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We present the FastEMRIWaveforms (FEW) package, a collection of tools to build and analyze
extreme mass ratio inspiral (EMRI) waveforms. Here, we expand on the Physical Review Letter that
introduced the first fast and accurate fully-relativistic EMRI waveform template model. We discuss
the construction of the overall framework; constituent modules; and the general methods used
to accelerate EMRI waveforms. Because the fully relativistic FEW model waveforms are for now
limited to eccentric orbits in the Schwarzschild spacetime, we also introduce an improved Augmented
Analytic Kludge (AAK) model that describes generic Kerr inspirals. Both waveform models can be
accelerated using graphics processing unit (GPU) hardware. With the GPU-accelerated waveforms
in hand, a variety of studies are performed including an analysis of EMRI mode content, template
mismatch, and fully Bayesian Markov Chain Monte Carlo-based EMRI parameter estimation. We
find relativistic EMRI waveform templates can be generated with fewer harmonic modes (⇠ 10�100)
without biasing signal extraction. However, we show for the first time that extraction of a relativistic
injection with semi-relativistic amplitudes can lead to strong bias and anomalous structure in the
posterior distribution for certain regions of parameter space.
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I. INTRODUCTION

Gravitational wave observations from ground-based
detectors are providing many new insights into the rel-
ativistic universe [1, 2]. The future space-based Laser
Interferometer Space Antenna (LISA) will complement
this science by enabling observations in the milliHertz
regime [3]. This region of the spectrum is rich in sources
including Galactic double white dwarf (WD) binaries,
massive black hole binaries (MBH), and stellar origin
black hole binaries (SOBH) early in their evolution. An-
other key class of sources are extreme mass-ratio inspirals
(EMRIs). These are compact binaries with a mass ratio
µ/M ' 10�4

� 10�7 where µ ⇠ 1 � 100M� is the mass
of the orbiting secondary and M ⇠ 105 � 107M� is the
mass of the MBH. EMRIs are expected to form in dense
stellar clusters of galactic nuclei [4, 5] where their forma-
tion rate ranges from ⇠ 1� 104 per year with observable
signal-to-noise ratios (SNR, ⇢) expected to be ⇠ 20�100
over the duration of the signal [6–8]. The details depend
on the precise formation mechanism but it is anticipated
that the majority of EMRIs will be highly eccentric, pre-
cessing binaries [6]. This means that EMRIs have some
of the richest and most complicated gravitational wave-
forms of any compact binary system. The small mass
ratio of EMRIs also means that they evolve slowly and
they typically have ⇠ 104 � 105 orbits over a period of
years whilst in the LISA band. The long lasting, complex
waveforms of EMRIs presents a substantial challenge for
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both the modelling of these binaries and the LISA data
analysis task.
The rewards for modelling and extracting the EMRI

signals from the LISA data stream are high. The proper-
ties of the binary can be determined to sub-percent level
[6] which enables precision tests of general relativity in
the strong field regime [9, 10]. Measuring EMRI parame-
ters will also inform our understanding of the MBH mass
function [11], dense stellar environment in galactic cores
[7], and gas disks around massive black holes [12–17].
Gravitational waves from EMRIs will also help constrain
cosmological parameters [18], including the dark energy
equation of state [19].
Extracting this wealth of information from the LISA

data stream will be a challenging task for two key reasons:
(i) we require the waveform templates to have a phase
error �� . 1/⇢; this can be as small as �� . 1/100
for a loud EMRI [20], and (ii) in order to search across
the large parameter space we need waveforms that can
be generated in less than a second. These two require-
ments have led to the development of two classes of EMRI
models: gravitational self-force models for accuracy and
“kludge” models for speed.
Gravitational self-force models employ black hole per-

turbation theory. In this approach the metric of the bi-
nary is expanded in powers of the mass ratio around the
metric of the MBH. It is known via a two-timescale anal-
ysis that this expansion must be carried out to second
order (in the mass ratio) in order to meet the sub-radian
accuracy goal in the GW phase [21]. The GW ampli-
tudes on the other hand only need to be known to first
order [21]. The first-order gravitational self-force is now
known for generic orbits about a Kerr black hole [22]
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and significant progress is being made with second-order
calculations [23, 24].

To date, development of the gravitational self-force ap-
proach has focused on calculating the inspiral motion of
the secondary. The numerical computation of the gravi-
tational self-force is slow but can be precomputed and in-
terpolated in an o✏ine step before the inspiral is rapidly
generated (after appropriately averaging terms that oscil-
late on the orbital timescale if needed [25, 26]). Once the
inspiral is known, the associated waveform can be com-
puted. These waveform calculations tend to take tens
of minutes to hours depending on the computational ap-
proach [27–29].

Contrasting with the slow gravitational self-force wave-
form models are the fast EMRI “kludge” models which
are designed to be rapidly evaluated for use in LISA data
analysis studies [30–33]. These models capture the phe-
nomenology of generic EMRI waveforms but only have
an approximation to the correct phasing and amplitudes.
They achieve this by computing the inspiral using (post-
Newtonian inspired) analytic fits to pieces of the gravi-
tational self-force and then approximating the waveform
using a “semi-relativistic” quadrupole formula (possibly
with octupolar corrections [31]). This weak-field approx-
imation fundamentally limits the improvements that can
be made to these models. Nonetheless, kludge mod-
els are currently the only EMRI templates available for
use in data analysis studies that encompass the full 14-
dimensional parameter space of EMRIs (neglecting the
spin of the secondary). For this reason they are the only
EMRI models to have been used so far in LISA data
analysis studies [34, 35].

For future LISA data analysis, we need to combine
the speed of kludge models with the accuracy of grav-
itational self-force models. One waveform acceleration
technique that has been highly successful for comparable-
mass compact binaries are reduced-order-model (ROM)
surrogates. Recently this approach has been pursued in
the small mass-ratio context [36] but it is not clear if
these models will scale to the long signal duration of the
EMRI problem.

In this work, building upon our recent Letter [37],
we present the FastEMRIWaveforms (FEW) computa-
tional framework. This framework allows gravitational
self-force-based waveform models to be computed about
as rapidly as kludge models, whils retaining their in-
herent accuracy. The key observation in our approach
is that only the waveform phase needs to be known to
very high precision; the amplitudes of the thousands of
harmonic modes in an EMRI can computed to a much
lower accuracy. Through a combination of ROM and
deep-learning techniques, we produce a su�ciently accu-
rate global fit for these amplitudes that returns the full
set of modes simultaneously at each sampling time. As
our mode-amplitude model is composed of simple linear-
algebra operations its implementation is highly paralleliz-
able on graphics processing units (GPUs). As a result we
are able to construct the first fully relativistic, analysis

length EMRI waveforms in less than 500 milliseconds.
To showcase the FEW framework we build a module

that can compute EMRI waveforms for eccentric inspi-
rals into a non-rotating black hole. In calculating the
phasing for these inspirals we use orbit-averaged pieces
of the first-order gravitational self-force which produces
an “adiabatic inspiral” [21, 27]. These inspirals will de-
phase by tens to hundreds of radians over a radiation re-
action timescale with respect to the true waveform [38].
The FEW framework is designed so that many of the
most important higher-order gravitational self-force cor-
rections can easily be incorporated as they become avail-
able; some e↵ects, such as the impact of resonances [39]
(which will make relatively large contributions to EMRI
phase evolution at a small number of moments during an
inspiral), may be more challenging to include. The adi-
abatic inspirals we use in this analysis may nonetheless
be useful for searches for loud EMRIs [33, 40], or for bi-
naries with a mass ratio with µ/M < 10�7 for which the
LISA mission duration is less than a radiation reaction
timescale [41, 42].
Our first fully relativistic EMRI waveform model is for

non-rotating black holes but our modular computational
framework is set up for generic inspirals. To showcase this
we add the Augmented Analytic Kludge (AAK) to the
framework with an updated 5PN inspiral model and GPU
acceleration. Both the relativistic and kludge models can
be computed in the detector frame and are accessed via a
common application programming interface (API) which
streamlines interaction with LISA data analysis software.
All the code is publicly available as open-source software
[43].
Finally, with our new model we provide the first

Bayesian posterior analysis with LISA on relativistic
EMRI waveforms. From this we discover that only a
relatively small number of harmonic modes are required
to faithfully represent the waveform. By reducing the
number of harmonic modes our waveform model run-
time decreases to tens of milliseconds on a GPU. We
also take the opportunity to make the first study of the
biases introduced in kludge models by their use of semi-
relativistic waveform generation. To do this we use the
modular framework of FEW to drive the AAK model
with an adiabatic inspiral and compare the associated
semi-relativistic waveforms with the fully relativistic one.
We find that the AAK waveform generation results in sig-
nificant biases in some parts of the parameter space.
The rest of this paper is structured as follows. We

begin with a brief description of and equations related
to building an EMRI waveform in the detector frame in
SectionII. In SectionIII we discuss the overall framework
of FEW. In SectionIV, the first example of a relativistic
waveform built within the FEW framework is described.
In SectionV, a new and improved version of the Aug-
mented Analytic Kludge [32, 33] is presented using an
improved trajectory model. This waveform is also imple-
mented in the FEW framework. In SectionVI, we analyze
the mismatch, mode content, and generation of these new
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waveforms. We also provide the first Bayesian posterior
analysis with relativistic EMRI waveforms. To conclude
we discuss the future direction of the FEW framework
and these models as we move towards the LISA mission
in SectionVII. In this article we will geometrized units
with G = c = 1.

II. EMRI WAVEFORM OVERVIEW

EMRI waveforms are represented by the complex time-
domain dimensionless strain h(t) = h+ � ih⇥, where h+

and h⇥ are the normal transverse-traceless gravitational
wave polarizations. At a large distance from the source,
h is given by [44]

h =
µ

dL

X

lmkn

Almkn(t)Slmkn(t, ✓)e
im�e�i�mkn(t), (1)

where t is the time of arrival of the gravitational wave at
the solar system baricenter, ✓ is the source-frame polar
viewing angle, � is the source-frame azimuthal viewing
angle, dL is the luminosity distance, and {l,m, k, n} are
the indices describing the frequency-domain harmonic
mode decomposition. The indices l, m, k, and n label
the orbital angular momentum, azimuthal, polar, and
radial modes, respectively. �mkn = m�' + k�✓ + n�r

is the summation of decomposed phases for each given
mode. The amplitude Almkn is related to the amplitude
Z1
lmkn

of the Teukolsky mode amplitude far from the
source. It is given by Almkn = �2Z1

lmkn
/!2

mkn
, where

!mkn = m⌦' + k⌦✓ + n⌦r is the frequency of the mode,
and ⌦r,✓,� describe the frequencies of a Kerr geodesic or-
bit. These frequencies are determined from [45] using
the dimensionless spin of the MBH, a, and the quasi-
Keplerian orbital parameters of p (semi-latus rectum;
hereafter “separation”), e (eccentricity), and cos I ⌘ xI

(cosine of the angle I which describes the orbit’s incli-
nation from the equatorial plane). See Ref. [27] for fur-
ther discussion and more detailed definitions. The phases
�',✓,r given above are the integral over time of the orbit’s
fundamental frequencies:

�',✓,r =

Z
t

0

dt0 ⌦',✓,r(p(t
0), e(t0), xI(t

0)). (2)

The function Slmkn(t, ✓) is a spin-weighted spheroidal
harmonic. Because these harmonics depend on the or-
bital frequencies, and the frequencies evolve with time,
the resulting harmonics evolve as well [44].

For a geodesic orbit, Almkn and Slmkn are determined
by solving the Teukolsky equation [46]. The wave field
h is related to the Weyl curvature scalar,  4, at null in-
finity by its second derivative: ḧ = 2 4. The curvature
scalar can be determined for each unique set of geodesic
parameters {a, p, e, xI} by decomposing in the frequency
domain and separating the radial and angular dependen-
cies. In this representation,  4 is given by [46]

 4 =
X

lmkn

Rlmkn(r)Slmkn(t, ✓)e
im�e�i!mknt. (3)

As r approaches the event horizon and infinity, the ra-
dial solution Rlmkn(r) takes a simple limiting form, with
Rlmkn / ZH,1

lmkn
. It can then be shown that the com-

plex amplitudes ZH,1
lmkn

encode the rate at which an orbit
evolves due to the orbit-averaged dissipative backreac-
tion of gravitational-wave emission; the amplitude Z1

lmkn
,

in addition,3 describes the contribution to the harmonic
lmkn of the gravitational waveform. These quantities
are computed for specified geodesics, and are then in-
terpolated from geodesic to geodesic and combined with
an accumulated phase to build a full waveform. More
information and details can be found in Refs. [27, 44].

A. Generating Detector-Frame Waveforms for
Data Analysis

The full EMRI parameter space for a detector-frame
EMRI waveform is 17-dimensional: {M , µ, a, ~a2, p0,
e0, xI,0, dL, ✓S , �S , ✓K , �K , �',0, �✓,0, �r,0}. The
parameters {M , µ, a, p0, e0, xI,0, dL, �',0, �✓,0, �r,0}

are defined above; ✓S and �S are the polar and azimuthal
sky location angles given in the solar system barycenter
frame; ✓K and �K are the azimuthal and polar angles
describing the orientation of the spin-angular momentum
vector of the MBH, Ŝ; and ~a2 is the three-dimensional
spin angular momentum vector of the CO. ~a2 is currently
ignored in waveform generation, but will be necessary for
full waveform descriptions [47].
To introduce detector-frame waveforms, we follow the

constructions and bases used for the kludge models [33].
Diagrams containing source frame, solar system bari-
center frame, and polarization conventions are shown in
Figure 1. The sky-position vector along the line-of-sight
to the EMRI system, R̂, is given by,

R̂ = (sin ✓S cos�S , sin ✓S sin�S , cos ✓S), (4)

where the three components are with respect to the
(x̂s, ŷs, ẑs) unit vectors defined by the solar system bari-
center coordinate frame basis. Similarly, Ŝ in the solar
system baricenter coordinate frame is given by,

Ŝ = (sin ✓K cos�K , sin ✓K sin�K , cos ✓K). (5)

When the MBH has no spin (a = 0), Ŝ is equivalent
to the orbital angular momentum unit vector, L̂. The
wave-frame basis (denoted by a w subscript) is given by
[33]

(x̂w, ŷw, ẑw) :=

 
R̂⇥ Ŝ

SR̂,Ŝ

,
Ŝ� (Ŝ · R̂)R̂

SR̂,Ŝ

,�R̂

!
, (6)

where ẑw points along the propagation direction
of the wave from the source to the detector and
SŜ,R̂ := (1� (Ŝ · R̂)2)1/2. Within the kludge model
framework, x̂w and ŷw represent the polarization unit
vectors used to determine the h+ and h⇥ contributions.
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a)

Source Frame:

ŷ•

x̂•

ẑ• = Ŝ

ẑw = �R̂
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✓•

.

ê✓,•
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1

b)
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ẑs
R̂ = �ẑw
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.

�ê✓,s

�ê�,s

1

c)

Polarization Angle:

�ê�,s

�ê✓,s

x̂w

ŷw

 

 

1

FIG. 1. Conventions for the source frame, solar system baricenter frame, and polarization angle are shown in the schematic
diagram above. For the source-frame diagram (a), the coordinate basis is defined in Eq. (7). The direction towards the solar
system baricenter (�R̂) is shown as the red arrow which defines ẑw. The source-frame polarization vectors are shown in blue
and the basis vectors in the wave frame (see Eq. 6) are shown in orange. Note the rotation by ⇡/2 to align the source-frame
polarization vectors with the wave-frame basis. Also, due to conventions chosen, �• = �⇡/2 always. In the solar system
baricenter frame (b), the solar system baricenter frame polarization basis is shown in blue. The red arrow shows the angle
to the source (+R̂). Finally, in plot (c), the polarization determination is illustrated. The polarization angle represents the
rotation down the line-of-sight from the wave-frame (red) to the solar system baricenter polarization basis (black).

For the relativistic waveforms, the source-frame (de-
noted with •) viewing angles, ✓• and �• (equivalent to ✓
and � in Eq. 1), are determined by projecting R̂ into the
source frame. We define the source frame in the same
way as the kludge models:

(x̂•, ŷ•, ẑ•) :=

 
R̂⇥ Ŝ

SR̂,Ŝ

,
R̂� (R̂ · Ŝ)Ŝ

SR̂,Ŝ

, Ŝ

!
, (7)

where ẑ• points along the spin axis of the MBH and x̂•
aligns with x̂w. This convention leads to �• = �⇡/2
always. With �• fixed, the phasing of the wave is deter-
mined with initial phases {�',0,�✓,0,�r,0}. The polar
viewing angle is then determined by cos ✓• = �R̂ · Ŝ.

In the source frame, the polarization vectors are given
by ê✓,• and ê�,•, the conventional spherical coordinate
unit vectors. To align the polarization angles of the rel-
ativistic source frame with the kludge models, a rotation
angle of ⇡/2 is applied. This rotation is equivalent to a
phase shift of ⇡.

Following this procedure, both relativistic and kludge
waveforms are aligned and require a transformation to
the solar ssolar system baricenterystem baricenter frame.
The rotation to the solar ssolar system baricenterystem
baricenter frame is twice the polarization angle,  , given
by,

 =
cos ✓S sin ✓K cos(�S � �K)� sin ✓S cos ✓K

sin ✓K sin(�S � �K)
. (8)

III. FAST EMRI WAVEFORMS FRAMEWORK

The FEW framework was created to generate fast and
accurate EMRI waveforms in the form of Eq. (1) with

high fidelity when compared to slow waveform calcula-
tions. The framework was designed with specific goals in
mind:

• Fast waveforms must maintain a su�ciently high
fidelity to accurate waveforms so as not to bias
source search and parameter estimation.

• It must be modular so that pieces of code can be
used as stand alone tools, as well as combined in a
variety of ways to minimize extraneous source code.

• A high level of flexibility is needed so that as new
physics are added to EMRI waveforms or new com-
putational methods are devised, FEW can readily
adapt and accept these changes.

• The user interface must be simple at all levels so
that it is easy to use and contribute to.

• Underneath the user interface, acceleration and
paralellization techniques must be utilized to make
FEW waveforms as fast as possible.

The general FEW framework is visualized in Figure 2.
In this section, we will discuss the base modules necessary
to build the FEW framework. Each module that has
GPU capabilities is available in both a CPU and GPU
form. To change between the two the user needs only
change a keyword argument in the Python-based user
interface.

A. Fast Trajectory Module

The initial part of EMRI waveform creation is the de-
termination of the CO’s phase space trajectory. This
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Preprocessing

Self-Force

Smart interpolation
NIT design

Mode Amplitudes

Global fit
A priori mode selection

Fast Trajectories Amplitude

Fast EMRIWaveforms Framework

Angular Harmonics Waveform Build

Adaptive Stepping
NIT/2 time-scale

�lmkn

Almkn Slmkn(✓)eim�

Mode selection

Interpolate
amplitudes / phases
Mode construction

Phase refinement
(orbital timescale)

Domain choice: TD,
FD, TFD, Wavelet

LISA Response

Waveforms

Fast Schwarz Ecc Flux

Slow Schwarz Ecc Flux

5PN Generic Kerr AAK

Schwarz Ecc Flux ROMAN (Schwarz Ecc)

FEWModuleMap

�2Ylm(✓,�) Interpolated Summation

Bicubic (Schwarz Ecc) Direct Summation

5PN Generic Kerr AAK Waveform Build

Utilities:

Fundamental Frequencies

Separatrix µ(t) / p(t)

Mismatch Mode Selector

FIG. 2. The overall modular framework for FEW is shown in the top schematic diagram. This diagram describes the high-level
progression of module usage during waveform production. Each segment of waveform production is labelled at the top of each
column and assigned a color. The bottom diagram shows the waveforms and modules that have been implemented to-date in
the FEW package. Stock waveforms are shown in yellow in the first column. Their individual module progression towards the
final waveform is shown with arrows. The modules are assigned the color of the segment of waveform production they belong
to. The utility functions that are used both for waveform production and overall analysis are also shown towards the bottom
in gray.

orbit-averaged trajectory is determined over time in
terms of G(t) := {p(t), e(t), xI(t),�'(t),�✓(t),�r(t)}.
These quantities satisfy (coupled) ordinary di↵erential
equations (ODEs) that we solve via numerical integra-
tion. As will be discussed in Sections IV and V, the ODEs
are specific to each trajectory implemented. For a flux-
driven trajectory, these time derivatives are determined
from {Ė, L̇, Q̇}, where these three quantities represent,
in order, the time derivatives of the orbital energy, axial
orbital angular momentum, and Carter constant. These
quantities can be determined from the Teukolsky ampli-
tudes ZH,1

lmkn
[27, 48]. In the present work, we implement

a flux-driven trajectory while post-adiabatic trajectories
are developed.

The computation of the amplitudes ZH,1
lmkn

is too slow
to be implemented on the fly and, therefore, impractical
for any trajectories generated for data analysis. These
quantities will instead need to be pre-computed on a grid

in {a, p, e, xI} space and matched with a fast interpola-
tion method for online calculations. In Section IV, we
will discuss the specifics of the first implementation of
this scheme in the Schwarzschild eccentric regime.

For the numerical integration, we employ an adaptive
eighth-order Runge-Kutta integrator from the GNU Sci-
entific Library (GSL) [49]. The integrator outputs the
trajectory at a small number of time steps (⇠ 100) as the
trajectory is very smooth. This is a key component of the
overall waveform speed and architecture. These sparsely
sampled trajectories are heavily leveraged so as to reduce
intermediate computations prior to the final waveform
build. These sparse trajectories, when upsampled with
a cubic spline, show negligible absolute error when com-
pared to densely sampled trajectories with small fixed
timesteps. These methods will also be applicable to post-
adiabatic trajectories, but adjustments will be required
to incorporate resonances.
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For maximal flexibility and verification, the base tra-
jectory module in the FEW package allows the user to
customize the trajectory output. For example, users can
densely sample their trajectories; resample the trajecto-
ries using cubic splines; and/or convert from coordinate
to dimensionless time scaled by the mass of the MBH.
Due to the serial nature of trajectory computations, these
modules are currently only implemented on the CPU.

B. Amplitude Module

As stand-alone parts, amplitude modules take in
{a, p, e, xI} in vectorized form, returning a two-
dimensional array of individual complex mode ampli-
tudes, Almkn, for each parameter set provided. In a
Schwarzschild eccentric background, the harmonic ba-
sis consists of 3843 harmonic modes. When expanding
to the generic Kerr regime, the polar harmonic index k
will be introduced, and the number of modes will ex-
pand by roughly an order of magnitude. In Section VI,
we show that waveforms with purposefully and strategi-
cally reduced harmonic content, in many situations, will
be su�cient for data analysis purposes.

Within a larger waveform model, the amplitude mod-
ule will take a specific set of orbital parameters given
by the trajectory outputs. These will generally be sparse
trajectories that will produce sparse amplitude computa-
tions at the same time cadence as the input trajectories.
Since amplitudes vary slowly on the radiation reaction
timescale their spare sampling is once again an impor-
tant component of maintaining the speed of the overall
waveforms (see Figure 8).

The amplitudes Almkn are determined for each orbital
parameter set, independent of all other orbit points along
a trajectory. This facilitates parallelizable computations
for the amplitude modules; where methods are paralleliz-
able, they will be available in both a GPU and CPU op-
tion.

C. Waveform Summation Module

With the constituent parts in place, the waveform sum-
mation module takes trajectory and amplitude informa-
tion and forms the final waveform. This is done by up-
sampling the sparse arrays to the true sampling of the
data stream. This is a crucial step in the waveform cre-
ation process; even with various improvements described
in this paper, it remains the bottleneck in terms of accel-
erated EMRI computations. For this reason, as well as
the parallelizable nature of this large-dimensional com-
putation, accelerator hardware is necessary to bring the
compute time of this process down to reasonable levels
for data analysis.

There are two types of summation modules provided in
the FEW package. They are both generic to most wave-
forms that will be implemented in the FEW model (an

exception to this is the new AAK discussed in Section V).
The more basic option provided performs a direct sum-
mation with amplitude and trajectory information at the
array density provided. This type of summation is slower
than the second type of summation, and is usually em-
ployed when densely stepping trajectories and amplitude
calculations.
The faster waveform summation is performed by using

cubic splines to interpolate the sparse array information.
Therefore, this is referred to as the ”Interpolated Sum-
mation.” This process begins with a special cubic spline
interpolation implemented for e�ciency on GPUs. It
leverages cuSparse from the NVIDIA library to quickly
compute spline coe�cients in a tridiagonal banded ma-
trix representation. The specific spline implemented is
the “not-a-knot” spline in terms of its boundary condi-
tions. This spline implementation assumes all arrays to
be interpolated exist on the same sparse time grid. The
parallelized spline fitting allows us to quickly determine
the spline coe�cients simultaneously for all phases and
individual mode amplitudes (⇠ 102�104 separate splines
based on overall mode content). This cubic spline, avail-
able in both CPU and GPU versions, is also a stand
alone piece of the FEW framework and can be leveraged
in other projects where similar spline computations are
needed.
Once the spline coe�cients are determined, the actual

summation kernel evaluates the spline at the sampling
rate of the output data stream. Then, the output phase
and amplitude values are combined within each mode
according to Eq. (1). In this step, we exploit a symmetry:
the amplitude relation

Al,�m,�k,�n = (�1)(l+k)A⇤
lmkn

, (9)

where the superscript ⇤ denotes complex conjugation.
This allows us to only compute modes for m � 0; modes
with m < 0 can inferred using Eq. (9). Once the final
complex contribution to the waveform is determined at
each specific time value within each mode, the modes in
a single time step are combined. This is e↵ectively the
cause of the high-dimensional computational di�culty of
the problem. For a year long data stream sampled at 0.1
Hz, a typical sampling rate chosen for LISA data, this
creates a summation across ⇠ 102�104 modes at each of
the ⇠ 3.15⇥ 106 time steps. As can be seen in Figure 8,
the GPU accelerator makes this step tractable for data
analysis with LISA.

D. Utility Modules

In addition to the base modules discussed above, the
FEW package provides many utility modules that are im-
portant to the overall waveform creation model, includ-
ing, but not limited to, a separatrix calculator in generic
Kerr spacetime; a generic Kerr fundamental frequency
calculator; spin-weighted spherical harmonics; and a ba-
sic mismatch calculator. The interested reader can find
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documentation on these utilities in the FEW package
[43].

The most important of these modules that is not spe-
cific to any individual waveform model is the “Mode
Selector” module. The Mode Selector performs an on-
line calculation to determine which of the individual har-
monic modes contribute power to within a user-defined
threshold of the total power emitted by all modes (de-
noted as ✏). This begins by taking arrays of the power
within each mode at each sparse time step determined
from the complex amplitudes output by an amplitude
module. It then operates entirely within each time step.
It sorts the individual modes in descending order and
computes a cumulative summation. From this sorted ar-
ray, it is determined where the additional power con-
tributed by an individual mode falls below a user pro-
vided threshold related to the total power emitted (✏) at
that time step (the final entry in the cumulative sum).
This gives a set of contributing modes within each time
step. We then take the union of all contributing modes
across all time steps to maintain continuity across time.
There is a very small loss of accuracy in this procedure
since we are not performing this calculation at each and
every dense time step. However, this would only lead
to the inclusion of fringe modes that contribute only
slightly to the overall waveform power. As indicated by
the overall waveform mismatch determined empirically
in Section VIB, this loss in accuracy is negligible across
our parameter space. Within the Mode Selector module
is the option to include noise-weighting. We find this
does not make a major di↵erence in terms of the specific
modes chosen and do not use this method in this paper.

E. Overall Code Design

The FEW code was carefully designed to enhance its
modularity, flexibility, ease-of-use, and acceleration capa-
bilities. Here, we will discuss the overall code structure
from the top user interface down.

The user accesses everything in FEW through a
Python interface. At the highest level is a generic wave-
form generator where the specific waveform is provided
as an argument during instantiation. This generic in-
terface allows for seamless transitions between waveform
backends for fast waveform comparisons.

Below the top-level generic generator are the specific
waveform models. We currently provide three complete
waveform models: FastSchwarzschildEccentricFlux

(Section IV), SlowSchwarzschildEccentricFlux

(Section IVC) and Pn5AAKWaveform (Section V). The
first two are provided in the source frame. The latter
is built in the detector frame. The generic interface
accounts for this di↵erence when comparing two di↵erent
generation frames (see Section IIA).

Each of these waveforms is then broken down into
Python modules as detailed above. Within the full wave-
forms and their constituent modules, Python is leveraged

for providing the overall code and package structure, per-
forming simple operations, and preparing input for the
low-level C++/CUDA code. Each module containing a cal-
culation in C++/CUDA uses a thin, customized Cython in-
terface [50, 51].
At the lowest level lives the C++/CUDA functions that

are built for speed. Our main goal is to limit the amount
of code in C++/CUDA to only necessary bits that require
speed and enhanced acceleration capabilities. The imple-
mentation of parallelization and acceleration capabilities
is provided in both Python modules and C++/CUDA code.
In Python, CPU/GPU agnostic code is designed using
NumPy [52] and CuPy [53]. In C++/CUDA, functions are
first designed for GPUs to ensure enhanced performance
and acceleration and are then adapted for CPUs using
OpenMP [54]. The code is specifically designed to min-
imize duplication of code across the di↵erent hardware,
leveraging compiler directives specific to each device only
when necessary.

IV. ADIABATIC SCHWARZSCHILD
ECCENTRIC WAVEFORMS

For the development of the first fully relativistic EMRI
template waveforms, we focused on the initial task of per-
forming these computations for eccentric inspirals into a
Schwarzschild black hole. In this regime, we can exclude
various parameters from the full EMRI description. The
MBH is non-rotating allowing us to set a = 0 and the
spacetime is spherically symmetric. This leads to the re-
moval of the inclination parameter (xI = 1 for complete-
ness) as we can consider any orbit to be in the equa-
torial plane. This also allows for the removal of polar
phases (�✓) and indices (k) from Eq. (1) reducing the
summation to a sum over the lmn indicies. Combining
the spheroidal harmonic Slmkn(t, ✓) with eim� and then
taking the limit in the Schwarzschild background reduces
these terms to the regular -2 spin-weighted spherical har-
monics, �2Ylm(✓,�) [46]. Eq. (1) in the Schwarzschild
eccentric regime then becomes:

h =
µ

dL

X

lmn

Almn(t)�2Ylm(✓,�)e�i�mn(t). (10)

Notice this means the angular harmonic term is no longer
time dependent, but constant over the whole orbit (see
Section VII for more discussion).
Here we will detail how specific implementations of

the various modules presented in Section III were com-
bined to create the first fast and fully relativistic EMRI
waveforms. With the trajectories and amplitudes deter-
mined according to the following sections, this informa-
tion was combined with the spin-weighted spherical har-
monics and then put through mode selection, both of
which are described in Section IIID. Following mode se-
lection, the waveform is built using the interpolated sum-
mation (see Section III C). This eccentric Schwarzschild
adiabatic model is valid for pmin  p  ps + 10 and
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0  e  0.7, where ps is the separatrix [55] and pmin =
max(ps + 0.1, 7ps � 41.9).

A. Flux-driven Trajectories

The first specific piece of a relativistic waveform is a
relativistic trajectory. This module was built under the
generic fast trajectory formula described in Section IIIA.
For this waveform, we operate with a flux-based adia-
batic trajectory. To do this we must calculate (ṗ, ė) from
(Ė, L̇). The energy and angular momentum flux must be
calculated quickly for generic eccentric geodesics (lim-
ited to our domain of validity) in a Schwarzschild back-
ground as the numerical integrator evolves the trajectory
forward in time. This is not possible to do by directly
computing Teukolsky amplitudes and fluxes because the
duration of this calculation is orders of magnitude larger
than the time we require for the entire trajectory (⇠ms).
We therefore rely on accurate and e�cient interpolation
techniques.

The first step to evaluating the trajectories is to com-
pute a grid of flux values using a Teukolsky code. In
order to e�ciently interpolate the fluxes with bicubic
splines, it is helpful to place place the data on a grid
with uniform spacing. As in Schwarzschild spacetime
the separatrix is given by ps = 6 + 2e [55], we instead
introduce u = ln(p � ps + 3.9) [37]. This allows us to
build a uniform grid in (u, e) space with 1.37  u  3.82
in steps of 0.05 and 0.0  e  0.8 in steps of 0.025.
This parameterization allows for more points closer to
the separatrix where the orbital quantities vary more
rapidly. The grid coordinate u corresponds to separa-
tions of ps + 0.03  p  ps + 41.6.

Rather than a two-dimensional interpolation over this
grid of the actual flux values, we subtract out the leading
PN behavior and instead interpolate over an e↵ective flux
residual to reduce error in the interpolation. We then
construct bicubic splines over (u, e) of (Ėspl, L̇spl) given
by

Ėspl = (Ė � ĖPN)⌦
�4

'
and

L̇spl = (L̇� L̇PN)⌦
�3

'
,

(11)

where the PN behavior is given by [56]

ĖPN =
(96 + 292e2 + 37e4)

15(1� e2)7/2
⌦10/3

'
and

L̇PN =
4(8 + 7e2)

5(e2 � 1)2
⌦7/3

'
.

(12)

At evaluation time, the integrator determines the funda-
mental frequencies (⌦',⌦r) [57] based on (p, e), followed
by the PN contribution to (Ė, L̇). It then converts (p, e)
to (u, e) and evaluates the interpolant to get the e↵ective
adiabatic residual of (Ė, L̇). With (Ė, L̇) in hand, (ṗ, ė)
are computed using [57].

The integrator begins at (p0, e0,�',0,�r,0) and inte-
grates until it takes a step that is within 0.1 of the sep-
aratrix. As the integrator steps over ps + 0.1, the in-
tegrator reverts back to its previous value and walks in
smaller steps until it reaches within 10�8 of ps + 0.1.
Therefore, the trajectories that reach the separatrix end
at p ⇡ ps + 0.1 + 10�8. Without this small stepping op-
eration at the end, trajectories finish at whatever point
the integrator finds within ps + 0.1. This causes incon-
sistencies in the time and separation at the end of the
waveform. Before considering this e↵ect, we found the
likelihood computations in Section VID to be noisy and
not smoothly varying as would be expected over small
scales in parameter space.
As mentioned in Section IIIA, this integration

produces ⇠ 100 points along the trajectory as
(p(t), e(t),�'(t),�r(t)). An example of the trajectories
in (p, e) space can be seen in Figure 6.

B. RomanNet Amplitude Generation

Following the generation of orbital parameter trajec-
tories, the complex amplitudes of the many harmonic
modes must be produced. To accomplish this task, we
implement a version of a reduced-order-model with artifi-
cial neurons (ROMAN) [58] within the amplitude module
framework discussed in Section III B.
Complex amplitudes were generated along the same

grid as the total flux values discussed in Section IVA.
In our mode set, we analyze l 2 [2, 10], m 2 [0, l], and
n 2 [�30, 30], which totals 3843 modes. Mode ampli-
tudes with m < 0 were determined using Eq. (9) with
k = 0. To prepare this group of 3843 modes per (u, e)
pair for use in our neural network amplitude genera-
tion scheme, we first compress the information using the
method of reduced order modeling (ROM) [59]. ROM is a
powerful technique that is used within gravitational wave
analysis to build e�cient surrogate waveforms [60], and
to accelerate likelihood calculations through the method
known as reduced-order-quadrature (ROQ) [61]. RO-
MAN as originally proposed fulfils the same function as
surrogates + ROQ, by using neural networks as waveform
fits and working natively in the reduced-order domain.
Here, however, we use ROMAN to fit the set of mode
amplitudes instead, which leverages the strength of neu-
ral networks for global regression over high-dimensional
complex spaces.
With the 3843 modes per (u, e) cast as a vector Ai =

vec(Almn) 2 C3843
' R7686, we compress our dataset us-

ing a greedy algorithm from the Python package RomPy

[62]. The data is compressed to a reduced basis B rep-
resenting the span of the uniform grid of complex am-
plitude data. The reduced-order basis is represented by
reduced-order basis coe�cients, ↵j :

Ai(u, e) =
X

j

↵j(u, e)Bji ⌘ ↵j(u, e). (13)
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The data is compressed by a factor of ⇠ 40 with ↵j 2

C99
' R198.

We then trained the neural network with inputs equiv-
alent to the grid of (u, e) values and outputs equivalent
to ↵j 2 R198. The neural network architecture is a basic
fully-connected neural network. It consists of 20 hidden
layers. The first hidden layer has 4 nodes with the subse-
quent five layers increasing each node count by a factor
of 2 until the node count reaches 256. The remainder
of the hidden layers all employ 256 nodes. To incorpo-
rate non-linear behavior we activate each hidden layer
with a Leaky ReLU function [63] (the output layer is
not activated). The training is performed in minibatches
[64] of 810 with the ADAM gradient descent optimizer
[65]. The loss function is the standard L2 loss function:
L = h|↵ � ↵̂|2i, where h·i represents the average over a
minibatch and | · | is Hermitian. The neural network is
trained over 3⇥ 104 epochs.

At run-time, the RomanNet module is given the arrays
of (p, e) determined from the trajectory module. It then
converts these pairs to (u, e) and inputs these values into
the trained neural network. The network outputs ↵j ,
which are then transformed back to the full amplitude
space with ↵ · B. The amplitude vectors output by the
module are then renormalized to a more accurate vector
norm generated by a bicubic spline during and output by
the trajectory module at each time step.

C. Slow Reference Waveform

To verify that our new waveforms are accurate, we
must compare against more accurate, slowly generated
waveforms. Generally, waveforms produced directly from
the modelling community are too slow to produce ⇠year
of consecutive data, which is the duration needed for
proper data analysis-related tests. Therefore, we have
constructed a “slow” version of our Schwarzschild adia-
batic waveform by implementing trajectory, amplitude,
and summation modules that focus on accuracy rather
than speed.

The trajectory for this comparison waveform is deter-
mined in the same manner as the fast trajectory modules
in terms of evolving the trajectory forward in time from
(p0, e0) to within ⇠ 0.1 of the separatrix. The di↵er-
ence is that the time steps are fixed to the time step in
the data stream (⇠10s). This allows for a maximally ac-
curate calculation of the orbital and phase trajectories
without performing any large steps via adaptive meth-
ods.

The amplitudes are determined by using the same set
of Almn(u, e) used for the underlying training set of the
neural network. However, rather than using advanced
methods for fitting the data, we instead settle for a sim-
ple, but highly accurate bicubic spline over the real and
imaginary pieces of each individual mode. This is ine�-
cient in terms of memory storage and speed of evaluation,
but is necessary to create highly accurate generic EMRI

waveforms to compare against our more advanced gen-
eration methods. Additionally, amplitudes are not cal-
culated at sparse points, but rather at each point in the
dense trajectory output by the slowly evolving trajectory
module just previously mentioned.
The final waveform summation is calculated us-

ing the direct summation method described briefly in
Section III C. This is performed by combining the phase
and amplitude information at each time point in the data
stream without interpolating any of these quantities.

V. AN IMPROVED AUGMENTED ANALYTIC
KLUDGE

Another addition to the FEW framework is a new ver-
sion of the Augmented Analytic Kludge (AAK) first pre-
sented in [32, 33]. AAK waveforms remain useful even
with fast relativistic waveforms under development, since
they are extensive in their coverage of the generic Kerr
parameter space by construction. These waveforms are
still useful in ongoing data analysis studies for LISA to
understand the extraction of the spin of the MBH, as well
as the complexity associated with generic orbit configu-
rations. Here, rather than detailing the AAK formalism,
we will describe what has changed in our new version of
the AAK. We refer the interested reader to [32, 33] to
understand the foundations for generating AAK wave-
forms.
The new AAK e↵ectively glues together a more accu-

rate and robust trajectory module with the old AAK’s
waveform generator (or summation module in the FEW
framework). The new trajectory, built in the fashion of
the fast trajectory module described in Section IIIA, in-
tegrates through the parameter evolution using 5PN flux
values for derivatives {ṗ, ė, Ẏ } (Y = cos ◆) [66]. Note
that Y = cos ◆ ⌘ Lz/

p
L2
z
+Q where ◆ is di↵erent from

the angle I used in this paper to describe the orbital
inclination angle in the relativistic construction. The pa-
rameter ◆ is included here because it is explicitly used
in the semi-relativistic formulation. For the time deriva-
tives of the phases, we employ the same fundamental fre-
quencies as in the relativistic waveforms, (⌦',⌦✓,⌦r),
which now includes the polar frequency, ⌦✓, required
in the generic Kerr regime. This indicates an impor-
tant update to the original AAK waveform: ◆ is now an
evolving quantity whereas in prior versions it was taken
to be a constant. Additionally, a key distinction here
with respect to the Schwarzschild trajectory described in
Section IVA is that the separatrix is no longer simply
given by ps = 6 + 2e. Instread, we employ a numerical
computation of the separatrix that depends on (a, e, Y )
given in [55]. We implement this calculation in C++ lever-
aging the GSL library [49] for root finding. Once the tra-
jectory has reached within 0.1 of the separatrix, it stops
and performs the finishing integration step described for
the relativistic trajectory in Section IVA. This higher-
dimensional trajectory computation still outputs arrays
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that are ⇠ 100 points in length.
The old AAK built a trajectory by using frequency

evolution from the Numerical Kludge [31] and mapping
it onto the frequency basis used in the original Analytic
Kludge [30]. This actually resulted in a time evolving
e↵ective mass and spin of the MBH, along with a few
adhoc additions within the waveform building step that
ensured the AAK would maintain roughly the same fre-
quency evolution as the NK.

With the new 5PN trajectory, we do away with the
mapping and adhoc steps within the waveform build. In-
stead, we directly calculate the fundamental frequencies
along the trajectory and convert these to the basis used
in the AAK waveform generation step:

�̇ = ⌦r,

�̇ = ⌦✓ � ⌦r, and

↵̇ = ⌦' � ⌦✓,

(14)

where �̇ is the rate of change for the quasi-Keplerian
mean anomaly, ↵̇ is the rate of Lense-Thirring preces-
sion, and �̇ + ↵̇ is the angular rate of periapsis preces-
sion. The phases in this basis, {� = �r, �,↵}, are given

by
R
t

0
dt0(�̇(t0), �̇(t0), ↵̇(t0)). In the original AAK, a cal-

culation was performed at each time step to determine
the proper ⌦'. Since we already have this quantity, we
have removed this computation and instead feed the ⌦'

array directly into the waveform summation step.
Similar to the interpolated summation described in

Section III C, all time evolving information necessary for
the final waveform summation is interpolated with a cu-
bic spline. After preparing all the necessary quantities
along a sparse trajectory, the quantities that require in-
terpolation are (e, ◆,�, �,↵, �̇, �̇,⌦') (p(t) information is
included via �̇, �̇, and ⌦'). The actual waveform sum-
mation step is exactly the same as the old AAK, with
the exception of the interpolation of these quantities and
the aforementioned direct input of ⌦'.

The new AAK summation is coded as a separate mod-
ule from the actual trajectory determination. Therefore,
in sticking to the FEW framework, these modules are in-
terchangeable and usable as stand-alone tools. If a user
builds their own trajectory in generic Kerr, they can at-
tach this AAK summation to it in the current absence
of a fully generic relativistic Kerr model. This waveform
summation module is also GPU-acccelerated in keeping
with the CPU/GPU agnostic nature of the FEW frame-
work.

VI. GRAVITATIONAL WAVE ANALYSIS

A key di�culty with the lack of fast EMRI waveforms
was the inability to perform detailed data analysis stud-
ies in a tractable amount of time. We show how the
accelerated FEW framework can be leveraged to study
EMRI systems including basic underlying EMRI wave-
form information, as well as tests of EMRI detectability

and parameter characterization. A variety of fast FEW
waveforms were studied with di↵ering settings: one wave-
form uses a mode content parameter set to 10�5 (FF✏5)
to represent a relativistic waveform with a large amount
of harmonic modes; another with relativistic mode con-
tent, but a small number of modes with ✏ set to 10�2

(FF✏2); and a relativistic quadrupolar waveform with
only the (l,m, n) = (2, 2, n) modes (FF22). Additionally,
we tested a waveform that combines the trajectory mod-
ule from the fast relativistic Schwarzschild waveform with
the AAK waveform summation module. This produces
a waveform with a relativistic adiabatic trajectory and
AAK-generated amplitudes limited to the Schwarzschild
eccentric regime. This means when we compare this
Schwarzschild AAK (SchAAK) waveform with the fast
Schwarzschild FEW models, the phase trajectories are
exactly the same. Therefore, the focus of these compar-
isons is on the amplitude di↵erence between the mod-
els in order to understand how accurate the amplitudes
of EMRIs need to be in practice to perform data analy-
sis. Future studies with these models will help illuminate
these questions. Here, we provide an initial look at the
Schwarzschild eccentric adiabatic regime.
We use the generic FEW waveform interface to pro-

duce detector-frame waveforms with the same conven-
tions across all models. While these waveforms are pro-
duced in the detector frame, we do not use a LISA re-
sponse function as accurate versions are not yet avail-
able; therefore, we focus on intrinsic parameters dur-
ing any comparisons. All angular quantities are cho-
sen one time and used for all tests. They are chosen
from a random uniform distribution across their domain.
The values tested were (✓S ,�S , ✓K ,�K ,�',0,�r,0) =
(0.54, 5.36, 1.73, 3.20, 3.23, 4.72). As we are in the
Schwarzschild eccentric regime, we set (a, Y0,�✓,0) =
(0.0, 1.0, 0.0). All waveforms are two years in length with
a measurement cadence of 10 seconds.
The following studies employ common gravitational-

wave metrics to further understand the use of rela-
tivistic waveforms in EMRI analysis. The conventional
gravitational-wave likelihood L between a set of strain
data, d(t), and a template waveform, h(t), is given by

lnL = �
1

2
hd� h|d� hi , (15)

where we have introduced the noise-weighted inner prod-
uct:

ha|bi = 4Re

"Z 1

0

ã(f) ⇤ b̃(f)

Sn(f)
df

#
. (16)

Here, ã(f) is the Fourier transform of a(t), and Sn(f) is
the power spectral density (PSD) of the noise. The SNR
of a given source is equivalent to

p
hd|hi. The analysis

in Section VID is based on the LISA mission. There-
fore, the PSD used was the “SciRDv1” version of the
LISA noise curve [67] without Galactic binary foreground
noise for convenience and to focus on the waveform-model



11

bias. Sections VIA and VIB instead focus directly on the
waveform model, setting the PSD to 1 for all frequencies
to avoid noise-weighting for a specific detector. For these
computations we use the “overlap” or “mismatch” = 1�
overlap. The overlap is a normalized inner product:

overlap(a, b) =
ha|bip

ha|aihb|bi
. (17)

A. Harmonic Mode Analysis

The overall accuracy and speed of the FEW wave-
form is user controlled by setting the fractional mode
power parameter, ✏, as described in Section IIID above.
This controls the number of modes built into the wave-
form. Mismatch values, mode count, and generation
speed across ✏ values are shown in Figure 3. Three points
representing the boundary of the FEW domain of valid-
ity are shown: (p0, e0) 2 [(10, 0.7), (17.4, 0.7), (16.2, 0.1)].
The mismatch behavior across waveforms is e↵ectively
the same. At the high end near ✏ = 10�1, the mismatch
is ⇠ 10�2. The mismatch decreases in a power-law be-
havior as ✏ is decreased until ✏ ⇠ 10�5. It then asymp-
totically approaches ⇠ 10�4 as ✏ tends toward zero. This
behavior is due to the e↵ective noise floor of the RO-
MAN network amplitudes at about a factor of ⇠ 10�6

relative to the maximum amplitude mode. The slight
dip in mismatch for (p0, e0) = (16.2, 0.1) at 10�4 is also
due to this noise in the neural network amplitudes. For
these lower eccentricity sources, where power is concen-
trated in fewer modes, smaller ✏ values result in many
noisy (albeit low power) modes added to the waveform.
At ✏ = 10�4, the noisy mode contribution is minimized
while the true mode contribution is maximized.

The mode count behavior is similar across initial pa-
rameters. The lowest eccentricity source shown with
(p0, e0) = (16.2, 0.1) has 1453 modes in the waveform
at ✏ = 10�9. At ✏ = 10�1 it contains only 6 modes.
The system with (p0, e0) = (10, 0.7) contains 1883 and
56 modes with ✏ = 10�9 and ✏ = 10�1, respectively. The
waveform generation speed follows closely with the mode
content because this mode count in the waveform sum-
mation is the most important contribution to the overall
timing. This is discussed further in Section VIC.

The harmonic structure of relativistic EMRI wave-
forms is rich and complex. Even in Schwarzschild eccen-
tric where the k-indexed polar modes are ignored, there
is not a clear set of relations to succinctly describe the
structure. This may be a topic of future work. How-
ever, the mode structure can be qualitatively visualized.
Figure 4 shows a gridded visualization of the power in
every (l,m, n) mode for di↵erent values of eccentricity
(the ✏ mode selection parameter was not employed here).
The grid structure is explained in the caption. Note that
m < 0 modes are not included because the power is equiv-
alent in the ±m modes (if angular harmonics are not in-
cluded). The power in each mode is shown as a fraction

of the total power until the fractional mode power falls
below 10�10. This visualization is created with the bicu-
bic spline amplitude calculator to make sure to remove
any noisy, lower power modes. As the eccentricity is in-
creased, the mode power spreads out to a larger number
of modes as well as to higher n modes (or lower n modes
for m < 0). The contributing n modes within each l
subset also tend towards a smaller number of n modes
located at larger n values as l is increased.
An additional mode content visualization is shown in

Figure 5. However, this visualization fixes (p0, e0) =
(7.5, 0.5). Instead of varying parameters, it shows how
the mode selection parameter ✏ a↵ects the mode con-
tent from a singular geodesic. When building a wave-
form, mode selection is performed for each instantaneous
geodesic in the sparse trajectory. However, please note
the final waveform is constructed with the union of all
selected modes across the entire sparse trajectory. The
top row in the figure shows the fractional mode content
in all modes. Many (l,m, n) modes are highlighted in
this highly relativistic orbit. When selecting modes with
✏ = 10�5, all modes with l > 7 are eliminated from con-
sideration with the strongest modes in l  7 remain-
ing. For ✏ = 10�2, a much higher fraction of modes are
eliminated with only l  3 modes remaining. However,
these l = 3 modes are crucial for comparison against
quadrupolar (l = m = 2) waveforms like the AAK (see
Sections VIB and VID).

B. Mismatch Analysis

In the original FEWmodel paper [37], we performed an
initial analysis on the mismatch of the FEW model over
time. In this section, we expand on that analysis to test
more waveforms against the slow FEW Schwarzschild ec-
centric waveform presented in Section IVC.
For this test we analyze 12 EMRI systems with M =

106M� and with initial parameters that outline the valid
parameter space within the FEW model (see the caption
of Figure 6 for (p, e) values). After setting (M,p0, e0)
for each EMRI, µ is adjusted to fix the trajectory dura-
tion to 2 years from start position to separatrix. Figure 6
shows the mismatch results for these EMRIs over time for
the four waveform models (FF✏5, FF✏2, FF22, SchAAK)
compared against the slow FEW waveform. The curves
in the plot are drawn through (p, e)-space and show the
mismatch from t = t(p0, e0) = 0 to t = t(p, e). Therefore,
as (p, e) evolve, the length over which the mismatch is cal-
culated increases until it reaches the full 2 year waveform
at the separatrix.
The di↵erence in the various models and settings is

clear. FF✏5 displays the best mismatch values as ex-
pected with a maximum mismatch of ⇠ 5 ⇥ 10�4 in the
worst-case waveform scenario with (p0, e0) = (10, 0.7).
As (p0, e0) move towards further separations and lower
eccentricities, the mismatch drops to and falls slightly
below 10�4. By adjusting the mode content parameter
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FIG. 3. The e↵ect of adjusting the ✏ parameter on the mismatch, mode count, and waveform generation time. This parameter
determines the threshold for the fractional added power of the harmonic modes. For each plot shown, three sets of parameters
are run, labelled in the legend of the central plot as (p0, e0). The left graph shows the mismatch versus ✏ compared against slow
FEW waveforms (Section IVC). The mismatch asymptotically approaches a minimum value specific to each set of parameters.
This minimum value above zero is due to the noisy floor of the RomanNet. The center and right plots show the corresponding
number of modes and speed, respectively, for each set of parameters tested. A dashed vertical line at ✏ = 10�5 is added to each
plot to indicate the ✏ chosen for the base injection waveform in the following sections.

to 10�2 (FF✏2 waveform), the mismatch increases by a
full order of magnitude. Based on Figure 3, this wave-
form uses approximately a factor of 10 fewer harmonic
modes than the FF✏5 waveform. The FF22 waveform
has 61 modes in it regardless of the input parameters.
At lower (higher) eccentricities, the mode count for the
FF22 waveform is more (less) than the FF✏2 waveform.
This FF22 waveform shows mismatch values between
⇠ 0.05 � 0.1. This is 3 orders of magnitude higher than
the base FF✏5 waveform. The fourth and final waveform,
SchAAK, showed the worst mismatch values as expected
due to its semi-relativistic construction. Mismatch val-
ues for SchAAK range from ⇠ 0.05�0.62. The high mis-
match seen for SchAAK at high eccentricities will have
strong implications on parameter estimation shown in
Section VID.

Waveforms comparing each fast model to the slow
FEW Schwarzschild eccentric waveform for the (p0, e0) =
(10, 0.7) trajectory are shown at the beginning and end
of the inspiral in Figure 7. This figure visually con-
firms what we see in the mismatch results. The FF✏5
and FF✏2 waveforms show strong visual overlap with
the slow FEW Schwarzschild eccentric waveform model;
these models are also visually almost identical. The
quadrupolar relativistic model (FF22) deviates slightly
compared to the slow FEW Schwarzschild eccentric wave-
form model, especially near higher peaks in the strain
amplitude. The semi-relativistic SchAAK waveform has
di�culty matching the slow FEW Schwarzschild eccen-
tric waveform model at this higher eccentricity which

is consistent with the high mismatch values discussed
above.

C. Waveform Timing

Given the su�cient accuracy of a waveform model, the
generation time is extremely important to the success of
the search for and parameter estimation of gravitational
wave sources. For proper Bayesian Markov Chain Monte
Carlo (MCMC), greater than⇠ 106�109 waveform evalu-
ations are necessary for converged posterior distributions.
The combination of interpolation methods and accelera-
tion techniques allow the FEW waveforms to be readily
used in MCMC studies.
Figure 8 shows the timing of various pieces of the fast

(FF✏5) and slow FEW waveforms, with the GPU timing
included for the fast waveform. This timing is computed
for a two-year waveform in our worst-case configuration
(in terms of mode count): (p, e) = (10, 0.7). The CPU
computations are run on one core of a Xeon Gold 6132
2.60 GHz processor. The GPU timing is computed with
an NVIDIA V100 GPU.
The trajectory for the fast FEW waveform is the same

for the CPU and GPU versions because the trajectory is
always computed on the CPU. The large steps in the inte-
grator are a clear advantage of ⇠ 104⇥ faster compared
to the dense stepping slow model integrator. Angular
harmonics are calculated in the same way for all FEW
models, so this timing is always equivalent and faster
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FIG. 4. The mode power content as a fraction of the total power emitted for a given geodesic orbit with various eccentricities
and p0 = 10. The mode data was computed with bicubic spline-generated amplitudes (see Section IVC). Plots in each row have
the same eccentricity (labelled along the left edge). Columns represent a singular l mode value (labelled along the top edge).
Within each plot, m and n mode values are given along the horizontal and vertical axes, respectively. We show n 2 [�30, 30]
and 0  m  l. For m < 0, the plot would be the mirror image of above reflected around n = 0. Modes with Plmn/Ptot < 10�10

are not shown.

than 1 ms. The CPU fast model amplitude determination
is slightly slower than the GPU implementation because
the neural network calculations are performed in parallel
on the GPU (CPU computations are tested on a single
core but are parallelized when multiple cores are avail-
able). However, these computations on both hardware
are of order ⇠10 ms because of the sparse trajectories
and e�ciency of the neural networks. The slow model
amplitudes are determined with the bicubic spline for all

modes, a much slower operation: ⇠ 105⇥ slower than the
CPU neural network computation. Following the trajec-
tory and amplitude calculations, modes are selected on-
line in the fast FEW models. The sorting operation is
the bottleneck here. The GPU sorting algorithm, and,
therefore, the mode selection step, is ⇠ 30⇥ faster on the
GPU.

The waveform is then evaluated at the density of the
data by interpolating the sparse array information. The
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FIG. 5. Similar to Figure 4 but for (p0, e0) = (7.5, 0.5) and di↵erent values of ✏ which controls the mode content in the
waveform. Geodesic output from all modes, modes selected with ✏ = 10�5, and modes selected with ✏ = 10�2 are shown in
each row from top to bottom, respectively. In Section VID, we show waveforms built with ✏ = 10�2 show high fidelity against
more accurate waveforms indicating building waveforms with less modes will increase speed without sacrificing much accuracy.

summation is the main bottleneck for the fast wave-
forms, and the piece of waveform generation where the
GPU truly separates itself from the CPU implementa-
tion. The GPU summation is ⇠ 3000⇥ more e�cient
than the CPU summation. The summation bottleneck
can be easily understood by examining the number of in-
dividual mode computations necessary to build a single
waveform. With a conservative data length of 106 points,
and each point in the waveform requiring generation of
⇠ 102 � 103 harmonic modes, a single waveform requires
⇠ 108�109 mode computations. This large number leads
to a close similarity in summation times between the fast
FEW model CPU version and the slow FEW model with
the slow model taking ⇠ 5⇥ longer. The full waveform
timings are dominated by the summation, meaning the

comparison of the summation timescales is strongly in-
dicative of the full waveform generation comparison.

Following the summation, the frame transformation is
performed. The frame transformation is the same in the
slow model and the fast waveform CPU version, but the
timing of this step is a small fraction of the summation
timescale. However, the GPU maintains its e�ciency
di↵erence at ⇠ 200⇥ faster than the CPU-based models
for the transformation.

We also show the timing of the 5PN AAK waveforms
(Section V) in Figure 8. To be clear, this subsection is
the only part in our results where we test the full 5PN
AAK waveform including (a, Y0,�✓,0) = (0.5, 0.77, 0.0).
The 5PN trajectory is slightly longer than the relativis-
tic adiabatic Schwarzschild trajectory because of the long
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FIG. 6. For EMRI signals, the harmonic phases and amplitudes create mismatch between comparison waveforms, with the phase
strongly dominating. Here, we show the mismatch stemming mainly from amplitude di↵erences between template waveforms
(FF✏5, FF✏2, FF22, SchAAK, which are listed in the title of each plot) and the slow FEW model from Section IVC. All
template waveforms for a given (p0, e0) use exactly the same trajectory, but di↵er in their amplitudes. The trajectories for the
slow injection waveforms are slightly more accurate because they use dense-stepping integration, but this small di↵erence does
not contribute to the mismatch values shown. The initial values are chosen to outline our parameter space: (p0, e0) 2 [(10, 0.7),
(11.48, 0.7), (12.96, 0.7), (14.44, 0.7), (15.92, 0.7), (17.4, 0.7), (16.2, 0.1), (16.4, 0.2), (16.6, 0.3), (16.8, 0.4), (17.0, 0.5), (17.2, 0.6)].
These initial trajectory points are shown with gray dots. The central black hole mass, M , is set to 106M� and the secondary’s
mass, µ, is determined using FEW utility tools so that the inspiral takes two years to evolve from the initial orbital parameters
to the separatrix (shown as the grey line). All other parameters are identical to the injection waveform parameters given at
the beginning of Section VI. The partial mismatch is shown from t = 0 to t = t(p, e) according to the color bar. As the lines
move from the initial gray points to the separatrix, the mismatch is determined over an increasing amount of time. The FF✏5
and FF✏2 waveforms show strong overlap with the slow and accurate waveform. The FF22 waveform performs marginally and
the SchAAK waveform compares poorly, especially at high eccentricity. These di↵erences are visualized in Figure 7.

analytic formulae necessary for 5PN calculations (rather
than a basic interpolation in the relativistic trajectory)
and the necessity of computing two more derivatives
(Ẏ ,⌦✓) in the higher dimensional parameter space.

The AAK piece of the waveform is implemented as a
special summation module. There are no specific angu-
lar harmonic, amplitude, or mode selection computations
in the AAK waveform, so those parts of the computa-
tion are excluded. The AAK summation shows a simi-
lar timescale ratio to the relativistic waveforms between
its GPU and CPU versions. However, the AAK sum-
mations are generally ⇠ 2⇥ faster than the worst-case
relativistic waveform. Since the frame transformation

computations are the same as the relativistic waveform,
the overall waveforms show similar timing comparisons to
the summation timescales. However, it is interesting to
note that at higher ✏ & 10�2, where less harmonic modes
are required, the fast relativistic waveform can become
faster than the 5PN AAK. This is simply explained since
the AAK summation involves a longer sequence of com-
putations for each harmonic mode at each time point.
The fast waveform summation, on the other hand, is
much simpler, employing straight-forward interpolation
and complex multiplication to determine each individual
mode value.
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FIG. 7. Waveforms corresponding to the four waveform models tested in Figure 6 are shown here. Each waveform follows
the top-left trajectories in the sub-panels in Figure 6 which have (p0, e0) = (10, 0.7) and a final eccentricity ' 0.5. Each row
contains a di↵erent fast waveform model labelled along the vertical axis shown with a dashed orange line. These fast models are
compared against the slow waveform model appearing as a solid blue line. The left and right plots represent the beginning and
end of a two-year waveform. As is expected from the mismatch results, the FF✏5 and FF✏2 waveforms provide the strongest
match to the slow waveform model. The visual di↵erence between these two models is almost indistinguishable. The FF22
quadrupolar waveform begins to have di�culty resolving the higher peaks in the waveform and visually shows a clear separation
from the top two rows. The bottom row, with the SchAAK waveform model, clearly reveals the issues related to generating
EMRI waveforms with semi-relativistic amplitudes: the overlap is very poor both quantitatively and visually.

D. Intrinsic Posterior Analysis

It is helpful to transform the mismatch information
into actual metrics for data analysis. Here, we will focus
on determining measurement precision and bias for the

waveforms analyzed in this section. Rather than using
the typical Fisher matrix [e.g. 68] and Cutler-Vallisneri
bias [69] calculations, we leverage the e�ciency of the
GPU implementations to generate full Bayesian posteri-
ors from basic standard parameter estimation runs.
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FIG. 8. Timing benchmarks for various waveforms discussed
in this paper. Timing for the trajectory, angular harmonic,
amplitude, mode selection, summation, and frame transfor-
mation modules is shown from top to bottom, respectively.
The sum of those timings is also given. The CPU and
GPU versions of the fast FEW waveforms (with ✏ = 10�5)
(Section IV) are shown in light and dark blue, respectively.
The slow FEW waveform is shown in green (Section IVC).
The 5PN AAK waveform (Section V) is shown in light and
dark red, representing the CPU and GPU versions, respec-
tively. (p0, e0) = (10, 0.7) for all waveforms, depicting the
worst-case in our domain of validity in terms of the number
of modes necessary to represent the waveform. The central
black hole mass M is set to 106M� and µ is chosen to repre-
sent a two-year inspiral from the initial (p0, e0) to the sepa-
ratrix. Note the slow waveform does not perform any mode
selection. Also, the 5PN AAK waveform does not specifically
employ angular harmonic, amplitude, or mode selection mod-
ules. The AAK waveform piece (not including the trajectory)
is treated in its entirety as a summation module. Timings
were computed using a single CPU core on a Xeon Gold 6132
2.60 GHz processor and an NVIDIA V100 GPU. The fast
FEW waveform GPU version is ⇠ 2500⇥ faster than its CPU
counterpart.

The focus of this paper is on the new waveform mod-
els. Therefore, we only briefly describe our parameter es-
timation techniques and settings; we refer the interested
reader to cited papers for more information.

The posterior distribution represents the product of
the prior distribution and likelihood distribution. The
prior and likelihood terms are normalized by an in-
tractable normalization factor. Markov Chain Monte
Carlo (MCMC) methods sample from the posterior to
build posterior distributions from the density of samples.
Since all samples are normalized by the same value, it
is not necessary to calculate this normalization factor
for accurate posterior results. We employ uniform priors
spanning large fractions of the parameter space and the
typical gravitational wave likelihood as defined above.

For sampling, we use a slightly modified version of the
emcee [70] package that helps account for periodic pa-
rameters. Initial starting points for runs were sampled

from a multivariate normal distribution with mean equal
to the injection parameters and covariance matrix deter-
mined with Fisher methods for the template model (not
the injection model). The burn-in allows these walkers
formed tightly around the true point to spread out and
properly cover the posterior. The proposal used is the de-
fault A�ne-Invariant or Stretch proposal [71]. We used
32 walkers in each run. The average autocorrelation time,
⌧̂ , is determined across chains using [72]. The burn-in
used was chosen to be 2⌧̂max. Chains were thinned by
a factor of 1

2
⌧̂min [72], where min and max indicate the

minimum and maximum autocorrelation times across the
D = 6 dimensional parameter space. The sampler was
run until chains were longer than 50⌧̂ , providing an ef-
fective sample size (ESS) of ⇠ 3000 for each case tested.
The particular sampling method used will keep walkers
from moving far from the main mode of the posterior.
Therefore, our study does not comment on any posterior
phenomena away from the main posterior mode.
Given the FF✏5 waveform shows excellent agreement

with the slow waveform, we inject waveforms with this
model. Signals are injected without noise in order to
understand the pure systematic bias resulting from the
di↵erent waveform models. All injections are scaled to
a chosen SNR of 30 (this e↵ectively means scaling the
distance) over 2 years of inspiral. The SNR is chosen to
represent an astrophysically motivated source [e.g. 6]. All
sources analyzed are located at a sensible distance with
most distances at ⇠ 1 Gpc. The closest source is located
at ⇠ 0.2 Gpc. Once injected, we perform independent
parameter estimation runs for all parameter sets using
FF✏5, FF✏2, FF22, and SchAAK waveforms as templates.
The parameters tested were only the intrinsic pa-

rameters: {M,µ, p0, e0,�',0,�r,0}. The initial phases
(�',0,�r,0) used for the injection were set to (3.23, 4.72).
(M,µ, e0) were chosen from a 3⇥3⇥4 grid. We choose M
from the set {3⇥105M�, 106M�, 3⇥106M�}; we choose
µ from the set {3M�, 10M�, 30M�}; and we choose e
from the set {0.1, 0.3, 0.5, 0.7}. After (M,µ, e0) are set,
p0 is determined to be min(p0(t = 2yrs), 16.0 + 2e).
p0(t = 2yrs) indicates the p0 value at 2 years before
reaching the separatrix given the chosen (M,µ, e0).
This parameter and waveform grid amounts to 144 sep-

arate posteriors. We remove from this four sets of pa-
rameters, corresponding to (M,µ, e0) = (3⇥106, 3.0, 0.7),
(3⇥106, 10, 0.7), (3⇥106, 30.0, 0.7), and (106, 3.0, 0.7). In
these cases, the parameters correspond to p0(t = 2yrs) <
9.9, which is outside of our domain of validity at e = 0.7.
With the GPU acceleration, most runs were ⇠ 1 � 2
hours in duration. Posterior runs with multimodality
were longer at ⇠ 6� 10 hours due to larger autocorrela-
tion times.
When comparing models to each other, a clear be-

havior is observed. Figure 9 shows one example com-
paring all waveform models tested at various M with
(µ, e0) = (10, 0.5). The posterior distributions plotted
in the bottom row of the figure are the two-dimensional
marginalized posterior distributions in the e0-lnM plane.
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The contours shown correspond to the 3� value for a two-
dimensional Gaussian distribution (described as the 3�
contour below). For a given orbital configuration the
mass M sets the frequency band over which an EMRI
radiates. The relation of the frequencies in the radia-
tion to the noise curve of LISA will e↵ect the behav-
ior of the posterior distributions. At M = 3 ⇥ 105M�,
the EMRI radiates most of its power between ⇠ 3 � 40
mHz, which is considered the high-frequency end of the
LISA noise curve. Here, the noise increases as the fre-
quency is increased. This means that higher frequency
modes will experience more noise suppression than lower
frequency modes. Since the FF22 and SchAAK wave-
forms are built from only quadrupolar radiation, these
waveforms will contain less signal at the higher frequency
end when compared to FF✏5 and FF✏2 waveforms. This
is especially true with higher eccentricity. This con-
cept is illustrated in the top row of Figure 9. The top
row of plots shows comparisons of the Fourier Transform
(h̃(f)) of the time domain signals built with the FF✏5 and
SchAAK models in the characteristic strain representa-
tion: h2

c
= f2

|h̃(f)|2 [73]. With the higher frequency
modes suppressed by the noise, we find similar poste-
riors for all models as expected. The di↵ering models
show e↵ectively no bias on this source with close, con-
centric posterior distributions of the FF✏5, FF✏2, FF22,
and SchAAK models in that order from middle to outer
ellipse. To ensure our analysis was appropriate, since we
do not include the Galactic foreground noise expected for
LISA, we repeated the tests shown in Figure 9 while in-
cluding the Galactic foreground and found no significant
changes to the results that follow.

As the mass of the MBH is increased to M = 106M�,
the waveforms shift towards the center of the LISA band,
peaking directly over the most sensitive portion at ⇠ 4
mHz. Here, both higher and lower frequency modes are
similarly suppressed. In this case, there is no “enhanced
weighting” of the lower frequency modes. This leads to
a stronger di↵erence in posterior distributions with the
FF22 and SchAAK models spreading further away from
the injection point compared to the FF✏5 and FF✏2 wave-
forms.

The highest mass case with M = 3 ⇥ 106M� shifts
the radiation frequencies to the lower frequency end of
the LISA sensitivity band. At this end, the noise de-
creases as frequency is increased. Therefore, here, the
lower frequency modes are now further suppressed by the
noise compared to the higher frequency. This results in a
further widening of the posteriors from the quadrupolar
waveform templates.

For all masses tested, the FF✏2 model strongly mirrors
the behavior of the FF✏5 model. This is an initial indi-
cation that higher mode counts may not be necessary for
accurate parameter estimation of EMRI sources. How-
ever, what is necessary is that the modes be intelligently
chosen to represent the relativistic behavior of the EMRI
system rather than simply fixing a predetermined set of
modes at low order in l.

Figure 10 shows an example of a full posterior with
injection parameters (M,µ, e0) = (106M�, 3M�, 0.5).
The blue and black posteriors represent the FF✏5 and
SchAAK template models, respectively. Therefore, the
blue posterior shows a direct test against the injection.
All blue output distributions are unimodal, Gaussian,
and centered around the true point with no bias, as
expected. The black posterior shows what can happen
when trying to fit a relativistic injection with a semi-
relativistic template model. There is a strong bias re-
sulting in the true injection point positioned far outside
the 3� posterior contours. The posterior is multimodal,
displaying one-dimensional multimodality in the lnM, µ
and e0 parameters. In general, the gravitational wave
likelihood function is negatively a↵ected by mismatch in
the phase and the amplitude of a signal; but, the rela-
tive e↵ect of each can vary, with the phase dominating.
Since the phasing in both models shown is identical, we
expect and observe the posterior weight to be located
close to the injection point. However, the amplitude-
based mismatch for the SchAAK waveform against the
relativistic injection across our domain of validity is of
order ⇠ 0.1 � 0.6 (see Figure 6). At higher eccentric-
ity, the mismatch approaches ⇠ 0.62. This amplitude
mismatch can produce points in parameter space with
distinct di↵erences in the intrinsic parameters from the
injection that show better alignment with the injected
waveform. In fact, in the case shown in Figure 10, there
is e↵ectively no posterior weight at the injection point.
This results in posterior modes at slightly higher (lower)
lnM , higher (lower) µ, and lower (higher) e0, which can
be observed in the parameter correlations shown in the
two-dimensional marginalized posteriors.

The SchAAK template at the injection and best-fit
(maximum likelihood) parameters are visually similar,
except for near the separatrix where the best-fit wave-
form begins to dephase from the injection. The SchAAK
waveform at the injection does not dephase compared to
the FF✏5 injection because their trajectories are identi-
cal. The best-fit waveform has di↵erent intrinsic param-
eters meaning its trajectory and, therefore, the time at
which it reaches the separatrix is di↵erent from the injec-
tion causing this dephasing. Consequently, it is interest-
ing that despite the slow dephasing of slightly di↵erent
trajectories, the best-fit parameters still provide a better
match to the relativistic injection waveform. The best-fit
parameters produce a mismatch of 0.50, a lnL ⇡ �313
(lnL = 0 for the injection against itself), and an ex-
traction SNR of ⇠ 22.3 (SNR of the injection is 30). A
SchAAK waveform generated at the injection parameters
has an associated mismatch of 0.53, lnL ⇡ �347, and an
SNR of ⇠ 21.8. Therefore, � lnL ⇡ 34, indicating the
injection point is not expected to be within the explored
posterior (the minimum lnL value included in the poste-
rior is ⇠ �330).

Similar multimodal behavior is observed for the
SchAAK template with (M,µ, e0) = (106, 10, 0.7). This
is shown in Figure 11. In this figure, we show, for the
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FIG. 9. Characteristic strain (top row) and two-dimensional 3� posteriors in the e0 � lnM plane (bottom row) for three
di↵erent binary configurations. Above each top row plot the parameters are listed as (M,µ, p0, e0) and each plot is made with
µ = 10 and e0 = 0.5. From left to right, injections have M values of 3 ⇥ 105, 1 ⇥ 106, and 3 ⇥ 106. Within each bottom row
plot, the FF✏5, FF✏2, FF22, and SchAAK models are shown in blue, green, red, and orange, respectively. Black horizontal and
veritcal lines indicate the location of the injection point. The top plots illustrate the spectral di↵erence between FF✏5 (blue)
and SchAAK (orange) waveforms at the injection point compared against the LISA sensitivity curve. For completeness, we
also tested all parameter sets in this plot again with the noise contribution from the Galactic foreground. It did not change
the results by any significant amount.

SchAAK template, a 3⇥3 grid of plots arranged accord-
ing to M and µ of the injection. Within each of these
nine plots, the two-dimensional M � µ 3� posterior is
shown at all four eccentricity injection values. This fig-
ure shows the multimodal and bias behavior across all
injections tested. However, it must be noted there is mul-
timodal behavior for (M,µ, e0) 2 [(3 ⇥ 106, 3, 0.5), (3 ⇥

106, 10, 0.5)], which is shown for (p0, e0) parameters in
Figure 12 (other parameter pairs do show multimodal-
ity, but only (p0, e0) is shown to be succinct). In the
(M,µ, e0) = (3 ⇥ 106, 10, 0.5) case, multimodality is ob-
served in M , µ, and e0, but the the bias is not as
strong as the first two cases discussed with two pos-
terior modes observed at the level of the 1� contour
with the 2� contour surrounding the two 1� modes. For
(M,µ, e0) = (3⇥ 106, 3, 0.5), the multimodality is found
only in the p0 parameter and the bias is small: the injec-
tion point does fall within the 2� contour.

It is hard to predict exactly when and how the bias
and multimodal behavior will manifest. From our re-
sults, we expect it to occur at higher M , lower µ, and
higher e0. This manifests from the spread in harmonic
modes towards lower frequencies, similar to the previ-
ous discussion around Figure 9. However, these behav-
ioral expectations are not fixed rules as the case with
(M,µ, e0) = (3 ⇥ 106, 10, 0.7) shows no visual bias or
multimodality, indicating it is not easy to predict exactly
when or how this behavior will occur. This uncertainty
is due to the inherent di↵erence between the SchAAK
waveform manifold and the relativistic waveform man-
ifold, making it hard to directly understand waveform
comparisons at each location in parameter space. How-
ever, it must be noted that no posteriors generated with
the FF22 quadrupolar template exhibit any multimodal
or biased behavior. The key point here is that the semi-
relativistic amplitudes of the SchAAK model can result
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FIG. 10. Corner plot showing one- and two-dimensional marginalized posteriors for an injection with (M,µ, p0, e0,�',0,�r,0) =
(106M�, 3M�, 8.99, 0.5, 3.23, 4.72). The histograms and contours for the ✏ = 10�5 fast FEW (FF✏5) and Schwarzschild AAK
(SchAAK) template waveforms are shown in blue and black, respectively. The true injection parameters are denoted with the
red vertical and horizontal lines. Note the sampling methods used concentrated near the true value. The samplers are not be
able to access secondary modes with a strong separation from the injection point. Due to the inaccuracy of the semi-relativistic
amplitudes in the SchAAK waveform, a strong bias and multimodal behavior are observed when fitting a SchAAK waveform
template against an FF✏5 relativistic injection. The consequences of this behavior are further discussed in Section VII.
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in a reasonable extraction of posterior distributions, but
includes the risk of producing extraneous posterior struc-
ture and potential bias.

VII. DISCUSSION AND FUTURE OUTLOOK

The modular FEW framework is designed to facilitate
updates to the waveform models. Future work will focus
on extending the fully relativistic models to Kerr space-
time, improving the phase accuracy of the waveforms,
and computing the waveforms in domains other than the
time-domain. Furthermore, the speed of the FEW model
allows for e�cient exploration of the LISA data analysis
problem. These tasks can be carried out in parallel with
each other; we discuss each task in the subsections below.

A. Extending the fully relativistic waveform
amplitude model to generic Kerr inspirals

From Schwarzschild inspirals it is natural to first ex-
tend the amplitude model to eccentric, equatorial or
spherical orbits in Kerr spacetime as this only increases
the dimension of the parameter space by one. The model
can then be extended to the four dimensional parameter
space of generic (eccentric and inclined) inspirals into a
Kerr black hole. Frequency domain Teukolsky codes ex-
ist which can rapidly compute the waveform amplitudes
across these expanded parameter spaces [27]; data sets
providing waveform data for spherical and equatorial ec-
centric orbits for many spins can be found in the Toolkit
[74], and work is in progress to generate similar data for
generic orbits. We expect that the RomanNet method
presented in Section IVB will extend well to e�ciently
interpolate the amplitudes across higher dimensions.

To model Kerr inspirals the spin-weighted spherical
harmonics, �2Ylm, will also need to be adjusted to
the spin-weighted spheroidal harmonics, Slmkn(t, ✓)eim�.
The spheroidal harmonics add both an additional two
harmonic indices and time-dependence compared to the
spherical harmonics. Both of these complications can be
modeled by using the fact that the spheroidal harmonics
can be expanded in spherical harmonics:

Slmkn(t, ✓)e
im� =

1X

j=lmin

bj
lmkn

(t)�2Y jm
(✓,�) , (18)

where lmin = max(2, |m|). Appendix A of Ref. [48] dis-
cusses this further, and describes how to compute the
spheroidal-spherical mixing coe�cients bj

lmkn
(t). Over

most of parameter space, we find the approximate scaling
bj
lmkn

(t) ⇠ (a!mkn(t))|j�l|. The expansion coe�cients
thus peak at j = l, and fall o↵ as powers of a!mkn(t) away
from this peak. By knowing these coe�cients over the
inspiral, we can project the waveform amplitudes onto a

spherical harmonic basis, rewriting Eq. (1) as

h =
µ

dL

X

lmkn

Almkn(t)�2Ylm(✓,�)e�i�mkn(t). (19)

It is worth noting that, especially in the strong field and
for large a, there are many orbits which have a!mkn > 1.
In such cases, the approximate scaling of bj

lmkn
does not

hold. We nonetheless find even then that the expansion
(18) converges with a finite number of terms, making
it possible to implement Eq. (19). See Appendix A of
Ref. [75] for further discussion, and an explicit relation
between the spheroidal amplitudes Almkn and the spher-
ical amplitudes Almkn. Once the data are organized in
this way, the summation module can be easily extended
to generic Kerr.
For Kerr inspirals the amplitude determination and

mode sorting is expected to take longer relative to
Schwarzschild eccentric computations due to the increase
in the number of harmonic modes. However, we expect
these computations to be faster than the final waveform
summation, as is the case in the current implementation.
Like the amplitude and mode sorting modules, the wave-
form summation is expected to increase in duration as
the number of modes required in generic Kerr substan-
tially increases. This expectation indicates that a deeper
analysis on how to best include amplitude information
will be useful.
A key component of online waveform generation e�-

ciency is the ability to select harmonic modes based on
their contribution to the total power. Currently, this in-
volves both generating amplitudes for and sorting every
harmonic mode. This operation is expensive; however,
the waveform summation bottleneck is worse and would
be much worse if every waveform was produced with ev-
ery mode. As the speed of the waveform summation
is improved, mode selection will become the bottleneck.
Improved methods of online mode selection will be re-
quired. We expect a useful form of this would be an ef-
fective precomputed “mask” applied prior to generating
the amplitudes.

B. Improvements to the phase accuracy of the
models

Whereas the waveform amplitudes only need to be
known to adiabatic order [26] to enable the full poten-
tial of EMRI science, the waveform phase must be com-
puted to post-adiabatic order [21]. This presents three
challenges: (i) the adiabatic contributions to the phase
need to be interpolated to a precision better than 1/q
(q = µ/M) across the, up to, four dimensional parame-
ter space [38], (ii) the inclusion of orbital resonances, and
(iii) post-adiabatic corrections must be computed. The
latter includes conservative corrections to the orbital dy-
namics [22, 76], second-order in the mass ratio corrections
[23, 24], and corrections due to the spin of the secondary
[28, 77–80]. As all of these contribute O(q0) radians to
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FIG. 11. Two-dimensional 3� posteriors for M and µ parameters are shown for all injections tested using the SchAAK
waveform as the fitting template to the FF✏5 relativistic injection. Each two-dimensional posterior is arranged horizontally and
vertically according to the M and µ injection values, respectively. Within each subplot, posteriors are shown for every injection
value of eccentricity tested with eccentricities of 0.1, 0.3, 0.5, and 0.7 shown in blue, green, red, and orange, respectively.
Vertical and horizontal black lines indicate the true values of the injection. Please note injections with (µ, e) = (3, 0.7) and
M 2 [1⇥ 106, 3⇥ 106] do not fall within our domain of validity and, therefore, are not shown.

the waveform phase they do not need to be interpolated
as accurately as the adiabatic contributions [38]. Sub-
stantial work is required to complete these calculations
and to sample the parameter space e�ciently, but, as
these results become available, they can be seamlessly
incorporated into FEW.

One challenge with the post-adiabatic phase correc-
tions is that some of them introduce oscillations on the
orbital timescale. This can drastically slow down the nu-
merical integration of the phase trajectory from seconds

to minutes or hours depending on the mass ratio [38].
Fortunately this can be overcome with the use of schemes
that average over the short orbital timescale while cap-
turing the correct long term phase evolution of the binary
[25, 26]. With these implemented the calculation of the
inspiral trajectory takes milliseconds [25]. When using
averaging methods such as those described in Ref. [22], a
final phase refinement step on the orbital timescale may
be required. We have begun developing this computation
and our early findings show the timing of this calculation
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FIG. 12. Multimodality in the p0-e0 plane is shown above for
injections with (M, e0) = (3⇥ 106, 0.5) and µ values of 3 and
10 in the top and bottom plots, respectively. In each plot, the
1�, 2�, and 3� contours are shown for the SchAAK template
waveform. Black horizontal and vertical lines give the true
injection values. The two cases shown here exhibit only a
slight bias with the true injection point contained within the
2� contour.

is a small fraction of the overall waveform summation
speed.

Finally, our models need to include the e↵ects of orbital
resonances [81–83]. These produce a short-lived kick to
the orbital phase whenever the polar and radial frequen-
cies of the orbit are in a low-integer ratio. Precisely
modelling the resonances requires knowledge of the post-
adiabatic corrections to the phase but approximate mod-
els [e.g. 39] can already be incorporated into the FEW
framework while the full resonant model is developed.

C. Signal and Data Analysis

Two immediate benefits of the FEW framework are
the waveform acceleration and useful set of flexible
tools and modules. The GPU acceleration allows us
to test search and parameter estimation algorithms in
a tractable amount of time. This is shown in force above
by the ability to run ⇠ 100 independent posterior anal-
yses on the timescale of a week. Prior to and following
these analyses we also used the FEW tools and modules
to prepare information for sampling runs or to analyze

and understand their outputs.
Our investigations of posterior distributions show im-

portant information for future tests of EMRI search and
parameter estimation. The main finding was expected:
the phasing of the EMRI is the leading order e↵ect on the
posterior distributions when comparing models. Since
this phasing was the exact same for all models, it is clear
the di↵ering amplitudes generally cause a small or negli-
gible bias. Certain cases at higher eccentricity, higher M ,
and lower µ show a variety of multimodal behaviors when
analyzing the relativistic injection with a semi-relativistic
template. The lack or presence of multimodality and bias
across the various models has implications for parameter
estimation: using a kludge model may artificially inflate
the number of posterior modes making both search and
parameter estimation more di�cult. Conversely, settings
in FEW that analyze fewer harmonic modes show that
the sacrifice in accuracy (and remaining lack of close mul-
timodality) is worth the improved speed.
A transition to plunge and inclusion of the merger-

ringdown is still required to more accurately model these
waveforms. It is true that the SNR contained near and
after plunge is small compared to the overall SNR for an
EMRI since the signal SNR is e↵ectively linearly increas-
ing with time. However, it would still be useful to model
this piece of the waveform to maxmimize SNR and have
a fuller picture of the morphology of the EMRI signal
in the strong-field regime. Additionally, we anticipate
that the FEW framework will be extend to model inter-
mediate mass ratio inspirals (µ/M ⇠ 10�2

� 10�4) by
the inclusion of post-adiabatic corrections [24]. In this
regime, the merger-ringdown will play a more important
role in characterizing the signal.
The merger-ringdown cannot be directly added into

the existing FEW framework because, near plunge, the
approximation of modeling the waveform as a sequence
of bound orbits breaks down. This piece of the waveform
would be implemented as an independent module that
will be attached to the original waveforms. For more
information, see [84–86].
Future gravitational wave data analysis may take place

in domains other than the time domain. We plan to ex-
pand FEW beyond computing time domain waveforms to
also compute waveforms in the frequency, time-frequency,
and wavelet domains [87]. FEW is designed to han-
dle this change. We expect waveforms computed di-
rectly in the frequency domain [27] to be more e�cient
to generate. Waveforms built in the time domain re-
quire the evaluation of all contributing modes at ev-
ery time point. This means the waveform is built with
⇠ nt ⇥ nlmkn separate mode evaluations. When build-
ing the frequency-domain waveform, modes need only be
evaluated at their contributing frequencies. Since each
harmonic mode evolves in frequency over only a small
subset of bins in the Fourier transform, the number of
harmonics associated with each frequency bin will vary.
This indicates less total mode evaluations are necessary,
therefore, improving the overall speed of waveform gen-
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eration. The time-frequency and wavelet domains will
also play a crucial role in gravitational wave analysis due
to non-stationary e↵ects [e.g. 87]. EMRIs are long-lived
signals, meaning the non-stationary e↵ects may strongly
bias measurements. Studies of this nature for EMRIs are
topics of future work. EMRIs may also uniquely bene-
fit from time-frequency-type methods due to their rich
harmonic structure. Therefore, these domains will be
implemented in FEW as soon as they are available.

As new domains are implemented, it will generally
mean slight changes to the FEW summation modules
and the information supplied to those modules. There-
fore, we expect only small changes to the code. However,
after these methods are added, the bottlenecks in the
code may change to areas other than the waveform sum-
mation. This would require further innovation in specific
operations where less e↵ort has been concentrated so far.

For a full analysis of EMRI signals with LISA, e↵ort
will be needed to create e�cient implementations for the
LISA response. The LISA response is time-dependent as
the detector orientation to the source rotates throughout
its orbit. Constructing the LISA response accurately in
the variety of domains will be paramount to maintaining
analysis speed and accuracy.

VIII. CONCLUSION

We presented the FastEMRIWaveforms framework and
package in detail, expanding on the original Physical
Review Letter that introduced the FastEMRIWaveforms
Schwarzschild eccentric waveform template for data anal-
ysis [37]. The framework is built in a highly modu-
lar structure that contains stand-alone modules that are
combined into full waveform models. These individual
modules provide great flexibility for future applications
where methods or physical information is further devel-
oped. The user interface for this package is in Python

and provides a single argument to switch to the use of
GPU accelerators, which can greatly enhance the com-
putational scalibility of EMRI analysis.

The currently available fast waveform models
are the FastSchwarzschildEccentricFlux and
Pn5AAKWaveform. The former is a fully relativistic
waveform limited to the Schwarzschild eccentric regime.
The latter combines a 5PN-integrated trajectory module
from [66] and the semi-relativistic AAK waveform build
methods from [33] to produce a new AAK waveform
that is available for generic Kerr inspirals, as well as
more accurate and more robust than the original AAK
waveform. Both waveforms can be accessed through a
generic high-level waveform generator that provides a
common interface to all waveform models generated in
the source or detector frame.

We then studied these waveforms to further under-
stand the e↵ect of harmonic mode content and their ba-

sic performance and characteristics when used in actual
Bayesian posterior analysis. Leveraging GPU accelera-
tion, we were able to move beyond Fisher matrix-type
analysis and produce ⇠ 130 full posterior distributions.
The first main finding is that lower mode content cho-
sen properly will lead to faster waveforms without sac-
rificing much accuracy in parameter estimation. How-
ever, this mode content must be relativistic and beyond
just the quadrupolar mode, indicating the need for e�-
cient mode selection tools. The second main takeaway
is that using semi-relativistic amplitudes may strongly
hinder the success of search and parameter estimation
algorithms. Especially at higher MBH mass and higher
eccentricity, strong biases and multimodal behavior are
observed when injecting a relativistic waveform and at-
tempting to extract that signal with a semi-relativistic
template. With that said, a key point we have shown is
the importance of phase overlap compared to amplitude
overlap. The fact that a small number of modes that are
relativistic and beyond the quadrupole can still provide
successful tests shows the importance of matching phase
over the duration of the inspiral.
The FastEMRIWaveforms framework was originally

built to bridge the gap between EMRI waveform mod-
elling and data analysis. For the first time, we can gen-
erate fully relativistic waveforms at speeds fast enough
for data analysis. While these waveforms are available in
the Schwarzschild eccentric regime, the framework was
designed to be flexible and adaptable to future explo-
ration towards the generic Kerr background and post-
adiabatic phase corrections. These new developments
in EMRI data analysis with LISA provide an important
step towards the goal of accomplishing the many forms
of EMRI science within the LISA mission.
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