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Abstract

Abundance-occupancy relationships predict that species that occupy more sites are
also more locally abundant, where occupancy is usually estimated following the as-
sumption that species can occupy all sampled sites. Here we use the National Eco-
logical Observatory Network small-mammal data to assess whether this assump-
tion affects abundance-occupancy relationships. We estimated occupancy consid-
ering all sampled sites (traditional occupancy) and only the sites found within
the species geographic range (spatial occupancy) and realized environmental niche
(environmental occupancy). We found that when occupancy was estimated con-
sidering only sites possible for the species to colonize (spatial and environmental
occupancy) weaker abundance-occupancy relationships were observed. This shows
that the assumption that the species can occupy all sampled sites directly affects
the assessment of abundance-occupancy relationships. Estimating occupancy con-
sidering only sites that are possible for the species to colonize will consequently
lead to a more robust assessment of abundance-occupancy relationships.
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Introduction

Positive abundance-occupancy relationships — the observation that widely dis-
tributed species are also more locally abundant — is a general pattern in ecology
[1] that has been described for vertebrates |2, 3, 4], invertebrates [5, 6, 7|, plants
[8, 9, 10|, and bacteria [11]. Resource availability [12, 13|, species niche require-
ments, and dispersal limitation |5, 14| are among the mechanisms proposed to
explain these positive relationships [12]. Although these mechanisms are usually
evaluated individually, they can affect species occupancy and abundance simulta-
neously [15], with the relative importance of each mechanism being dependent on
spatial scale [1]. Moreover, biotic and abiotic factors [16] as well as stochastic dy-
namics [17] also affect species abundance and ocupancy patterns. This combined
effect of different factors affecting species abundance and occupancy might explain
why some taxa do not show positive abundance-occupancy relationships |18, 19|

as well as why these positive relationships are usually weak [1, 4].

Abundance-occupancy relationships can be evaluated at small or large spatial
scales [1], where occupancy is usually defined as the number or fraction of sites
where a species occurs out of the full set of sampled sites [20, 21]. Thus, the spatial
scale sampled in a study can directly impact occupancy estimations. For example,
although the major assumption that the species can occupy all sampled sites af-
fects the occupancy estimation for all species, species with small geographic ranges
are particularly affected by this assumption as they will inherently have exception-
ally lower occupancy estimates when large spatial scales are sampled. However,
a species occurrence at a site is affected by environmental conditions, dispersal
limitation, and biotic interactions [22, 23]. The species environmental niche plays
an important role on its ability to occupy sites [24], such that a species can only
occupy sites that have environmental conditions that it can tolerate [25, 26]. Con-
sequently, species environmental niche breadth is positively related to geographic
range size |27, 28| and occupancy [29]. Nevertheless, dispersal limitation [30, 31, 32|
and biotic interactions [22, 33| can still prevent a species from occupying environ-

mentally suitable sites.
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Knowledge on the species geographic range can be used to estimate occupancy
given that in some cases environmentally suitable sites might be geographically
inaccessible for the species occurrence because of dispersal barriers [34] such as
mountains and rivers [35, 36]. Similarly, information on the species realized en-
vironmental niche (i.e. the set of environmental conditions in which the species
was found) can also be used to estimate occupancy as environmental conditions
might be unsuitable in parts of the species geographic range [37]. For example,
fragmentation processes occurring in parts of the species geographic range could
lead to changes in environmental conditions in those locations and render them to
be environmentally unsuitable for the species occurrence [38]. Thus, information
on both the species realized environmental niche and geographic range can be used
to estimate occupancy considering only sites that are possible for the species to
colonize, a factor that is often ignored when abundance-occupancy relationships

are assessed [10].

A challenging aspect of estimating species realized environmental niche and ge-
ographic range is obtaining enough occurrence points for the species such that its
geographic range and realized environmental niche can be confidently estimated.
The development of online databases, such as the Global Biodiversity Information
Facility (GBIF), where species occurrence points are made publicly available, pro-
vide an opportunity to overcome this problem. Here, we use occurrence points
obtained from GBIF to estimate the geographic range and realized environmen-
tal niche of 122 North American mammal species that have abundance and oc-
currence data available in the National Ecological Observatory Network dataset
[39, 40]. We use this information on species geographic range and realized envi-
ronmental niche to estimate spatial occupancy, and explore how this influences
the assessment of abundance-occupancy relationships. Occupancy was estimated
as the fraction of all sampled occupied sites, as the fraction of environmentally
suitable occupied sites, and as the fraction of occupied sampled sites within the
species geographic range. The occurrence of interspecific abundance-occupancy

relationships (i.e., the assessment of the scaling between species mean abundance
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and occupancy) was assessed using these three occupancy estimates. We found
that the observed abundance-occupancy relationships became weaker when oc-
cupancy estimates were constrained by the species realized environmental niche
or geographic range. This occurred because species with small geographic ranges
have their occupancy underestimated when it is measured following the traditional

approach.

Methods

Species abundance and occupancy data We used the National Ecological
Observatory Network (NEON) small mammal data sampled between 2014 and
2019. NEON is a continental research platform where occurrence and density data
is collected for small mammals in 46 terrestrial sites spread over 20 ecoclimatic
domains across the U.S. [39, 40]. Several 10x10 trap grids (plots) are used per site
to sample mammals. Each of the 100 traps present in the plots are separated by
10m. Although the number of traps is standardized for each plot, there can be 6
different types of trap status depending on the sampling outcome. Only traps that
had captures or no captures (i.e. trap status 4-6) were used to calculate species
abundance. Traps not set, disturbed or with trap door open or closed with feces
left behind or with bait missing (i.e. trap status 1-3) were not considered in our
analyses. Moreover, individuals recaptured in the same month were not considered
when calculating species abundance. Abundance and occurrence data were only

obtained for individuals that were identified to the species level (n = 122).

Estimating the species realized environmental niche and geographic
range Species geographic ranges were estimated with minimum convex poly-
gons from occurrence points sampled in the United States obtained from the GBIF
database [41]|. To estimate the species realized environmental niche we used the 19
bioclimatic variables available in the BioClim database [42] at a resolution of 10
arc-minutes covering the Americas and performed a Principal Component Anal-

ysis (PCA). The first two axes explained more than 80% of the variance in the
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data, and were selected to estimate the species realized environmental niche. We
extracted the environmental values associated with the species occurrence points
found in the Americas from the two PCA axes and used minimum convex polygons
to estimate the species realized environmental niche (see supplemental material for

more details).

Abundance and occupancy estimation We estimated mean annual abun-
dance as the mean abundance across sampling months and sites, standardizing
monthly estimates of abundance based on the number of trapnights. Mean annual
occupancy was calculated in three different ways. First, we estimated occupancy
using the traditional approach, where occupancy was defined as the number of sites
where a species was found divided by the number of total sampled sites, hereafter
traditional occupancy. In this case, all sampled sites are used to calculate the
species occupancy regardless of whether the sites are suitable for the species oc-
currence. An extreme example of a case like this would be estimating occupancy
considering sites that do not have the required habitat for the species occurrence.
For the second and third cases, we only considered sites found within the species
realized environmental niche and known geographic range to estimate occupancy,
hereafter environmental and spatial occupancy respectively. Abundance and oc-
cupancy estimates were weighted according to the annual number of sites sampled

for each species.

Evaluating abundance-occupancy relationships We assessed the abundance-
occupancy relationship using an interspecific approach that evaluates the general-
ity of the scaling between species abundance and occupancy across species. Spear-
man’s rank correlation was used to assess the correlation between the species log10

mean abundance and the three different occupancy metrics estimated.

Results

How different are the estimated occupancies? The mean fraction of occu-

pied sites by the species was the lowest for traditional occupancy (mean+sd;0.0740.09)

6
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followed by environmental occupancy (0.17+0.15) and it was the highest for spa-
tial occupancy (0.32£0.27; figure la-c). Traditional occupancy estimates were
lower because it considered all sites when occupancy was estimated whereas spa-
tial occupancy was higher than environmental occupancy because it was generally
more restrictive in the number of sites a species could potentially occupy (figure
1d). Thus, occupancy estimates were higher when fewer sites were considered to

estimate it.

How do occupancy estimations affect abundance-occupancy relation-
ships? We found positive abundance-occupancy relationships using all three oc-
cupancy metrics, but, based on the observed Spearman’s rank correlation coef-
ficient (p), the relationship was stronger when using traditional occupancy (p =
0.53, p < 0.01) than when using environmental occupancy (p = 0.39, p < 0.01)
or spatial occupancy (p = 0.36, p < 0.01). These differences in the strength of
the observed relationship seem to occur because the association between species
abundance and occupancy becomes more unclear when occupancy is not estimated
traditionally (figure 2a-c). In general, species with small geographic ranges have
their occupancies underestimated to a higher degree than species with large ranges
(figure 2d), although this underestimation is not dependent on species abundance
as there is no relationship between species range size and abundance (p = 0.12,
p = 0.18).

Discussion

Occupancy estimation is a fundamental step for the evaluation of abundance-
occupancy relationships, but the assumption that species can occupy all sampled
sites is generally overlooked when occupancy is estimated. We show that this
assumption directly affects abundance-occupancy relationships, and these rela-
tionships become weaker when occupancy is estimated based only on sites possible
for the species to colonize. This result is driven mostly by species with small

geographic ranges that have their occupancy highly underestimated when occu-
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pancy is estimated considering all sampled sites. Thus, removing the unrealistic
assumption that species can occupy all sampled sites 10| has a clear and strong
effect on the assessment of one of the most commonly reported macroecological

relationships.

These effecs of occupancy estimation will be more pronounced for smaller-ranged
species, although these effects might be limited when smaller spatial scales are
sampled as most of the species geographic range will be found within the sam-
pled area [1]. On the other hand, abundance-occupancy relationships assessed
over broad spatial scales typically consider species with different ecologial charac-
teristics. Considering these species differences, especially in terms of geographic
ranges and environmental niche, when estimating occupancy is important as it
can provide a more realistic depiction of abundance-occupancy relationships. For
example, taking these species differences into account will improve our assessment
of the effects of specialist and generalist species on abundance-occupancy relation-
ships [5, 43| given that specialist species generally have narrower environmental

niches and smaller geographic ranges than generalist species [44, 45].

The positive relationship between species environmental niche and geographic
range size |27, 28| suggests that both factors are intrinsically related and are im-
portant to determine species occurrences. Thus, using knowledge on the species
geographic range and realized environmental niche provide biological realistic ways
to estimate occupancy given that environmental suitability and geographical ac-
cessibility are needed for a species to occur at a location [37, 34]. In general, we
show that species with small geographic ranges are the most affected when occu-
pancy is estimated traditionally as several sites that are unsuitable for the species
occurrence are considered to estimate their occupancy. This result suggests that
attempts to predict species abundance from occupancy patterns [46] should be
done carefully as some species occupancy might be underestimated occupancy is

estimated traditionally.
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We show that estimating species occupancy considering all sampled sites directly
affects the assessment of abundance-occupancy relationships. This assumption
ignores the fact that species have different spatial and environmental constraints
that can prevent them from occupying a given site. This can particularly affect
the assessment of macroecological patterns at large spatial scales where species
occurring in an assemblage might show high variation in terms of geographic ranges
and environmental niches. This could explain differences in abundance-occupancy
relationships observed for different taxa when these relationships are evaluated over
broad spatial scales [4]. Thus, a more realistic description of species occupancy
patterns will be obtained when species differences are considered during occupancy
estimation, and this will also lead to a refined assessment of abundance-occupancy

relationships.
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Figure 1: Comparison between traditional and spatial (a), environmental and
spatial (b), and traditional and environmental (¢) occupancy estimations. Points
closer to the identity line represent species that have more similar occupancy esti-
mates in the compared approaches. Legends represent the number of sites within
species spatial range (a) and environmental niche (¢), and the difference in the
number of sites within the species spatial range and environmental niche (). In
panel (d) we show areas suitable for Ochotona princeps occurrence based on its
geographic range (in red) and realized environmental niche (in blue). Areas in
purple represent locations that are suitable for the species occurrence based on
both the species geographic range and realizend environmental niche and black
points are the sampled NEON sites.
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Methods

We obtained occurrence points from the Global Biodiversity Information Facility
(GBIF) for the 122 species used in our study. These occurrence points were subse-
quently used to estimate the species realized environmental niche and geographic
range. To estimate the species geographic range we used the species occurrence
points found in the United States and minimum convex polygons. The minum
convex polygon is defined as the smallest polygon in which no internal angle ex-
ceeds 180 degrees and it contains all the points used to build it. Figure S1a) shows
the occurrence points of Sorez fumeus in the geographic space and its geographic
range (black line) obtained from minimum convex polygon.

To estimate the species realize environmental niche we used the 19 bioclimatic
variables available in the BioClim database. These variables constitute different
facets of temperature and precipitation patterns. More especifically, these bio-
climatic variables represent annual trends (e.g. mean annual temperature and
precipitation), seasonality (e.g. mean diurnal range in temperature) and extreme
environmental factors (e.g. precipitation of the driest and coldest quarter) associ-
ated with temperature and precipitation. The bioclimatic variables were obtained
at a resolution of 10 arc-minutes (i.e. ~ 18 km?) covering the Americas. We
selected the resolution of 10 arc-minutes because it can be used to obtain a fine
information of the species realized environmental niche. A Principal Component

Analysis (PCA) was performed on these variables and the first two axes explained
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80% of the variance of the data and were used to estimate the realized environmen-
tal niche of the species. To achieve this goal, we used the species occurrence points
and extracted the environmental values associated with these points and used min-
imum convex polygons to estimate the species realized environmental niche. Fig-
ure S1b) shows the occurrence points of Sorez fumeus in the environmental space

and its realized environmental niche (black line) obtained from minimum convex

polygon.
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Figure S1: Geographic range of Sorex fumeus obtained from minimum convex
polygons represented by the black line surrounding the species occurrence points
(red dots) plotted in the geographic space a. The color in the map represents
the environmental values of the first axis of the PCA (PC1) in the geographic
space. Panel b shows the Sorex fumeus realized environmental niche obtained
from the minimum convex polygons represented by the black line surrounding the
species occurrence points (red dots) plotted in the environmental space. Here, the
environmental space is represented by the first and second PCA axes, PC1 and
PC2 respectively.



