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Abstract
We study the problem of classifier derandomiza-
tion in machine learning: given a stochastic binary
classifier f : X → [0, 1], sample a deterministic
classifier f̂ : X → {0, 1} that approximates the
output of f in aggregate over any data distribu-
tion. Recent work revealed how to efficiently
derandomize a stochastic classifier with strong
output approximation guarantees, but at the cost
of individual fairness — that is, if f treated sim-
ilar inputs similarly, f̂ did not. In this paper, we
initiate a systematic study of classifier derandom-
ization with metric fairness guarantees. We show
that the prior derandomization approach is almost
maximally metric-unfair, and that a simple “ran-
dom threshold” derandomization achieves opti-
mal fairness preservation but with weaker output
approximation. We then devise a derandomiza-
tion procedure that provides an appealing tradeoff
between these two: if f is α-metric fair accord-
ing to a metric d with a locality-sensitive hash
(LSH) family, then our derandomized f̂ is, with
high probability, O(α)-metric fair and a close ap-
proximation of f . We also prove generic results
applicable to all (fair and unfair) classifier deran-
domization procedures, including a bias-variance
decomposition and reductions between various
notions of metric fairness.

1. Introduction
We study the general problem of derandomizing stochastic
classification models. Consider a typical binary classifica-
tion setting defined by a feature space X ⊆ Rn and labels
{0, 1}; we wish to devise a procedure that, given a stochastic
or randomized classifier f : X → [0, 1], efficiently samples
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a deterministic classifier f̂ : X → {0, 1} from some family
of functions F , such that f̂ preserves various qualities of f .

Stochastic classifiers arise naturally in both theory and prac-
tice. For example, they are frequently the solutions to con-
strained optimization problems encoding complex evalu-
ation metrics (Narasimhan, 2018), group fairness (Grgić-
Hlača et al., 2017; Agarwal et al., 2018), individual fairness
(Dwork et al., 2012; Rothblum & Yona, 2018; Kim et al.,
2018; Sharifi-Malvajerdi et al., 2019), and robustness to
adversarial attacks (Pinot et al., 2019; Cohen et al., 2019;
Pinot et al., 2020; Braverman & Garg, 2020). Stochastic
classifiers are also the natural result of taking an ensemble
of individual classifiers (Dietterich, 2000; Grgić-Hlača et al.,
2017).

However, they may be undesirable for numerous reasons: a
stochastic classifier is not robust to repeated attacks, since
even one that is instance-wise 99% accurate will likely err
after a few hundred attempts; by the same token, they violate
intuitive notions of fairness since even the same individual
may be treated differently over multiple classifications. For
these reasons, Cotter, Gupta, and Narasimhan (Cotter et al.,
2019) recently presented a procedure for derandomizing
a stochastic classifier while approximately preserving the
outputs of f with high probability. However, the authors
observe that their construction results in similar individu-
als typically being given very different predictions — in
other words, it does not satisfy individual fairness — and
ask whether it is possible to obtain a family of determin-
istic classifiers that preserves both aggregate outputs and
individual fairness.

Another motivation for studying individually fair decision
making comes from the game-theoretic setting of strate-
gic classification, wherein decision subjects may modify
their features to obtain a desired outcome from the classifier
(Hardt et al., 2016; Cai et al., 2015; Chen et al., 2018; Dong
et al., 2018; Chen et al., 2020). A metric-fair stochastic
classifier — and by extension, a metric-fair derandomiza-
tion procedure — offers significant protection against such
manipulations. See Appendix B for more on this topic.

1.1. Our Contributions

In this paper, we initiate a systematic study of classifier
derandomization with individual fairness preservation. In
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line with many recent works, we formalize individual fair-
ness as metric fairness, which requires the classifier to out-
put similar predictions on close point pairs in some metric
space (X, d) (Dwork et al., 2012; Kim et al., 2018; Friedler
et al., 2016). Roughly, f is metric-fair if there are constants
α, β > 0 such that for all x, x′ ∈ X ,

|f(x)− f(x′)| ≤ α · d(x, x′) + β

A sampled deterministic classifier f̂ ∼ F is metric-fair
when this inequality holds in expectation.

Under this formalism, we obtain the following results:

1. We make precise the observation of (Cotter et al.,
2019) that their derandomization procedure, based on
pairwise-independent hash functions, does not preserve
individual fairness. In fact, we prove that it is almost
maximally metric-unfair regardless of how fair the orig-
inal stochastic classifier was (Section 2.1).

2. We demonstrate that a very simple derandomization
procedure, based on setting a single random thresh-
old r ∼ [0, 1], attains near-perfect expected fairness
preservation, and prove that no better fairness preser-
vation is possible (Section 2.2). However, this proce-
dure’s output approximation has higher variance than
the pairwise-independent hashing approach in general.

3. We devise a derandomization procedure that achieves
nearly the best of both worlds, preserving aggregate
outputs with high probability, with only modest loss
of metric fairness (Section 3). In particular, when f
has fairness parameters (α, β), sampling f̂ from our
family FLS yields expected fairness parameters at most
(α+ 1

2 , β + ϵ). We also show a high-probability aggre-
gate fairness guarantee: most deterministic classifiers
in F assign most close pairs the same prediction. These
guarantees hold for the class of metrics d that possess
locality-sensitive hashing (LSH) schemes, which in-
cludes a wide variety of generic and data-dependent
metrics.

4. We prove structural lemmas applicable to all classifier
derandomization procedures: first, a bias-variance de-
composition for the error of a derandomization f̂ of f ;
second, a set of reductions showing that metric fairness-
preserving derandomizations also preserve notions of
aggregate and threshold fairness.

A practically appealing aspect of our LSH-based deran-
domization method is that it is completely oblivious to the
original stochastic classifier, in that it requires no knowledge
of how f was trained, and its fairness guarantee holds for
whatever fairness parameters f happens to satisfy on each
pair (x, x′) ∈ X2. The technique can therefore be applied

as an independent post-processing step — for example, on
the many fair stochastic classifiers detailed in recent works
(Rothblum & Yona, 2018; Kim et al., 2018). The burden
on the model designer is thus reduced to selecting an LSH-
able metric feature space (X, d) that is appropriate for the
classification task.

1.2. Preliminaries

Given a stochastic classifier f : X → [0, 1] and distance
function d : X × X → [0, 1], we wish to design an effi-
ciently sampleable set F of deterministic binary classifiers
f̂ : X → {0, 1}; we call F a family of deterministic classi-
fiers, or a derandomization of f . Moreover, we would like
F to have the following properties:

Output approximation: f̂ sampled uniformly1 from F
simulates or approximates f in aggregate over any distribu-
tion. More precisely, define the pointwise bias and variance
of f̂ with respect to f on a sample x ∈ X as

bias(f̂ , f, x) := E
f̂∼F

[
f̂(x)

]
− f(x)

variance(f̂ , x) := Var
f̂∼F

(
f̂(x)

)
Now let D be a distribution over X . The aggregate bias and
variance of f̂ with respect to f on D are

bias(f̂ , f,D) := E
x∼D

[
bias(f̂ , f, x)

]
variance(f̂ ,D) := Var

f̂∼F

(
E

x∼D

[
f̂(x)

])
We seek a family F for which both of these quantities are
small. This is a useful notion of a good approximation
of f since in practice, classifiers are typically applied in
aggregate on some dataset or in deployment. In Section 4.4
we also point out that low bias and variance in the above
sense implies that f̂ and f are nearly indistinguishable when
compared according to any binary loss functions, such as
accuracy, false positive rate, etc.

Individual fairness: Similar individuals are likely to be
treated similarly. We formally define this notion as metric
fairness, which says that that the classifier should be an
approximately Lipschitz-continuous function relative to a
given distance metric:

Definition 1.1 ((α, β, d)-metric fairness). Let α ≥ 12 and
β ≥ 0, let d : X2 → [0, 1] be a metric, and let x, x′ ∈

1In this paper, we will always sample uniformly from families
of classifiers and hash functions; thus f̂ ∼ F means f̂ ∼ Unif(F),
and h ∼ H means h ∼ Unif(H).

2We enforce α ≥ 1, and not merely α ≥ 0, so that the
codomain of f is [0, 1] rather than potentially [0, α] (or some
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X . We say a stochastic classifier f : X → [0, 1] satisfies
(α, β, d)-metric fairness on (x, x′), or is (α, β, d)-fair on
(x, x′), if

|f(x)− f(x′)| ≤ α · d(x, x′) + β (1)

Similarly, a deterministic classifier family F is (α, β, d)-fair
on (x, x′) if

E
f̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] ≤ α · d(x, x′) + β (2)

When this condition is satisfied for all (x, x′) ∈ X2, we
simply say the classifier (or family) is (α, β, d)-fair.

To intuit this definition, notice that when a classifier satisfies
metric fairness with β = 0, the difference between its pre-
dictions on some pair of points x and x′ scales in proportion
to their distance. To conform to this idea of fairness, it is
important that the derandomization procedures we design
do not substantially increase these fairness parameters, but
especially β.

The above definition of metric fairness is most closely re-
lated to those of Rothblum and Yona (Rothblum & Yona,
2018), whose focus is learning a “probably approximately
metric-fair” model that generalizes to unseen data; and Kim,
Reingold, and Rothblum (Kim et al., 2018), whose focus
is in-sample learning when the metric d is not fully spec-
ified. Both works take inspiration from the metric-based
notion of individual fairness introduced in (Dwork et al.,
2012). Crucially however, the aforementioned works pro-
vide guarantees exclusively for stochastic classifiers, and to
our knowledge, this is the case for all papers to date whose
focus is learning metric-fair classifiers.

In addition to this pairwise notion of metric fairness, we
will also develop aggregate fairness guarantees for vari-
ous derandomization procedures. To that end, let X2

≤τ :={
(x, x′) ∈ X2

∣∣ d(x, x′) ≤ τ
}

denote the set of point pairs
within some distance τ ∈ [0, 1]. Our aggregate fairness
bounds will state that, with high probability over the sam-
pling of f̂ ∼ F , most pairs (x, x′) ∈ X2

≤τ receive the same
prediction from f̂ .

2. Output Approximation Versus Fairness
We begin our study of metric-fair classifier derandomiza-
tion by contrasting two approaches: first, the “pairwise-
independent” derandomization of (Cotter et al., 2019),

other interval of length α < 1). Requiring α ≥ 1 thus makes
f a proper stochastic classifier and enables direct comparisons
between different fairness parameters. This is no loss of gener-
ality since (α, β, d)-fairness for α < 1 can also be expressed as
(1, β

α
, d
α
)-fairness or, with some loss of generality, (1, β + α, d)-

fairness.

which achieves a low-variance approximation of the original
stochastic classifier, but does not preserve metric fairness;
and second, a simple “random threshold” derandomization
that perfectly preserves metric fairness, at the cost of higher
output variance.

2.1. Pairwise-Independent Derandomization

The construction of Cotter, Narasimhan, and Gupta (Cotter
et al., 2019) makes use of a pairwise-independent hash func-
tion family HPI, i.e. a set of functions hPI : B → [k] such
that

Pr
h∼HPI

[h(b) = i, h(b′) = j] =
1

k2
∀b ̸= b′ ∈ B, i, j ∈ [k]

Observe that a family that satisfies this property is also
uniform, i.e. Prh∼HPI

[h(b) = i] = 1/k for all b, i.

The classifier family they propose is then3

FPI :=
{
f̂hPI

∣∣∣ hPI ∈ HPI

}
, (3)

where f̂hPI
(x) := 1

{
f(x) ≥ hPI(π(x))

k

}
(4)

where π : X → B is some fixed bucketing function that
discretizes the input (since the pairwise-independent hash
family has finite domain).

Let us develop some intuition for this construction. First,
thinking of k as large, each f̂hPI

∈ FPI essentially assigns a
pseudo-random threshold hPI(π(x))

k ∈ [0, 1] to each input x,
so that f̂(x) = 1 if and only if f(x) exceeds the threshold.
Since hPI is a uniform hash function family, hPI(π(x)) is
uniform over [k]; this endows FPI with low bias with respect
to f . Using this idea and the pairwise-independence of HPI,
the authors show that this classifier family exhibits low bias
and variance of approximation:

Theorem 2.1 (Bias and variance of pairwise-independent
derandomization (Cotter et al., 2019) (simplified)). Let f
be a stochastic classifier, D a distribution over X , and
π : X → B a bucketing function. Then f̂ ∼ FPI satisfies

bias(f̂PI, f,D) ≤ 1

k

variance(f̂PI, f,D) ≤ max
b∈B

Pr
x∼D

[π(x) = b]

· E
x∼D

[f(x)(1− f(x))] +
1

k

Moreover, f̂PI can be sampled using O(log |B| + log k)
uniform random bits.

3For the sake of clearer exposition, we simplify the determin-
istic classifier used in (Cotter et al., 2019), which is actually
f̂hPI(x) := 1{f(x) ≥ 2hPI(x)−1

2k
}; this does not change Theo-

rem 2.1 or Proposition 2.2 beyond a 1/2k additive difference in
the bias, variance, and β.
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To understand this variance bound, observe that for a given
data distribution D, the bound is stronger or weaker depend-
ing on how well π disperses samples into different buckets in
B. When there exists some b ∈ B such that Prx∼D[π(x) =

b] ≈ 1, variance(f̂PI, f,D) ≈ Ex∼D[f(x)(1 − f(x))] es-
sentially tracks the stochasticity of f . At the other ex-
treme when Prx∼D[π(x) = b] = 1/|B| for all b ∈ B,
variance(f̂PI, f,D) ≈ 1/|B|.

As the authors pointed out (but did not formalize), f̂PI does
not preserve pairwise fairness in general. We make this
observation precise by showing that it is always possible to
design a dataset, of any desired size, such that the pairwise-
independent derandomization treats every pair of points
unfairly for nearly any β < 1/2.

Proposition 2.2 (Unfairness of pairwise-independent deran-
domization). For every N ≥ 2, α ≥ 1, β < 1

2 − 1
2k , and

metric d : Rn × Rn → [0, 1], there exist a set X ⊂ Rn of
size N and stochastic classifier f : X → [0, 1] such that
the following hold:

1. f is nontrivial and (1, 0, d)-fair.

2. FPI violates (α, β, d)-metric fairness for every pair
(x, x′) ∈ X2, x ̸= x′.

If k is not too small, this says that derandomizing using
pairwise-independent hashing is almost maximally unfair, as
a uniform random binary function ĝ : X → {0, 1} satisfies
E[|ĝ(x)− ĝ(x′)|] = 1/2, and therefore achieves β = 1/2.

Proof sketch of Proposition 2.2. Consider any α ≥ 1, β ∈(
0, 1

2 − 1
2k

)
, and N ≥ 2. We choose X to be some set

of N points on a sufficiently small sphere about the ori-
gin, and let f be a classifier that maps half of the points
in X to 1+ϵ

2 and the other half to 1−ϵ
2 . When ϵ > 0 is

sufficiently small, it can be shown that f is (1, 0, d)-fair
over X . However, FPI is not (α, β, d)-fair on any point pair
(x, x′) ∈ X2. The reason is that since f is almost maximally
stochastic (i.e. f(x) ≈ 1/2 for all x), and HPI is pairwise-
independent, the binary outputs f̂(x) and f̂(x′) are about as
likely to be the same as they are likely to be different. Hence
Ef̂∼FPI

[|f̂(x) − f̂(x′)|] ≈ 1/2, violating (α, β, d)-metric
fairness. See Appendix A.1 for the full proof.

2.2. Random Threshold Classifier

It turns out that there is a near-trivial derandomization that
achieves optimal preservation of metric fairness, namely the
following random threshold classifier family:

FRT := {f̂r | r ∈ [0, 1]}, where f̂r := 1{f(x) ≥ r} (5)

Formally we make the following observation, whose proof
is in Appendix A.2.

Proposition 2.3 (Random threshold derandomization guar-
antees). Let f be an (α, β, d)-fair stochastic classifier and
D a distribution over X . Then the deterministic classifier
family FRT is also (α, β, d)-fair. Moreover,

bias(f̂RT, f,D) = 0

variance(f̂RT, f,D) ≤ E
x∼D

[f(x)(1− f(x))]

Note that while this derandomization preserves the original
fairness parameters perfectly, its variance can be substan-
tially higher than that of FPI depending on the choice of
bucketing function π in Equation (3).

One subtlety here is that FRT is an infinite set, and is there-
fore not sampleable in practice. For the more realistic sce-
nario in which the threshold r is a number of some fixed
precision ϵ > 0, the statements in Proposition 2.3 hold up to
additive error ϵ, and f̂RT can be sampled using O(log(1/ϵ))
uniform random bits. In this case FRT is (α, β + ϵ, d)-fair,
and as we can show, this is in fact necessary:

Proposition 2.4 ((α, 0, d)-metric fairness is impossible for
finite deterministic families). Let d : X × X → [0, 1] be
a metric over a convex set X ⊆ Rn, and let F be a finite
family of deterministic classifiers, at least one of which is
nontrivial. Then for every α ≥ 1 and β < 1/|F|, F is not
(α, β, d)-fair.

Proof sketch. Since F contains a nontrivial classifier f̂ , we
can pick sufficiently close points around a discontinuity of
f̂ and show that in expectation, F fails to achieve roughly
(α, 1/|F|, d)-fairness on this point pair. See Appendix A.3
for details.

The main consequence is that there is an irreducible amount
of additive unfairness β > 0 that cannot be avoided
when constructing a fair deterministic classifier family. In-
deed, the derandomization F we present in Section 3 has
|F| ≥ 1/β, thus avoiding the impossible regime indicated
by Proposition 2.4.

3. Fair Derandomization via Locality-Sensitive
Hashing

In this section, we construct a deterministic classifier family
that combines much of the appeal of both the pairwise-
independent derandomization (low output variance) and the
random threshold derandomization (strong fairness preser-
vation). This new approach utilizes two types of hashing:
first, a pairwise-independent hash family HPI as before; and
second, a locality-sensitive hash family:4

4We use the definition of LSH as coined by Charikar (Charikar,
2002). See (Indyk & Motwani, 1998) for an alternative gap-based
definition in the same spirit.
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Definition 3.1 (Locality-sensitive hash (LSH) family). Let
X be a set of hashable items, B a set of buckets, and d :
X2 → [0, 1] a metric distance function. We say a set HLS

of functions h : X → B is a locality-sensitive family of
hash functions for d if for all x, x′ ∈ X ,

Pr
h∼HLS

[h(x) ̸= h(x′)] = d(x, x′)

Locality-sensitive hashing is a well-studied technique, and
LSH families have been constructed for many standard dis-
tances and similarities, such as L1 (Indyk & Motwani, 1998),
L2 (Andoni & Indyk, 2006), cosine (Charikar, 2002), Jac-
card (Broder, 1997), various data-dependent metrics (Jain
et al., 2008; Andoni et al., 2014; Andoni & Razenshteyn,
2015), and more.

Our derandomization works as follows: suppose f : X →
[0, 1] is a stochastic classifier, HLS is a family of locality-
sensitive hash functions hLS : X → B, and HPI is a family
of pairwise-independent hash functions hPI : B → [k]
for some positive integer k. Our family of deterministic
classifiers is then

FLS :=
{
f̂hLS,hPI

∣∣∣ hLS ∈ HLS, hPI ∈ HPI

}
, (6)

where f̂hLS,hPI
(x) := 1

{
f(x) ≥ hPI(hLS(x))

k

}
. (7)

Let us develop some intuition for this construction. First,
thinking of k as large, each f̂ ∈ FLS essentially assigns a
pseudo-random threshold hPI(hLS(x))

k ∈ [0, 1] to each input
x, so that f̂(x) = 1 if and only if f(x) exceeds the threshold.
Since the outer hash function hPI is pairwise-independent,
and therefore also uniform, hPI(hLS(·)) is uniform over [k].
This endows FLS with low bias and variance with respect to
f , as we explain in Section 3.1.

Second, the composition of two different hash functions
gives us our fairness guarantee: hLS maps close point pairs
x, x′ to the same bucket, then hPI disperses pairs that were
not hashed together — most of which are distant. This
separation of point pairs by distance is precisely what en-
ables good preservation of metric fairness, as we prove in
Section 3.2.

3.1. Approximation of Outputs

We show the following bounds on the bias and variance
of our derandomization. The proof is deferred to Ap-
pendix A.4.

Theorem 3.2 (Bias and variance of derandomized classi-
fier). Let f be a stochastic classifier, f̂ ∼ FLS, and D a

distribution over X . Then

bias(f̂ , f,D) ≤ 1

k

variance(f̂ , f,D) ≤ E
hLS∼HLS

[
max
b∈B

Pr
x∼D

[hLS(x) = b]

]
· E
x∼D

[f(x)(1− f(x))] +
1

k

The above variance bound is similar in form to that of the
pairwise-independent derandomization (Theorem 2.1), but
with added randomization over the sampling of locality-
sensitive hash function: when most choices of hLS distribute
points x ∼ D into buckets relatively evenly, the bound is
as small as O(1/|B|); when most hashes are collisions, the
bound may be as large as Ex∼D[f(x)(1−f(x))], essentially
tracking the stochasticity of f .

3.2. Preservation of Metric Fairness

We can now show that our derandomization procedure ap-
proximately preserves metric fairness, both in the sense of
expected fairness for any pair of points (the usual conven-
tion in the metric fairness literature), as well as in aggregate
over all point pairs.

Theorem 3.3 (Locality-sensitive derandomization preserves
metric fairness). Let f be an (α, β, d)-fair stochastic clas-
sifier, where d is a metric with an LSH family HLS with
k ≥ 2/ϵ buckets. Then FLS is a deterministic classifier
family satisfying the following:

• (Pairwise fairness) Consider any x, x′ ∈ X , and as-
sume without loss of generality that f(x) ≤ f(x′).
Then

E
f̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]

≤ [α+ 2f(x)(1− f(x′))] · d(x, x′) + β + ϵ

• (Aggregate fairness) For any distance threshold τ ∈
[0, 1], with probability at least 1− δ over the sampling
of f̂ ,

Pr
(x,x′)∼X2

≤τ

[
f̂(x) ̸= f̂(x′)

]
≤
(
1 +

1√
δ

)
([α+ 2f(x)(1− f(x′))] · τ + β + ϵ).

The above fairness guarantees can be simplified by noticing
that since f(x) ≤ f(x′) w.l.o.g., f(x)(1 − f(x′)) ≤ 1/4;
this yields the following worst-case bounds over f and
(x, x′):

Corollary 3.4 (Worst-case fairness). When f is (α, β, d)-
fair, FLS satisfies the following:
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• (Pairwise fairness)
(
α+ 1

2 , β + ϵ, d
)
-metric fairness

on any (x, x′) ∈ X2, i.e.

E
f̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] ≤ (

α+
1

2

)
· d(x, x′) + β + ϵ.

• (Aggregate fairness) For any distance threshold τ ∈
[0, 1], with probability at least 1− δ over the sampling
of f̂ ,

Pr
(x,x′)∼X2

≤τ

[
f̂(x) ̸= f̂(x′)

]
≤

(
1 +

1√
δ

)(
ατ +

τ

2
+ β + ϵ

)
.

In expectation and with high probability, therefore, the
generated deterministic classifier approximates the fairness
guarantee of the original classifier to within a small constant
factor when there exists an LSH family H for d. To get a
better sense what kind of guarantees this gives us, consider
the following example:
Example 3.5. Let f be a (1, 0, d)-fair stochastic classifier,
and suppose we derandomize it to some f̂ ∼ FLS, choosing
k = 500. Then by Corollary 3.4,

• (Pairwise fairness) f̂ is (3/2, ϵ, d)-metric fair.

• (Aggregate fairness) With probability at least 1− δ =
3/4 (over the sampling of f̂ ), at least 76% of point pairs
within distance τ = 1/20 receive identical predictions.

We present a sketch of the proof of Theorem 3.3; see Ap-
pendix A.5 for the complete proof.

Proof sketch of Theorem 3.3. Consider any x, x′ ∈ X .
Since f̂ is binary and HLS is locality-sensitive,

E
f̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]

= Pr
hLS∼HLS
hPI∼HPI

[
f̂(x) ̸= f̂(x′)

]
= Pr

hLS,hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) = hLS(x
′)
]
· (1− d(x, x′))

+ Pr
hLS,hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) ̸= hLS(x
′)
]
· d(x, x′)

From here, the proof is a systematic analysis of conditional
probabilities. To give some intuition, notice that the event
[f̂(x) ̸= f̂(x′) | hLS(x) = hLS(x

′)] occurs precisely when
hPI(hLS(x))

k falls between f(x) and f(x′); by the uniformity
of HPI, the probability of this is roughly |f(x)− f(x′)| ≤
α · d(x, x′) + β. This is one of several cases that use the
uniformity and symmetry properties of the composed hash
function hPI(hLS(·)) to express |f̂(x)− f̂(x′)| in terms of
|f(x)− f(x′)|. In some cases this is not possible, resulting
in an additive 2f(x)(1− f(x′)) loss in α.

3.3. Sample Complexity

Since the LSH-based derandomization procedure involves
sampling two hash functions HPI and HLS, it samples f̂
using O(log |B| + log k + Sd(X,B)) random bits, where
O(log |B| + log k) is the number of bits used to sample a
pairwise-independent hash function (Rubinfeld, 2012), and
Sd(X,B) is the number of random bits required to sample
a locality-sensitive hash function for metric d with domain
X and range B. When the metric is the Euclidean distance,
for example, O(dimX) random bits suffice (Rashtchian,
2019).

4. Structural Lemmas for Fair Classifier
Derandomization

In this section, we present generic results applicable to
all classifier derandomization procedures, as well as unify
different definitions of fairness used in this paper and others.

4.1. Bias-Variance Decomposition

Up to this point, a “stochastic” classifier has signified any
function f from X to [0, 1]; in this sense, it does not neces-
sarily contain any randomness of its own. However, when
it comes time to perform a binary decision on some input
x, f(x) is typically interpreted as the probability of out-
putting 1, i.e. we use the (truly random) binary function
1f (x) ∼ Bern(f(x)).

By how much does this prediction typically differ from that
of some pre-sampled deterministic classifier f̂? We show
that this error can be decomposed into the bias of f̂ and the
variance of both f̂ and f :

Lemma 4.1 (Bias-variance decomposition). Let f : X →
[0, 1] be a stochastic classifier and F a deterministic classi-
fier family. Then for any x ∈ X ,

E
f,f̂

[∣∣∣f̂(x)− 1f (x)
∣∣∣] ≤ ∣∣∣bias(f̂ ,1f , x)∣∣∣

+ 2

(
Var
f

(1f (x)) + Var
f̂∼F

(
f̂(x)

))2/3

where bias(f̂ ,1f , x) := |Ef̂ [f̂(x)]− Ef [1f (x)]|.

We defer the proof to Appendix A.6. For now, let us in-
terpret this decomposition and see how it applies to the
derandomization approaches laid out in previous sections.
Recall that for all three derandomizations — FPI, FRT, and
FLS — the bias was either zero or could be made arbitrar-
ily small. As for the variance, we see two types: the first,
Varf (1f (x)), is equal to f(x)(1−f(x)), i.e. the variance of
a Bernoulli with parameter f(x); it therefore quantifies the
inherent stochasticity of the given classifier f , over which
we have no control. In contrast, the second variance arises
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from sampling the deterministic classifier f̂ , which depends
greatly on the procedure being used. Thus a comparison
of the expected error of these approaches boils down to
this latter variance, for which the pairwise-independent and
locality-sensitive hashing approaches compare favorably
against the simple random threshold.

4.2. Metric Fairness and Threshold Fairness

Friedler, Scheidegger, and Venkatasubramanian (Friedler
et al., 2016) propose an alternative threshold-based notion
of individual fairness that implements the mantra that “simi-
lar individuals should receive similar treatment,” but only
extends this constraint to pairs of inputs within a certain
distance of interest:

Definition 4.2 ((σ, τ, d)-threshold fairness). Fix some con-
stants σ, τ ∈ (0, 1). We say a stochastic classifier f
is (σ, τ, d)-threshold fair if for all x, x′ ∈ X such that
d(x, x′) ≤ σ, we have |f(x) − f(x′)| ≤ τ . We say a
deterministic classifier family F is (σ, τ, d)-threshold fair
if for all x, x′ ∈ X such that d(x, x′) ≤ σ, we have
Ef̂∼F [|f̂(x)− f̂(x′)|] ≤ τ .

Neither metric fairness nor threshold fairness fully subsumes
the other. However, we can still show the following algo-
rithmic reduction: if we wish to derandomize a stochastic
classifier while preserving threshold fairness, then it suffices
to use any procedure that preserves metric fairness. For ex-
ample, suppose we have a derandomization procedure that
worsens the input classifier’s fairness parameters α and β to
at most a ·α and b ·β, respectively, for some small constants
a, b ≥ 1. We should also expect this procedure to preserve
threshold fairness, within certain parameters related to a, b.
This is what we prove in the following lemma, but for more
general fairness preservation functions:

Lemma 4.3 (Metric-fair derandomization preserves thresh-
old fairness). Suppose we have a procedure that, given an
(α, β, d)-metric fair stochastic classifier f , samples a de-
terministic classifier f̂ from an (A(α), B(β), d)-metric fair
family F , for some functions A,B : R → R. Then this
same procedure also derandomizes any (σ, τ, d)-threshold
fair stochastic classifier to a deterministic classifier from a
(σ,A(0) · σ +B(τ), d)-threshold fair family.

Applying this to the random threshold and locality-sensitive
derandomization procedures yields the following:

Corollary 4.4 (Threshold fairness-preserving derandomiza-
tions). Let f be a (σ, τ, d)-threshold fair stochastic classi-
fier. Then

• The family FRT is (σ, τ, d)-threshold fair.

• If d is LSHable, the family FLS, for a choice of k ≥
4/σ, is (σ, σ + τ, d)-threshold fair.

The proofs are deferred to Appendix A.7.

4.3. Pairwise Fairness and Aggregate Fairness

Throughout most of this paper (and in most of the individ-
ual fairness literature), we have been focused on pairwise
notion of fairness, such as metric fairness (Definition 1.1)
and threshold fairness (Definition 4.2). One shortcoming of
these definitions is that even if a classifier satisfies them for
any particular pair of points (x, x′), they do not hold simul-
taneously for all input pairs; thus once we sample a specific
deterministic classifier f̂ , it may be unfair for many pairs.
Fortunately, as we now show, these pairwise statements im-
ply high-probability aggregate fairness guarantees: if F is a
metric-fair family, then most deterministic classifiers in F
assign most close pairs the same prediction.

To that end, for all distances τ ∈ [0, 1], let X2
≤τ :={

(x, x′) ∈ X2
∣∣ d(x, x′) ≤ τ

}
denote the set of point pairs

within distance τ . Then we can bound the fraction of τ -close
pairs that receive different predictions:

Lemma 4.5 (Pairwise fairness implies aggregate fairness).
Let F be an (α, β, d)-fair deterministic classifier family.
Then for any distance threshold τ ∈ [0, 1], with probability
at least 1− δ over the sampling of f̂ ∼ F ,

Pr
(x,x′)∼X2

≤τ

[
f̂(x) ̸= f̂(x′)

]
≤

(
1 +

1√
δ

)
(ατ + β).

The proof is deferred to Appendix A.8.

4.4. Output Approximation and Loss Approximation

In this paper, we have analyzed the output approximation
qualities of various derandomization techniques using the
definitions of bias and variance in Section 1.2, which say
that the output of f̂ should resemble that of f , either on a
single point x or in aggregate over some distribution D.

An alternative set of definitions of bias and variance, put
forth in (Cotter et al., 2019), instead measures how well f̂
preserves the loss of f according to one or more binary loss
functions ℓ. This property, which we might call loss approx-
imation, is useful since in practice, classifiers are typically
compared based on criteria such as accuracy, false positive
rate, etc. evaluated on a dataset — and these are essentially
binary loss functions averaged over a data distribution.

Concretely, let ℓ : {0, 1} × {0, 1} → {0, 1} be a loss func-
tion and let (x, y) ∈ X × {0, 1} be an instance with its
corresponding label. The loss on this instance incurred by a
(stochastic or deterministic) classifier f is defined as

L(f, x, y) := f(x)ℓ(1, y) + (1− f(x))ℓ(0, y)

The (pointwise) bias and variance of f̂ under this loss are
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then

bias(f̂ , f, x, y, ℓ) :=

∣∣∣∣ E
f̂∼F

[
L(f̂ , x, y)

]
− L(f, x, y)

∣∣∣∣
variance(f̂ , x, y, ℓ) := Var

f̂∼F

(
L(f̂ , x, y)

)
We observe that these are closely related to the simpler
definitions given in Section 1.2:

Lemma 4.6. For any ℓ : {0, 1} × {0, 1} → {0, 1}, x ∈ X ,
and y ∈ {0, 1},

bias(f̂ , f, x, y, ℓ) ≤
∣∣∣bias(f̂ , f, x)∣∣∣

variance(f̂ , x, y, ℓ) ≤ variance(f̂ , x)

Thus even when the goal is to compute a derandomization
that simulates the performance of f on one or more binary
loss functions, it essentially suffices to use a derandomiza-
tion that merely simulates the raw output of f itself. See
Appendix A.9 for the proof of this lemma.

5. Discussion
We offer some brief notes regarding practical considerations
for our derandomization framework.

A framework for derandomization Our results give ma-
chine learning practitioners a time- and space-efficient way
to remove randomness — with the inherent brittleness, secu-
rity vulnerabilities, and other issues that stochasticity entails
— from their deployed models while approximately preserv-
ing fairness constraints enforced during training. Notably,
our derandomization procedure has the useful quality of
being oblivious to f , its training process, and even its actual
fairness parameters α and β. It can therefore be applied as
an independent post-processing step — for example, on the
stochastic classifiers generated by the algorithms of (Roth-
blum & Yona, 2018), (Kim et al., 2018), and others. The
burden on the model designer is thus reduced to selecting a
metric feature space (X, d) that is both appropriate for the
classification task and for which an LSH family exists.

This simplification comes with inherent constraints: it was
shown in (Charikar, 2002) that only metrics (or similarities
ϕ whose complement d is a metric) can have LSH schemes,
though not all of them do. On the positive side, recent work
has shown that various non-LSHable similarities can be
approximated by LSHable similarities with some provable
distortion bound (Chierichetti et al., 2019).

Separation of feature sets Throughout this paper, we
have assumed that the inner hash function hLS and classifiers
f and f̂ all share the same domain X; however, this is in

no way necessary. In fact, from a fairness perspective, it is
often prudent to distinguish between the features used for
ensuring fairness and those used purely for inference, i.e.
we may have

f : X → [0, 1], f̂ : X → {0, 1}, and hLS : Z → B

The feature set Z should be chosen, in tandem with an ap-
propriate LSHable metric d : Z → [0, 1], so as to measure
similarity or difference between inputs on the basis of at-
tributes that should be treated equitably; on the other hand,
the feature set X can be designed primarily to maximize
predictive accuracy, and need not have any overlap with Z.
The fairness guarantees of Theorem 3.3 and Corollary 3.4
then hold with respect to the metric space (Z, d) rather than
(X, d).

Future work: guarantees for protected attributes This
paper has focused on classifier derandomization with in-
dividual fairness guarantees, but it is also worthwhile to
investigate the effect of derandomization from a group fair-
ness perspective — for example, if it is possible to design
an LSHable metric such that the derandomization preserves
notions of fairness with respect to a protected attribute.
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A. Omitted Proofs
A.1. Unfairness of Pairwise-Independent Derandomization

Proof of Proposition 2.2. For any δ > 0, let Sδ := {x ∈ Rn | d(x,0) = δ} be the sphere of radius δ around the origin.
Consider any α ≥ 1 and β ∈

(
0, 1

2 − 1
2k

)
, and choose X to be some subset of Sδ of size |X| = N in which the closest two

points are positioned at distance ϵ from one another, where

0 < ϵ := min
x,x′∈X

d(x, x′) <
1

2
− 1

2k
− β.

Now let f be a classifier that maps half of the points in X to 1+ϵ
2 , and the other half to 1−ϵ

2 . f is (1, 0, d)-fair over X , since
for any x, x′ ∈ X ,

|f(x)− f(x′)| ≤
∣∣∣∣1 + ϵ

2
− 1− ϵ

2

∣∣∣∣ = ϵ ≤ d(x, x′)

However, FPI is not (α, β, d)-fair on any point pair. To see this, consider any x ̸= x′ ∈ X; we show that for f̂ ∼ FPI,
|f̂(x)− f̂(x′)| is typically large relative to d(x, x′):

E
f̂∼FPI

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] = Pr

f̂∼FPI

[
f̂(x) ̸= f̂(x′)

]
(f̂ ∈ {0, 1})

= Pr
f̂∼FPI

[
f̂(x) = 1, f̂(x′) = 0

]
+ Pr

f̂∼FPI

[
f̂(x) = 0, f̂(x′) = 1

]
= Pr

h∼HPI

[
f(x) ≥ h(x)

k
, f(x′) <

h(x′)

k

]
+ Pr

h∼HPI

[
f(x) <

h(x)

k
, f(x′) ≥ h(x′)

k

]
≥ Pr

h∼HPI

[
1− ϵ

2
≥ h(x)

k
,
1 + ϵ

2
<

h(x′)

k

]
+ Pr

h∼HPI

[
1 + ϵ

2
<

h(x)

k
,
1− ϵ

2
≥ h(x′)

k

]
= Pr

h∼HPI

[
h(x)

k
≤ 1− ϵ

2

]
· Pr
h∼HPI

[
h(x′)

k
>

1 + ϵ

2

]
+ Pr

h∼HPI

[
h(x)

k
>

1 + ϵ

2

]
· Pr
h∼HPI

[
h(x′)

k
≤ 1− ϵ

2

]
(by pairwise independence)

≥
(
1− ϵ

2
− 1

k

)(
1− 1 + ϵ

2
− 1

k

)
+

(
1− 1 + ϵ

2
− 1

k

)(
1− ϵ

2
− 1

k

)
(by (9))

=
1

2

(
1− 2ϵ+ ϵ2

)
− 1− ϵ

2k
+

1

k2

≥ 1

2
− ϵ− 1

2k

The distance between any two points in Sδ, and therefore X , is at most 2δ; hence for a choice of δ ∈
(
0, 1/2−β−ϵ−1/2k

2α

)
(which is possible since β < 1

2 − 1
2k and ϵ < 1

2 − 1
2k − β), we have

E
h∼H

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] ≥ 1

2
− ϵ− 1

2k
= 2α · 1/2− β − ϵ− 1/2k

2α
+ β > α · 2δ + β ≥ α · d(x, x′) + β

which is a violation of (α, β, d)-metric fairness (Equation (2)) and applies to all pairs x, x′ ∈ X .

A.2. Random Threshold Derandomization Guarantees

Proof of Proposition 2.3. Let f be an (α, β, d)-fair classifier, and consider any x, x′ ∈ X . We have

E
f̂r∼FRT

[∣∣∣f̂r(x)− f̂r(x
′)
∣∣∣] = Pr

f̂r∼FRT

[
f̂r(x) ̸= f̂r(x

′)
]

(f̂ ∈ {0, 1})
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= Pr
f̂r∼FRT

[
f̂r(x) = 0, f̂r(x

′) = 1
]
+ Pr

f̂r∼FRT

[
f̂r(x) = 1, f̂r(x

′) = 0
]

= Pr
r∼[0,1]

[f(x) < r ≤ f(x′)] + Pr
r∼[0,1]

[f(x′) < r ≤ f(x)]

= |f(x)− f(x′)|
≤ α · d(x, x′) + β (f is (α, β, d)-fair)

which shows that FRT is also (α, β, d)-fair. To compute the bias, note that for any x ∈ X ,

E
f̂r∼FRT

[
f̂r(x)

]
= Pr

r∼[0,1]
[f(x) ≥ r] = f(x) (8)

which implies bias(f̂r, f, x) = 0 for all x and hence bias(f̂ , f,D) for all D. Finally for the variance, we have

variance(f̂r,D) := Var
f̂r∼FRT

(
E

x∼D
[f̂r(x)]

)
= E

r∼[0,1]

[(
E

x∼D

[
f̂r(x)

])2
]
−
(

E
r∼[0,1]

[
E

x∼D

[
f̂r(x)

]])2

= E
r∼[0,1]

[(
E

x∼D

[
f̂r(x)

])2
]
−
(

E
x∼D

[
E

r∼[0,1]

[
f̂r(x)

]])2

= E
r∼[0,1]

[
E

x,x′∼D

[
f̂r(x)f̂r(x

′)
]]

− E
x,x′∼D

[
E

r∼[0,1]

[
f̂r(x)

]
E

r∼[0,1]

[
f̂r(x

′)
]]

= E
x,x′∼D

[
E

r∼[0,1]

[
f̂r(x)f̂r(x

′)
]
− E

r∼[0,1]

[
f̂r(x)

]
E

r∼[0,1]

[
f̂r(x

′)
]]

= E
x,x′∼D

[
Cov

r∼[0,1]

(
f̂r(x), f̂r(x

′)
)]

≤ E
x,x′∼D

[√
Var

r∼[0,1]

(
f̂r(x)

)
Var

r∼[0,1]

(
f̂r(x′)

)]
(Cauchy-Schwarz inequality)

=

(
E

x∼D

[√
Var

r∼[0,1]

(
f̂r(x)

)])2

≤ E
x∼D

[
Var

r∼[0,1]

(
f̂r(x)

)]
(Jensen’s inequality)

= E
x∼D

[
E

r∼[0,1]

[
f̂r(x)

](
1− E

r∼[0,1]

[
f̂r(x)

])]
= E

x∼D
[f(x)(1− f(x))] (Equation (8))

as required.

A.3. Perfect Deterministic Fairness is Impossible for Finite Families

Proof of Proposition 2.4. Consider any α ≥ 1 and β ∈ (0, 1/|F|); it suffices to exhibit a pair of points x, x′ ∈ X such that

E
f̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] > α · d(x, x′) + β.

For any δ > 0, define the ball of radius δ around x to be Bδ(x) := {x′ ∈ X | d(x, x′) ≤ δ}. By assumption, F contains at
least one nontrivial classifier (i.e. one function that is not identically 1 or 0); let f̂ be one such classifier. Since X ⊆ Rn is
convex and d is a metric, f̂ must be discontinuous at some point x ∈ X , meaning that for all δ > 0, there exists x′ ∈ Bδ(x)
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such that f̂(x) = 1− f̂(x′). Choose any δ∗ ∈
(
0, 1/|F|−β

α

)
, and consider some x∗ ∈ Bδ∗(x). We have

E
f̂∼F

[∣∣∣f̂(x)− f̂(x∗)
∣∣∣] ≥ 1

|F|
(at least one function in F is discontinuous at x)

= α

(
1/|F| − β

α

)
+ β

> α · δ∗ + β (δ∗ < 1/|F|−β
α )

≥ α · d(x, x∗) + β (x∗ ∈ Bδ∗(x))

which shows that F is not (α, β, d)-fair.

A.4. Output Approximation of Locality-Sensitive Derandomization

Proof of Theorem 3.2. We will repeatedly use the following fact: by the uniformity of HPI, for all 0 ≤ a < b ≤ 1 and
x ∈ X we have

Pr
hLS∼HLS
hPI∼HPI

[
a ≤ hPI(hLS(x))

k
≤ b

]
∈
(
b− a− 1

k
, b− a+

1

k

)
(9)

Thus for all x ∈ X ,

E
f̂∼FLS

[
f̂(x)

]
= Pr

f̂∼FLS

[
f̂(x) = 1

]
= Pr

hLS∼HLS
hPI∼HPI

[
f(x) ≥ hPI(hLS(x))

k

]
∈
(
f(x)− 1

k
, f(x) +

1

k

)

which implies bias(f̂ , f, x) ≤ 1
k for all x ∈ X and hence bias(f̂ , f,D) ≤ 1

k for all D.

Now we bound the variance. Define the bucketed stochastic classifier

g(x) =
1

k

k∑
i=1

1

{
f(x) ≥ i

k

}

In other words, g(x) is the smallest multiple of 1/k greater than f(x). Note that |g(x)− f(x)| ≤ 1
k for all x. Additionally,

define the deterministic classifier family GLS from g just as FLS was defined from f in Equation (6), i.e.

GLS := {ĝhLS,hPI
| hLS ∈ HLS, hPI ∈ HPI} , where ĝhLS,hPI

(x) := 1

{
g(x) ≥ hPI(hLS(x))

k

}
. (10)

It essentially suffices to analyze ĝ instead of f̂ , since in the end, we simply incur an additional bias or variance of 1
k . To

begin, observe that for any distribution D over X ,

variance(f̂ , f,D) = variance(ĝ, g,D)

:= Var
ĝ∼GLS

(
E

x∼D
[ĝ(x)]

)
= E

hLS∼HLS
hPI∼HPI

[(
E

x∼D
[ĝ(x)]

)2
]
−

(
E

x∼D
[ĝ(x)]

)2

= E
hLS∼HLS
hPI∼HPI

[(
E

x∼D
[ĝ(x)]

)2
]
−

(
E

x∼D
[g(x)]

)2
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To evaluate the first term, note that for any x, x′ ∈ X ,

E
hLS∼HLS
hPI∼HPI

[ĝ(x)ĝ(x′)]

= E
hLS∼HLS

[
E

hPI∼HPI

[1{hLS(x) = hLS(x
′)}ĝ(x)ĝ(x′)] + E

hPI∼HPI

[1{hLS(x) ̸= hLS(x
′)}ĝ(x)ĝ(x′)]

]
= E

hLS∼HLS

[
E

hPI∼HPI

[1{hLS(x) = hLS(x
′)}ĝ(x)ĝ(x′)] + 1{hLS(x) ̸= hLS(x

′)}g(x)g(x′)

]
(pairwise independence)

Thus the first term of the variance is

E
hLS∼HLS
hPI∼HPI

[(
E

x∼D
[ĝ(x)]

)2
]
= E

hLS∼HLS
hPI∼HPI

[
E

x,x′∼D
[ĝ(x)ĝ(x′)]

]

= E
x,x′∼D

 E
hLS∼HLS
hPI∼HPI

[ĝ(x)ĝ(x′)]


= E

x,x′∼D

[
E

hLS∼HLS

[
E

hPI∼HPI

[1{hLS(x) = hLS(x
′)}ĝ(x)ĝ(x′)] + 1{hLS(x) ̸= hLS(x

′)}g(x)g(x′)

]]
Next consider the second term: (

E
x∼D

[g(x)]
)2

= E
x,x′∼D

[g(x)g(x′)]

Putting these together, we have

variance(f̂ , f,D)

= E
hLS∼HLS

[
E

hPI∼HPI

[
E

x,x′∼D
[1{hLS(x) = hLS(x

′)}ĝ(x)ĝ(x′)]

]
− E

x,x′∼D
[1{hLS(x) = hLS(x

′)}g(x)g(x′)]

]
= E

hLS∼HLS

[
E

x,x′∼D

[
1{hLS(x) = hLS(x

′)} ·
(
E
hPI

[ĝ(x)ĝ(x′)]− g(x)g(x′)

)]]
= E

hLS∼HLS

[
E

x,x′∼D

[
1{hLS(x) = hLS(x

′)} ·
(
E
hPI

[ĝ(x)ĝ(x′)]− E
hPI

[ĝ(x)] E
hPI

[ĝ(x′)]

)]]
= E

hLS∼HLS

[
E

x,x′∼D

[
1{hLS(x) = hLS(x

′)} · Cov
hPI

(ĝ(x), ĝ(x′))

]]
≤ E

hLS∼HLS

[
E

x,x′∼D

[
1{hLS(x) = hLS(x

′)} ·
√

Var
hPI

(ĝ(x))Var
hPI

(ĝ(x′))

]]
(Cauchy-Schwarz inequality)

= E
hLS∼HLS

[∑
b∈B

(
E

x∼D

[
1{hLS(x) = b} ·

√
Var
hPI

(ĝ(x))

])2
]

= E
hLS∼HLS

[∑
b∈B

(
Pr
x∼D

[hLS(x) = b] · E
x∼D

[√
Var
hPI

(ĝ(x))

∣∣∣∣ hLS(x) = b

])2
]

≤ E
hLS∼HLS

[∑
b∈B

(
Pr
x∼D

[hLS(x) = b]
)2

· E
x∼D

[
Var
hPI

(ĝ(x))

∣∣∣∣ hLS(x) = b

]]
(Jensen’s inequality)

= E
hLS∼HLS

[∑
b∈B

(
Pr
x∼D

[hLS(x) = b]
)2

· E
x∼D

[g(x)(1− g(x)) | hLS(x) = b]

]

≤ E
hLS∼HLS

[(
max
b∈B

Pr
x∼D

[hLS(x) = b]

)∑
b∈B

Pr
x∼D

[hLS(x) = b] · E
x∼D

[g(x)(1− g(x)) | hLS(x) = b]

]
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= E
hLS∼HLS

[
max
b∈B

Pr
x∼D

[hLS(x) = b]

]
· E
x∼D

[g(x)(1− g(x))]

≤ E
hLS∼HLS

[
max
b∈B

Pr
x∼D

[hLS(x) = b]

]
· E
x∼D

[
f(x)(1− f(x)) +

1

k

]
(bias(f, g, x) ≤ 1

k for all x)

A.5. Fairness of LSH-Based Derandomization

Proof of Theorem 3.3. We first prove pairwise metric fairness. Consider any x, x′ ∈ X , and assume without loss of
generality that f(x) ≤ f(x′). We have

E
f̂∼FLS

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]

= Pr
hLS∼HLS
hPI∼HPI

[
f̂(x) ̸= f̂(x′)

]
(f̂ ∈ {0, 1})

= Pr
hLS
hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) = hLS(x
′)
]

︸ ︷︷ ︸
p1

·Pr
hLS

[hLS(x) = hLS(x
′)]

+ Pr
hLS
hPI

[
f̂(x) ̸= f̂(x′)

∣∣∣ hLS(x) ̸= hLS(x
′)
]

︸ ︷︷ ︸
p2

·Pr
hLS

[hLS(x) ̸= hLS(x
′)] (11)

We evaluate p1 and p2 separately. First, noting that a pairwise-independent hash family is also uniform, we have

Pr
hLS,hPI

[
f̂(x) = 0, f̂(x′) = 1

∣∣∣ hLS(x) = hLS(x
′)
]

= Pr
hLS,hPI

[
f(x) <

hPI(hLS(x))

k
, f(x′) ≥ hPI(hLS(x

′))

k

∣∣∣∣ hLS(x) = hLS(x
′)

]
= Pr

hLS,hPI

[
f(x) <

hPI(hLS(x))

k
≤ f(x′)

∣∣∣∣ hLS(x) = hLS(x
′)

]
= Pr

hLS,hPI

[
f(x) <

hPI(hLS(x))

k
≤ f(x′)

]
(hPI is uniform)

By symmetry, PrhLS,hPI
[f̂(x) = 1, f̂(x′) = 0 | hLS(x) = hLS(x

′)] = PrhLS,hPI
[f(x) ≥ hPI(hLS(x))

k > f(x′)]; but this equals
zero, since f(x) ≤ f(x′). Thus

p1 = Pr
hLS,hPI

[
f̂(x) = 1, f̂(x′) = 0

∣∣∣ hLS(x) = hLS(x
′)
]
+ Pr

hLS,hPI

[
f̂(x) = 0, f̂(x′) = 1

∣∣∣ hLS(x) = hLS(x
′)
]

= Pr
hLS,hPI

[
f(x) <

hPI(hLS(x))

k
≤ f(x′)

]
= |f(x)− f(x′)| ± 2

k
(by Equation (9))

Next, to compute p2, we have

Pr
hLS,hPI

[
f̂(x) = 1, f̂(x′) = 0

∣∣∣ hLS(x) ̸= hLS(x
′)
]

= Pr
hLS,hPI

[
f(x) ≥ hPI(hLS(x))

k
, f(x′) <

hPI(hLS(x
′))

k

∣∣∣∣ hLS(x) ̸= hLS(x
′)

]
= Pr

hLS,hPI

[
f(x) ≥ hPI(hLS(x))

k
,

∣∣∣∣ hLS(x) ̸= hLS(x
′)

]
· Pr
hLS,hPI

[
f(x′) <

hPI(hLS(x
′))

k

∣∣∣∣ hLS(x) ̸= hLS(x
′)

]
(hPI is pairwise independent)
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= f(x)(1− f(x′))± 1

k
(hPI is uniform)

and by symmetry, PrhLS,hPI
[f̂(x) = 0, f̂(x′) = 1 | hLS(x) ̸= hLS(x

′)] = (1− f(x))f(x′)± 1
k . Thus

p2 = Pr
hLS,hPI

[
f̂(x) = 1, f̂(x′) = 0

∣∣∣ hLS(x) ̸= hLS(x
′)
]
+ Pr

hLS,hPI

[
f̂(x) = 0, f̂(x′) = 1

∣∣∣ hLS(x) ̸= hLS(x
′)
]

= f(x)− 2f(x′)f(x) + f(x′)± 2

k

Substituting p1 and p2 back into Equation (11) yields

E
hLS,hPI

[∣∣∣f̂(x)− f̂(x′)
∣∣∣] = p1 · Pr

hLS

[hLS(x) = hLS(x
′)] + p2 · Pr

hLS

[hLS(x) ̸= hLS(x
′)]

= |f(x)− f(x′)| · (1− d(x, x′)) + (f(x)− 2f(x′)f(x) + f(x′)) · d(x, x′)± 2

k
(hLS is LSH)

= |f(x)− f(x′)|+ 2f(x)(1− f(x′)) · d(x, x′)± 2

k
(12)

≤ α · d(x, x′) + β + 2f(x)(1− f(x′)) · d(x, x′) +
2

k
(f is (α, β, d)-fair)

≤ [α+ 2f(x)(1− f(x′))] · d(x, x′) + β + ϵ (k ≥ 2/ϵ)

which proves the pairwise fairness bound. The aggregate fairness bound then follows from Lemma 4.5.

A.6. Bias-Variance Decomposition

Proof of Lemma 4.1. For any c > 0, we have∣∣∣f̂(x)− 1f (x)
∣∣∣ ≤ ∣∣∣∣ E

f,f̂

[
f̂(x)− 1f (x)

]∣∣∣∣+ ∣∣∣∣f̂(x)− 1f (x)− E
f,f̂

[
f̂(x)− 1f (x)

]∣∣∣∣
≤

∣∣∣∣ E
f,f̂

[
f̂(x)− 1f (x)

]∣∣∣∣+ c ·Var
f,f̂

(
f̂(x)− 1f (x)− E

f,f̂

[
f̂(x)− 1f (x)

])
(by Chebyshev’s inequality, w.p. 1− 1/c2)

≤
∣∣∣∣ E
f,f̂

[
f̂(x)− 1f (x)

]∣∣∣∣+ c ·Var
f̂

(
f̂(x)− Ê

f

[
f̂(x)

])
+ c ·Var

f

(
1f (x)− E

f
[1f (x)]

)
(f̂(x)− Ef̂ [f̂(x)] and 1f (x)− Ef [1f (x)] have mean zero)

≤
∣∣∣∣ E
f,f̂

[
f̂(x)− 1f (x)

]∣∣∣∣+ c ·Var
f̂

(
f̂(x)

)
+ c ·Var

f
(1f (x))

The above calculation fails with probability at most 1/c2, in which case the left-hand side still obeys the simple bound
|f̂(x)− 1f (x)| ≤ 1. Thus taking expectations of both sides, we have

E
f,f̂

[∣∣∣f̂(x)− 1f (x)
∣∣∣] ≤ ∣∣∣∣ E

f,f̂

[
f̂(x)− 1f (x)

]∣∣∣∣+ c ·Var
f̂

(
f̂(x)

)
+ c ·Var

f
(1f (x)) +

1

c2

with probability 1 for any c > 0. A choice of c = (Varf̂∼F (f̂(x)) + Varf (1f (x)))
−1/3 yields the result.

A.7. Metric-Fair Derandomization Preserves Threshold Fairness

Proof of Lemma 4.3. First, fix some σ ∈ (0, 1) and let X2
≤σ :=

{
(x, x′) ∈ X2

∣∣ d(x, x′) ≤ σ
}

. Observe the following
translations between metric and threshold fairness on this set:
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1. If f is (σ, τ, d)-threshold fair, then for any (x, x′) ∈ X2
≤σ ,

|f(x)− f(x′)| ≤ τ = 0 · d(x, x′) + τ

So, f is also (0, τ, d)-metric fair on such pairs (x, x′).

2. If f is (α, β, d)-metric fair on all (x, x′) ∈ X2
≤σ , then for such pairs,

|f(x)− f(x′)| ≤ α · d(x, x′) + β ≤ ασ + β

So, f is also (σ, ασ + β, d)-threshold fair.

Now suppose we run our derandomization procedure on a (σ, τ, d)-threshold fair stochastic classifier f . Let F be the
deterministic classifier family from which we sample our output. Then f is (0, τ, d)-metric fair over X2

≤σ (by observation 1
above), F is then (A(0), B(τ), d)-metric fair over X2

≤σ (by the fairness preservation guarantee), and F is also (σ,A(0) ·
σ +B(τ), d)-threshold fair (by observation 2).

Proof of Corollary 4.4. If f is (σ, τ, d)-threshold fair, then FLS is (σ, τ ′, d)-threshold fair, where

τ ′ = A(0) · σ +B(τ) (Lemma 4.3)

=
1

2
· σ + τ +

2

k
(Corollary 3.4)

= σ + τ (choice of k ≥ 4/σ)

A.8. Pairwise Fairness Implies Aggregate Fairness

Proof of Lemma 4.5. For all distances ξ ∈ [0, 1], let X2
ξ :=

{
(x, x′) ∈ X2

∣∣ d(x, x′) = ξ
}

denote the set of point pairs at
distance exactly ξ. Then, for any given f̂ ∈ F , let

ρξ(f̂) := Pr
(x,x′)∼X2

ξ

[
f̂(x) ̸= f̂(x′)

]
and ρ≤τ (f̂) := Pr

(x,x′)∼X2
≤τ

[
f̂(x) ̸= f̂(x′)

]
denote the fraction of pairs at distance ξ and within τ , respectively, to which f̂ assigns different outputs. Treating ρξ(f̂) as a
random variable of f̂ , we have

E
f̂∼F

[
ρξ(f̂)

]
= E

f̂∼F

 Pr
(x,x′)

∼X2
ξ

[
f̂(x) ̸= f̂(x′)

] = E
f̂∼F

 E
(x,x′)

∼X2
ξ

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]
 = E

(x,x′)

∼X2
ξ

[
E

f̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]] (13)

Thus the fraction of separated pairs within distance τ is

E
f̂∼F

[
ρ≤τ (f̂)

]
:= E

f̂∼F

[
Pr

(x,x′)∼X2
≤τ

[
f̂(x) ̸= f̂(x′)

]]

=

∫ τ

0

E
f̂∼F

[
Pr

(x,x′)∼X2
≤τ

[
f̂(x) ̸= f̂(x′)

∣∣∣ d(x, x′) = ξ
]
· Pr
(x,x′)∼X2

≤τ

[d(x, x′) = ξ] dξ

]

=

∫ τ

0

E
f̂∼F

[
Pr

(x,x′)∼X2
ξ

[
f̂(x) ̸= f̂(x′)

]]
· Pr
(x,x′)∼X2

≤τ

[d(x, x′) = ξ] dξ

=

∫ τ

0

E
(x,x′)∼X2

ξ

[
E

f̂∼F

[∣∣∣f̂(x)− f̂(x′)
∣∣∣]] · Pr

(x,x′)∼X2
≤τ

[d(x, x′) = ξ] dξ (by Equation (13))

(14)
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≤
∫ τ

0

(αξ + β) Pr
(x,x′)∼X2

≤τ

[d(x, x′) = ξ] dξ (by (α, β, d)-fairness) (15)

≤ (ατ + β)

∫ τ

0

Pr
(x,x′)∼X2

≤τ

[d(x, x′) = ξ] dξ

= ατ + β (16)

Since ρ≤τ ∈ [0, 1], Var(ρ≤τ ) = E[ρ2≤τ ]−E[ρ≤τ ]
2 ≤ E[ρ≤τ ]. Thus applying Chebyshev’s inequality to Equation (16) yields

Pr
f̂∼F

[
ρ >

(
1 +

1√
δ

)
(ατ + β)

]
≤ Pr

f̂∼F

[
ρ >

(
1 +

1√
δ

)
E

f̂∼F
[ρ]

]
≤ δ

which proves the claim.

A.9. Output Approximation and Loss Approximation

Proof of Lemma 4.6. For any x ∈ X and y ∈ {0, 1},

E
f̂∼F

[
L(f̂ , x, y)

]
= E

f̂∼F

[
ℓ(f̂(x), y)

]
(f̂(x) ∈ {0, 1})

= Ê
f

[
ℓ(f̂(x), y)

∣∣∣ f̂(x) = 1
]
· Pr

f̂

[
f̂(x) = 1

]
+ Ê

f

[
ℓ(f̂(x), y)

∣∣∣ f̂(x) = 0
]
· Pr

f̂

[
f̂(x) = 0

]
= ℓ(1, y) · Ê

f

[
f̂(x)

]
+ ℓ(0, y) ·

(
1− Ê

f

[
f̂(x)

])
= ℓ(1, y)f(x) + ℓ(0, y) (1− f(x))± bias(f̂ , f, x)

= f(x)ℓ(1, y) + (1− f(x))ℓ(0, y)± bias(f̂ , f, x)

which proves the first inequality concerning the bias. For the variance, notice that since ℓ is binary, either
Varf̂

(
ℓ(f̂(x), y)

)
= Varf̂

(
f̂(x)

)
or Varf̂

(
ℓ(f̂(x), y)

)
= 0.
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B. Manipulation Deterrence in Strategic Classification
Fair derandomization procedures carry implications for the strategic classification problem, a popular framework for
modeling the behavior of self-interested agents subject to classification decisions (Hardt et al., 2016; Cai et al., 2015; Chen
et al., 2018; Dong et al., 2018; Chen et al., 2020). Formally, strategic classification is a Stackelberg game, or a sequential
game between two players:

1. First, a decision maker or model designer publishes a classifier. Traditionally, this means a stochastic classifier
f : X → [0, 1], but in our setting, the model designer may publish a family of deterministic classifiers F , and promises
to select a single classifier from F uniformly at random.

2. Next, a strategic agent or decision subject, who is associated with some feature vector x ∈ X , decides either to
present their true features x, or to change or manipulate their features to some x′ ∈ X to obtain the favorable outcome
f̂(x′) = 1 with higher probability. However, the agent incurs a cost c(x, x′) ≥ 0 for altering their features.

Given a (stochastic or deterministic) classifier f : X → [0, 1] and cost function c : X2 → [0, 1], the utility of an agent with
original features x who changes to x′ is defined as

Uf (x, x
′) := f(x′)− c(x, x′)

and the utility-maximizing move ∆f (x) := argmaxx′∈X Uf (x, x
′) is called the best response of x under f and c.

In the following proposition, we observe a general connection between metric fairness and strategic manipulation; namely
that the more fair a classifier is with respect to a metric cost function, the less incentive agents have to manipulate their
features. The reason is intuitive: if a classifier is a smooth function, then an agent x cannot expect their outcome to change
much by moving to some nearby point x′.
Proposition B.1 (Metric fairness implies reduced manipulation incentive). Let c be a metric cost function and let f be a
(α, β, c)-metric fair classifier. Then the maximum utility gained by manipulating x to x′ is

Uf (x, x
′)− Uf (x, x) ≤ (α− 1) · c(x, x′) + β.

If f is a deterministic classifier drawn from a family F , then this holds in expectation over the sampling of f .

Proof of Proposition B.1. Under a classifier f , an individual with original features x ∈ X who changes to x′ ∈ X derives
utility

Uf (x, x
′) = f(x′)− c(x, x′)

≤ f(x) + |f(x′)− f(x)| − c(x, x′)

≤ f(x) + α · c(x, x′) + β − c(x, x′) (f is (α, β, c)-fair)
= f(x) + (α− 1) · c(x, x′) + β

= Uf (x, x) + (α− 1) · c(x, x′) + β

which proves the claim for stochastic classifiers. The proof for a deterministic family F results from taking an expectation
Ef∼F [·] on both sides.

Braverman and Garg (Braverman & Garg, 2020) already observed this fact for a stochastic classifier with α = 1 and β = 0,
in which case there is no incentive to manipulate. Note that by Proposition 2.4, deterministic families cannot achieve
such small fairness parameters; hence the upper bound of Proposition B.1 cannot rule out some incentive to manipulate.
Nevertheless, it presents a nontrivial worst-case guarantee since, for a classifier without any fairness constraints, there may
be individuals near the decision boundary who can flip their decision from, for example, f(x) = 0 to f(x′) = 1 at near-zero
cost, thereby gaining utility U(x, x′)− U(x, x) ≈ 1 through manipulation.

Cost functions studied in the strategic classification literature include the L2 (Hardt et al., 2016; Brückner & Scheffer, 2011)
and Mahalanobis (Chen et al., 2021) distances, both of which are metrics with known LSH families (Andoni & Indyk,
2006; Jain et al., 2008). Therefore, stochastic classifiers trained to be fair with respect to these costs automatically reduce
incentives to manipulate features, and if such classifiers are derandomized using fairness-preserving methods, this quality is
probably approximately preserved.


