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Abstract

Stroke rehabilitation seeks to accelerate motor recovery by training functional activities, but

may have minimal impact because of insufficient training doses. In animals, training hun-

dreds of functional motions in the first weeks after stroke can substantially boost upper

extremity recovery. The optimal quantity of functional motions to boost recovery in humans

is currently unknown, however, because no practical tools exist to measure them during

rehabilitation training. Here, we present PrimSeq, a pipeline to classify and count functional

motions trained in stroke rehabilitation. Our approach integrates wearable sensors to cap-

ture upper-body motion, a deep learning model to predict motion sequences, and an algo-

rithm to tally motions. The trained model accurately decomposes rehabilitation activities into

elemental functional motions, outperforming competitive machine learning methods. Prim-

Seq furthermore quantifies these motions at a fraction of the time and labor costs of human

experts. We demonstrate the capabilities of PrimSeq in previously unseen stroke patients

with a range of upper extremity motor impairment. We expect that our methodological

advances will support the rigorous measurement required for quantitative dosing trials in

stroke rehabilitation.

Author summary

Stroke commonly damages motor function in the upper extremity (UE), leading to long-

term disability and loss of independence in a majority of individuals. Rehabilitation seeks

to restore function by training daily activities, which deliver repeated UE functional

motions. The optimal number of functional motions necessary to boost recovery is

unknown. This gap stems from the lack of measurement tools to feasibly count functional
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motions. We thus developed the PrimSeq pipeline to enable the accurate and rapid count-

ing of building-block functional motions, called primitives. PrimSeq uses wearable

sensors to capture rich motion information from the upper body, and custom-built algo-

rithms to detect and count functional primitives in this motion data. We showed that

our deep learning algorithm precisely counts functional primitives performed by stroke

patients and outperformed other benchmark algorithms. We also showed patients toler-

ated the wearable sensors and that the approach is 366 times faster at counting primitives

than humans. PrimSeq thus provides a precise and practical means of quantifying func-

tional primitives, which promises to advance stroke research and clinical care and to

improve the outcomes of individuals with stroke.

Introduction

Most individuals with stroke have persistent motor deficits in an upper extremity (UE) [1],

resulting in a significant loss of function and independence in activities of daily living (ADLs)

[1–3]. Stroke rehabilitation seeks to promote UE motor recovery and restore UE function. To

this end, a major focus of rehabilitation is the repeated practice of ADLs, which are comprised

of functional motions made by the UE [4]. Functional motions are goal-directed and purpose-

ful, typically targeting objects in the context of executing an ADL [4,5].

In animal models of rehabilitation, when hundreds of UE functional motions are trained

per day in the early weeks after stroke, recovery can be potentiated [6,7]. In humans, the num-

ber of UE functional motions needed to boost recovery is less clear, primarily because a feasi-

ble method to count UE functional motions does not currently exist. To date, the quantitation

of UE functional motions—a critical parameter for establishing the effective rehabilitation

dose [8]—has been challenged by the trade-off between pragmatism and precision.

Most rehabilitation researchers and clinicians opt for pragmatism, using time-in-therapy to

estimate how much training has occurred [9–15]. Problematically, time metrics do not directly

read out motion content or quantity, as the delivery of therapy is not standardized [11]. For a

given rehabilitation session, the number of functional motions can vary considerably across

subjects and institutions, or training may focus on nonfunctional motions unrelated to ADL

execution, such as stretching, weight-bearing, or strengthening exercises [16,17]. Even if a

time-based intervention is successful [9,13], its lack of content detail—precisely what and how
much was trained—hinders replication by other researchers or clinicians. Some investigators

have sought to automatically detect functional versus nonfunctional UE motion using inertial

measurement units (IMUs) and machine learning [18–20], but this approach still outputs time

spent in functional motion, rather than the quantity of functional motions trained.

A different pragmatic approach has been to focus on UE joint motions (e.g., forearm rota-

tion, elbow flexion, shoulder flexion) made by stroke patients. This approach uses wearable

sensors and deep learning to identify or grade UE joint motions, with the goal of remotely

monitoring rehabilitation training or ADL execution at home [21,22]. However, identifying

joint displacement does not disentangle functional from nonfunctional UE motions. The

identification of functional motions is important, because their repeated practice is key for

inducing activity-dependent neuroplasticity, engaging stroke-induced neuroplasticity, and

promoting behavioral recovery [6,7,23–26].

Some rehabilitation researchers have instead opted for precision by manually counting

functional motions [17,27–30]. This approach meticulously identifies training content and

quantity, but has practical challenges. Functional motions are fluid, fast, and difficult to
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disambiguate in real time. Using treating therapists to count these motions would be a distrac-

tion from clinical remediation, and using independent observers would likely outstrip the

financial and labor resources of most institutions. Even with offline video analysis, the identifi-

cation and counting of functional motions is prohibitively time- and personnel-intensive [5].

The impracticality of manual tallying is thus a major obstacle to its widespread adoption in

research and clinical settings.

To overcome these limitations, we seek to directly identify and measure individual func-

tional motions in rehabilitation. We previously reported that rehabilitation activities can be

entirely decomposed into elemental function motions, which we call functional primitives

[5,31–33]. There are five main classes of functional primitives: reach (UE motion to make con-

tact with a target object), reposition (UE motion to move into proximity of a target object),

transport (UE motion to convey a target object in space), stabilization (minimal UE motion to

hold a target object still), and idle (minimal UE motion to stand at the ready near a target

object). Much like words in a paragraph, primitives are strung together to execute an activity.

Primitives typically have a short duration and one goal, resulting in simple motion phenotypes.

These phenotypes are surprisingly consistent even across species, activities, and motor

impairment [5,34,35], indicating that it is possible to identify primitives regardless of individ-

ual or context. We thus use primitives as units of motion that are readily identifiable, quantifi-

able, and replicable.

Here, we present the Primitive Sequencing pipeline (PrimSeq), a deep learning-based

framework to automatically identify and count functional primitives in rehabilitation training.

Inspired by deep learning methods for speech recognition, our approach uses a sequence-to-

sequence model to generate sequences of functional primitives, which are then counted [36].

PrimSeq encompasses three main steps: (1) capture of upper body motion during rehabilita-

tion with wearable inertial measurement units (IMUs), (2) generation of primitive sequences

from IMU data with the trained deep learning model, and (3) tallying of primitives with a

counting algorithm. We developed PrimSeq in chronic stroke patients performing a battery of

rehabilitation activities. We show that in previously unseen stroke patients with a range of

motor impairment, PrimSeq robustly identifies primitives in various rehabilitation activities

and outperforms other activity-recognition methods. IMU-based motion capture is also well

tolerated by patients, and PrimSeq considerably diminishes the time and burden of quantify-

ing functional motions.

Results

To collect a variety of functional primitives to train the deep learning model, we recorded and

labeled functional motion from 41 chronic stroke patients with UE paresis (Fig 1 and Table 1).

While patients performed common rehabilitation activities (Fig 1A and S1 Table), we captured

upper-body motion with an array of IMUs and video cameras (Fig 1B). To generate ground

truth labels, trained human coders viewed the videotaped activities and segmented them into

functional primitives (Fig 1C). The coders annotated the beginning and end of each primitive

on the video, which applied a primitive label to the corresponding segment of IMU data. Inter-

rater reliability of primitive labeling was high between the coders and an expert (Cohen’s

K � 0.96). We split the labeled IMU data into a training set (n = 33 patients; 51,616 primitives;

see primitive class distribution in Materials and methods) and an independent test set (n = 8

patients; 12,545 primitives). Data splits were balanced for impairment level and paretic side

(Table 1). We note that the number and variety of primitives, not the number of subjects,

makes this dataset robust for the development of deep learning approaches. We used the

labeled training set for model fitting, parameter adjustment, and hyperparameter tuning. We
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used the previously unseen test set for an unbiased model evaluation, employing ground truth

labels to assess primitive counting and classification performance.

We designed a sequence-to-sequence (Seq2Seq) encoder-decoder deep learning model that

predicts primitives from IMU data patterns. Its encoder module is a three-layer bi-directional

Gated Recurrent Unit (GRU) with 3,072 hidden representations. Its decoder module is a sin-

gle-layer GRU with 6,144 hidden representations. Using this architecture, Seq2Seq maps a

window of motion data to a sequence of primitives (see Materials and methods for architecture

design and training details).

Fig 1. Functional motion capture and labeling. (A) Activity sampling. As patients performed rehabilitation activities, functional motion was

synchronously captured with two video cameras (dark green arrow) placed orthogonal to the workspace and nine inertial measurement units (IMUs,

light green arrow) affixed to the upper body. (B) Data recording. The video cameras generated 2-view, high-resolution data. The IMU system

generated 76-dimensional kinematic data (accelerations, quaternions, and joint angles). A skeletal avatar of patient motion and joint angle offsets were

monitored for electromagnetic sensor drift. (C) Primitive labeling. Trained coders used the video recordings to identify and annotate functional

primitives (dotted vertical lines). These annotations labeled and segmented the corresponding IMU data. Interrater reliability was high between the

coders and expert (Cohen’s K for reach, 0.96; reposition, 0.97; transport, 0.97; stabilization, 0.98; idle, 0.96).

https://doi.org/10.1371/journal.pdig.0000044.g001

Table 1. Demographics and clinical characteristics of patients.

Training set Test set

Patient n 33 8

Primitive n 51,616 12,545

Age (Years) 56.3 (21.3–84.3) 60.9 (42.6–84.3)

Gender n 18 female: 15 male 4 female: 4 male

Stroke type 30 ischemic: 3 hemorrhagic 8 ischemic

Time since stroke (years) 6.5 (0.3–38.4) 3.1 (0.4–5.7)

Paretic side 18 left: 15 right 4 left: 4 right

UE-FMA score (points) 48.1 (26–65) 49.4 (27–63)

The patient cohort (n = 41) was divided into a training set and test set, with no overlap. Impairment level was

measured using the upper extremity Fugl-Meyer Assessment (UE-FMA) score, with a maximum normal score of 66.

Total n or average values with ranges are shown.

https://doi.org/10.1371/journal.pdig.0000044.t001

PLOS DIGITAL HEALTH PrimSeq to measure rehabilitation training

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000044 June 16, 2022 4 / 23

https://doi.org/10.1371/journal.pdig.0000044.g001
https://doi.org/10.1371/journal.pdig.0000044.t001
https://doi.org/10.1371/journal.pdig.0000044


The PrimSeq pipeline has three main steps (Fig 2). First, IMU data from rehabilitation

activities are recorded and divided into 6-second windows (Fig 2A). Second, this windowed

data is fed to the Seq2Seq model. The encoder GRU generates a single feature vector capturing

relevant motion information, which is processed by the decoder GRU to estimate a sequence

of primitives (Fig 2B). Third, a counting algorithm removes any duplicates at window bound-

aries and tallies primitives from the sequences (Fig 2C).

PrimSeq has high counting performance across primitive classes and

activities

We first examined the counting performance of PrimSeq (Fig 3). In the separate primitive clas-

ses, the approach counted on average 282 reaches, 206 repositions, 408 transports, 291 stabili-

zations, and 258 idles across combined activities (Fig 3A). In the separate rehabilitation

activities, the approach counted on average 40–308 primitives across combined classes (Fig

3B). To assess the similarity of PrimSeq counts to the actual number of primitives performed,

we compared predicted versus ground truth counts per primitive class and activity. PrimSeq

generated primitive counts that were 86.1–99.6% of true counts for the separate primitive clas-

ses (Fig 3A) and 79.1–109.1% of true counts for the separate activities (Fig 3B). We also exam-

ined counting errors at the single-subject level, finding that they were consistently low for

primitive classes (reach 7.2 ± 9.9%, reposition 13.3 ± 9.2%, transport 0.4 ± 17.7%, stabilization

8.0 ± 42.7%, and idle 6.6 ± 10.5%) and for activities (shelf task -10.7 ± 26.0%, tabletop task

-2.3 ± 13.4%, feeding 5.9 ± 16.7%, drinking 5.5 ± 25.0%, combing 11.8 ± 7.8%, donning glasses

14.5 ± 23.7%, applying deodorant 11.5 ± 26.2%, face washing 12.2 ± 30.1%, and tooth-brushing

6.3 ± 31.2%). In most cases, the variance in predicted counts could be attributed to inter-indi-

vidual variance in true counts. However, for stabilizations, an excess variance in predicted

counts could be explained by increased prediction errors, which we further discuss below.

Seq2Seq error examination

PrimSeq generated primitive counts that closely approximate true counts, but gross tallies do

not reveal if the Seq2Seq model identified primitives that were actually performed. For

Fig 2. The PrimSeq pipeline. (A) Motion capture. Upper-body motion data are captured with IMUs during performance of rehabilitation activities. IMU data are

divided into six-second windows. (B) Primitive prediction. The windowed IMU data are fed into the sequence-to sequence (Seq2Seq) deep learning model. Seq2Seq

uses a Gated Recurrent Unit (GRU) to sequentially encode IMU data into a feature vector, which provides a condensed representation of relevant motion information.

A second GRU then sequentially decodes the feature vector to generate the primitive sequence. (C) Primitive count. A counting algorithm then removes primitive

duplicates at window boundaries and tallies the predicted primitives.

https://doi.org/10.1371/journal.pdig.0000044.g002
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Fig 3. Counting performance of PrimSeq. Shown are the mean ± standard deviation of the ground truth and

predicted counts for patients in the test set; each dot represents a single subject. (A) Counts per primitive class.

Activities were combined. The pipeline generated counts that were similar to true counts for each primitive class

(mean percent of true counts: reach, 92.2%; reposition, 86.6%; transport, 99.5%; stabilization, 91.1%; and idle, 93.3%).

(B) Counts per activity. Primitive classes were combined. The pipeline generated counts that were similar to true

counts for each activity (mean percent of true counts: shelf task, 109.1%; tabletop task, 102.5%; feeding, 97.6%;

drinking, 93.7%; combing hair, 89.8%; donning glasses, 85.2%; applying deodorant, 81.1%; washing face, 79.1%; and

brushing teeth, 81.4%).

https://doi.org/10.1371/journal.pdig.0000044.g003
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example, the model may fail to predict a reach that happened but may later predict a reach that

did not happen; the net result of these two errors is that a reach is spuriously credited to the

count. We thus examined the nature of predictions made by Seq2Seq (Fig 4). We compared

the predicted and ground truth sequences using the Levenshtein algorithm [37], identifying

two types of prediction errors: false negatives and false positives (Fig 4A). A false negative

occurred when Seq2Seq did not predict a primitive that actually happened because it

Fig 4. Prediction errors by Seq2Seq. (A) Sequence matching. Shown is a schematic depicting the different types of

prediction outcomes, comparing the ground truth sequence (top row) against the predicted sequence (bottom row).

Seq2Seq could produce a true positive (correct prediction; green), false negative (deletion or swap-out error; pink), or

false positive (insertion or swap-in error; blue). In the example shown, transport was correctly predicted; stabilize was

incorrectly deleted; reach was incorrectly swapped-out while idle was incorrectly swapped-in; and reach was incorrectly

inserted. (B) Frequency of prediction errors per primitive class. Shown are the mean frequency ± standard deviation

of prediction errors for patients in the test set; each dot represents a single subject. Activities were combined, and

erroneous counts were normalized to ground truth counts in each primitive class. Deletion errors happened when

primitives were incorrectly removed from the prediction, and occurred with modestly low frequency, except for

stabilizations. Swap-out errors happened when primitives were incorrectly removed from the prediction and instead

predicted as another class, and occurred with modestly low frequency. Insertion errors happened when primitives were

incorrectly added to the prediction, and occurred with low frequency, except for stabilizations. Swap-in errors happened

when primitives were incorrectly predicted instead of the actual primitive class, and occurred with modestly low

frequency.

https://doi.org/10.1371/journal.pdig.0000044.g004
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erroneously missed the primitive (deletion error) or erroneously predicted another primitive

class (swap-out error). A false positive occurred when Seq2Seq predicted a primitive that did

not actually happen because it erroneously added the primitive (insertion error) or errone-

ously predicted this primitive class (swap-in error).

We examined the frequency of these error types with respect to true counts in each primi-

tive class, which adjusts for differences in number of primitives performed (Fig 4B). Seq2Seq

had a modest frequency of deletion errors for most primitives (10.6–13.6%) except stabiliza-

tions (25.5%) and a modest frequency of swap-out errors (5.9–11.2%) for all primitives. Seq2-

Seq also had a modest frequency of insertion errors (4.6–13.3%) and swap-in errors (4.0–

13.4%) for all primitives.

Overall, Seq2Seq had a tolerable error rate, but had the most difficulty classifying stabiliza-

tions. The motion phenotype of stabilizations, which allows for some minimal motion in the UE

[5], may account for different classification errors. Seq2Seq could blend the minimal motion of

stabilizations into the beginning or end of an adjacent motion-based primitive (i.e., reach, repo-

sition, transport), leading to its deletion. Conversely, the model could mistake periods of dimin-

ished motion in adjacent primitives as a stabilization, leading to an insertion or swapping-in. In

addition, the model had an increased frequency of swapping-in stabilizations for idles (S1 Fig).

This error could be attributed to the lack of IMU finger data necessary to identify grasp, which

is a major phenotypic distinction between these two minimal-motion primitives [5].

Seq2Seq classification performance

To assess the overall classification performance of Seq2Seq to predict primitives, we computed

sensitivity and false discovery rate (FDR). Sensitivity represents the proportion of true primi-

tives that were correctly predicted and included in the count. The FDR, a measure of over-

counting, represents the proportion of predicted primitives that were incorrectly predicted

and included in the count. We assessed Seq2Seq classification performance for separate primi-

tive classes, activities, and patient impairment levels (Fig 5).

Seq2Seq classifies most primitives well

We first examined Seq2Seq classification performance for each primitive class (Fig 5A). The

model had high mean sensitivities for most primitives (0.76–0.81) except stabilizations (0.64).

The model also had low mean FDRs for most primitives (0.11–0.16) except stabilizations

(0.23). For stabilizations, distinct prediction errors drove the modest classification perfor-

mance: their spurious removal (false negatives) decreased sensitivity, whereas their spurious

addition (false positives) increased overcounting.

Seq2Seq classifies primitives best in structured functional activities

We next examined Seq2Seq classification performance for each activity (Fig 5B). The model

had excellent performance with structured activities, such as moving an object to fixed loca-

tions on a shelf (mean sensitivity 0.92, FDR 0.07) and tabletop (mean sensitivity 0.91, FDR

0.06). Its performance declined with more naturalistic activities, such as drinking (mean sensi-

tivity 0.74, FDR 0.16) and feeding (mean sensitivity 0.74, FDR 0.19). Seq2Seq had its lowest

performance with the tooth-brushing activity (mean sensitivity 0.62, FDR 0.21).

Seq2Seq performs well for patients with mild to moderate UE impairment

We also examined if Seq2Seq performance was affected by impairment level (Fig 5C). Seq2Seq

had a stable sensitivity (0.71–0.82) that did not vary with UE-FMA score (Spearman’s
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Fig 5. Classification performance of Seq2Seq. (A) Classification performance per primitive class. Prediction

outcomes (FP, FN, TP) for activities were combined. Shown are mean ± standard deviation of Seq2Seq sensitivity and

FDR for patients in the test set; each dot represents a single subject. Mean sensitivity was high and mean FDR was low

for most primitives except stabilizations. (B) Classification performance per activity. Prediction outcomes for

primitive classes were combined. Shown are mean ± standard deviation of Seq2Seq sensitivity and FDR for patients in

the test set; each dot represents a single subject. Mean sensitivity was high and mean FDR was low for structured
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correlation (ρ(6) = 0.54, p = 0.171, 95% confidence interval (CI) [-0.12, 0.87]). The FDR ran-

ged more widely (0.31–0.64) and showed a trend for decreasing as UE-FMA scores increased

(ρ(6) = -0.69, p = 0.069, 95% CI [-0.11, -0.91]). This trend was driven by one patient (UE-FMA

37), whose stabilizations and transports were excessively overcounted by Seq2Seq.

Seq2Seq outperforms benchmarks

Finally, we benchmarked Seq2Seq against competitive models used in human action recogni-

tion: convolutional neural network (CNN), action segment refinement framework (ASRF),

and random forest (RF; Fig 6 and S2 Fig) [31,38,39]. The CNN and RF made predictions at

each 10-ms time point, which were smoothed to generate primitive sequences [40]. ASRF is a

state-of-the-art action recognition method that directly generates primitive sequences. We

aggregated patients, primitive classes, and activities to examine the overall sensitivity and FDR

of each model. We also examined the F1 score, the harmonic mean between sensitivity and

precision (1-FDR), which reflects global classification performance. We used bootstrapping

and unpaired, two-tailed t-tests to statistically compare the classification performance of Seq2-

Seq against the other models.

Seq2Seq had a significantly higher sensitivity than the other models (Seq2Seq, 0.767; CNN,

0.727; ASRF, 0.720; RF, 0.497; all t498 > 20.7, all p < 0.0001). Seq2Seq had a significantly lower

FDR than CNN and RF (Seq2Seq, 0.166; CNN, 0.196; RF, 0.213; all t498 >22.8, all p < 0.0001),

but was outperformed by ASRF (0.160; t498 = 7.5, p < 0.0001). Seq2Seq also had a significantly

higher F1 score than the other models (Seq2Seq, 0.799; CNN, 0.763; ASRF, 0.775; RF, 0.609; all

activities such as the shelf and tabletop tasks, but were more modest for more complex activities. (C) Classification

performance per patient. Prediction outcomes for activities and primitives were combined. Shown are sensitivity and

FDR values per patient with respect to their upper extremity Fugl-Meyer Assessment (UE-FMA) score. Seq2Seq

sensitivity was not affected by impairment level (p = 0.171), but there was a trend for reduced FDRs with higher

UE-FMA scores (p = 0.069), driven by one patient.

https://doi.org/10.1371/journal.pdig.0000044.g005

Fig 6. Benchmarking Seq2Seq performance. Prediction outcomes were aggregated from primitives, activities, and

patients. Shown are the sensitivity, false discovery rate (FDR), and F1 score for Seq2Seq, convolutional neural network

(CNN), action segment refinement framework (ASRF), and random forest (RF). Seq2Seq had the highest sensitivity

(Seq2Seq, 0.767; CNN, 0.727; ASRF, 0.720; RF, 0.497). Seq2Seq FDR was lower than CNN and RF but marginally

higher than ASRF (Seq2Seq, 0.166; CNN, 0.196; ASRF, 0.160; RF, 0.213). Seq2Seq had the highest F1 score (Seq2Seq,

0.799; CNN, 0.763; ASRF, 0.775; RF, 0.609).

https://doi.org/10.1371/journal.pdig.0000044.g006
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t498 >18.4, all p < 0.0001) indicating its best overall classification performance of the models

tested.

PrimSeq provides a practical solution to count functional motion

repetitions

Finally, we examined the practicality of using the PrimSeq pipeline. From the motion capture

standpoint, most patients reported minimal difficulty with donning and calibrating the IMU

array and minimal discomfort with wearing them (median scores 0 and 1, respectively, on an

11-point visual analog scale; S3 Fig). IMU setup time was minimal, requiring on average

12.9 ± 4.1 minutes. Electromagnetic sensor drift was also late to emerge during recording,

occurring after 63.7 ± 28.1 minutes, with recalibration taking 1–2 minutes. Collectively, these

observations indicate that an IMU system could support motion capture that is well tolerated,

efficient, and stable.

From the primitive identification standpoint, the trained Seq2Seq model and counting

algorithm identified and tallied primitives 370 times faster than human coders. For example,

to process 6.4 hours of recorded activities, Seq2Seq had an execution time of 1.4 hours (13 s

per minute of recording) whereas trained human coders required 513.6 hours or 12.8 work-

weeks (4,815 s per minute of recording). Furthermore, if inference is made on a high-perform-

ing computer with an advanced graphical processing unit, processing lags between incoming

IMU data and primitive prediction are estimated at ~15 seconds. These observations indicate

that PrimSeq could provide near-immediate feedback about primitive counts, which would

help patients and therapists meet training goals during rehabilitation sessions [41].

Discussion

To date, the measurement of functional motions in UE stroke rehabilitation has been an elu-

sive technical challenge, hampered by imprecision or impracticality. To address these obsta-

cles, we developed PrimSeq, an approach that integrates wearable IMU data, a trained deep

learning model, and a counting algorithm to quantify functional primitives performed during

rehabilitation. We found that PrimSeq generated accurate primitive counts across primitive

classes and activities. We also found that the Seq2Seq model also had a moderate-to-high clas-

sification performance across primitive classes, rehabilitation activities, and impairment levels,

outperforming state-of-the-art action recognition models. Finally, we found that PrimSeq was

a practical approach for UE motion capture and processing. These results indicate that Prim-

Seq provides a pragmatic solution for the accurate identification of motion content and quan-

tity during rehabilitation.

The generalizability of our approach depends in part on the adoption of functional primi-

tives as units of measure. As with any classification in machine learning, users must confirm

that the predicted classes are relevant to their question or application. We reason that, for the

purpose of objectively measuring rehabilitation training, primitives are reliable and effective

units of measure. As singular motion and minimal-motion events, primitives directly tran-

scribe the series of actions taken by individuals to execute more complex activities [5]. Because

primitives are circumscribed and mutually exclusive, they avoid lumping together a variable

quantity or series of motions under one class designation, as can occur with functional motion

detection [18–20] or human activity recognition [42–44]. We have consistently found that

rehabilitation activities can be entirely broken down into constituent functional primitives [5,

31, 32]. Primitives thus provide a metric by which rehabilitation training can be consistently

measured, enabling the critical appraisal and replication of dosed rehabilitation interventions.
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Our approach has some limitations to consider. PrimSeq identifies functional motions but

does not measure how normally they are performed. This information is important for track-

ing recovery and tailoring rehabilitation. Future work could characterize and reference the

normative kinematics of the primitive classes, which could generate continuous measurements

of abnormal primitive performance. In addition, PrimSeq was trained on motion from chronic

stroke patients performing a circumscribed battery of rehabilitation activities. To increase clin-

ical utility, additional model training and refinement could be undertaken “in the wild” with

subacute stroke patients undergoing inpatient rehabilitation. A more extensive sampling of

primitives could be expected to boost classification performance on unstructured activities,

and make PrimSeq robust for application in different recovery stages. Finally, the classification

performance of Seq2Seq was limited in some cases (e.g. stabilizations, tooth-brushing activity).

Future work could employ alternative deep learning models with explainable artificial intelli-

gence to identify sources of confusion, which could then be targeted to improve classification

performance [45, 46]. Alternatively, the motion capture setup could be expanded to generate

information that is lacking but may be critical for more precise classification. For example, the

grasp of an object is a major phenotypic feature that distinguishes stabilizations (grasp present)

from idles (grasp absent) [5], but our current IMU array does not capture finger motion. The

incorporation of videography data and computer vision [47–49] or the addition of an instru-

mented glove [50] could provide grasp data, delivering key motion details that are necessary

for classification.

In conclusion, we present a novel pipeline that measures functional motion repetitions in

UE rehabilitation activities. PrimSeq is a foundational step toward the precise and pragmatic

quantification of rehabilitation dose, and overcomes considerable time, personnel, and finan-

cial barriers. Our approach has the potential to support rigorous rehabilitation research and

quantitative clinical delivery, which are vitally needed to improve stroke outcomes.

Materials and methods

Subjects

We studied 41 chronic stroke patients with upper extremity (UE) paresis. Patients gave written

informed consent to participate. This study was approved by the Institutional Review Board at

New York University Langone Health, in accordance with the Declaration of Helsinki. Patient

demographics and clinical characteristics are reported in Table 1.

Enrollment criteria

Eligibility was determined by electronic medical records, patient self-report, and physical

examination. Patients were included if they were � 18 years old, premorbidly right-handed,

able to give informed consent, and had unilateral motor stroke with contralateral UE weakness

scoring < 5/5 in any major muscle group [51]. Patients were excluded if they had: hemor-

rhagic stroke with mass effect, or subarachnoid or intraventricular hemorrhage; traumatic

brain injury; musculoskeletal, major medical, or non-stroke neurological condition that inter-

feres motor function; contracture at shoulder, elbow, or wrist; moderate UE dysmetria or trun-

cal ataxia; apraxia; visuospatial neglect; global inattention; or legal blindness. Stroke was

confirmed by radiographic report. Lesions in non-motor areas or the opposite hemisphere

were allowed barring bilateral weakness. Both ischemic and hemorrhagic stroke were included,

as motor deficits do not substantially differ between the two types [52]. Stroke patients were

chronic (> 6 months post-stroke) except for two patients (3.1 and 4.6 months post-stroke).
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Primitive dataset generation

Patients participated in two to three sessions lasting ~2.5 hours. Sessions were typically one to

three days apart (average 2.6 days). At the first session, we recorded patient height and mea-

sured UE impairment level with the UE Fugl-Meyer Assessment (FMA), where a higher score

(maximum 66) indicates less impairment [53]. Patients then performed five trials of nine reha-

bilitation activities while their upper body motion was recorded (S1 Table and Fig 1A). We

identified activities using a standardized manual of occupational therapy (OT) [54]. From

these, we identified activities commonly practiced during inpatient stroke rehabilitation

through survey of seven OTs with expertise in stroke rehabilitation. Patients were seated in

front of a workspace (table or sink counter) at a distance that allowed the nonparetic UE to

reach, without trunk flexion, to the furthest target object. Workspaces were adjusted to stan-

dard heights (table, 76 cm; counter, 91 cm). We placed the target objects at fixed locations

using marked, laminated cardboard mats (table) or measured distances (counter). We used

standardized instructions that outlined the major goals of the activity. Because most activities

in the battery are bimanual, we instructed patients to use their paretic UE to the best of their

ability.

Motion capture

To record patient motion, we affixed nine inertial measurement units (IMUs; Noraxon,

USA) to the C7 and T10 spine, pelvis, and both hands using Tegaderm tape (3M, USA) and

to both arms and forearms using Velcro straps (Fig 1A). Each IMU is small (length: 3.8 cm;

width: 5.2 cm; height: 1.8 cm), lightweight (34 g), and captures 3D linear acceleration, 3D

angular velocity, and 3D magnetic heading at 100 Hz. The motion capture software (myo-

Motion, Noraxon, USA) applies a Kalman filter to the linear accelerations, angular veloci-

ties, and magnetic heading to generate 3D unit quaternions for each sensor [55]. We used

coordinate transformation matrices to transform the generated quaternions to a sensor-

centric framework, which represents the rotation of each sensor around its own axes. The

motion capture software also applies a proprietary height-scaled skeletal model to the IMU

data to generate 22 anatomical angles of the upper body (S2 Table). The motion capture

system thus generates a 76-dimensional dataset every 10 ms consisting of the following: 27

dimensions of accelerations (9 IMUs × 3D accelerations per IMU), 27 dimensions of quater-

nions (9 IMUs × 3D quaternions per IMU), and 22 joint angles. These data are displayed on

a software interface alongside an avatar of the patient (Fig 1B). As an additional feature, we

added the side of the patient’s paretic UE (left or right) to each 10 ms time step, resulting in

a 77-dimensional dataset.

The motion capture system records patient motion with high precision (accelerometry

accuracy ± 0.001 g; gyroscopic accuracy ± 1.25˚; anatomical angle accuracy ± 2˚), performing

as well as the gold-standard optical system [56]. We monitored online for electromagnetic sen-

sor drift by visually inspecting the joint angle data for baseline shifts and ensuring that avatar

motions matched those of the patient. Patients were immediately recalibrated if drift was

observed. Recalibration required standing with UEs straight at the sides (arms, forearms, and

wrists in neutral position with elbows extended) and took less than two minutes.

We recorded UE motion with two high-speed (60 Hz), high-definition (1088 × 704 resolu-

tion) cameras (Ninox, Noraxon) positioned orthogonally less than two meters from the patient

(Fig 1A). The cameras have a focal length of f4.0 mm and a large viewing window (length: 2.5

m, width: 2.5 m; Fig 1B). The cameras ran on the same clock as the IMUs and video and IMU

recordings were synchronized.
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Data labeling

Human coders identified the functional primitives performed in the rehabilitation activities.

The five classes of functional primitives are reach (UE motion to make contact with a target

object), reposition (UE motion to move proximate to a target object), transport (UE motion

to convey a target object in space), stabilization (minimal UE motion to hold a target object

still), and idle (minimal UE motion to stand at the ready near a target object). Coders were

trained on a functional motion taxonomy that operationalizes primitive identification [5].

The coders used the video recordings to identify and label the start and end of each primi-

tive, which simultaneously segmented and labeled the synchronously recorded IMU data.

To ensure the reliable labeling of primitives, an expert (A.P.) inspected one-third of all

coded videos. Interrater reliability between the coders and expert was high, with Cohen’s

K coefficients � 0.96. Coders took on average 79.8 minutes to annotate one minute of

recording.

We split the resulting ground truth dataset of into a training set (n = 33 patients; 51,616

primitives: 9840 reaches, 8028 repositions, 12471 transports, 11445 stabilizations, and 9832

idles) and test set (n = 8 patients; 12,545 primitives: 2510 reaches, 1948 repositions, 3331 trans-

ports, 2475 stabilizations, and 2281 idles) to independently train and test the deep learning

model. Patient selection was random but constrained to balance impairment level and paretic

side. The IMU dataset, including its data splits, are available on https://simtk.org/projects/

primseq.

Deep learning model development

Inspired by speech recognition models [57], we used a sequence-to-sequence (Seq2Seq) deep

learning model to perform the task of predicting primitive sequences. To handle the higher

dimensionality of the IMU data, we increased the model’s input nodes to 77 (from 40 for

speech) and increased the hidden dimensionality to 3,072 (from 512 for speech). To provide

sufficient context of the time series given lower sampling rates of 100 Hz for motion data (ver-

sus 16,000 Hz for speech), we expanded the window size of the input data to 6 s (from 10 ms

for speech).

The architecture of Seq2Seq has two modules: a feature encoder consisting of a three-layer,

bi-directional Gated Recurrent Unit (GRU) with 3,072 hidden representations, and a feature

decoder consisting of a single-layer GRU with 6,144 hidden representations.

Seq2Seq performs primitive identification in two steps (Fig 2). The encoder GRU first

encodes the data window to generate a 6,144-element feature vector. This step reduces the

dimensionality of the high-dimensional IMU data, which enables it to learn relevant features

from the IMU data for the downstream task of sequence prediction. The decoder GRU then

decodes this feature vector to generate the sequence of primitives. The generated sequence of

primitives is then passed through a counting algorithm that tallies the functional motion repe-

titions while removing duplicate primitives at the window boundaries. Additional model

details are presented in recent work [36].

We trained Seq2Seq by minimizing a loss function based on the cross-entropy between the

predicted and ground truth primitive sequences using the Adam optimizer [58]. We used a

learning rate of 5x10-4. Because primitive overcounting may lead to accidental under-training

of patients in rehabilitation, we prioritized keeping the average false discovery rate (FDR) <

20% while maximizing the average sensitivity during model training. We ensured this balance

by stopping the model training early based on the Action Error Rate (AER), computed as the

total number of changes needed on the predicted sequence to match the ground truth, normal-

ized to the length of the ground truth sequence.

PLOS DIGITAL HEALTH PrimSeq to measure rehabilitation training

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000044 June 16, 2022 14 / 23

https://simtk.org/projects/primseq
https://simtk.org/projects/primseq
https://doi.org/10.1371/journal.pdig.0000044


We used a window size of 6 s for primitive prediction with Seq2Seq. During model training,

the middle 4 s of the window was predicted, with the flanking 1 s of data providing the model

additional temporal context for prediction. We further maximized the training data by adding

a window slide of 0.5 s, which also helped the model learn primitive boundaries. During

model testing, the window size was 6 s and middle 4 s of the window was predicted. To enable

the flanking during model testing, we set the slide to 4 s. A preliminary experiment was per-

formed with window sizes of 2 s, 4 s, and 8 s. The window size of 6 s resulted in the lowest vali-

dation AER.

We selected and cross-validated the hyperparameters for Seq2Seq with four different splits

of the training set. In each split, 24 or 25 patients were used for training and 9 or 8 patients

were used for validation. We selected the hyperparameters for each of the four models based

on their validation AERs. Each split yields a separate model that generates independent predic-

tion probabilities per primitive. The prediction probabilities from the four models were aver-

aged, or ensembled, and the primitive with the highest probability was taken as the Seq2Seq

prediction. The ensembled prediction was also fed back into the four models to inform the

next prediction in the data window.

After Seq2Seq training and hyperparameter estimations were done on the training set, we

applied the trained Seq2Seq model to the test set to assess its counting and classification per-

formance in data from previously unseen patients. The test set was not used for feature selec-

tion, preprocessing steps, or parameter tuning. Code implementing the model, including

instructions for training and hyperparameter selection and comparisons with other action-rec-

ognition methods on benchmark datasets, are available on https://github.com/aakashrkaku/

seq2seq_hrar. An overlay of model predictions with respect to ground truth primitives is dem-

onstrated on a patient video (S1 Video).

Analysis of counting performance

To visualize the ability of PrimSeq to correctly count primitives, we tallied the predicted and

ground truth primitive counts per subject in the test set. These counts are displayed as means

and standard deviations in Fig 3A and 3B. To analyze PrimSeq counting performance for each

primitive class, we combined all activities and normalized the predicted counts to ground

truth counts. To analyze PrimSeq counting performance for each activity, we combined primi-

tive classes and normalized the predicted counts to ground truth counts. Counting perfor-

mance is reported as the mean percent and standard deviation of true counts. We also

examined counting errors at the single-subject level, because mean tallies may obscure errone-

ous counting (e.g. an average of under-counts and over-counts would wash out errors). We

calculated counting error per subject as the difference between true and predicted counts, nor-

malized to true count. Single-subject counting errors are reported as mean percent and stan-

dard deviation.

Analysis of prediction outcomes and error frequency

To examine the nature of predictions that Seq2Seq made per primitive class, we combined

activities and compared predicted against ground truth sequences for each patient in the test

set. We used the Levenshtein sequence-comparison algorithm to match the predicted and

ground truth primitive sequences [37]. This step generated the prediction outcomes of false

negative (FN), false positive (FP), or true positive (TP; Fig 4A).

False negatives, or primitives spuriously removed from the prediction, could arise from a

deletion error (the model did not predict a primitive that actually happened) or a swap-out

error (the model did not predict the actual primitive but instead predicted an incorrect class).

PLOS DIGITAL HEALTH PrimSeq to measure rehabilitation training

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000044 June 16, 2022 15 / 23

https://github.com/aakashrkaku/seq2seq_hrar
https://github.com/aakashrkaku/seq2seq_hrar
https://doi.org/10.1371/journal.pdig.0000044


False positives, or primitives spuriously added to the prediction, could arise from an insertion

error (the model predicted a primitive that did not actually happen) or a swap-in error (the

model predicted an incorrect primitive class instead of the actual primitive). True positives

were primitives that were correctly predicted.

We examined the frequency and type of prediction errors (FN, FP) made by Seq2Seq, nor-

malizing prediction errors to ground truth counts to adjust for different quantities of primi-

tives. The frequencies of prediction errors are presented as mean and standard deviation for

the test set patients. To further assess which classes of primitives were mistaken for each other

by Seq2Seq, we generated a confusion matrix to examine swap-out and swap-in errors (S1

Fig).

Analysis of classification performance

To examine the classification performance of Seq2Seq, we computed the classification perfor-

mance metrics of sensitivity and false discovery rate (FDR) with respect to primitive class,

activity, and impairment level.

Sensitivity, also known as true positive rate or recall, represents the proportion of ground

truth primitives that were correctly predicted. It is calculated as:

Sensitivity ¼
TP

TP þ FN

FDR, a type of overcount, represents the proportion of predicted primitives that were incor-

rectly predicted. It is calculated as:

FDR ¼
FP

TP þ FP

To calculate sensitivity and FDR per primitive class, we combined prediction outcomes

(i.e., TP, FN, and FP) from all activities for each test set patient (Fig 5A). To calculate sensitiv-

ity and FDR per activity, we combined prediction outcomes from all primitives for each test

set patient (Fig 5B). Sensitivity and FDR are reported as means and standard deviations across

test set patients.

Finally, to assess classification performance at different levels of UE impairment, we com-

bined prediction outcomes from all primitives and activities for each test set patient and calcu-

lated sensitivity and FDR (Fig 5C). We examined if these performance metrics varied with

ordinal UE-FMA scores using Spearman’s correlation (ρ).

Model benchmarking

We compared Seq2Seq against three benchmark models used in human action recognition:

convolutional neural network (CNN), random forest (RF), and action segment refinement

framework (ASRF).

We examined the classification performance of a CNN that we previously developed to pre-

dict primitives from IMU data [31]. Each layer in the CNN computes linear combinations of

outputs of the previous layer, weighted by the coefficients of convolutional filters. The model

includes an initial module that helps to map different physical quantities captured by IMU sys-

tem (e.g., accelerations, joint angles, and quaternions) to a common representation space. The

model also uses adaptive feature-normalization to increase the robustness of the model to

shifts in the distribution of the data, which can occur when the model is applied to new

patients.
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We also examined the classification performance of RF, a conventional machine learning

model, which has previously been used for human activity recognition [38], including distin-

guishing functional from nonfunctional motion using wrist-worn sensors [18–20]. RF uses a

number of decision trees on randomly selected sub-samples of the dataset to make predictions.

We input into the model a set of statistical features for each data dimension, including its

mean, maximum, minimum, standard deviation, and root mean square. These features cap-

ture useful information for motion identification, such as the energy and variance of the

motion.

CNN and RF generate primitive predictions at each 10-ms time point. To generate primi-

tive sequences, we smoothed the pointwise predictions of these models using a weighted run-

ning average approach. To perform the smoothing, we used a Kaiser window [40] whose

parameters (window size and relative sidelobe attenuation) were selected using the best valida-

tion performance.

We also examined the classification performance of ASRF, a state-of-the-art deep learning

model for action recognition [39]. ASRF is composed of two CNN modules: a segmentation

module and a boundary detection module. The segmentation module performs the pointwise

predictions of the primitives, and the boundary detection module detects the boundaries of

the primitives. These pointwise primitive predictions are combined with the detected bound-

aries for smoothing and final sequence generation. During smoothing, the model takes the

most frequent pointwise prediction between two detected boundaries as the final prediction

for that segment.

To benchmark Seq2Seq against these alternative models, we combined prediction outcomes

from all patients, primitives, and activities (confusion matrices are shown in S2 Fig). In addi-

tion to calculating each model’s overall sensitivity and FDR, we also calculated its F1 score. The

F1 score, a balance between sensitivity and FDR, captures the global classification performance

of a model. The F1 score ranges between 0 and 1, and a value of 1 indicates perfect classifica-

tion. It is calculated as:

F1 ¼ 2
sensitivity ð1 � FDRÞ

sensitivity þ ð1 � FDRÞ

� �

¼ 2
TP

TP þ 0:5ðFN þ FPÞ

� �

Statistical examination of model performance

We report the sensitivities, FDRs, and F1 scores for each model on the test set. To examine if

the models significantly differed in their classification performance, we bootstrapped the test

set, which consisted of 324 single ADL trials aggregated across test subjects. From this test set,

we randomly subsampled 81 trials with replacement to create a bootstrap set. We created 250

such bootstrapped sets, which were independently fed into each model to generate a distribu-

tion of performance metrics (sensitivities, FDRs, and F1 scores) for each model. We used

unpaired, two-tailed Student’s t-tests to compare the performance metrics of Seq2Seq against

each model, and used Bonferroni correction for multiple comparisons. We performed all sta-

tistical analyses in Python. Significance was set at α = 0.05.

Practicality assessment of PrimSeq

To assess the practicality of PrimSeq, we first examined whether patients found the IMUs chal-

lenging to wear. We used a visual analogue scale (VAS) ranging from 0 (least) to 10 (most) to

examine if donning IMUs (application and calibration) was difficult or wearing IMUs was

uncomfortable. VAS scores were obtained at the end of each session and are reported as

median and range across patients (S3 Fig). We recorded the time to don and calibrate the
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IMUs in a subset of 10 patients, reported as mean and standard deviation. We also recorded

the onset time of electromagnetic sensor drift in all patients, reported as mean and standard

deviation, and the time needed for recalibration, reported as a range.

Finally, to compare the labeling speed of trained human coders against the trained Seq2Seq

model, we recorded how long humans and the model took to label all activities from a subset

of 10 patients (6.4 h of recordings). Seq2Seq processed the IMU data on a high-performing

computer with an advanced graphical processing unit (GPU, 10 trillion floating-point opera-

tions per second, memory bandwidth of 900 GB/s). Total processing times are reported. We

estimated processing lags between incoming IMU data and model predictions by summing

the time of each interstitial operation: transferring data between the IMUs and myoMotion

receiver, calling the API, preprocessing the data (quaternion transformation, z-score normali-

zation), sizing the data windows, predicting the primitives on the GPU, and displaying and

storing the data.

Supporting information

S1 Table. Activity battery. These representative rehabilitation activities were used to generate

an abundant sample of functional primitives for model training. Activity parameters include

the workspace setup, target objects, and instructions to complete each task. The table and

counter edges are their anterior edges closest to the patient. Patients could perform the actions

within the activity in their preferred order.

(DOCX)

S2 Table. Anatomical upper body angles. The motion capture system (myomotion, Noraxon,

USA) used 9 IMUs and a proprietary height-scaled model to generate 22 upper body angles,

shown in relation to their joint of origin. ‡Shoulder total flexion is a combination of shoulder

flexion/extension and shoulder ad-/abduction. �Thoracic angles are computed between the

cervical (C7) and thoracic (T10) vertebrae. †Lumbar angles are computed between the thoracic

vertebra and pelvis.

(DOCX)

S1 Fig. Classification performance of Seq2Seq. Shown is a confusion matrix, with values nor-

malized to the ground truth primitive count. The diagonal values represent the sensitivity per

primitive, or how often the model correct predicted a primitive that was actually performed.

The non-diagonal values represent the identification errors made by Seq2Seq. Rows reflect

swap-out errors for ground truth primitives and indicate how often a ground truth primitive

was incorrectly predicted as another primitive class. Seq2Seq made modest swap-out errors for

all primitives (reach, 0.9–6.2%; reposition, 0.4–4.7%; transport, 0.7–2.0%; stabilizations, 1.1–

4.1%; idle, 0.3–4.6%). Columns reflect swap-in errors for predicted primitives and indicate

how often an incorrect primitive was predicted instead of the ground truth primitive. Seq2Seq

made modest swap-in errors for all primitives (reach, 0.9–4.1%; reposition, 0.3–1.1%; trans-

port, 1.7–6.2%; stabilizations, 1.6–4.7%; idle, 0.4–2.2%). We note that some of the errors made

by the model could be explained by the lack of finger information from the IMU setup (e.g.

confusion between reaches and transports, idles and stabilizations). These primitives have sim-

ilar motion phenotypes and are distinguished by grasp onset/amount.

(EPS)

S2 Fig. Classification performance of Seq2Seq, convolutional neural network (CNN),

action state representation framework (ASRF), and random forest. Shown are confusion

matrices for each model with values normalized to the ground truth primitive count. The diag-

onal values represent the sensitivity per primitive, or how often the model correctly predicted
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a primitive that was actually performed. The non-diagonal values represent the identification

errors made by the models. Rows reflect swap-out errors for ground truth primitives and indi-

cate how often a ground truth primitive was incorrectly predicted as another primitive class.

Columns reflect swap-in errors for predicted primitives and indicate how often an incorrect

primitive was predicted instead of the ground truth primitive. Comparing sensitivities (diago-

nal values), CNN outperformed Seq2Seq in classifying repositions (80.7% versus 75.4%) but

underperformed in classifying the remaining primitives. ASRF outperformed Seq2Seq in clas-

sifying reaches (81.6% versus 77.6%) and repositions (79.0% versus 75.4%), but underper-

formed in classifying the remaining primitives. Random forest underperformed Seq2Seq in

classifying all primitives.

(EPS)

S3 Fig. Patient tolerance of IMUs for motion capture. Shown are box plots of the visual ana-

logue scale (VAS) ratings by the patients. We asked two questions of each patient (n = 41) at

the end of each session: ‘how difficult was the setup (IMU application and calibration)?’ and

‘how uncomfortable were the IMUs?’ Patients scored their responses on an ordinal scale rang-

ing from 0 (not at all) to 10 (most). Most patients reported minimal difficulty with the setup

during data collection (median score 0, range 0–8) and minimal discomfort with wearing the

IMUs (median score 1, range 0–10), highlighting the unobtrusiveness of IMUs for motion cap-

ture. The 25-75th interquartile range (IQR) are shown as the lower and upper limits of the

box plots, median values and 1.5�IQR are shown as the green dotted line and error bars respec-

tively, and outliers are shown as black dots.

(EPS)

S1 Video. Visualization of model predictions with respect to ground truth primitives.

Shown is a mildly impaired patient performing a combing activity. Human coders used the

videotaped activity to identify and label primitives performed by the impaired side (circled);

these ground truth labels are shown on the upper right. The trained sequence-to-sequence

model used the IMU data to predict primitives performed by the impaired side; these predic-

tions are shown on the upper left.

(AVI)
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