledge in graph diffusion models for modeling their
inverse processes in an end-to-end fashion, 2) Difficulty to ensure
the validity of the inferred sources, and 3) Efficiency and scalability
in source inference. Specifically, first, to inversely infer sources of
graph diffusion, we propose a graph residual scenario to make exist-
ing graph diffusion models invertible with theoretical guarantees;
second, we develop a novel error compensation mechanism that
learns to offset the errors of the inferred sources. Finally, to ensure
the validity of the inferred sources, a new set of validity-aware
layers have been devised to project inferred sources to feasible
regions by flexibly encoding constraints with unrolled optimization
techniques. A linearization technique is proposed to strengthen
the efficiency of our proposed layers. The convergence of the pro-
posed IVGD is proven theoretically. Extensive experiments on nine
real-world datasets demonstrate that our proposed IVGD outper-
forms state-of-the-art comparison methods significantly. We have
released our code at https://github.com/xianggebenben/IVGD.
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1 INTRODUCTION

Graphs are prevalent data structures where nodes are connected by
their relations. They have been widely applied in various domains
such as social networks [44], biological networks [28], and informa-
tion networks [21]. As a fundamental task in graph mining, graph
diffusion aims to predict future graph cascade patterns given source
nodes. However, its inverse problem, graph source localization, is
rarely explored and yet is an extremely important topic. It aims to
detect source nodes given their future graph cascade patterns. As an
example shown in Figure 1, the goal of graph diffusion is to predict
the cascade pattern {b, ¢, d, e} given a source node b; while the goal
of graph source localization is to detect source nodes b or c given
the cascade pattern {b, ¢, d, e}. Graph source localization covers a
wide range of promising research and real-world applications. For
example, misinformation such as “drinking bleach or alcohol can
prevent or kill the virus" [24] in social networks is required to detect
as early as possible, in order to prevent it from spreading; Email is
a primary vehicle to transmit computer viruses, and thus tracking
the source Emails carrying viruses in the Email networks is integral
to computer security [39]; malware detection aims to position the
source of malware in the Internet of Things (IoT) network [26].
Therefore, the graph source localization problem entails attention
and extensive investigations from machine learning researchers.
The forward process in Figure 1, namely, graph diffusion, has
been studied for a long time, by traditional prescribed methods
based on hand-crafted rules and heuristics such as SEHP [3], OSLOR
[14], and DSHP [15]. Following similar styles of traditional graph
diffusion methods, classical methods for its inverse process, namely
source localization of graph diffusion, have also been dominated
by prescribed approaches. Specifically, a majority of methods are
based on predefined rules, by utilizing either heuristics or metrics
to select sources such as distance errors. Some other prescribed
methods partition nodes into different clusters based on network
topologies, and select source nodes in each cluster. These prescribed
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Figure 1: An example of information diffusion: different
source nodes generate the same cascade pattern.

methods rely heavily on human predefined heuristics and rules and
usually are specialized for specific applications. Therefore, they
may not be suitable for applications where prior knowledge on dif-
fusion mechanisms is unavailable. Recently, with the development
of GNNs [55], Dong et al. utilized state-of-the-art architectures such
as Graph Convolutional Network (GCN) to localize the source of
misinformation [16]. However, their method requires results from
prescribed methods as its input, and hence still suffers from the
drawback of prescribed methods mentioned above.

In recent years, the advancement of GNNs leads to state-of-the-
art performance in many graph mining tasks such as node classifi-
cation and link prediction. They can incorporate node attributes
into models and learn node representations effectively by capturing
network topology and neighboring information [32]. They have
recently expanded their success into graph diffusion problems [8],
by tackling the drawbacks of traditional prescribed methods in
graph diffusion. specifically, instead of requiring prior knowledge
and rules of diffusion, GNNs based methods can "learn" rules from
the data in an end-to-end fashion. Although GNNs have been well
applied for performing graph diffusion tasks, however, it is difficult
to devise their inverse counterparts (i.e. graph source localization
models) because such an inverse problem is much more difficult and
involves three key challenges: 1). Difficulty to leverage knowl-
edge in graph diffusion models for modeling their inverse
processes in an end-to-end fashion. The learned knowledge
from graph diffusion models facilitates source localization. For ex-
ample, as shown in Figure 1, while nodes b and ¢ generate the same
cascade pattern {b, c, d, e}, the learned knowledge from graph dif-
fusion models is useful to predict which node is likely to be the
source. However, it is extremely challenging to incorporate such
a notion into the inverse problem in an end-to-end manner, and
it is prohibitively difficult to define hand-crafted ways to achieve
it with graph diffusion models directly since they are opposite
processes. 2). Difficulty to ensure the validity of the inferred
sources. Graph sources usually follow validate graph patterns. For
example, in the application of misinformation detection, sources
of misinformation should be connected in the social networks. As
another example, sources of malware are dense in some restricted
regions of the IoT networks. Such validity constraints are imposed
both in the training and test phases, which should be achieved by
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delicately-designed activation layers. Traditional activation layers
such as softmax are exerted on individual nodes. However, validity
constraints require the projection of multiple sources by consider-
ing their topological connections. 3). Efficiency and scalability
in source inference. Inferring sources constrained by validity pat-
terns is a combinatorial problem and hence is time-consuming. To
multiply the difficulty, the inverse process of graph diffusion models
should also be inferred. Therefore, devising a scalable and efficient
algorithm is important yet challenging.

In this paper, we propose a novel Invertible Validity-aware Graph
Diffusion (IVGD) to simultaneously tackle all these challenges.
Specifically, given a graph diffusion model, we make it invertible
by restricting its Lipschitz constant for the residual GNNs, and thus
an approximate estimation of source localization can be obtained
by its inversion, and then a compensation module is presented to
reduce the introduced errors with skip connection. Moreover, we
leverage the unrolled optimization technique to integrate validity
constraints into the model, where each layer is encoded by a con-
strained optimization problem. To combat efficiency and scalability
problems, a linearization technique is used to transform problems
into solvable ones, which can be efficiently solved by closed-form
solutions. Finally, the convergence of the proposed IVGD to a feasi-
ble solution is proven theoretically. Our contributions in this work
can be summarized as follows:

¢ Design a generic end-to-end framework for source lo-
cation. We develop a framework for the inverse of graph
diffusion models, and learn rules of graph diffusion models
automatically. It does not require hand-crafted rules and can
be used for source localization. Our framework is generic to
any graph diffusion model, and the code has been released
publicly.

¢ Develop an invertible graph diffusion model with an
error compensation mechanism. We propose a new
graph residual net with Lipschitz regularization to ensure the
invertibility of graph diffusion models. Furthermore, we pro-
pose an error compensation mechanism to offset the errors
inferred from the graph residual net.

e Propose an efficient validity-aware layer to maintain
the validity of inferred sources. Our model can ensure
the validity of inferred sources by automatically learning
validity-aware layers. We further accelerate the optimiza-
tion of the proposed layers by leveraging a linearization
technique. It transforms nonconvex problems into convex
problems, which have closed-form solutions. Moreover, we
provide the convergence guarantees of the proposed IVGD
to a feasible solution.

e Conduct extensive experiments on nine datasets. Ex-
tensive experiments on nine datasets have been conducted
to demonstrate the effectiveness and robustness of our pro-
posed IVGD. Our proposed IVGD outperforms all compari-
son methods significantly on five metrics, especially 20% on
F1-Score.

2 RELATED WORK

In this work, we summarize existing works related to this paper,
which are shown as follows:
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Notations Descriptions

|4 Node set

E Edge set

Y; Diffusion vector at time 7

x The vector of source nodes

fw The function of feature construction

g The function of label propagation
®(x) =0 | The equality constraint of a validity pattern

T The length of diffusion

Table 1: Important notations and descriptions

Graph Diffusion: Graph diffusion is the task of predicting the
diffusion of information dissemination in networks. It has a wide
range of real-world applications such as societal event prediction
[47, 63, 64], and adverse event detection in social media [48, 49]. A
large number of research works have been conducted to improve
the quality of predictions. Most existing works usually assume
the topologies of networks and apply the classical probabilistic
graphical models. For example, Ahmed et al. identified patterns
of temporal evolution that are generalizable to distinct types of
data [1]; Bandari et al. constructed a multi-dimensional feature
space derived from properties of an article and evaluate the effi-
cacy of these features to serve as predictors of online diffusion [3].
More traditional methods can be found in various survey papers
[18, 37, 66]. However, they are applicable to a specific type of neural
network and are poorly generalizable. A recent line of research
works use Recurrent Neural Networks (RNN) to predict the diffu-
sion, and usually include multimodality such as text content and
time series [6, 11, 13, 57, 62]. Various techniques have been applied
including self-attention mechanism [6, 10, 52], knowledge base
[65], multi-task learning [12], and stochastic processes [7, 17, 34] .
However, they cannot utilize network topology to enhance predic-
tions. To handle this challenge, GNNs have been applied to predict
either macro-level (i.e. global level) tasks [8] or micro-level (i.e.
node level) tasks [22, 41, 50, 56] combined with RNN, and a handful
of works attempted to utilize other neural network architectures
[29, 43, 51, 58].

Graph Source Localization: The goal of the graph source local-
ization is to identify the source of a network based on observations
such as the states of the nodes and a subset of timestamps at which
the diffusion process reached the corresponding nodes [61]. Graph
source localization has a wide range of applications such as disease
localization, virus localization, and rumor detection. Several recent
surveys on this topic are available [27, 45, 46]. Similar to graph
diffusion models, existing graph source localization papers usually
require the assumptions of the diffusion, network topology, and
observations. With the development of GNNs, Dong et al. proposed
a Graph Convolutional Networks based Source Identification (GC-
NSI) model for multiple source localization [16]. However, its model
relies heavily on hand-crafted rules. Moreover, its performance suf-
fers from the class imbalance problem, as shown in experiments.

3 PROBLEM SETUP

In this section, the problem addressed by this research is formulated
mathematically in the form of an inverse problem.

3.1 Problem Formulation

Important notations are outlined in Table 1. Consider a graph
G =(V,E), where V = {v1,--- ,vn} and E are the node set and the
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edge set respectively, |V| = n is the number of nodes. Y; € {0,1}"
is a diffusion vector at time . Y; ; = 1 means that node i is diffused,
while Y ; = 0 means that node i is not diffused. S is a set of source
nodes. x € {0, 1}" is a vector of source nodes, x; = 1 if v; € S and
x; = 0 otherwise. The diffusion process begins at timestamp 0 and
terminates at timestamp T. While there are many existing GNN-
based graph diffusion models, a general GNN framework consists
of two stages: feature construction and label propagation. In the
feature construction, a neural network fyy is learned to estimate
the initial node diffusion vector { = fy/(x) based on input x, where
W is a set of learnable weights in fiy. In the label propagation, a
propagation function g is designed to diffuse information to neigh-
boring nodes: Y7 = g({). Therefore, the graph diffusion model is
0 = g(fw(x)), and its inverse problem, graph source localization,
is to infer x from Y7. Moreover, a validity pattern can be imposed
on sources in the form of the constraint ®(x) = 0 such as the num-
ber of source nodes, and the connectivity among multiple sources.
Then the graph source localization problem can be mathematically
formulated as follows:

07l Yy 5> x st ®(x) = 0. (1)

3.2 Challenges

It is extremely challenging to automatically learn the source local-
ization model 6! and solve the problem in Equation (1) given an
arbitrarily complex forward model such as deep neural networks
due to several key challenges: 1). The difficulty to integrate infor-
mation from 0 into 6=, The complex graph diffusion model 9 is
typically not invertible directly, so it is challenging to transfer the
knowledge from 6 into its graph inverse problem. 2). The difficulty
to incorporate ®(x) = 0 into 0. d(x) = 0 considers topological
connections of all nodes instead of an individual node, and it can
express complex validity patterns because of its nonlinearity. So it
is difficult to encode such validity information from all nodes to
activation layers. 3). Efficiency and scalability to solve Equation (1).
Solving Equation (1) is a combinatorial problem because Y; and x
are discrete. So it is imperative to develop an algorithm to solve
it efficiently, and to scale well on large-scale graphs (i.e. n is very

large).
4 PROPOSED IVGD FRAMEWORK

In this section, we propose a generic framework for graph source
localization, namely Invertible Validity-aware Graph Diffusion
(IVGD) to address these challenges simultaneously. The high-level
overview of the proposed IVGD framework is highlighted in Figure
2. Specifically, our proposed IVGD consists of two components: in
Figure 2(a), we propose an invertible graph residual net to address
Challenge 1, where the approximate estimation of graph source
localization can be obtained by inverting the graph residual net
with the integration of the proposed error compensation module
(Section 4.1); in Figure 2(b), a series of validity-aware layers are
introduced to resolve Challenges 2 and 3, which encode validity
constraints into problems with unrolled optimization techniques.
With the introduction of the linearization technique, they can be
solved efficiently with closed-form solutions (Section 4.2). We pro-
vide the convergence guarantees of our proposed IVGD to a feasible
solution (Section 4.3).



WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

(a). invertible graph residual net (b). validity-aware

layers

Junxiang Wang, Junji Jiang, and Liang Zhao

Algorithm 1 Inverse of the Graph Residual Net for Graph Source
Localization

graph diffusion
—

f

source localization
—

Figure 2: Framework overview: the proposed IVGD frame-
work consists of an invertible graph diffusion model and a
series of validity-aware layers.

4.1 The Invertible Graph Residual Net

Our goal in this subsection is to obtain an approximate estimation
of the source vector x based on the learned knowledge from the
graph diffusion model 6. One intuitive idea is to invert the process
of the forward model 6. The key challenge here is that 6 is not
necessarily invertible, so the task is that how to devise an invertible
architecture based on 6. To address this, we propose a novel invert-
ible graph residual net and provide theoretical guarantees to ensure
invertibility. After an approximate estimation of the source vector
z is obtained by the proposed invertible graph residual net, a simple
compensation module is introduced to reduce estimation errors,
which is denoted as x = C(z). Because z is close to x, we utilize
an MLP module Q to measure the deviation of z from x: z = Q(z).
A skip connection concatenates z and z to form the compensated
prediction z' =z+7Z =z+0(z). However, 2’ may be beyond range
(i.e. smaller than 0 or larger than 1). In order to remove such bias,
a piecewise-linear function is utilized to truncate bias as follows:
x = min(max(0, z//), 1).

Now we aim to devise an invertible GNN-based architecture.
While there are many classic invertible architectures such as i-
Revnet and Glow [9, 25, 31], their forms are quite complex and
require extra components to ensure one-to-one mapping. i-ResNet,
However, stands out among others because of its simplicity and
outstanding performance, and it allows for the form-free design
of layers [4]. We extend the idea of the i-Resnet to the GNN by
regularizing its Lipschitz coefficient. To achieve this, we first for-
mulate the graph residual net of the general GNN framework.
{ = Fw(x) = (fw(x) + x)/2 and Y7 = G({) = (9({) + {)/2 are
graph residual blocks of feature construction and label propaga-
tion, respectively. P(x) = G(Fiy(x)) denotes the graph residual net
for graph diffusion, and P~! denotes its inverse for graph source
localization. Next, P can be inversed to P~! by simply fixed point
iterations. Algorithm 1 demonstrates the inverse process of the
graph residual net for source localization. Specifically, Line 1 and
Line 5 are initializations of label propagation and feature construc-
tion, respectively. Lines 2-4 and Lines 6-8 are fixed-point iterations
of label propagation and feature construction, respectively.

Next, we provide theoretical guarantees on the invertibility of
the graph residual net. Specifically, we prove a sufficient condition
to ensure invertibility and discuss practical issues to satisfy such
conditions. The following theorem provides a sufficient condition
for the invertibility of the graph residual net.

THEOREM 4.1 (SUFFICIENT CONDITION FOR THE INVERTIBILITY
OF THE GRAPH RESIDUAL NET). The graph residual net P is invertible
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Require: fy, g, YT, m {the number of iterations}.
Ensure: z {an estimation of the source vector x}.
1: {° = Yt {Initialization of label propagation}

2: for i=1to m do

3 ¢'=2Yr — g({*") {Fix point iteration of label propagation}

4: end for

5: 20 = ¢™ {Initialization of feature construction}

6: for i=1to m do

7.z} =20™ - fiv(z"™") {Fix point iteration of feature construction}
8: end for

9: Output z.

ifLf <1andLg <1, where Ly and Ly are Lipschitz constants of
fw (x) and g({), respectively.
Proor. Because P = G(Fyy), P is invertible if Fyy and G are

invertible. We have x = 2{ — fiy(x) and { = 2Y7 — g({) by the
definitions of Fyy and G, and rewrite them as iterations as follows:

x* = and x**1 =27 —fw(xk)
{0 =Y and {1 = 2v7 - g(¢*)

where limy_,, x* = x and limy _, o {k = { are fixed points if xk
and {k converge. Because fjy and g are operators on a Banach
space, Ly < 1and Ly < 1 guarantee convergence by the Banach
fixed point theorem [4]. O

Then the following lemma provides the upper bound of the
Lipschitz constants of the graph residual net.

LEMMA 4.2 (THE LIPSCHITZ CONSTANTS OF THE GRAPH RESIDUAL
NET). Let Lp and Lp-1 be Lipschitz constants of P and P!, respec-

(1+Lf)(1+Ly)
——

) 4
tively, then Lp < ,andLp-1 < I-L)(-Ly)

SKETCH OF PROOF. To prove this lemma, we need to show that
r " ’ (L '+1)(L +1)
foranyx ,x . [|P(x")—P(x)|| < ~L—=2—||

oo 1, 1, 4 ” ’
Y.y, 1P @y )-P ()l < m”y =y || The complete
proof is shown in Section A in the appendix. O

x —x ||, and for any

Based on Theorem 4.1 and Lemma 4.2, we conclude that the
Lipschitz constant of P is less than 1 and therefore P is invertible.
Now we briefly discuss how to guarantee the Lipschitz constraints
in practice. For Fyy, which contains a set of learnable weights W,
the power iteration method can be applied to normalize W so that
its norm is smaller than 1 [20]. For G, many classical propagation
functions such as the Independent Cascade (IC) function satisfies
this condition [56].

4.2 Validity-aware Layers

The invertible graph residual net provides an estimation of source lo-
calization, However, the validity constraint ®(x) = 0 is still required
to satisfy. Specifically, we aim to resolve the following optimization

problem:
miny R(x) s.t. x=0C(z), ®(x)=0. (2)

where R(x) is a loss function, and z is the output of the graph
residual net in Algorithm 1. However, Equation (2) is unsolvable
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due to the potential constraint conflict x = C(z) and ®(x) = 0. To
address this, Equation (2) is reduced to the following optimization
problem:

miny R(x) + %Hx —C@)|? s.t. d(x) = 0. 3)

where 7 > 0 is a tuning parameter to balance the loss and the error
compensation module. Then the task here is to design activation
layers, in order to solve Equation (3). While traditional activation
layers focus on individual nodes, and cannot handle difficult con-
straints, unrolled optimization techniques are potential ways to
incorporate complex validity patterns into the model. Motivated
by the recent development of ADMM-Net [60] and OptNet [2], a
potential solution to Equation (3) can be achieved by unrolling the
problem into a neural net, where each layer is designed for the
following optimization problem:

xR+ arg miny ]k(x) s.t. d(x) =0, (4)
where J¥(x) = R(x) + %Hx - Ck(xk)||§ and x° = z. x¥ and xk*!
are the input and the output of the k-th layer, respectively. To solve
Equation (4), the augmented Lagrangian function is formulated
mathematically as follows [5]:

H*(x, 1) = T5(x) + ¥* (x, 1),

where ¥¥(x, 1) = 2’%((). + pk<I>(x))2 - A%), p > 0 is a hyperpa-
rameter, and A is a dual variable to address ®(x) = 0. To optimize
H¥(x, 1), the OptNet updates variables via the implicit gradients
of the Karush-Kuhn-Tucker (KKT) conditions [2]. However, its
computational efficiency is limited due to the nonconvexity and
nonlinearity of ®(x), and scales poorly on the large-scale networks
(i-e. Challenge 3 in Section 3.2). To address this, we utilize a lin-
earization technique to transform the nonconvex H k(x, ) to the
convex h*(x) as follows [59]:

k
B () = K Ge) + 0 ()T (5 AF) = ) + S e = K,

where a¥ > 0 is a hyperparameter to control the quadratic term.
We formulate the validity-aware layer as follows:

XK arg miny hk(x),

/1k+l (_)’k +pkq)(xk+l)'

Specifically, CK, p¥, 7 a* can be considered as learnable parame-

ters of the k-th layer. Notice that if R(x) is a mean square error, then
Rk (x) is quadratic and has a closed-form solution. Validity-aware
layers can be trained by state-of-the-art optimizers such as SGD
and Adam [30].

4.3 Convergence of the Proposed IVGD

Like other unrolled optimization models which solve objective func-
tions effectively, our proposed IVGD can address Equation (3) by
closed-form solutions. However, there lacks an understanding of
the convergence of unrolled optimization models. This is because
they usually involve many learnable parameters, which complicate
the investigation of convergence. In this section, we provide the
convergence guarantees of the proposed IVGD for the linear con-
straint ®(x) = Ax — b where A and b are a given matrix and vector,
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respectively. Specifically, we propose a novel condition based on
learnable parameters to ensure xk and A¥ are closer to a solution
as layers go deeper. Due to the space limit, we show the sketches
of all proofs, and the complete proofs are available in the appendix.

The optimality conditions of Equation (4) are shown as follows:
Axk —b =0, VJk(k)+ ATAK = o,

where (x¥, 1%) is an optimal solution (not necessarily unique) to
Equation (4), which depends on 7k and Ck. The following lemma
provides the relationship between (xX, 1K) and (x¥+1, Ak+1),

LEmMA 4.3. For any k € N, it satisfies
1
_k().k _ Ak+1)T(Ak+l _ /1/:) + ak(xk _ xk+1)T(xk+l _ x»x]f)

> (xk+1 —xk)TAT(/lk _ ).k+l).

SKETCH OF ProOF. It can be obtained by the optimality condi-
tions of x**1 and x¥. The complete proof is shown in Section B in
the appendix. O

Motivated by Lemma 4.3, we let u; = (x1, A1) and uz = (x2, A2),
and define an inner product by

1
(u1, ug) yx = p—k/llTﬂz + akxlTxg. 5)

and the induced norm ”uHZZ\/Ik = (u, u)ysx. Denote uk = (xk, 2Ky

and u¥ = (xk,)Lk). The following theorem states that uk*l is a

feasible solution to Equation (4).

THEOREM 4.4 (AsyMPTOTIC CONVERGENCE). Assume 0 < Dq <
ak < Dy < 00,0 < D3 < pk < Dy < 00 and a® — pkr(ATA) > 0
where D1, Dy, D3 and Dy are constant, and r(AT A) denotes the
spectral radius of AT A. If there exists (C¥, p¥, 7%, a¥) such that

lluk*1 — uk+1)12 < |kt = uk|12 | then we have

Mk+1 — * Hprk?
(@ luk —uk*12, o,
(b). ||u* - uk szwk is nonincreasing and hence converges.

(c). uk*1 is a feasible solution to Equation (4) . That is,
limy, 00 AxK*1—b = 0, limy_, oo VJ¥(xk*+1)+ AT Ak+1 =g,

SKETCH OF PrOOF. To prove this theorem, we need to show that
k= k12 o2 bt — a2 R - uR)2  where
yk > 0, which can be obtained by Lemma 4.3. The complete proof
is in Section C in the appendix. O

k+1 _ uichl ||]2\,1k+1
there exist learnable parameters to make uk+
respect to the norm induced by MK Theorem 4.4 ensures that
the gap between uk*1 and uk converges to 0, and uk+1 converges
to a feasible solution to Equation (4) with constraint satisfaction

limy, o Axk*1 — b = 0.

< ||uk+1 _ uic
1

The condition ||u . guarantees

2
2,
contractive with
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Name #Nodes | #Edges | Average Degree | Diameter
Karate 34 78 2.294 5
Dolphins 62 159 5.129 8
Jazz 198 2,742 13.848 9
Network Science 1,589 2,742 3.451 17
Cora-ML 2,810 7,981 5.68 17
Power Grid 4,941 6,594 2.669 46
Memetracker 1,653 4,267 5.432 4
Digg 11,240 47,885 8.52 4
Deezer 47,538 222,887 9.377 -

Table 2: Statistics of nine real-world datasets.

5 EXPERIMENT VERIFICATION

In this section, nine real-world datasets were utilized to test our pro-
posed IVGD compared with state-of-the-art methods. Performance
evaluation, ablation studies, sensitivity analysis, and scalability
analysis have demonstrated the effectiveness, robustness, and effi-
ciency of the proposed IVGD. All experiments were conducted on a
64-bit machine with Intel(R) Xeon(R) quad-core processor (W-2123
CPU@ 3.60 GHZ) and 32.0 GB memory.

5.1 Experimental Protocols

5.1.1 Data Description. We compare our proposed IVGD with the
state-of-the-art methods on nine real-world datasets in the exper-
iments, whose statistics are shown in Table 2. Due to space limit,
their descriptions are outlined in Section D in the Appendix. The
Deezer dataset was only used to evaluate the scalability.

For all datasets except the Memetracker and the Digg, we gener-
ated diffusion cascades based on the following strategy: 10% nodes
were chosen as source nodes randomly, and then the diffusion was
repeated 60 times for each source vector. For each cascade, we have
a source vector x and a diffusion vector Y. For the Memetracker
and Digg, they provided true source vectors and diffusion vectors.
The ratio of the sizes of the training set and the test set was 8:2.

5.1.2  Comparison Methods. For comparison methods, three state-
of-the-art approaches LPSI [53], NetSleuth [40] and GCNSI [16] are
compared with our proposed IVGD, all of which are outlined as
follows:

1. LPSI [53]. LPSI is short for Label Propagation based Source
Identification. It is inspired by the label propagation algorithm in
semi-supervised learning.

2. NetSleuth [40]. The goal of NetSleuth is to employ the Mini-
mum Description Length principle to identify the best set of source
nodes and virus propagation ripple [40].

3. GCNSI [16]. GCNSI is a Graph Convolutional Network (GCN)
based source identification algorithm. It used the LPSI to augment
input, and then applied the GCN for source identification.

5.1.3 Metrics. Five metrics were applied to evaluate the perfor-
mance: the Accuracy (ACC) is the ratio of accurately labeled nodes
to all nodes; the Precision (PR) is the ratio of accurately labeled as
source nodes to all nodes labeled as source; the Recall (RE) defines
the ratio of accurately labeled as source nodes to all true source
nodes; the F-Score (FS) is the harmonic mean of Precision and Re-
call, which is the most important metric for performance evaluation.
This is because the proportion of source nodes is far smaller than
that of other nodes (i.e. label imbalance). Besides, the Area Under
the Receiver operating characteristic curve (AUC) is an important
metric to evaluate a classifier given different thresholds.
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Figure 3: ROC curves on two real-world datasets: all compar-
ison methods are surrounded by the proposed IVGD.

5.1.4  Parameter Settings. For the proposed IVGD, the fiy(x) was
chosen to be a 2-layer MLP model, where the number of hidden
units was set to 6 for all datasets except Memetracker and Digg [56].
It was set to 100 and 50 for Memetracker and Digg, respectively.
g({) was chosen to be the IC function, the number of validity-aware
layers was set to 10. The error compensation module was a three-
layer MLP model, where the number of neurons was 1,000. a, 7
and p were set to 1, 10 and 107>, respectively based on the optimal
training performance. The learning rate of the SGD was set to 1073,
The number of the epoch was set to 100. The equality constraint
we used was ||x]||o = |S|, which means that the number of source
nodes was known in advance. However, it is non-differentiable and
nonconvex. To address this, we relaxed the constraint to a linear
constraint as follows: .7, x; = |S|. This constraint was only used
in the training phase.

For all comparison methods, the a in LPSI and GCNSI was set
to 0.01 and 0.49, respectively, based on the optimal training per-
formance. The GCN in GCNSI was a two-layer architecture, where
the number of hidden neurons was 128. The learning rate in SGD
was set to 1073,

5.2 Performance Evaluation

The test performance of all methods on six datasets is demonstrated
in Table 3. The best performance is highlighted in bold. Overall,
our proposed IVGD outperforms all comparison methods signifi-
cantly on all datasets. Specifically, the ACCs of the proposed IVGD
on six datasets are all above 0.98, and the PRs are also above 0.9.
Most importantly, the FS metric of the proposed IVGD is in the
vicinity of 0.96 on average. This substantiates that our proposed
IVGD algorithm can accurately predict source nodes despite their
scarcity. For comparison methods, the LPSI performs the best fol-
lowed by NetSleuth: the ACCs of the LPSI are 2% higher than those
of NetSleuth, and the PRs are around 10% better. For example, our
proposed IVGD attains 0.99 and 0.95 in the ACC and the PR on the
Power Grid dataset, respectively, while the counterparts of the LPSI
are 0.97 and 0.86, respectively, and the NetSleuth achieves 0.62 and
0.65, respectively. The GCNSI performs poorly on all datasets: its
PRs and FSes are surprisingly low, which are below 0.3. For instance,
the PR and the FS on the Network Science dataset are 0.08 and 0.03,
respectively. This is because it cannot differentiate source nodes
from others, and its predictions are in the vicinity of the threshold.
This demonstrates that the GCNSI cannot draw a clear decision
boundary.

Aside from simulations, we also evaluate our proposed IVGD on
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Karate Dolphins
Method ACC PR RE FS ACC PR RE FS
LPSI 0.9559 0.6800 1.0000 0.7970 0.9677 0.7790 1.0000 0.8717
NetSleuth 0.9147 0.5371 0.6833 0.5965 0.9306 0.6454 0.7425 0.6904
GCNSI 0.7088 0.1150 0.2667 0.1581 0.6177 0.1015 0.2548 0.1372
IVGD(ours) 0.9853 0.8717 1.0000 0.9213 0.9935 0.9444 1.0000 0.9701
Network Science Cora-ML
Method ACC PR RE FS ACC PR RE FS
LPSI 0.9831 0.8525 1.0000 0.9202 0.9011 0.5067 0.9993 0.6724
NetSleuth 0.9595 0.7642 0.8429 0.8016 0.8229 0.1627 0.1793 0.1706
GCNSI 0.8840 0.0582 0.0135 0.0218 0.8580 0.0970 0.0478 0.0637
IVGD(ours) 0.9946 0.9476 1.0000 0.9730 0.9973 0.9744 1.0000 0.9870
Jazz Power Grid
Method ACC PR RE FS ACC PR RE FS
LPSI 0.9035 0.6074 0.9944 0.7371 0.9673 0.7584 1.0000 0.8624
NetSleuth 0.9222 0.5904 0.6629 0.6245 0.9276 0.6347 0.6986 0.6651
GCNSI 0.7525 0.0685 0.1280 0.0849 0.7125 0.1022 0.2285 0.1410
IVGD(ours) 0.9980 0.9802 1.0000 0.9899 0.9902 0.9133 1.0000 0.9546

Table 3: Test performance of simulations on six datasets: the proposed IVGD dominates in all methods on six datasets.

Karate Dolphins

Method ACC PR RE FS ACC PR RE FS

IVGD(1) 0.9618 0.7167 1.0000 0.8248 0.9694 0.7873 1.0000 0.8774

IVGD(2) 0.9882 0.8967 1.0000 0.9356 0.9726 0.8070 1.0000 0.8904

IVGD(3) 0.9500 0.6583 1.0000 0.7824 0.9613 0.7519 1.0000 0.8517

IVGD 0.9853 0.8717 1.0000 0.9213 0.9935 | 0.9444 1.0000 | 0.9701

Network Science Cora-ML

Method ACC PR RE FS ACC PR RE FS

IVGD(1) 0.9859 0.8736 1.0000 0.9324 0.8712 0.4411 1.0000 0.6121

IVGD(2) 0.9867 0.8799 1.0000 0.9360 0.9959 0.9617 1.0000 0.9805

IVGD(3) 0.9812 0.8383 1.0000 0.9119 0.9850 0.8717 1.0000 0.9314

IVGD 0.9946 0.9476 1.0000 0.9730 0.9973 0.9744 1.0000 0.9870

Jazz Power Grid

Method ACC PR RE FS ACC PR RE FS

IVGD(1) 0.9586 0.7092 1.0000 0.8266 0.9729 0.7916 1.0000 0.8835

IVGD(2) 0.9904 0.9123 1.0000 0.9528 0.9881 0.8967 1.0000 0.9455

IVGD(3) 0.9646 0.7394 1.0000 0.8473 0.9631 0.7358 1.0000 0.8475

IVGD 0.9980 | 0.9802 1.0000 | 0.9899 | 0.9902 | 0.9133 1.0000 | 0.9546

Table 4: Ablation studies on simulations of six test datasets:
all components in our model contribute to the outstanding
performance.

two real-world datasets, as shown in Figure 3. X-axis and Y-axis
represent the true positive rate and the false positive rate, respec-
tively. Similarly as Table 3, our proposed IVGD also outperforms
others significantly on the ROC curves: all comparison methods are
surrounded by our proposed IVGD. Specifically, the AUCs of our
proposed IVGD are above 0.6 on the Memetracker and the Digg
datasets, whereas these of all other methods are either around 0.5
or below 0.5. The LPSI outperforms the GCNSI by about 20% on
the Memetracker, while it performs worse on the Digg by 10%.

5.3 Ablation Studies

One important question to our proposed IVGD is whether all com-
ponents in our model are necessary. To investigate this, we test our
performance on six datasets, when some components are removed.
For the sake of simplicity, IVGD(1) means that the invertible graph
residual net was removed, IVGD(2) means that the error compensa-
tion module was removed, and IVGD(3) means that validity-aware
layers were removed. The results on six datasets are demonstrated
in Table 4. Overall, the performance will degrade if any component
of our proposed IVGD is removed. Without the invertible graph
residual net, the performance on the Cora-ML dataset drops signifi-
cantly from 99.7% to 87% in the ACC, and the PR has declined by
more than 50%. The FS on the Power Grid has demonstrated a 7%
drop due to the same reason. Validity-aware layers provide a giant
leap on FS when we compare IVGD(3) with IVGD. The performance
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FS. (b). Layers VS FS. (c). Hidden unit

Number of Hidden Units Number

(d). Layers VS ACC.(e). Hidden units VS PR. (f). Layers VS PR.

Figure 4: The impacts of two factors on the FS, ACC and PR:
more hidden units and layers lead to better performance.

of the FS has been enhanced by 5% — 14%. For example, the FS on
the Power Grid dataset soars from 0.848 to 0.955. The same pattern
is applied to the Karate and the Dolphins datasets. This suggests
that integrating validity patterns into the model significantly im-
proves model performance. The error compensation module plays
a less important role than the invertible graph residual net and
validity-aware layers. Specifically, the performance drop without
it is slim compared with other components. For example, the drop
of the ACC on the Jazz dataset is less than 1%. Moreover, the ACC
on the Karate dataset even increases slightly. But the effect of the
error compensation module is still positive overall.

5.4 Sensitivity Analysis

Next, it is crucial to investigate how parameter settings affect perfor-
mance. In this section, we explore two factors: the number of hidden
units in the compensation module and the number of validity-aware
layers. The number of epochs was set to 10. For the hidden units, we
changed the number from 100 to 1, 000; for the layers, the number
ranged from 1 to 10. The impacts on FS, ACC, and PR are shown
in Figure 4. Overall, the performance increases smoothly with the
increase of hidden units and layers. For example, the FS on the
Network Science dataset increases by 2% when hidden units are
changed from 100 to 1, 000; it climbs by 4% when the layers ranged
from 1 to 10. However, there is an exception: the FS fluctuates on
the Cora-ML dataset. The amplitudes are about 10% and 30% for
hidden units and layers, respectively. Despite the fluctuation, the
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(F) LPSI

(g) NetSleuth

(h) GCNSI

(i) IVGD (j) True Sources

Figure 5: Visualizations of two datasets for all methods and true source patterns. Figures 5a - 5e are visualizations of Karate,
and Figures 5f - 5j are visualizations of Dolphins. Sources nodes and other nodes are marked with red and green, respectively.

Method Karate | Dolphins Jazz Network | Cora-ML Power Deezer Karate Dolphins Jazz Network Science
Science Grid MSE MAE MSE MAE MSE MAE MSE MAE
LPSI 0.26 0.27 0.76 52.83 240.88 899.45 94541.13 GNN 0.0287 | 0.0773 0.0270 0.1063 0.0575 0.1731 0.0199 0.0743
NetSleuth 0.33 0.48 1.95 32.96 645.04 1260.68 114425.32 IGRN 0.0311 0.1010 0.0258 0.0794 0.0514 0.1867 0.0156 0.0643
GCNSI 1.55 34.62 125.59 283.62 776.70 2324.53 174923.31 Cora-ML Power Grid Memetracker Digg
IVGD(ours) 5.37 6.45 9.78 23.95 92.68 177.32 46832 MSE MAE MSE MAE MSE MAE MSE MAE

Table 5: The running time (seconds) on simulations of seven
datasets: our proposed IVGD runs the most efficiently on the
large-scale networks.

lowest FSes achieved by 800 hidden units and seven layers are still
better than all comparison methods, as shown in Table 3.

5.5 Scalability Analysis

To test the efficiency and scalability of our proposed IVGD, we
compared the running time of IVGD with all comparison methods
on seven datasets, which is shown in Table 5. The best running time
is highlighted in bold. In general, we proposed IVGD runs the most
efficiently on large-scale networks such as Deezer, which consists
of about 5, 0000 nodes. Specifically, it consumes about half a day
to finish training, while all comparison methods at least double.
The same trend holds in other large networks such as Cora-ML and
Power Grid. The LPSI takes the least time on small networks such
as Karate and Dolphins. The GCNSI is the slowest method on most
datasets. For example, it consumes around 2 minutes on the small
Jazz dataset, while all other methods take less than 10 seconds. It
takes 2 days on the Deezer dataset, whereas the LPSI only requires
half of that time.

5.6 Invertibility Analysis

For the invertibility, one may raise a concern on whether it impairs
the performance of graph diffusion models. To investigate this ques-
tion, we compare the performance of the GNN model 6 and the
proposed Invertible Graph Residual Net (IGRN) P on eight datasets.
The DeeplS [56] was chosen as the GNN model, and the IGRN was
implemented based on the DeeplS. The Mean Square Error (MSE)
and the Mean Absolute Error (MAE) were used to assess the perfor-
mance. Table 6 illustrates the performance of two graph diffusion
models. In summary, they perform similarly on two metrics across
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GNN 0.0017 0.0282 0.0221 0.0633 0.0273 0.0322 0.0198 0.0265
IGRN 0.0041 0.0488 0.0247 0.0758 0.0236 0.0311 0.0165 0.0203

Table 6: The effect of invertibility on graph diffusion models:
it plays a negligible role.

different datasets. Specifically, the GNN achieves a better perfor-
mance on the Karate, Dolphins, Cora-ML, and Power Grid datasets,
whereas the IGRN stands out on the Dolphins, Network Science,
Memetracker, and Digg datasets. The largest gap comes from the
MAE on the Karate dataset, where the GNN outperforms IGRN by
0.02.

5.7 Visualization

Finally, we demonstrate the effectiveness of our proposed IVGD
by visualizing two small datasets Karate and Dolphin in Figure
5. Red nodes and green nodes represent source nodes and other
nodes, respectively. Specifically, our proposed IVGD perfectly pre-
dicts all sources on two datasets, and the LPSI and the NetSleuth
also achieve similar source patterns as the ground truth: they only
misclassify several source nodes. The GCNSI, however, misses most
of the source nodes. This is because it suffers from class imbalance
problems, and tends to classify none of all nodes as a source node.
This is consistent with test performance shown in Table 3.

6 CONCLUSION

Graph source localization is an important yet challenging prob-
lem in graph mining. In this paper, we propose a novel Invertible
Validity-aware Graph Diffusion (IVGD) to address this problem
from the perspective of the inverse problem. Firstly, we propose an
invertible graph residual net by restricting its Lipschitz constant
with guarantees. Moreover, we present an error compensation mod-
ule to reduce the introduced errors with skip connection. Finally,
we utilize the unrolled optimization technique to impose validity
constraints on the model. A linearization technique is used to trans-
form problems into solvable forms. We provide the convergence of



An Invertible Graph Diffusion Neural Network for Source Localization

the proposed IVGD to a feasible solution. Extensive experiments
on nine real-world datasets have demonstrated the effectiveness,
robustness, and efficiency of our proposed IVGD.
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Appendix

A THE PROOF OF LEMMA 4.2

o
PrROOF. On one hand, for any x , x , we have

9Fw (") + Fw(x")  g(Fw(x) + Fw(x)
2 2

IP(x") = Pl = IG(Fw(x") = G(Fw(x DI = || [

1 ” ’ 1 ” ’ A . .
< 5 llg(FPw(x ) = g(Fw (x DIl + S IIFw (x ) = Fw (x )| (triangle inequality)

Ly+1 " b
< 5 [[Fw(x ) — Fw(x )|l (Lipschitz constant of g)

Lg+1
4
Lg +1 ” ’ ” ’ . . .
< =7 Ufwl ) = fwG)l + llx- - x ) (triangle inequality)
(Lp+1D)(Lg+1) o

< - [lx — x || (Lipschitz constant of fi,).

Ifw(x") +x" = fir(x) = x|l

(Lf+1)(Lg+1)
4

This suggests that Lp < . On the other hand,

gFw () + Fw(x")  g(Fw(x) + Fw(x)
2 2

IP(x") = PG = |l [

1 ” ’ 1 ” ’ . . .
2 SIIFw(x ) = Fw ()l = S llg(Fw (x ) — g(Fw (x )|l (triangle inequality)

L ” ’
g |Fw(x ) — Fw(x )|l (Lipschitz constant of g)

>
2
1- L, v "
= wh)+x —fwl)-x
1_Lg ” ’ ” ’ . . .
2 ——(lx —x = lIfw(x ) - fw(x)I)) (triangle inequality)

(1-Lp)-Ly) »
> # [[x —x || (Lipschitz constant of f,).

Lety' = Py’ = P sox = Py %" = PH(y"). This leads to [IP7(y") = P76l < gty Iy — o I This suggests that Loy <

4 .
T LHiLy and it concludes the proof. o

B THE PROOF OF LEMMA 4.3
Proor. The optimality condition of x**! leads to V.JK(x**1) + AT Ak 1+ pk AT (Ax* — b) + a (x**1 — x¥) = 0. We plug in 1K+ = 1K 4 pk(Axk+1 — p)
and arrange to obtain

V]k(xk+l) +AT/1k+1 _ pkATA(xk+l _xk) + ak(xk+l _ xk) =0. (6)

That is VJK(xk*1) = —AT AR+ 4 pk AT A(xk+1 - xK) = g% (xk+1 — xk) Also the optimality condition of x¥ results in VJ*(x¥) + AT ¥ = 0, due to the
convexity of J k(x), we have

TRGR) 2 TR + (CATAD T (M - k). ()

]k(xf) > ]k(xk+l) + (—AT/lk“ +pkATA(xk+l _xk) _ ak(xk+1 _xk))”[‘(xf _ xk+1). (8)

We sum Inequalities (7) and (8) to obtain (AT AK+1 — AT Ak — pk AT A(xk+1 — xk) 4 gk (xk+1 — xk )T (xk — xk+1) > 0. After rearranging terms, we have
(Ak-f-l _ )Lf)TA(xf _ xk+l) + ak(xk _ xk+1)T(xk+l _ xi() > pk(xk+l _ xk)TATA(xf _ xk+1).

Using the facts that AxK+! — Ax¥ = (Ax**! — b) — (AxK — b) = Axk*1 — b = pik(/lkJrl — Ak), and aTb = abT(a and b are two vectors), we have

ik(/lk _/lk+l)T(/1k+l _Aic) + ak(xk _xk+l)T(xk+l _xf> > (xk+l _ xk)TAT(/lk _ Ak+l).
P

m]
C PROOF OF THEOREM 4.4
Proor. We denote uX = (1%, xk), uk*1 = (Ak*+1 xk+1) and uk = (A%, x¥). Using the notation defined in Equation (5), we have
<uk _ uk+l, uk+l _ uf)Mk > (xk+1 _ xk)TAT(/lk _ /1k+1).
Because uk*1 — yk = y*+1 _yk 4k _ kit follows that
<uk _ uk+1’ uk _ uic )Mk > ”uk+1 _ uk”]zwk + (xk+1 _ xk)TAT(/lk _ /Ik+l). 9)
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It holds that
k k2 k+1 k2
(R e

— Z(uk _ uk”, uk _ uf>Mk _ ”uk+1 _ ukHIZWc

> [luFH - uk I + 20K+ = xF)T AT (A% — A*+1)(Inequality (9))
1
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) Because (CX, pk, 7%, a¥) guarantees that ||u*+! — uk+1 sz\/rk“ < Jluktt —uk ||}2\/Ik’ then we have

k k2 k+1 k2 k., k k2 k+1 k+12
N A T 0Tl s O Lt el

k k+1 k2
Mk+1+:u [lu oy “Mk (10)

(a). We sum Inequality (10) from k = 0 to k = K to obtain

K
Ky, k+l _ k2 0_ 02
Do MR — k2 < ).
Let K — oo, we have limy_, o p* ||u®*! — uk ||1Zwk = 0. Because % > 0, we have limj_,o, ||u**! — u¥ ”}2\/[k =0.
(b). From Inequality (10), luk — uk lewk is nonincreasing, and llu* — uk szwk > 0 has a lower bound. Therefore, ||u* — uk ”fvrk is convergent.
(c). From (a) we know that limy_, o ||u**! —u¥ HZZVIk = 0. That is limg_,, pik [|ck+t = xk ||§ +ak| Akl pk ||22 = 0. Because a¥ > D; > 0and p¥ < Dy < o,

we have limy_,o x¥*1 — x* = 0 and limp_, o, A5*! — 1% = 0. Because A¥+! = A* + pK(Ax**1 — b) and p* > D3 > 0, then limj_, Ax**1 — b = 0.
We take the limit on both sides of Equation (6) to obtain

limp 0 V]k(ka) +AT/1k+1 _ pkATA(xkﬂ —xk) + ak(xkﬂ _ xk) =0.

Because pk and ¥ are bounded, and limg 00 xk+1 — xk = 0, we have limg 00 V]k(xk“) + AT pk+1 = o In summary, we prove that uk*1 is a feasible

solution to Equation (4). O

D DESCRIPTIONS OF ALL DATASETS

All datasets are outlined below:

1. Karate [35]. Karate contains the social ties among the members of a university karate club.

2. Dolphins [35]. Dolphins is a social network of bottlenose dolphins, where edges represent frequent associations between dolphins.

3. Jazz [19]. Jazz is a collaboration network between Jazz musicians. Each edge represents that two musicians have played together in a band.

4. Network Science [38]. Network Science is a coauthorship network of scientists working on network theory and experiment. Each edge represents two
scientists who have co-authored a paper.

5. Cora-ML [36]. Cora-ML is a portal network of computer science research papers crawled by machine learning techniques.

6. Power Grid [54]. Power Grid is a topology network of the Western States Power Grid of the United States.

7. Memetracker [33]. The Memetracker keeps track of frequently used phrases on news social media.

8. Digg [23]. Digg is a reply network of the social news.

9. Deezer [42]. Deezer is an online music streaming service. We used all nodes from Hungary.
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