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ABSTRACT

Epidemic modelling is an essential tool to understand the spread
of the novel coronavirus and ultimately assist in disease prevention,
policymaking, and resource allocation. In this article, we establish a
state-of-the-art interface between classic mathematical and statis-
tical models and propose a novel space-time epidemic modelling
framework to study the spatial-temporal pattern in the spread of
infectious diseases. We propose a quasi-likelihood approach via the
penalised spline approximation and alternatively reweighted least-
squares technique to estimate the model. The proposed estima-
tors are consistent, and the asymptotic normality is established for
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the constant coefficients. Utilizing spatiotemporal analysis, our pro-
posed model enhances the dynamics of the epidemiological mech-
anism and dissects the spatiotemporal structure of the spreading
disease. We evaluate the numerical performance of the proposed
method through a simulation example. Finally, we apply the pro-
posed method in the study of the devastating COVID-19 pandemic.

62G05; 62G08; 62G20

1. Introduction

Since the beginning of the reported cases in December 2019, the outbreak of COVID-
19 has spread globally within weeks. To assist in prevention efforts and ultimately stop
the pandemic, it is crucial to identify the vulnerable communities and why they are more
likely to be infected. One way to answer these questions is through scientific modelling
(Gog 2020; Vespignani et al. 2020). Several attempts have been made to model and forecast
the spread and mortality of COVID-19; for example, see Kucharski et al. (2020) and Sun
etal. (2020).

The fundamental concept of infectious disease epidemiology is the investigation of
how infections spread. Mathematical methods, such as the class of susceptible-infectious-
recovered (SIR) models (Brauer, Van den Driessche, and Wu 2008; Pfeiffer et al. 2008;
Lawson, Banerjee, Haining, and Ugarte 2016), are widely used in epidemics to capture the
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dynamic process of the spread of infectious diseases. These mechanistic models charac-
terise disease transmission through a set of differential equations, and they demonstrate
the average behaviour of the epidemic. However, these mathematical models typically
focus more on the descriptions of physical phenomena rather than the parameter esti-
mation for observed data, and thus it is challenging to use them to make statistical
inferences. On the other hand, statistical models are a class of data-driven methods,
and they usually focus on the inference about the relationships between variables. For
example, when analysing the confirmed cases and deaths of COVID-19, other factors,
such as demographics, socioeconomic status, mobility, and control policies, may also
be responsible for temporal or spatial patterns. In this article, we create a state of the
art interface between mathematical models and statistical models to understand the
dynamic pattern of the spread of contagious diseases, such as COVID-19 and many
others.

We borrow the mechanistic rules from the SIR model and form a data-driven model
with three compartments: infectious, susceptible, and removed states. The capacity of the
health care system, and control measures, such as government-mandated social distanc-
ing, also have a significant impact on the spread of the epidemic. Since it is challenging to
incorporate those factors in mathematical models, we borrow the strength from statisti-
cal models and include various explanatory variables to study not only the spatiotemporal
structure but also the effects of the explanatory variables. Notice that the spread of the
disease varies a lot across different geographical regions; we incorporate discrete-time
spatially varying coefficient models to different compartments to reconstruct the spa-
tiotemporal dynamics of the disease transmission. In general, the spatiotemporal models
are able to bring in more information to the epidemic study (Held, Hens, D O’Neill, and
Wallinga 2019; Jia et al. 2020).

With an emerging disease such as COVID-19, it is hard to measure many features of the
transmission process, which may take a long time to understand fully. Thus, it is desirable to
make inferences from observed data as model-free as possible. For a parametric epidemic
model, the typical inference problem involves estimating the parameters associated with
the parametric models from the data at hand. Such specifications are ad hoc, and if mis-
specified, can lead to substantial estimation bias problems. This issue might be addressed
in practice by considering alternative nonparametric models or sensitivity analyses if some
of the underlying model parameters are assumed to be known. By adopting a nonpara-
metric approach, we do not impose a particular parametric structure, which significantly
enhances the flexibility of the parametric epidemic models. Nonparametric approaches to
fitting epidemic models to the data have received relatively little attention in the literature,
possibly due to the lack of data. With the rich COVID-19 epidemic data released every
day, we can consider the nonparametric method to model the covariates and coefficient
functions.

By allowing the response (such as infected and death counts) to depend on time and
location, we consider a generalised additive varying coefficient model to estimate the unob-
served process of the disease transmission. We propose a quasi-likelihood approach via
the penalised spline approximation and an iteratively reweighted least-squares technique
for our model estimation. Our proposed algorithm is sufficiently fast and efficient for
the user to analyse large datasets within seconds. We derive the asymptotical normality
of the constant coefficients in the linear components under some regularity conditions.
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For the varying components, we show the consistency of the estimators and obtain their
convergence rates.

Finally, as an empirical illustration, we apply the proposed model and estimation
method to a study of COVID-19 at the county level in the US. We illustrate how the pro-
posed method can be used to analyse the spatiotemporal dynamics of the disease spread
and guide evidence-based decision-making. Modeling COVID-19 at the county level and
combining local characteristics are beneficial for the community in understanding the
dynamics of the disease spread and support decision-making when urgently needed.

The rest of the paper is organised as follows. Section 2 outlines the nonparametric
spatiotemporal modelling framework and describes how to incorporate additional covari-
ates. Section 3 introduces the estimation method, presents the asymptotic properties of
the estimators, the computational algorithm, and details of the implementation. Section 4
evaluates the finite sample performance of the proposed method using a simulation study.
Section 5 describes the epidemic and endemic data, the results and findings of the case
study. Section 6 concludes the paper with a discussion. Supplementary Material A con-
tains some animation videos of the dynamic estimation results in the COVID-19 study,
and Supplementary Material B provides the technical assumptions and detailed proofs of
the asymptotic results.

2. Space-time epidemic modelling

To study the spatiotemporal pattern of COVID-19, we develop a novel spatiotemporal epi-
demic model (STEM) to estimate and predict the infection and death cases at the area level
based on the idea of the compartment models. For simplicity, we introduce the STEM based
on the parsimonious SIR models, but it can be extended to the SEIR models with an extra
‘exposed’ compartment for infected but not infectious individuals.

For area i and day t, let Yj; be the number of new cases, and let Iy, Djt, Rj, and Sj be
the number of accumulated active infectious cases, accumulated death cases, accumulated
recovered cases, and susceptible population, respectively. Let N; be the total population for
the ith area, and denote Z; = log(Si/N;). Let U; = (Uj1, Un) T be the GPS coordinates of
the geographic centre of area i, which ranges over a bounded domain Q € R? of the region
under study. Let X; = (Xi1,...,Xig) | be a g-dimensional vector of explanatory variables
collected from the U.S. Census Bureau. For example, the socioeconomic factors, health
resources, and demographic conditions. Let A;;; be the jth dummy variable of actions or
continuous measures taken for area i at time ¢, and let A;; = (A4, . - - ,A,-Pt)T, which varies
with the time.

In this paper, we consider the exponential families of distributions. The conditional
density of Y given (l;_1,Z;;_1, Ajt—r, X, Uj) = (W, 2,4, x, u) can be represented as

1
o2

f(r|wzaxu)=exp [ {y§ (w,z,a,x,u) — B{{ (w,z,a,x, u)}} +C (y,az)] 5

for some known functions B and C, dispersion parameter o> and the canonical
parameter ¢.

As mentioned earlier, the idea of the proposed model is based on conventional com-
partmental models and time series regression models. The conventional compartmental
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models aim to predict the number of susceptible individuals, infected cases, and recover-
ies. Specifically, in a SIR model, the progression is that a susceptible individual becomes
infected through contact with one or more infected individuals. Then after a period, the
infected individual advances to the recovery state, i.e. a noncontagious state. Therefore, at
any given time, the SIR model captures the dynamical mechanism of the disease spread,
assuming that the rate at which susceptible individuals become infected depends on the
number of susceptible and infected individuals. In general, the dynamics of the SIR sys-
tem inform us of the deterministic skeleton on which the behaviour of the corresponding
stochastic system is built. In contrast, time series regression predicts the future of the
response variable based on its history. It produces a combination of the variables with
weights that indicate the variable importance. It also provides a neat result of how the pre-
dictors affect the response. Furthermore, we assume that the determinants of the daily new
cases of a particular area can be explained not only by the features of that area but also by
the spread of the virus in the surrounding areas. Therefore, by combining the advantages
of compartmental and statistical models, we develop a novel discrete-time spatial epidemic
model comprising the susceptible state, infected state, removed state, and area-level char-
acteristics. Below we use superscripts I, D, and R to denote infected, death, and recovered
states. We assume that the conditional mean value of daily new positive cases (1), fatal
cases (p, ) and recovery (u;; R) in area i and day t can be modelled via a link function g as
follows:

P
8(4“;;) = ﬁ(]f(U!) + .BH(U ) 10g(f:r 1) + amzlr 1+ Z qur m+ Z Vk;(Xak) (1)
j=1 k=1
g(ui)) = Bp(Up) + BT} log(Tie—s) + Z At + Z Vig X, @)
j=1 k=1
wi = vily_g, (3)
where “)r }.[t)’s, ,BR and v} are unknown constant coefficients, ,6[3"(.), ﬁ{r(.), and ,BDDr(-)

are unknown bivariate coefficient functions, Vér (), yk[t) (-).k =1,...,g,are univariate func-
tions to be estimated, § and & are the time delay between illness and death or recovery, and
the parameter m in Ajjt s denotes a small delay time allowing for the control measure
to be effective (here we take m = 7, m’ = 7). For the new infection, following the assump-
tions in SIR, we assume that the number of the newly infected cases at time t depends on
the situation of the pandemic at time t—1. For the death, according to CDC (2021a), the
median number of days from symptom onset to death is around an incubation period. For
the recovery, according to CDC (2021b), people with mild to moderate COVID-19 remain
infectious no longer than ten days after their symptoms began, and those with more severe
illness or those who are severely immunocompromised remain infectious no longer than
20 days after their symptoms began. As a result, we choose § to be 14 and § = 10 in our
real data analysis. For model identifiability, similar to the conventional generalised addi-
tive model literature (Hastie and Tibshirani 1990; Wood 2017), we assume E{yklt (Xp)} =0,
E{yk[t)(Xk)} =0,k=1,...,q. The STEM encompasses many existing models as special
cases. For example, the traditional generalised linear regression models, generalised addi-
tive models (Liu, Yang, and Hirdle 2013), generalised partially linear additive models
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(Wang, Liu, Liang, and Carroll 2011) and generalised additive coefficient model (Xue and
Liang 2010).

Note that, for the log link, exp{ﬁér{u}} illustrates the transmission rate at location u,
exp{ ,302(14)} represents the fatality rate at location u, v}\ is the recovery rate, ﬁ%r () of:(I]r and
BL are the mixing parameters of the contact process. The rationale for including B1,(-)
and ,BB (ﬁfr(-) >0, ,BB > 0) is to allow for deviations from mass action and to account
for the discrete-time approximation to the continuous time model (Finkenstidt and Gren-
fell 2000; Wakefield, Dong, and Minin 2019). In many cases, the standard bilinear form
may not necessarily hold. The above proposed epidemic model incorporates the nonlinear
incidence rates, which represents a much wider range of dynamical behaviour than those
with bilinear incidence rates (Liu, Hethcote, and Levin 1987). These dynamical behaviours
are determined mainly by ﬁ(I]r(‘)’ ﬁ{r('}' ﬁDDr(-), and ﬁlDe“ For example, when ﬂ{r(‘) and “{I}r
are both 1, it corresponds to the standard assumption of homogeneous mixing in Jong,
Diekmann, and Heesterbeek (1995).

In our study, since we model the number of new cases at time t for area i, Pois-
son or Negative Binomial (NB) might be an appropriate option for random component
(Kim and Wang in press; Yu, Wang, Wang, Liu, and Yang 2020). For example, for the
infection model, we can assume that

e (Poisson) E(Yit | li—1,Zit—1, Ai—m> Xi, Ui) = pl, Var(Yir | [im1.Zit—1, Aif—m, Xi, Ui)

I
= Hip
e (NB) E(Yi|L1.Zit—1,Ait—m X5, Up) =k, Var(Yi | L1, Zit—1, Aig—m» Xi, Up)
K
= w1+ 5,

where p}; can be modelled via the same log link as follows:

p

q
log(uiy) = B (Ui) + BL(Ui) log(Tie—1) + g Zin—1 + Y &pAsie—m + Y vir(Xin). (4)
j=1 k=1

We can consider similar models for the death count. At the beginning of the outbreak,
infected and death cases could be rare, so Poisson’ might be a reasonable choice of the
random component to describe the distribution of rare events in a large population. As
the disease progresses, the variation of infected/death count increases across counties
and states. So, at the acceleration phase of the disease, the negative binomial random
component might be an appropriate option for the presence of over-dispersion.

The above spatiotemporal epidemic model (STEM) is developed based on the foun-
dation of epidemic modelling. It can provide a rich characterisation of different types of
errors for modelling uncertainty. Moreover, it accounts for both spatiotemporal nonsta-
tionarity and area-level local features simultaneously. It also offers flexibility in assessing
the dynamics of the spread at different times and locations than various parametric models
in the literature.

3. Estimation of the STEM

In this section, we describe the estimation method of the parameters and nonparametric
components in the proposed STEM model. To capture the temporal dynamics, we consider
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the moving window approach. From Equations (1) and (2), we can see that the infectious
model and the death model share many common features, so we adopt a similar approach
when estimating them. Thus, in the following, we only use the infectious model (1) to illus-
trate the estimation method of the entire STEM system. Moreover, for notation simplicity,
we drop the superscripts, such as I and D.

3.1. Penalized quasi-likelihood method

Suppose that Var(Y |I=w,Z=zA=3X=x,U=u) =02V(u(w,za,x,u)) for
some positive function V(-) and dispersion parameter o2, and L(y, y) is a quasi-likelihood
function satisfying V,L(u,y) = FJ;% We first describe the estimation of model (1).
For the current time t, and rounghness parameters A¢ and A, we consider the penalised

quasi-likelihood problem defined as follows:

n t P
3030 L gt { Bor(Ui) + Bue(Up) log(Tis—1) + orZis—1 + Y @jtAjjs—m
i=1 s=t—fp =1
& 1
+) Vk(ka)} » st] = 5 o€ (Bor) + ME(B)} (5)
k=1

where ty + 1 is the window width for the model fitting, and it can can be selected by min-
imising the prediction errors or maximising the correlation between the predicted and
observed values. The energy functional is defined as follows:

£(B) = f (V2. )2 + 2(Via Vir ) + (V2 B2} duy ity ©)
Q

where ng. B(u) is the gth order derivative in the direction u;, j = 1, 2, at any location u =
(ug,u) 7.

Note that, except for parameters {ajf};}=0, other functions are related to curse of dimen-
sionality due to the nature of functions. To handle this difficulty, we employ the basis
expansion approach to approximate the univariate and bivariate functions discussed below.
The univariate additive components {y(-) }gzl and the spatially varying coefficient com-
ponents {Bg(-)}}_, in model (4) are approximated using univariate polynomial spline
and bivariate penalised splines over triangulation (BPST), respectively. The BPST method
is well known to be computationally efficient to deal with data distributed on complex
domains with irregular shape or with holes inside; see the details in Lai and Wang (2013)
and Sangalli, Ramsay, and Ramsay (2013).

Assume that X}, takes value on an interval [ag, bi], k = 1,...,g. To satisfy the model
identification constraint E{yy;(X})} = 0, in this paper, we consider the space of the cen-
tred spline functions U? = {¢ € Uy : E¢(X}) = 0} for univariate additive components,
where Uy = Uf ([ag, bg]) be the space of the polynomial splines of order p + 1; see Xue
and Liang (2010), Liu et al. (2013) and Wang, Xue, and Yang (2020). Let 7 be the index
set of the basis functions, and then denote by {®;(xx),] € J} the B-spline basis func-
tions ofUS for the kth covariate. For ] € J and k = 1,. .., p, ®py(x;) satisfies EQp;(Xy) =

0 and E@%},(Xk) = 1; see Yu et al. (2020) for the details of basis construction. For all
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b AR i

(a) Triangulation £\ (b) Triangulation A3

Figure 1. Triangulations used in the bivariate spline estimation. (a) triangulation A and (b) triangula-
tion Aj.

xx € [ag, by], the estimator of y(xx) is Vi (xx) = 2 jeq S Puy(xi) = ‘b;(r(xk)g?kr, where
Q1 (xx) = {Pyy(xx), ] € T}, and &3 = (&g, ] € T} T is a vector of coefficients.

For the bivariate coefficient functions SBy¢(-) and B14(-) in the STEM model (4), we con-
sider the bivariate spline over triangulation (Lai and Wang 2013). The spatial domain Q
with either an arbitrary shape or holes inside can be partitioned into a set of triangles.
Denote A by a triangulation of the domain € (Lai and Schumaker 2007); see, for exam-
ple, Figure 1. In practice, the triangulation can be obtained through varieties of software;
see for example, the ‘Delaunay’ algorithm (delaunay.m in MATLAB or DelaunayTriangu-
lation in MATHEMATICA), the R package ‘“Triangulation’ (Wang and Lai 2019), and the
‘DistMesh’ Matlab code.

Let C"(€2) be the space of rth continuously differentiable functions over the domain Q.
For 0 < r < d and A, we construct the spline space of degree d and smoothness r over A
in the following:

SL(A) = {P € C'(Q) : P is a polynomial function of degree up to d on each T € A}.
(7)
For triangulation A with M triangles, denote a set of bivariate Bernstein basis polynomials
for S);(A) as {By(#)}mem, where an index set M for basis functions. These bivariate
spline basis can be generated via the R package ‘BPST” (Wang et al. 2019). More discussions
of the bivariate spline over triangulations can be found in Mu, Wang, and Wang (2018) and
Yu et al. (2020). Then, we can approximate the bivariate functions B¢t(-) € S}(A) in the
STEM model (4) by 3 3o aq Bu()Beenr = B(u) " 84, where B(u) = {By(u),M € M}"
and O = {SE;M,M = M}T
Considering the basis expansion, the energy functional £(B;) in (6) can be approxi-
mated by £(B(-)"8¢) = 0, P8y, for £ = 0,1, where P is a block diagonal penalty matrix.
By introducing the constraint matrix H which satisfies H#; = 0, £ = 0, 1, we can reflect
global smoothness in S}(A) in (7). For the current time ¢, the maximisation problem (5)
is changed to minimise

n t P
— Z Z L{g™" | BU) (8o + O1¢log(lis—1)} + a0 Zis—1 + Z @t Asjs—m
i=1 s=t—tg j=1
3 1
v Z @{(x,vk)gh} ,Ygs) +5(A09{T,P0m + 110,P8y;) subjectto Hoy = 0,£=0,1.
k=1

(8)
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Directly solving the optimisation problem in (8) is not straightforward due to the smooth-
ness constraints involved. Instead, suppose that the rank riy matrix H' is decomposed into
QR = (Q Qz)(ﬁ;), where Q; is the first gy columns of an orthogonal matrix Q, and R; is
a matrix of zeros, which is a submatrix of an upper triangle matrix R. Then, reparametriza-
tion of @y = Q,07, for some #7,, £ = 0, 1, enforces Hf ;; = 0. Thus, the constraint problem
in (8) can be changed to an unconstrained optimisation problem as follows:

n t P
Y. Llg™" | B(U) Qb + 07 log(Tis 1)} +eorZis—1 + ) jeAism
i=1 s=t—1y j=1
1 1
+) “’kT(ka)Ekr] ; st) +5 (kaﬂﬁrTQzTPQz'?Er + 1167/ Q; PQ20 Tr) : ©)
k=1
Let (ﬁzr,ﬁ:r)T, (@01, @115 - - - 8pr) T, and (EH, . 'é‘qt)T be the minimisers of (9) at time

point t. Then, the estimators of B;(-) are Egr(u) B(u)TQ;_GEt, £=0,1, the estlmators
of ajt are @jt, j=1,...,p, and the spline estimators of k() are ¥ (xx) = ®x(xx) Ekr’
k=1,..., q.

3.2. Penalized iteratively reweighted least squares algorithm

In this subsection, we are going to describe the estimating algorithm in detail.
For the current time f, let Y= (Y],...,Y[)" be the vector of the response
variable where Y; = (Yi,...,Yy)T. Denote ®] = {®1(Xi1)",..., ®,(Xig) "}, AL =
(Aits—m>---»Aips—m), and F= (Fy,...,F)T, where Fs = (Fys,...,Fps), and F} =
AL, ], [(1log(i;—1))™ ® (Q]B(UY}]T). Denote 9 = (o] ,&,0;7)7, and let
nis(#) = B(U;) T Quf65, + 05, lﬁg(fr s—1)} + a0, Zis—1 + Z};l ajtAjjs—m + ZLl @/,
(Xix)&, and q(ﬂf) S {ir},s(th)}I 1s—1- In addition, let the mean vector u(#) =
[;L,s(ﬂ;)}:’;_l ={g” (n,s(i?;))},,s s the variance function matrix V = dlag{V(,u.,s)}I’s_l,
the diagonal matrix G = diag{g’ (1 ,s)} 1 with the derwatlve of link function as element,
and the weight matrix V= diag[{V (mis)g’ (is)?} 'wst,i = 1,...,n,5 = 1,...,t], where
wst = I(t — s > fp).

Iteratively reweighted least squares algorithm (IRLS) is commonly used to find the max-
imum likelihood estimates of a generalised linear model. Therefore, in this work, we design
a penalised iteratively reweighted least squares (PIRLS) algorithm as described below. Sup-
pose at the jth iteration, we have u = pu(8#9), n?) = n(#?)) and V& Then at (j + 1)th
iteration, we consider the following objective function:

1
- —1/2 ; % 3
1 = [l (e o)) + s S reratra
£=0
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Algorithm 1 The Penalized Iteratively Reweighted Least Squares (PIRLS) Algorithm.

U] e ()]

Step 1. Initialize nw) and p'” and calculate V' and Y from g’ (,u(m] and V(_u{m) i=1,...,mands=1,...,1
Step 2. Setstepj =
while {e, ‘g‘,&*] not converge do
(i) Obtain oU+1), £0+D g*(i+1) by minimising the (10) with respect to #, and 5@+ = »(@U*V) and
#U+1J = ﬂ(ﬂ(j+1})
(ii) Update VD and Y9V with g (_uU_HJ) and V(;J,UH)) i=1,. ,s=1,..., t, using U+ and
#04’1)

(iii) Set j = j+ 1.

Take the first order Taylor expansion of u(#) around (#%), then

- - .
v L v | 1 *T T *
= {0} " [¥2 - r@o]| +5 2 2e0i7 QT PQuS; (10)
=0
where YO = (YU)T U)T)T with YU) =g (,u, )(Y;s ) B i'? g Y

The detailed procedure for the PIRLS is ﬂlustrated in Algorithm 1 In the numerical studles,
we consider the following initial values ,u, = Yi +0.1and n(m = g(u; (0)) fori=1,...,n
il = uasks

Compared with the traditional nonparametric techniques, such as kernel smoothing,
the proposed algorithm is much more computationally efficient. Therefore, we can easily
apply our method to analyse massive spatiotemporal data sets.

3.3. Asymptotic results

Let '??r :g(ﬂg), where :”'?r is the conditional mean based on the true parame-
ter aﬁs and functions ﬁgt’s and y,’s. Let &y = Yir —g_l(ng) be the error term.
For the quasi-likelihood function, L{g='(n),y}, denote qi(n,y) = %L{g_l(q),y} =

(r— g m}p1(n), and g2(n,y) = £ Lig ™ ()3} = v — g2} (1) — p2(), where
pi(m) = {758 MY /[0*Vig™ ()] = [{g'@ " (Vo> Vig~ )}, j = 1,2. Fora vec-
tor valued function ¢ = (¢o,..., )", let ||, = (ko Icl2,312 and [lloe =
maxg<k<p [Pkl - Define [¢|y,00 = maxiyj—y I|V:;1V{u¢|[oo for a nonnegative integer v.

The following theorem provides the L, convergence rate of the spline estimators, By (),
for £ = 0, 1. The detailed proof is illustrated in the Supplemental Material B.

Theorem 3.1: Under Assumptions (A1)-(A7) in the Supplemental Material B, the
univariate spline estimators Vi, k=1,...,q9, and the bivariate spline estimators
Bu(), £=0,1, satisfy that 3y | Bet — Biyllz, + i, 17k — vigll, = Oas {2 +
|AT)n 2 (logn)!/2 + ket + | A4 + Amax(n|A[*) ™'} as n— 0o, where Amax =
max(Aig, A1).
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LetWT = {Llog(—)}LZT = {Zs—1, At=m> - - -» Aps—m}and n°(X, Z, U, W) = ZT "
+ 30 2050 + Yj_g BY(U) Wys. In the following, define

E[o{n°(Z.X, UW)Z | X=x,U=u,W =w]

Nl GE LW X =aU =W~ == - TEUW).

(11)
The next theorem shows that the maximum quasi-likelihood estimator of a is root-n
consistent and asymptotically normal.

Nx,uw) =

Theorem 3.2: Under Assumptions (A1)-(A8) in the Supplemental Material B, the esti-
mator @; is asymptotically normally distributed, i.e. \/n(@; — a?) — N(0,X71), where
¥ = E{p2(n°)ZZ"} with Z given in (11).

3.4. Modeling the number of fatal and recovered cases

To fit the proposed STEM and make predictions for cumulative positive cases, one obstacle
is the lack of direct observations for the number of active cases, I;;. Instead, the most com-
monly reported number is the count of total confirmed cases, Cjt. Some departments of
public health also release information about fatal cases Dj; and recovered cases R;;. Based
on the fact that Iy = Cj — Ry — Dy, we attempt to model Dj; and Ry to facilitate the esti-
mation and prediction of newly confirmed cases Yj; based on the proposed STEM model.
For the death model (2), we can use the same maximum quasi-likelihood approach to fit
the model.

Ideally, if sufficient data for recovered cases can be collected from each area, a similar
model can be fitted to explain the growth of the recovered cases. However, most people who
become sick with COVID-19 only experience mild illness and can recover at home without
medical care within a week. Meanwhile, according to the U.S. Centers for Disease Control
and Prevention, severe cases are often hospitalised to receive supportive care, which may
take several weeks. Although there have been regional, national, and global data on con-
firmed cases and deaths, not much has been reported on recovery. Currently, there is a lack
of a uniform method for reporting recoveries across the U.S. (Howard and Yu 2020).

Only a few states regularly update the number of recovered patients, but the counts
can seldom be mapped to counties. Due to a lack of data, we are no longer able to use
all the explanatory variables discussed above to model daily new recovered cases. Instead,
we mimic the relationship between the number of recovered and active cases from some
compartmental models in epidemiology (Siettos and Russo 2013; Anastassopoulou, Russo,
Tsakris, and Siettos 2020). At current time point £, we assume that AR;; = R;; — Rj5—1 =
VRI;s s + €i,5 =t —tg,...,t, in which §’ represents the time delay from infection to
recovery (8’ = 10 in our analysis), and &; is the random noise. The recovery rate v}
enables us to make reasonable predictions for future recovered patients counts and provide
researchers with the foresight of when the epidemic will end. The rate v} can be either esti-
mated from available state-level data, or obtained from prior medical studies to alleviate
the under-reporting issue in actual data.
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3.5. Zero-inflated models at the early stage of the outbreak

It is well known that in the early stage of an epidemic, the quality of any model output can
be affected by the restricted quality of data that pertain to under-detection or inconsistent
detection of cases, reporting delays, and poor documentation, regarding infections, deaths,
tests, and other factors. There are many counties with zero daily counts at the early stage of
disease spread. Therefore, we consider zero-inflated models based on a zero-inflated prob-
ability distribution, i.e. a distribution that allows for frequent zero-valued observations.
Following the previous works (Arab, Holan, Wikle, and Wildhaber 2012; Wood, Pya, and
Sifken 2016), we assume the observed counts Y contributes to a zero-inflated Poisson
(ZIP) distribution, ZIP(u,, pl), specifically, we assume that

1 _PEP y=0
P(Yit =y | Lit—1-Zit—1,Aip—-m- Xis Up) = { (k)

: T U ] y = 0}
T lexp(ul) — 1)y

where pl, = %‘i&%—) with n}, = a1 + exp(az) log(uk), ul; is generated from (4), and
ajp,ay are unknown [;arameters estimated along with the roughness parameters. See Wood
et al. (2016) for the estimation of a; and a,.

Let ADj = Dj; — Dj;—; be the number of new fatal cases on day t. Similarly, we can
consider zero-inflated models for fatal cases, in which we assume the observed count AD;;

contributes to a ZIP distribution ZIP(,[LE, pg):

1—-p2, d=0,
A

P(ADy =d | Lix 1, Aip—m» X3, Up) = i
exp(up) — 1}d!’

d=>0,

D . ’
where pP = %ﬁ% with 7] = vi + exp(v2) log(u}), 1Y is generated from (2), and

v1, v2 are unknown parameters that can be similarly estimated as in the above.

4. Asimulation study

In this section, we conduct a simulation study to evaluate the finite sample performance of
the proposed method. In the simulation, we use a subset of covariates of the county-level
characteristics analysed in Section 5. The response variable Yj; and ADj; are generated
from a ZIP distribution with the logarithm of Poisson parameters generated as following:

P q
log(uiy) = Bor (U + BL, (U log(Tir—1) + ) Aiie—m + Y _ vieX),  (12)
j=1 k=1

log(uR) = BE(U;) + B log(Li1—s), (13)

where § =14, p = 2,9 =5, m=7, and Ay, Xy, j= 1,2, k=1,...,5, come from the
covariates in the COVID-19 dataset described in Section 5. The true univariate functions
Y1t (%), Ya(x), ..., ¥s¢(x), together with their estimate and confidence band in one typi-
cal iteration, are displayed in Figure 3(a-e). Figure 4(a—c) depict the bivariate coefficient
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functions ,B[IH(-), ,B{ ((-) and ,83(-), which are generated to mimic the spatial pattern of
infection/mortality rate in the pandemic. We also include the corresponding estimated
functions from one experiment in Figure 4(d-f) to show that the spatial pattern can be
very well captured using the proposed method. For recovery data, the daily recovered cases
are simulated by ARy = URI;',S_], where v® = 0.07. We simulate data by assuming that a
pandemic emerged on March 15 with 1 case showed up in each of the 420 selected coun-
ties. These counties are selected if COVID-19 cases had been found by March 15 in real
data. Then, daily confirmed, fatal and recovered cases are generated based on model (12)
and (13) from a ZIP distribution with the complimentary log of the zero probability being
linearly dependent on the log of the Poisson parameter p}, and u3.

To evaluate the performance numerically, we conduct 100 Monte Carlo experiments
with 9 or 14 days as the training window sizes. For the univariate spline smoothing, we use
cubic splines with two interior knots; and for the bivariate spline smoothing, we consider
degree d = 2, smoothness r = 1, and two different triangulations in Figure 1: A; (119
triangles with 87 vertices) and A; (522 triangles with 306 vertices). The root mean squared
errors (RMSEs) for some of the parametric and nonparametric components in models (12)
and (13) are illustrated in Figure 2, and the boxplots of the RMSEs for all the parametric and
nonparametric components are shown in Supplemental Material A. Moreover, the average
RMSEs over 100 experiments are reported in Table 1. According to the numeric results,
the proposed model is not sensitive to the choice of triangulation. Based on Figure 2 and
Table 1, one can see that increasing the window size of training data can help improve the
accuracy in estimating most of the coefficient functions while increasing the computational
burden at the same time. Thus, in practice, users can balance the choice of the window size
with the power of the computation resource.
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5. COVID-19 case study

The goals of the following study are two-fold. First, we develop a new dynamic epidemic
modelling framework for public health surveillance data to study the spatiotemporal pat-
tern in the spread of COVID-19. We aim to investigate whether the proposed model
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Table 1. The average of root mean squared errors (RMSEs) of the estimated components in infection
model and death model in the simulation ('-' indicates not applicable).

Window Component

Model A Size Bo B o oy " Y2 » Y4 ¥s

Infection A4 9 days 05094 0.0453 0.0534 0.0258 0.0105 0.0415 0.0214 0.0262 0.0114
Ay 14 days 04862 0.0395 0.0499 0.0193 0.0103 00416 0.0186 0.0256 0.0119
Az 9 days 0.5038 0.0437 0.0521 0.0253 00110 0.0409 0.0216 0.0261 0.0112
Az 14 days 04729 0.0374 0.0479 0.0190 0.0109 00406 0.0195 0.0255 0.0120

Death Fa¥ 9 days 0.0456 0.0999 - - - - - - -
Ay 14days 00373 0.1000 - - - - - - -
A;  9days  0.0459  0.0999 = = = = = = =
Ay 14days 00375 0.1000 = = = = = = =

could guide the modelling of the dynamics of the spread at the county level by mov-
ing beyond the typical theoretical conceptualisation of context where a county’s infection
is only associated with its own features. Second, to understand the factors that con-
tribute to the spread of COVID-19, we model the daily infected cases at the county level,
considering the demographic, environmental, behavioural, and socioeconomic factors in
the U.S.

5.1. Data description

The data for the COVID-19 outbreak in the U.S. is collected and cleaned from a com-
bination of public data repositories, including official state Health Department Websites,
the New York Times (NYT 2020), the COVID-19 Data Repository by the Center for Sys-
tems Science and Engineering at Johns Hopkins University (JHU CSSE 2020), the COVID
Tracking Project (Atlantic 2020) and the USAFacts (USAFacts 2020). Wang et al. (2020)
provides a thorough comparison of the COVID-19 data collected from the above four
sources, details on anomaly detection and repair, as well as how to integrate the data with
other local characteristics.

The USA Counties Database compiled by the U.S. Census Bureau and the Homeland
Infrastructure Foundation-level Data prepared by the U.S. Department of Homeland Secu-
rity (see Table 2) were used as the source of local information. The county-level features
can be categorised into the following groups.

Control measures. We mainly consider two control measures in our work, emergency
declarations and ‘stay-at-home’ or ‘shelter-in-place’ orders, among a variety of social dis-
tancing policies (e.g. school closures, closures of non-essential services focussed on bars
and restaurants, bans on large gatherings and the deployment of severe travel restrictions).
Dates of interventions were compiled by checking national and state government web-
sites, executive orders, and newly-initiated COVID-19 laws. Starting in Washington on
February 29, 2020, the declarations of state emergency soon swept the nation. By March
16, 2020, every state had made an emergency declaration, with most taking the form of
a State of Emergency or a Public Health Emergency. The executive orders of ‘stay-at-
home’ or ‘shelter-in-place’ started in California in the middle of March, and within one
to two weeks, the majority of the states had taken similar actions. Due to the immense
pressures of the crippled economy and anxious public, states in the U.S. started to reopen
successively in late April. A state is treated as ‘reopening’ once its stay-at-home order lifts,
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Table 2. County-level predictors used in the STEM modeling.

Predictors Description

Control Dummy variable for declaration of ‘shelter-in-place’ or 'stay-at-home’ order (Control = 1, for
‘shelter-in-place’, and Control = 0, for no restriction or restriction lifted)
Socioeconomic Status

Affluence Social affluence

Disadvantage Concentrated disadvantage

Gini Gini coefficient

Healthcare Infrastructure

NHIC Percent of persons under 65 years without health insurance
EHPC Local government expenditures for health per capita
TBed* Total bed counts per 1000 population

Demographic Characteristics

AA Percent of African American population

HL Percent of Hispanic or Latino population

PD* Population density per square mile of land area

Oid Aged people (age = 65 years) rate per capita

Sex Ratio of male over female

Environment Characteristics

Mobility Daily number of trips within each county

Urban Urban rate

Note: The covariates with * represent that they are transformed from the original value by f(x) = log(x + &). For example,
PD* = log(PD + &), where  is a small number.

or once reopening is permitted in at least one primary sector (restaurants, retail stores,
personal care businesses), or once reopening is permitted in a combination of smaller
sectors.

Socioeconomic status contains (a) social affluence (b) concentrated disadvantage and
(c) Gini coefficient. Social affluence is a measure of more economically privileged areas,
including factors: (i) percent of households with income over $75,000; (ii) percent of adults
obtaining bachelor’s degree or higher; (iii) percent of employed persons in management,
professional and related occupations; (iv) median value of owner-occupied housing units.
The concentrated disadvantage is a measure for conditions of economic disadvantage,
including factors: (i) percent of households with public assistance income; (ii) percent of
households with a female householder and no husband present; (iii) civilian labour force
unemployment rate. Gini coefficient, known as the Gini index, is a measure of economic
inequality and wealth distribution among a population.

Healthcare infrastructure contains (d) local government expenditures for health per
capita, (e) percent of persons under 65 years without health insurance, and (f) logarithm
of total bed counts per 1000 population.

Demographic characteristics contain (g) percent of African American population, (h)
percent of Hispanic or Latino population, (i) logarithm of population density per square
mile of land area, (j) aged people (age > 65 years) rate per capita, (k) ratio of male over
female, and (1) urban rate.

Mobility data are collected and cleaned from the U.S. Department of Transportation,
Bureau of Transportation Statistics, and Descartes Labs. It describes the daily number of
trips within each county produced from an anonymized national panel of mobile device
data from multiple sources. Trips are defined as movements that include a stay of longer
than 10 min at an anonymized location away from home.
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5.2. Analysis and findings in COVID-19

For the model estimation, we consider the following model for the infected count:

log(s)
= Bor(Uy) + B1:(Uj) log(Ti—1) + g Zit—1 + ej,Control;s_7 + a3 Mobility; ,
+ yf,(Gini,') + yzlt(Afﬂuence,') + ygr(Disadvantagef) + y;r(Urbani) + y;r(PDg}
+ Vet (Tbed;) + 7, (NHIC;) + yg,(EHPC;)
+ ¥or(AAD) + 1o, (HL:) + v11,(Sexi) + 15, (Oldy), (14)

where i = 1,...,3104. For the death count, we consider the following semiparametric
model:

log(u7)
= Bo1(Uy) + B} log(Iit—s) + ap)Control;;_7 + ay)Mobility; ,_;
- yg Gini; + yz[l?Aﬁluencef - }@I,] Disadvantage; + yg Urban; + yS?PD;

+ Y2 Tbed; + y2NHIC; + y2EHPC; + y2AA; + B HL; + 2 Sex; + ¥3,01d;.
(15)

We consider the data collected from March 16 to September 3, 2020; see the data descrip-
tion in Section 5.1. Note that in Models (14)-(15), the covariate Control is a dummy
variable for the executive order ‘shelter-in-place’ or ‘stay-at-home’, namely Control;; = 1
suggesting ‘shelter-in-place’ taken place for county i at time t, while Control; = 0 sug-
gesting no restriction or restriction lifted. See Table 2 for details of other county-level
predictors.

We use 28 days, two incubation periods, as an estimation window to examine how the
covariates affect the newly infected and fatal cases, and we choose § = 14. The roughness
parameters are selected by generalised cross-validation (GCV). The performance of the
univariate and bivariate splines depends on the choice of the knots and triangulations,
respectively. We use cubic splines with two interior knots for the univariate spline smooth-
ing. We generate the triangulations according to the ‘max-min’ criterion, which maximises
the minimum angle of all the angles of the triangles in the triangulation. We consider two
triangulation choices, A and A3, as shown in Figure 1. By the ‘max-min’ criterion, A is
better than Ay, but it also significantly increases the number of parameters to estimate. As
a trade-off, for the estimation of B,(-) and B},(-), we adopt the finer triangulation A, and
use the rough triangulation A; to estimate B (-) due to the sparsity problem in the death
count and many zeros observed.

First of all, we describe our findings from modelling the COVID-19 related infection
counts in 3104 counties from the 48 mainland US states and the District of Columbia.
To examine the effect of the control measures (‘shelter-in-place’ or ‘stay-at-home’ orders)
and mobility level after 7 days, we test the hypothesis: Hy : ce;r =0, j = 1,2 in model (14).
Figure 5(a) shows that the control measure is significant for the infected count most of the
time. Figure 5(b) shows that the p-value of the mobility is always very close to zero, and
thus the mobility is significant for the entire study period.
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Next, we examine the effect of the other predictors in Model 14. To test hypotheses Hy :
yklr(-) =0,k=1,...,12, we construct the 95% simultaneous confidence band (SCB) for

¥ (-)’s. In function estimation problems, SCBs are an important tool to quantify and visu-
alise the variability of the functional components; see Wang and Yang (2009), Cao, Yang,
and Todem (2012), and Zheng, Liu, Yang, and Hirdle (2016) for some related theory and
applications. Figure 6 illustrates the estimated curves for different explanatory variables
together with the corresponding SCBs based on the data period 03/22/2020-04/18/2020.
Based on Figure 6, we can observe that at the beginning of the pandemic, the infected cases
increase with the population density (PD), which is consistent with our intuition. We also
find that the infections increase with African American Ratio and Hispanic Latino Ratio
at the beginning of the outbreak.

We also study the effect of the covariates over time. Figure 7 shows the effect of the aged
people rate at different time points over the outbreak. In the early stage of the COVID-
19 pandemic, from March to April, COVID-19 struck the elderly more severely than the
younger people. By mid-April and May, we saw that those communities with fewer aged
people suffered more from COVID-19. Counties with a very high rate of aged people
still experience high infection rates. However, when people understood the virus more
and took action to protect the senior people, from mid-June to September, those counties
with a higher rate of aged people became those least infected. However, from mid-June
to September, older people tended to stay home and were more cautious about the virus.
Also, as many states reopened bars, restaurants, and offices, people in their 20s and 30s
were more likely to go out socialising, and the coronavirus spread more widely to young
people (Bosman and Mervosh 2020).

Movies 1-12 in the Supplementary Material A show the estimates and SCBs of the
nonparametric functions ygr( ), k=1,...,12, over the entire study period in the STEM
model (14).

After the discussion of our finding in the infection model, let us focus on the death
model. For Model (15), we focus on the following hypothesis tests: Hy : Ct';? =0, j=1,32,
Hy: ,Bg =0 and Hj : yk? =0,k=1,...,12. Figure 8(b) shows that ‘Mobility’ is signifi-
cant over the entire study period. “OLD” is significant in the beginning of the pandemic.
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For other county-level covariates, ‘Affluence’, ‘Disadvantage’, ‘EHPC’, ‘AA” and ‘SEX’ are
significant with p-values smaller than 0.05 most of time, while the rest of the predictors are
significant on some days, but insignificant on other days.

In addition, movies 13 and 14 in the Supplementary Material A illustrate the estimated
coefficient functions of B,(-) and B1,(:) in model (14). From Movie 13, we can see that
the transmission rate, B,(-), varies at different locations and in different phases of the out-
break, especially the high rate in late March and April. Movie 14 shows that 8],(-) also
varies from one location to another location, which indicates that the homogeneous mix-
ing assumption of the simple SIR models does not hold. The transmission rate is high in
most states at the end of April; however, it has become much lower since June. Movie 15
on the Supplementary Material A shows the pattern of Eg in model (15). From this ani-
mation, we observe a severe fatality condition in the southern states in July and a pattern
of a general decrease in the entire U.S. since August 2020.

6. Conclusion and discussion

This work has aimed to bridge the gap between mathematical models and statistical anal-
ysis in infectious disease studies. We created a state-of-art interface between mathematical
and statistical models to understand the dynamic pattern of the spread of contagious
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diseases. Our proposed model enhances the dynamics of the SIR mechanism through
spatiotemporal analysis.

For analysing the confirmed and death cases of COVID-19, other factors may also
be responsible for temporal or spatial patterns. We investigated the spatial associations
between the infected count, death count, and factors or characteristics of the counties
across the U.S. by modelling the daily infected/fatal cases at the county level considering the
county-level factors. Modeling COVID-19 at the county-level and combining local charac-
teristics are very beneficial for the community to understand the dynamics of the disease
spread and support decision-making when urgently needed. To examine spatial nonsta-
tionarity in the transmission rate of the disease, we proposed a nonparametric spatially
varying coefficient model, which allows the transmission to vary from one area to another
area. The proposed method can be used as an essential tool for understanding the dynam-
ics of the disease spread, as well as for assessing how this outbreak may unfold through
time and space.

Based on our results, disease mapping can easily be implemented to illustrate high-
risk areas and thus help policymaking and resource allocation. Our method can also be
extended to other situations, including epidemic models in which there are several types
of individuals with potentially different area characteristics or more complex models that
include features such as latent periods or a more realistic population structure.

Our paper did not take the under-reported issue (for example, the asymptomatic coro-
navirus infectious cases) into account. Although our model may have partially corrected
the problem with the spatiotemporal information, some better ways are proposed in sev-
eral recent pieces of research, such as Pullano et al. (2021), Shaman (2021), Giordano
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et al. (2021), and Moore, Hill, Dyson, Tildesley, and Keeling (2021). Furthermore, some
of the newly developed methods also investigate the effect of vaccinations and different
COVID-19 variants. For example, Giordano et al. (2021) and Moore et al. (2021) proposed
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an extended SEIR-type framework. In these models, individuals start from the susceptible-
unvaccinated or susceptible-vaccinated states. Then those in the asymptomatic state will
recover, and those in the symptomatic state may become either recover or die. Moreover,
the infected individuals could also be divided into several groups based on COVID-19 vari-
ants. As discussed in Section 2, although we introduce our discrete-time spatial epidemic
model based on the SIR model, we can extend it to such a kind of SEIR-type framework as
well.

Acknowledgments

The authors would like to thank the Editor-in-Chief, an associate editor, and two referees for their
constructive comments and suggestions that significantly improved an earlier version of this article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Myungjin Kim’s research was partially supported by National Science Foundation (Division of Com-
puting and Communication Foundations) award CCF-1934884, DMS-2135493, DMS-1916204 and
Laurence H. Baker Center for Bioinformatics & Biological Statistics. Shan Yu’s research was partially
supported by the Iowa State University Plant Sciences Institute Scholars Program. Li Wang’s research
was partially supported by National Science Foundation (Division of Mathematical Sciences) award
DMS-1916204 and DMS-2135493.

ORCID

Yueying Wang ‘2 http://orcid.org/0000-0003-4861-2658
Mpyungjin Kim ' http://orcid.org/0000-0001-7784-0516
Shan Yu ‘2 http://orcid.org/0000-0002-0271-5726

Xinyi Li 2 http://orcid.org/0000-0003-0080-7034
Guannan Wang ' http://orcid.org/0000-0001-6551-4465
Li Wang @ hitp://orcid.org/0000-0001-8432-9986

References

Anastassopoulou, C., Russo, L., Tsakris, A., and Siettos, C. (2020), ‘Data-Based Analysis, Modelling
and Forecasting of the COVID-19 Outbreak’, PLOS ONE, 15, 1-21.

Arab, A., Holan, S.H., Wikle, C.K., and Wildhaber, M.L. (2012), ‘Semiparametric Bivariate Zero-
Inflated Poisson Models with Application to Studies of Abundance for Multiple Species’, Environ-
metrics, 23, 183-196.

Atlantic (2020), “The COVID Tracking Project Data’, Dataset. https://covidtracking.com/api.

Bosman, ], and Mervosh, S. (2020), ‘As Virus Surges, Younger People Account for “Dis-
turbing” Number of Cases’. https://www.nytimes.com/2020/06/25/us/coronavirus-cases-young-
people.html.

Brauer, E, Van den Driessche, P, and Wu, J. (2008), Mathematical Epidemiology, (Vol. 1945), Berlin:
Springer.

Cao, G., Yang, L., and Todem, D. (2012), ‘Simultaneous Inference for the Mean Function Based on
Dense Functional Data’, Journal of Nonparametric Statistics, 24, 359-377.

CDC (2021a), ‘COVID-19 Pandemic Planning Scenarios’. https://www.cdc.gov/coronavirus/2019-
ncov/hep/planning-scenarios.html.


http://orcid.org/0000-0003-4861-2658
http://orcid.org/0000-0001-7784-0516
http://orcid.org/0000-0002-0271-5726
http://orcid.org/0000-0003-0080-7034
http://orcid.org/0000-0001-6551-4465
http://orcid.org/0000-0001-8432-9986

2 @ Y.WANGETAL

CDC (2021b), ‘Ending Home Isolation for Persons with COVID-19 Not in Healthcare Settings’.
https://www.cdc.gov/coronavirus/2019-ncov/hcp/disposition-in-home-patients.html.

Finkenstiadt, B.E, and Grenfell, B.T. (2000), ‘Time Series Modelling of Childhood Diseases: A
Dynamical Systems Approach’, Journal of the Royal Statistical Society, Series C, 49, 187-205.

Giordano, G., Colaneri, M., Di Filippo, A., Blanchini, E, Bolzern, P, De Nicolao, G., Sacchi, P,
Colaneri, P, and Bruno, R. (2021), ‘Modeling vaccination rollouts, SARS-CoV-2 variants and the
requirement for non-pharmaceutical interventions in Italy’, Nature Medicine, 27, 993-998.

Gog, J.R. (2020), ‘How You Can Help with COVID-19 Modelling’, Nature Reviews Physics, 2,
274-275.

Hastie, T., and Tibshirani, R. (1990), Generalized Additive Models, Vol. 43, 1st ed., London: Chapman
and Hall/CRC Press.

Held, L., Hens, N., D O'Neill, P., and Wallinga, J. (2019), Handbook of Infectious Disease Data
Analysis, New York: CRC Press.

Howard, J., and Yu, G. (2020), ‘Most People Recover from Covid-19. Here’s Why It's Hard to
Pinpoint Exactly How Many’, CNN News. https://www.cnn.com/2020/04/04/health/recovery-
coronavirus-tracking-data-explainer/index.html.

JHU CSSE (2020), ‘2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository’, Dataset.
https://github.com/CSSEGISandData/COVID-19.

Jia, ].S., Lu, X, Yuan, Y., Xu, G, Jia, ], and Christakis, N.A. (2020), ‘Population Flow Drives Spatio-
Temporal Distribution of COVID-19 in China’, Nature, 582, 389-394.

Jong, M., Diekmann, O., and Heesterbeek, J. (1995), ‘How Does Transmission Depend on Population
Size?’, Publication of the Newton Institute, 5, 84.

Kim, M., and Wang, L. (in press), ‘Generalized Spatially Varying Coefficient Models’, Journal of
Computational and Graphical Statistics, 30, 1-10.

Kucharski, A.J., Russell, T.W,, Diamond, C.,, Liu, Y., Edmunds, ]., Funk, S., Eggo, R.M., Sun, E, Jit, M.,
Munday, J.D., Davies, N. (2020), ‘Early Dynamics of Transmission and Control of COVID-19: A
Mathematical Modelling Study’, The Lancet Infectious Diseases, 20, 553-558.

Lai, M.]., and Schumaker, L.L. (2007), Spline Functions on Triangulations (1st ed.), Cambridge:
Cambridge University Press.

Lai, M.]., and Wang, L. (2013), ‘Bivariate Penalized Splines for Regression’, Statistica Sinica, 23,
1399-1417.

Lawson, A.B., Banerjee, S., Haining, R.P,, and Ugarte, M.D. (2016), Handbook of Spatial Epidemiol-
ogy, New York: CRC Press.

Liu, W.M., Hethcote, H.-W,, and Levin, S.A. (1987), ‘Dynamical Behavior of Epidemiological Models
with Nonlinear Incidence Rates’, Journal of Mathematical Biology, 25, 359-380.

Liu, R., Yang, L., and Hirdle, W.K. (2013), ‘Oracally Efficient Two-Step Estimation of Generalized
Additive Model’, Journal of the American Statistical Association, 108, 619-631.

Moore, S., Hill, EM., Dyson, L., Tildesley, M.]., and Keeling, M.]. (2021), ‘Modelling optimal
vaccination strategy for SARS-CoV-2 in the UK’, PLoS computational biology, 17, e1008849.

Mu, J., Wang, G., and Wang, L. (2018), ‘Estimation and Inference in Spatially Varying Coefficient
Models’, Environmetrics, 29, e2485.

NYT (2020), ‘Coronavirus (Covid-19) Data in the United States’, Dataset. https://github.com/
nytimes/covid-19-data.

Pfeiffer, D.U., Robinson, T.P, Stevenson, M., Stevens, K.B., Rogers, D.],, and Clements, A.C. (2008),
Spatial Analysis in Epidemiology, New York: Oxford University Press.

Pullano, G., Di Domenico, L., Sabbatini, C.E., Valdano, E., Turbelin, C., Debin, M., Guerrisi, C,
Kengne-Kuetche, C., Souty, C., Hanslik, T., Blanchon, T., Boélle, PY,, Figoni, ], Vaux, S., Cam-
pése, C., Bernard-Stoecklin, S, and Colizza, V. (2021), ‘Underdetection of cases of COVID-19 in
France threatens epidemic control’, Nature, 590, 134-139.

Sangalli, L., Ramsay, ., and Ramsay; T. (2013 ), ‘Spatial Spline Regression Models’, Journal of the Royal
Statistical Society, Series B, 75, 681-703.

Shaman, J. (2021), ‘An estimation of undetected COVID cases’, Nature, 590, 38-39.

Siettos, C.I,, and Russo, L. (2013), ‘Mathematical Modeling of Infectious Disease Dynamics’, Viru-
lence, 4, 295-306.



JOURNAL OF NONPARAMETRIC STATISTICS @ 23

Sun, H,, Qiu, Y,, Yan, H., Huang, Y,, Zhu, Y, Gu, |, and Chen, S.X. (2020), ‘Tracking Reproductivity
of COVID-19 Epidemic in China with Varying Coefficient SIR Model', Journal of Data Science,
18, 455-472.

USAFacts (2020), ‘Coronavirus Locations: COVID-19 Map by County and State’, Dataset.
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map.

Vespignani, A., Tian, H., Dye, C., Lloyd-Smith, ].O., Eggo, R.M., Shrestha, M., Scarpino, S.V., Gutier-
rez, B., Kraemer, M.U.G., Wu, |, Leung, K., and Leung, G.M. (2020), ‘Modelling COVID-19’,
Nature Reviews Physics, 2, 279-281.

‘Wakefield, J., Dong, T.Q., and Minin, V.N. (2019), ‘Spatio-Temporal Analysis of Surveillance Data’,
in Handbook of Infectious Disease Data Analysis, New York: Chapman and Hall/CRC Press, pp.
455-476.

Wang, G., Gu, Z,, Li, X, Yu, S., Kim, M., Wang, Y., Gao, L., and Wang, L. (2020), ‘Comparing and
Integrating US COVID-19 Data from Multiple Sources with Anomaly Detection and Repairing’,
Preprint. arXiv:2006.01333v3.

Wang, L., and Lai, M.]. (2019), ‘Triangulation’, R package version 1.0. https://github.com/
funstatpackages/Triangulation.

Wang, L., Liu, X,, Liang, H., and Carroll, R. (2011), ‘Estimation and Variable Selection for General-
ized Additive Partial Linear Models’, The Annals of Statistics, 39, 1827-1851.

Wang, G., Wang, L., Lai, M.]., Kim, M., Li, X, My, J., Wang, Y., and Yu, S. (2019), ‘BPST: Bivariate
Spline over Triangulation’, R package version 1.0. https://github.com/funstatpackages/BPST.

Wang, L., Xue, L., and Yang, L. (2020), ‘Estimation of Additive Frontier Functions with Shape
Constraints’, Journal of Nonparametric Statistics, 32, 262-293.

‘Wang, J., and Yang, L. (2009), ‘Polynomial Spline Confidence Bands for Regression Curves’, Statistica
Sinica, 19, 325-342.

Wood, S.N. (2017), Generalized additive models: an introduction with R, New York: Chapman and
Hall/CRC Press.

Wood, S.N,, Pya, N., and Siifken, B. (2016), ‘Smoothing Parameter and Model Selection for General
Smooth Models’, Journal of the American Statistical Association, 111, 1548-1563.

Xue, L., and Liang, H. (2010), ‘Polynomial Spline Estimation for A Generalized Additive Coefficient
Model’, Scandinavian Journal of Statistics, 37, 26-46.

Yu, S., Wang, G., Wang, L., Liu, C,, and Yang, L. (2020), ‘Estimation and Inference for Generalized
Geoadditive Models’, Journal of the American Statistical Association, 115, 761-774.

Zheng, S., Liu, R., Yang, L., and Hirdle, W.K. (2016), ‘Statistical Inference for Generalized Additive
Models: Simultaneous Confidence Corridors and Variable Selection’, Test, 25, 607-626.



	1. Introduction
	2. Space-time epidemic modelling
	3. Estimation of the STEM
	3.1. Penalized quasi-likelihood method
	3.2. Penalized iteratively reweighted least squares algorithm
	3.3. Asymptotic results
	3.4. Modeling the number of fatal and recovered cases
	3.5. Zero-inflated models at the early stage of the outbreak

	4. A simulation study
	5. COVID-19 case study
	5.1. Data description
	5.2. Analysis and findings in COVID-19

	6. Conclusion and discussion
	Acknowledgments
	Funding
	ORCID
	References

