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Abstract: With increasingly abundant data that relate to both space and time
becoming available, spatiotemporal modeling is receiving much attention in the
literature. This paper study develops a class of spatiotemporal autoregressive par-
tially linear varying-coefficient models that are sufficiently flexible to simultaneously
capture the spatiotemporal dependence and nonstationarity often encountered in
practice. When spatial observations are observed over time and exhibit dynamic
and nonstationary behaviors, our models become particularly useful. We develop
a numerically stable and computationally efficient estimation procedure, using the
tensor-product splines over triangular prisms to approximate the coefficient func-
tions. The estimators of both the constant coefficients and the varying coefficients
are consistent. We also show that the estimators of the constant coeflicients are
asymptotically normal, which enables us to construct confidence intervals and make
inferences. The method’s performance is evaluated using Monte Carlo experiments,
and applied to model and forecast the spread of COVID-19 at the county level in
the United States.
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1. Introduction

The wide availability of data observed over time and space has stimulated
studies in a variety of disciplines, such as economics, environmental science, epi-
demiology, and many areas of health studies. At the same time, spatiotemporal
data are generated at scales and levels of complexity far beyond what could have
been imagined previously. For example, there are many large-scale economic
studies based on panels of data collected at the census tract, city, or county level
with an implicit, but complex spatial structure. The observations in data can

be regularly or irregularly distributed in space or time. Complex data call for
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statistical models that are sufficiently flexible to adapt to underlying signals, al-
lowing scientists to discover unknown patterns and predict the time evolution of
the variables of interest. Although spatiotemporal models have gained in popu-
larity in recent years, enhancing the capability of spatiotemporal modeling and
analysis remains a long-standing challenge.

In the statistical literature, there is a long history of using spatial data in
regression analyses to investigate covariate effects on response variables in the
presence of spatial correlation. The literature on spatial data modeling is over-
whelmingly dominated by “global” regression models, which intrinsically assume
that relationships between the regressors and the regressand are homogeneous
(stationary) over space and/or time. Classical spatial autoregressive (SAR) mod-
els, which fit linear models with autoregressive errors and spatial lags of the de-
pendent and independent variables, have attracted much attention in spatial data
analysis and its application in many fields. For instance, Kelejian and Prucha
(2010) developed a method of inference for SARs that allows for the possibility
of heteroskedasticity. Lee (2004) investigated the asymptotic properties of the
quasi-maximum likelihood estimator. Pace et al. (1998) and Lee and Yu (2010)
explored SAR models under a spatiotemporal framework. Xu, Wang and Shin
(2020) consider a dynamic spatial autoregressive quantile model using predeter-
mined network information.

However, in practice, many data exhibit clearly heterogeneous and nonsta-
tionary features; see the discussions in Cressie and Wikle (2011), Fotheringham,
Brunsdon and Charlton (2002), and Zhang and Wang (2015). The assumption
of stationarity or structural stability over time and space is generally unrealistic,
because the processes tend to vary over the study area and time period. For
instance, in real estate applications, spatially varying-coefficient models are use-
ful for capturing the spatial heterogeneity in housing prices and accounting for
local features (Helbich and Griffith (2016)). Neglecting these features might have
serious consequences for model estimation, such as biased regression coefficients,
resulting in inappropriate conclusions (LeSage (2008)). To incorporate nonsta-
tionarity in the regression models, Hoover et al. (1998), Cai (2007), and Chen, Li
and Li (2015) studied time-varying-coefficient models (TVCM) with correlated
errors. Fotheringham, Brunsdon and Charlton (2002) and Gelfand et al. (2003)
introduced spatially varying-coefficient models (SVCMs) to explore the spatial
nonstationarity of a regression relationship. In this study, we illustrate how spa-
tiotemporal dependence and nonstationarity can be modeled simultaneously in a
regression analysis framework.

Suppose there are n space-time observations A,, = {(S1,71),...,(Sn,Th)},
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where T; € T and S; = (S;1,S:2)" € Q are the time and the spatial location,
respectively, of the ith observation. Let Y; be the response variable, and let
Z,=(1,Zq,..., Zl-pl)—r and X; = (X;1,... ,XZ-:,,Z)T be the explanatory variables.
We consider the following spatiotemporal autoregressive partially linear varying-
coefficient model (STAR-PLVCM):

n P1 P2
Y=o wiYi+ Y Zinoe + > XirBok(Sin, Sia, Ti) + e, (1.1)
=1 =0 k=1

where qg is a global parameter, w;; is the weight of the neighbor effects, satisfy-
ing w; = 0 and Z#i w;j = 1, for any i = 1,...,n, no are unknown coefficient
parameters, Sog(+, -, -) are unknown varying-coefficient functions, and ¢;’s are in-
dependent and identically distributed (i.i.d) random noises, with E (¢;) = 0 and
Var (¢;) = 08, and ¢; is independent of Z; and X;. In the rest of this paper, we
denote W = (w;;) as the n x n weight matrix. The STAR-PLVCM accounts
for both spatiotemporal nonstationarity and autocorrelation simultaneously. In
addition, it offers greater flexibility in assessing varying effects at different times
and locations than do current global models in the literature. At the same time,
it preserves the simplicity and efficiency when some of the coefficients are indeed
constants.

The STAR-PLVCM encompasses many existing models as special cases, such
as the spatiotemporal autoregressive (STAR) model, when all Sy are assumed
to be constant (Pace et al. (1998)); the binary treatment model with spatial in-
teractions, when X, consists of a constant term only; the semiparametric SAR
model, when X, consists of a constant term only and its coefficient effect is as-
sumed to be spatially dependent only (Su and Jin (2010)); the partially linear
varying-coefficient model (Li and Liang (2008)), when there is no neighbor effect
in the model, that is, oy = 0; the TVCM (Fan and Zhang (2008); Park et al.
(2015); Yang et al. (2006)), when only the time index is included in the coeffi-
cient functions; and the SVCM in Fotheringham, Brunsdon and Charlton (2002)
Gelfand et al. (2003), and Mu, Wang and Wang (2018), when only the spatial
index is included and neighbor effects are not considered.

The coefficient estimators play an important role in reflecting the spatiotem-
poral nonstationarity of the regression relationship and, thus, largely determine
the analysis results. Huang, Wu and Barry (2010) and Fotheringham, Crespo
and Yao (2015) developed the geographically and temporally weighted regres-
sion (GTWR) method to deal with both spatial and temporal nonstationarity
simultaneously by incorporating the temporal effects into the standard SVCM.
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Wu, Li and Huang (2014) proposed a geographically and temporally weighted
autoregressive (GTWAR) model to further account for correlation among the
observations. The GTWAR assumes that all coefficients are spatially varying.
However, in reality, some covariates may have homogenous effects, while others
have heterogeneous effects across locations. The STAR-PLVCM is a parsimonious
special case of the GTWAR.

Estimating the STAR-PLVCM is challenging. There are suitable methods for
spatiotemporal time modeling, such as the kriging or kernel smoothing methods
(Miiller, Stadtmiiller and Tabnak (1997)), when sufficient information is avail-
able in both dimensions and the data are regularly distributed over a rectangular
domain. However, in many cases, the observations can be dense at some loca-
tions or time intervals, while sparse at others, and the shape of the domain may
not be regular or show gaps and holes; see Sangalli, Ramsay and Ramsay (2013)
and Wood, Bravington and Hedley (2008), for example. As pointed out in Wang
and Ranalli (2007) and Ramsay (2002), many traditional smoothing tools, such
as kriging and kernel smoothing, perform badly when used to smooth data over
such complex domains, because they smooth inappropriately across the bound-
ary features (referred to as the “leakage” problem in the literature). Thus, we
propose using penalized tensor product splines over triangular prismatic parti-
tions (TPST), which are the tensor products of bivariate splines and univariate
splines, to overcome these challenges. We prefer the TPST, owing to their (i)
computational efficiency, (ii) ability to handle sparse designs, and (iii) convenient
representations with flexible degrees and various smoothness. To estimate the
proposed model in (1.1), we use the profile maximum likelihood (ML) method,
which is a popular method for (semi)parametric SAR models. Under some reg-
ularity conditions, we obtain the asymptotically normal distribution of the esti-
mators of the constant coefficients in the linear part, and derive the convergence
rates of the estimators of the varying-coefficient functions.

The rest of the paper is organized as follows. In Section 2, we describe
our model, briefly review univariate splines and bivariate splines over triangu-
lations, and introduce the penalized estimation method. Section 3 provides the
asymptotic properties of the estimators of the linear coefficients and the coeffi-
cient functions. Section 4 discusses how to implement the proposed methodology
in practice. In Section 5, we conduct simulation studies to evaluate the finite-
sample performance of the proposed method. In Section 6, we apply our method
to model and forecast COVID-19 infection counts and death counts in all counties
in the United States. Concluding remarks are given in Section 7. Proofs of the
main results are deferred to Sections A, B, and C in the Supplementary Material.
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Additional simulation results and a description of related COVID-19 data set are
given in Section D of the Supplementary Material.

2. Methodology

Denote n-dimensional vectorsY = (Y1,...,Y,) ", € = (e1,...,€,) ", and po =
(o1, - - - pon) T, where pio; = Z mo+X[ Bo(Si1, Siz Ti), Mo = (M00s Mot - - -, Nopy )
and Bo = (Bo1,---,B0p,) - Let W = (w;;) be an n x n weight matrix. Model
(1.1) can be written in the following matrix form: Y = agWY + po + €. For
any value of «, denote E(a) = I, — aW. Then the equilibrium vector Y is
Y = {E(a)} (1o + €). Denote Y(a) = E(a)Y. For simplicity of notation,
we denote By = E(ap) in the rest of our paper. If the noise term € is assumed
to follow a Gaussian distribution with mean zero and variance oI, then the
log-likelihood function is

2 n n 2 =
Lu(a,m, B,07) = — log(27) — 5 log(0) + log(|&(a))
o (Y(@) i} {¥(0) — i}, (21)

where p = (p1,..., )", with u; = Z/ n + X B(Si1, Sia, Ti). We propose using
the profile log-likelihood approach to estimation the model. For each fixed a, we
maximize (2.1) with respect to  and B(s1, s2,t) to obtain the estimators 7(«)
and 3(81, s9,t; o), respectively, which are functions of a. Next, to estimate a, we
plug 7(a) and ,@(, -, ;) into (2.1), and obtain the estimators @ by maximizing
(2.1) with respect to .

2.1. Tensor-product splines over triangular prismatic partition

For the estimation of the coefficient functions fi(-), we assume fSi(-) are
defined over a 3D domain 2 x 7, where € is a polygon on the spatial plane, T
is an interval on the time dimension, and without loss of generality, we assume
T = [t1,t2] throughout the paper. We propose approximating Si(-) using the
tensor-product basis of bivariate splines and univariate splines over triangular
prismatic partitions, detailed below.

2.2. Triangular prismatic partitions

Over the time domain [t1,¢2], suppose there are N points {71,...,mn} sat-
isfying t1, = mp < m < -+ < 7§y < w41 = ta. Let I, = [m_1,m), for
b=1,...,N+1. Then, {I1,...,In41} is a partition of [t1,t2]. For the spatial di-

mension, we consider triangulation of a polygonal domain €2, which is an effective
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Figure 1. An example of a triangular prismatic partition.

tool to handle data distributed on irregular 2D regions with complex boundaries
and/or interior holes. Lindgren and Rue (2015), Mu, Wang and Wang (2018),
and Yu et al. (2020) use triangulation to partition the spatial domain into tri-
angles. In the following, we use 7 to denote a triangle, which is a convex hull
of three points not located in one line. A collection {7,...,7x} of K triangles
is called a triangulation of Q = UX |7, provided that if a pair of triangles in A
intersect, then their intersection is either a common vertex or a common edge.
Denote the size of A by |Al, which is the length of the longest edge of A.

Note that, given triangle 7, € A and interval Iy € T, e,p = 74 X Ip is
a triangular prism element. By triangular prism, we mean a prism with two
parallel triangular faces and three rectangular faces. The domain €2 x T can thus
be subdivided into the union of non-overlapping shape-regular triangular prism
elements, such that the nonempty intersection of any distinct pair of elements is
a single common vertex, edge, or face. In the following, let £ = {e,4,1 < a <
K,1 <b < N+1} be a face-to-face partition of the polyhedron € x T into prisms;
see Figure 1 for an example.

2.3. Tensor-product splines

We define the tensor-product splines over a triangular prismatic partition.

We first introduce the univariate splines over the time domain, which is
a piecewise polynomial smoothly connected at its knots. The interior points
{m,}évz | defined above can serve as the knots. For a fixed integer p, let ™ be a
knots vector of [¢1, t2] with N interior knots that satisfies w = {t; = m_, = -+ =
T <7 <+ <AN<TNgL] =" = TNt = ta2}. The polynomial splines of order
o0 are polynomial functions with (9 — 1)-degree (or less) on subintervals [mp, Tp11),
forb=0,...,N—1,and [rn, 7n+1], and have p—2 continuous derivatives globally.
Let U, () stand for the space of such polynomial splines. A basis of U,(7) can
be formed as B-splines, which are denoted as U(t) = {U1(t),...,Un1o(t)} "

Next, we introduce the bivariate splines over a triangulation /AA. For a nonneg-
ative integer 7, let C"(2) be the collection of all rth continuously differentiable
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functions over 2. Given a triangulation A, let Sj(A) = {( € C"(Q) : (| €
Py(7),7 € A} be a spline space of degree d and smoothness r over triangulation
A, where (|, is the polynomial piece of spline ¢ restricted on triangle 7, and Py is
the space of all polynomials of degree less than or equal to d. Let { By, }inem be the
set of Bernstein basis polynomials for S)(A) constructed in Lai and Schumaker
(2007), where M is the index set of the Bernstein basis functions, and the cardi-
nality of M, |[M]|, is K(d+1)(d+2)/2. Any function ((s) € S};(A), s € €, can be
expressed as ((s) = Y, v Bm(8)9m = B(s) "9, subject to HY = 0, where H is
the matrix that collects the smoothness conditions across all shared edges of trian-
gles, referred to as the constraint matrix. See Yu et al. (2020) for an example of H.
Denote the space of tensor-product splines over the triangular prismatic partition
£ by T(@dn) (&) = {Z(]]V:JEQ Y mem CamUq(t)Bm(s);Heq = 0 for ¢ = (cqm,m €
M)} Let {¢5(s1,82,0)}jer = {U1(t)Bi(s), Ur(t) Ba(s), - ., Un+o(t) By (s)}
be the tensor-product spline basis functions, where J is the index set of the
tensor-product spline basis and |J| = (N + )| M|. Then, any function ¢(s1, s2,t)
€ T(@47)(£) can be expressed as

o(s1,82,1) = Z Yj(s1,82,t)v; = P(s1, 32,t)T7, subject to Hy =0, (2.2)
JjeTJ

where « is the spline coefficient vector, and H = Iy, ® H is the matrix that

collects the smoothness conditions across all the shared faces of triangular prisms.

The above basis can be constructed easily using via the R package TPST (Yu and
Wang (2020)).

2.4. Penalized tensor-product spline estimator

To balance the goodness-of-fit and smoothness, we consider the tensor-product
spline approximation with a smoothness penalty. Let Agi1,Ap2 > 0 be the
penalty parameter, for Sx, K = 1,...,p2. Suppose, for now, « is known. Given
{(Si,T3,Z;, X;,Yi(a)) }'q, we consider the following regularized minimization
problem:

n

p1 D2 2
Wen,lei:%....,pl Z {Yi(o‘) - Z Zine — Z XikBr(Si, Ti)}
£=0 k=1

Br€T(@dn) (), k=1,...,p, =1

2 p2
+ Z Z )\k,mfm(ﬁk)a (2,3)

m=1 k=1
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where, for any trivariate function 8(s1, s2,t), f1(8) = [o.{(VZ58)* + (V3,6)%}
dsidsadt and fo(B) = fng(V%ﬁ)stldSth, and the tuning parameters A ,,, con-
trol the smoothness of the fitted coefficient functions. For a tensor-product spline
function > c 7 ¥ (s1, s2,t)v;, we have f1(3_,c 7 ¥5v;) = ~TPiy =~"MyePgy
and fo(32;c7 ¥57) = ~TPyy = v"Py @ Mp~, where “@” denotes the Kro-
necker product, My and Py are (N + p) x (N + p) matrices with (My )y =
J7Ug(t) Uy (t)dt and (Py)gqy = [7ViUy(t)ViUy(t)dt, and Mp and Pp are
M| x | M| matrices with

(MB)m,m/ :/ B (s1, 52) B (51, 52)ds1dsa,
Q

(PB)m,m =/ {V2 Bun(s1,52) V2 By (s1, 52)
Q

+ ViBm(sl, 82)V§23m/ (81, 82) }d$1d82.

We approximate the function Sk (s1, s2,t) by Z'fi'l (1, 52,t) 7k = P(s1, 52, )"
Yk, where v, = (Vkj,7 € T )T is the spline coefficient vector.

Using the tensor-product spline approximation in (2.2), solving the mini-
mization problem in (2.3) is approximately equivalent to solving the following
constrained minimization problem:

n

P P2 2
e D {K-(a) =3 Zime =Y Xaap(Ss, T»Tvk} ,
RIF el (=0 k=1

YRERITI, k=1,...,p, =1

P2 P2
+ 3 M1V Prve + Y A2y Payk, subject to Hay = 0, (2.4)
k=1 k=1

where v, = (V5,7 € j)T is the spline coefficient vector, for k = 1,...,p2. We can
remove the constraint using the QR decomposition H ' = (91 Qz)(%l), where
(Q1 Q9) is an orthogonal matrix, and R is an upper-triangle matrix. Simple
algebra shows that Q2 = Ini, ® Q2. We reparametrize using v, = Q20 for
some 6. Then H~, = 0 holds. Thus, the minimization problem in (2.4) is
converted to

n

P1 P2 2
min Y {Yi(oﬁ — > Zume - ZXikzp(Si,Ti)TQQak}
=0 k=1

JoeP1

O, k=1,...,py =1

P2 P2
+ 3 Ae16) Qi P1Qabk + D A28y Q) P2Qa6;. (2.5)
k=1 k=1
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* _ T
Let ¥*(s1, s2,t) = Q4 (51, s2,1), and denote

X ={Xi@9* (S5, Ti) Yoy, X'=(X1,...,Xn), Z'=(Z1,...,2Zy), D=(Z,Xy-).

(2.6)
Let Ay = diag(A1,1,A1,1,- -5 Apy,1), Ao = diag(A12, A2, .., Ap, 2), and
0 0
Py = . 2.7
A <0 A ®(QIP1Qs) + A ® (Q;P292)> 27)
For any a, denote £(a) = {n'(a),8] (a),..., pz( a)} . Solving the penalized

least squares problem in (2.5) yields the following estimator of &(«):

Ex(a) = {7ix (), 0] A(a),....0), \(0)}T = (D'D+Py)'D'Y(a). (28)

p2,A

Therefore, the TPST estimator of f(s1, s2,t) is Bk,A(Sl,SQ,t; a) = (s, s0,t) "
Yr.a(a), where Yy a(a) = Qobk (), for k=1,..., pa.

Plugging ﬁ;\r(a), Br.a(s1,82,t; ), for k= 1,...,py, into (2.1), we now con-
sider the maximization problem for estimating aq and 08:

Ly (0%, @) = =3 log(2m) — 7 log(0?) + log(|E(a)])
202{ (@) — fia(@)}T{Y(a) - fia(a)},

where ix (@) = T A Y (), with TIp A = D (DD + Py) " DT Setting the partial
derivative of the objective function on o2 to zero and solving the equation, we
have

" 1 ~ ~
X (@) = AY () - fin(a)} T {Y (@) - fia(@)}
1
= EY(a)T(In ~TIpa) " (I, - p )Y (a). (2.9)
The concentrated log-likelihood function of « is

Ln(a):—g{log(Qw)+l+log0A )} + log(|E()]). (2.10)

Maximizing the concentrated log-likelihood in (2.10), we obtain the maximum
likelihood estimator (MLE) of v, that is, )y = argmax,c.{—(n/2)log(c3 (o)) +
log(|2()|)}, where w is a compact parameter space. We consider w = [—1,1]

and, for any «a € w, E(a)!

exists, as stated in Assumption (A9) below. Finally,
we plug ap into (2 8) and (2.9) to obtain estimators of 770’ Bo, and of, that

is, Ia = MA(@A), Bra(s1,50,8) = Bra(s1,s0,t;dn), and 32 = 52 (@), respec-
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tively. In the rest of the paper, we suppress “A” in the estimators for notational
simplicity.

3. Asymptotic Properties

3.1. Properties of tensor-product splines over a triangular prismatic
partition

In this section, we first study the properties of tensor-product splines over a
triangular prismatic partition, which are necessary to establish the asymptotics of
the TPST estimators. We now state some regularity conditions on the partition
of the domain.

For any function f on a domain D, D = T, Q, Q x T, denote ||f|lccp =
supgep |f(x)| as the supremum norm of the function f over D. For any Lo-
integrable functions fi(x) and fa(x), for & € D, denote the Lo inner prod-
uct and the induced norm by (f1, fo);, p = [,ep fi(z)fo(z)dx and Hle%%D =
(f1, f1), p» respectively. For any function g(z), for * € D, for any direction
zq, let Vi g(x) be the vth-order derivative in the direction z, at the point .
For any nonnegative integer p, let CP(7) be the functional space consisting of
all univariate functions whose pth-order derivatives exist, and is continuous on
T. For any nonnegative integer ¢, let W»(Q) = {f : |flr000 < 00,0 <k <1}
be the standard Sobolev space of bivariate functions on the domain 2, where
flocon = maxiyj—y || Vi VL, f(51,59)]lc. Denote by W->(Q) @ CP(T) the
functional space defined on € x 7. If function g(s1,s2,t) € W»*(Q) @ CP(T),
it satisfies the following: (i) for 0 < a; + a2 < ¢ — 1 and any given (s1,s2) € €,
ViVEg(si,so,t) € CP(T); and (ii) for 0 < a3 < p and any given t € T,
Vig(si, s2,t) € WH(Q).

Note that under Assumptions (Al) and (A2), h and |A| reflect the number
of basis functions of the univariate component and the bivariate component,
respectively, that is, N < h~! and |[M| < |A|72. Lemma 1 illustrates how the
numbers of univariate spline basis functions and bivariate spline basis functions

affect the approximation power of the tensor-product splines.

Lemma 1. Under Assumptions (Al) and (A2) in the Supplementary Mate-
rial, for any function g(s1,s9,t) € WIHL(Q) @ Co~2(T), there exists a spline
function g* € T@a7)(E) such that for any 0 < ay +ay < d, 0 < a3z < o,

9898920 — ) g = OB Ao,

To work with splines, we need to choose a basis to represent the functions.

If a basis is suitable for numerical computations, functions with “small” function
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values should have “small” coefficients of the basis functions, and vice versa. A
basis with this property is said to be stable. Lemma 2 shows that the tensor-
product spline basis of spline space T(2%7)(£) exhibits this stability property;
that is, small perturbations of the spline coefficients can only lead to small per-
turbations in the spline function.

Lemma 2. Under Assumptions (A1)—(A2) in Section A of the Supplementary
Material, for any tensor-product spline function g(s1, s2,t) = Zjej Y581, s2,t)
e T(edr) (&), there exist positive constants Cy and Cy depending on o,d,r, such
that, Crh| AP Y e 792 < g1} qur < CobIAR Y e 2.

3.2. Asymptotic properties of the TPST estimators

Without loss of generality, in this section, we assume A\ = )\1 1= )\17p2
and A2 = Ag1 = -+ = Agyp,. Theorem 1 illustrates that a, 52 , 1, and B are
consistent estimators. See Sections B and C of the Supplementary Material for
detailed proofs.

Theorem 1. Suppose Assumptions (A1)—(A12) in Section A of the Supplemen—
tary Material hold, a, 03, o, and ﬁg are globally identifiable, and @, 52, 1, and
B are consistent estimators of ag, 03, Mo, and By, respectively.

Theorem 2 establishes the asymptotic normality of the proposed estimators
a, 62, and 7). Let k = (a,0%,n")T and Ko = (ag, 08,1y )". Let G = WE; .
Denote

1 1 1
Yiin = EE{U(GQ)} + EE{’“(GTG)} + WE(H(TGTH%W,AHXW,AGALO),
0

1 1
Y33 = QE(ZTHXW AHx,. AZ), o3, =0,

Yoon = —5
i 203’ ’ noj

1 1
Siom = So1n = —E{tr( )} Tisn = g1, = WE(ZTHggr,p*,AHXw*,AG“O)’
0
where Hy, . A is defined in (B.3) in the Supplementary Material. For any matrix
A, let (A);; be the (7,7)th entry of matrix A, and let A;. represent the ith row
of A. Denote

3 n
my — o,
Qll,n = %E {Z( } 3 ZE{ n HX¢* )i-GNO},
0 i=1
my — 304 m
Qoo = % Q330 =0, Qogp, = Q32 = W;GE(IIHXW,AZ),
0
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1
Qion =21 n = —5E {(m4 - 300)t1(G) + m31;LrHX¢*,AGPIO} ;
2n00
ms T
13,n 31,n 2””8 n ALKy, A

where m3 and my4 are the third and fourth moments of ¢;, respectively. Next, let

Y10 Y120 L13n Qi1 Q12,n Q1310
Yo =|2o1n X2, X3n | Qn=| Q21 Qo2 Doz
31,0 32,0 2330 Q31,0 32 N335

Theorem 2. Under Assumptions (A1)—(A12) in Section A of the Supplementary
Material, \/n(k — ko) — N(0, 27! 4+ 271Q271), where £ = lim, 00 By, and
Q = lim, 00 Q.

Theorem 2 illustrates the advantages of considering a model with spatiotem-
porally varying coefficients. If we ignore the spatiotemporal heterogeneity in the
model, less variation of the data will be explained, which leads to an estimator of
o3 larger than the true value, along with a larger variance of other parameters.

Theorem 3 provides the Lo convergence rate of the spline estimators Bk

Theorem 3. Under Assumptions (A1)—(A12) in Section A of the Supplementary
Material, for any k = 1,...,ps, the spline estimators By, are consistent and satisfy
that

1B = Bowllz. = Op (|11 + b 4+ Ay~ A| 2R

Fhon YA[TLRT2 4 n_1/2|A|_1h_1/2).

Remark 1. Let a = (20 + 1)(d 4+ 2) — 1. For |A] < n=9/% h =< n~-(@+D/a \) —
O(n'/?720/9) and Ay = O(n!'/>=2(d+1)/a) the tensor-penalized spline estimator
attains the Lo convergence rate neld+l)/a Specifically, if o = d+ 1, and we take
|A| = h = n~V2et3) and A\; < Ay = O(n(2e=1)/(4e+6)) then the Ly convergence

rate is n~¢/(2¢+3) which is the optimal convergence rate in Stone (1982).
4. Implementation

4.1. Triangular prismatic partition selection

To construct a triangular prismatic partition, we need to determine the num-
ber and locations of the knots for the univariate splines, and use triangulation for
the bivariate splines. Here, typical triangulation construction methods include
the Delaunay Triangulation, MATLAB code “Distmesh” (Persson and Strang
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(2004)), and R package “Triangulation” (Lai and Wang (2019)). Note that Re-
mark 1 suggests that |A| < n=¢/%, h =< n=(@1)/e where o > 1 is the order of the
univariate spline basis functions, and d > 1 is the degree of the bivariate spline
basis functions. Next, we explain how to select the knots and triangulation.
Knots selection. For the univariate splines, we consider the widely used
quadratic and cubic spline basis functions. For the locations of the knots, we
suggest placing knots on a grid of evenly spaced sample quantiles. For the number
of the knots, we take: N = min{|c;n'/2¢t3) | |ny/(4ps)|} + 1, where np is the
total number of observed time points, ¢; is a tuning parameter (typically, ¢; €
[1,5]), and |z| denotes the integer part of a real number x. The term n'/(2¢+3)
ensures the property stated in Remark 1, and the term np/(4ps2) guarantees that
there are at least four observations in each subinterval between two adjacent knots
to avoid getting (near) singular design matrices in smoothing. Specifically, if we
use the piecewise quadratic univariate spline (9 = 3) and the piecewise quadratic
bivariate spline (d = 2), we take N = min{|c;n'/?|, [ny/(4p2)]} + 1.
Triangulation selection. There are some core criteria that one can use when
selecting a triangulation. In general, a “good” triangulation refers to those with
well-shaped triangles, that is, no small angles and/or no obtuse angles. For a
fixed number of triangles, Lai and Schumaker (2007) and Yu et al. (2020) recom-
mend constructing the triangulation according to the “max-min” criterion, which
maximizes the minimum angle of all the angles of the triangles in the triangula-
tion. Monte Carlo experiments show that the triangulation should be fine enough
to capture the features of the function, but once this minimum necessary number
of triangles has been reached, further refining the triangulation usually has little
effect on the fitting process, but increases the computational burden. In practice,
if the boundary of the spatial domain is not complicated, we suggest taking the
number of triangles as the following: min{|cen? )| |ng/(4pe)]} + 1, for a
tuning parameter co, where ng is the number of observed spatial location points.
When ¢ = 3 and d = 2, we take K = min{|cn??], |ng/(4p2)]} + 1. For simple
spatial domains, we suggest taking co € [1,10]. However, ¢y can be taken from
10 to 20 for complex domains, such that the triangulation well approximates the

domain, and the penalty term can regularize the model complexity.

4.2. Roughness penalty selection

In the spatiotemporal problem, data are often generated with dependence.
However, when performing cross-validation (CV), these dependence structures
are usually ignored, which can lead to underestimation of the predictive error
(Roberts et al. (2017)). To tackle this problem, we adopt the block CV strategy in
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Roberts et al. (2017) and Valavi et al. (2019). The sample points are first divided
into spatiotemporal blocks using nonoverlapped and equal-volume cuboids. Then,
these blocks are randomly allocated to the CV folds. Choosing the optimal size
of the blocks is important; see Section D.1 in the Supplementary Material for a
detailed procedure.

4.3. Standard error formula for the estimates

To calculate the standard errors of the estimators of the parameters in the
STAR-PLVCM, we need to estimate the matrices ¥ and € in Theorem 2. Let
fi= i@, G = WE@™, iy = n" Y0, @, i = n' Y0, @ and € =
(€1,...,6n)" = Y (@) — fi. For any matrix or vector A with n rows, define a
linear operator Py such that PyA = IIx,. AA, where Ilx,. A is defined in (B.3).
We can estimate the elements in 3 and 2 as follows:

1 - 1 ~ra 1 A T A~ ~
Sin = t1(G) 4+ tr(G1G) + =5 {Gh -~ PA(GR)} {GR — PA(GR)},
- 1 = 1 &
Soon = ——, Bagn = —=(Z — PA\Z) ' (Z — PAZ), Z23., =0,
22, 954 33, naz( ML) ( AL) 23,
~ 1 A~ = A 1 P P
Yiop =201 = @tf(G% Y3 = X310 = @(Z — PAZ)"{Gfi — P\(Gf)},

~ My — 03 ~ 2m ~ =~
Qi = ——=— > (G)h+ =1 D (G)i(L, — Ix,,. 0)G,

' not — not pat
O T S s
Qoo n = VTR Q33 =0, Qo =32 = 3756 1n (Z — PAZ),
~ ~ 1 . ~ ~ ~ =~ N~
Rz = Dot = 55 { (71— 354)00(G) + 7ol {G — PA(GR)} }
913,71 — 9317774 — mll—(z - PAZ)

4.4. Specification of the weight matrices

It is crucial to choose proper weights for the STAR-PLVCM. A proper weight
matrix can substantially benefit the model by including both the spatial and
the temporal dependence of the data. Pace et al. (1998) considered the fol-
lowing weight matrices: ¢sWg + ¢7Wr and ¢sWg + ¢7Wr + ¢s7rWsWr +
drsWrWg, where Wy specifies the spatial relations among observations, W
specifies the temporal relations among observations, and ¢g, ¢1, ¢dsT, and ¢g are
parameters. In Huang, Wu and Barry (2010), the authors construct the weight
matrix based on the spatiotemporal distance d = \/d% + ad%, where dg is the
spatial distance between two points, dr is the temporal distance, and a is some
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parameter. In simulation study 2, similarly to Huang, Wu and Barry (2010), we
calculate the spatiotemporal distance with a = 1, construct the weight matrix
based on 10 nearest points as the neighborhood, and assign the same weights for
the neighbor points. In the application study, the weight matrix has the form
¢sWg + ¢7Wr. The parameters ¢g and ¢ are selected using CV. In practice,
we can use several different weight matrices and choose the one with the best
prediction performance.

5. Monte Carlo Study

In this section, we conduct two experiments to evaluate the finite-sample
performance of the proposed method using the recently developed R package
“STARX” (Yu, Wang and Wang (2020)). In both experiments, we randomly
sample ng points from the spatial domain €2, which is the modified horseshoe
domain in Sangalli, Ramsay and Ramsay (2013), and each point is observed at
a sequence of ny equally spaced time points over 7 = [0,1]. Both experiments
are conducted on a local computer with a 3.8 GHz 8-Core Intel Core i7 processor
and 32GB RAM. We conduct 100 Monte Carlo replications for each simulation
setting.

5.1. Simulation study 1

In this example, we randomly sample ng = 200 and 500 locations {S; =
(Si1,Si2),i =1,...,ng} from the spatial domain €2, and each point is observed at
a sequence of np = 50 and 100 equally spaced time points over 7 = [0, 1]. For the
observed space-time points {(S1,71), ..., (Sp, Tn) } ={(S1,1/n7),..., (Sns, 1/n7),
(S1,2/n7),...,(Sns, 1)}, we generate data from the following special case of the
STAR-PLVCM with cg =0 and 9 = 0: forany i =1,...,n,

Yi = Boo(Si1, Siz, Ti) + Bo1(Si1, Siz, Ti) Xi1 + Boz2(Si1, Siz, 1) Xig + €,  (5.1)

where Boo(s1,52,t) = 2mo(s1,52)(t — 0.5)%, mg(-,-) is a bivariate function given
in Sangalli, Ramsay and Ramsay (2013), Bo1(s1,s2,t) = 2cos(0.5s1 + s3)t, and
Bo2(s1,82,t) = 2sin{mwse(t — 0.5)}. Figure D.3 in the Supplementary Material
shows the sequences of spatial plots of the true coefficient functions evaluated
at time points ¢ = 0.0, 0.17, 0.50, 0.83, and 1.0. The covariates {X;;}}~, and
{Xi2}, are independently generated from the normal distribution N(0,1). The
error term ¢; is generated from N (0,03), with the noise level o9 being 1.0 or
2.0. Model (5.1) is the spatiotemporally varying-coefficient model in Huang, Wu
and Barry (2010) and Fotheringham, Crespo and Yao (2015), referred to as the
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Figure 2. Triangular prime partition &.

STVCM.

To implement our proposed method, we use TPST with o = 3, d = 2,
and r = 1 to estimate the coefficient functions. Figure 2 shows the triangular
prismatic partition £ that we use in this simulation study.

We compare our method with the GTWR method, which is commonly used
to fit STVCMs. This method is implemented by the R package GWmodel. The
mean integrated squared error (MISE) for 5y, Bo1, and Bp2 and the average
computing time are reported in Table 1. Figure D.1 (a)—(c) in the Supplementary
Material show box plots of the MISEs of the estimators of the varying coefficients.
The results indicate that our method significantly outperforms the GTWR in
terms of both estimation accuracy and computing speed. The MISEs of our
method are much lower than those of the GTWR. In addition, our proposed TPST
method is computationally efficient and easy to implement using the R package
TPST. The computing time of the GTWR increases dramatically as the sample
size grows, in contrast to our proposed method, which barely increases. Figure
D.3 in Supplementary Material shows the sequences of the estimated coefficient
functions for the TPST and GTWR methods based on a typical run with ng =
200, np = 50, and o9 = 1.0. It is clear that the estimated functions of the TPST
are very similar to the true functions. However, the GTWR estimates have some
obvious bias because they do not take the complex boundary into any account

and they smooth across the gap inappropriately.

5.2. Simulation study 2
We generate data from the following:
n
Y, = Z w;; Y5+ noo +n01Zi1 +n02Zin + Bor (Sit, Siz, Ti) Xin +€, i=1,...,n,
j=1

where ag = 0.5, oo = 5, no1 = 1, 102 = —1, Boi(s1, s2,) = 2mg(s1, 52)(t — 0.5)2,
and mg(+,-) is a bivariate function given in Sangalli, Ramsay and Ramsay (2013).
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Table 1. Mean integrated squared errors (MISEs) of the varying-coefficient estimators
and the average computing time in Simulation Study 1.

(ng,nr) oo  Method MISEg,, MISEg, MISEg, Time (seconds)
1.0 TPST 0.0095 0.0086 0.0103 418.5
(200,50 GTWR 0.0393 0.0428 0.0479 1919.0
’ 20 TPST 0.0169 0.0197 0.0168 408.1
GTWR  0.0745 0.0696 0.0865 1,959.7
1.0 TPST 0.0082 0.0067 0.0095 534.1
(200,100) GTWR 0.0284 0.0322 0.0367 4,321.1
’ 20 TPST 0.0136 0.0143 0.0143 528.9
GTWR  0.0543 0.0513 0.0619 4,201.0
10 TPST 0.0062 0.0060 0.0079 592.1
(500,50) GTWR  0.0248 0.0269 0.0283 5,486.3
’ 20 TPST 0.0103 0.0124 0.0112 597.9
GTWR  0.0477 0.0450 0.0548 5,700.9
1.0 ('}]Trlli’\i;l;{ 0.0070 0.0051 0.0082 884.1
(500,100) 20 TPST 0.0098 0.0092 0.0105 896.7
' GTWR - - - -

The “~” indicates that the result is unavailable owing to out of memory crashes.

See Figure D.4 in the Supplementary Material for a sequence of spatial plots of
the coefficient function [y; at different time points. The weight matrix W =
(wij) is a standardized row matrix; that is, w;; = 5ij/2j;£i dij, where §;; =
1 if (Sj1,8)2,T;) is among the 10 nearest neighbors of (S;1, Si2,T;), otherwise
dij = 0. The covariates Z;1, Z;2, and X;; are independently generated from
N(0,1). Furthermore, the error term ¢; is generated from N(0,02). In our
simulation below, we consider (ng,nr) = (100, 30), (100, 50), (200, 30), (200, 50),
and og = 0.5 and 1.0.

To examine the effect of the triangular prism, we consider the following six
different triangular prisms: &, ¢ = 1,...,6. For ¢ = 1,2,3, &; is constructed
based on A, with three equally spaced quantile interior knots; for ¢ = 4,5,6,
&, is constructed based on A,_3 with five equally spaced quantile interior knots.
Figure D.2 in the Supplementary Material shows the three triangulations A,
q¢=1,2,3.

We calculate the mean squared error (MSE) for the estimators of the constant
parameters, «ag, g, no¢, for £ = 0, 1, 2, and the MISE for the estimator of the
varying coefficient Sp; in the STAR-PLVCM. Table D.1 in the Supplementary
Material reports the MSE for the TPST estimators of the constant parameters
and the MISE of the TPST estimator of the varying-coefficient function. The
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results show that, at noise level o9 = 0.5, the MSE or MISE of the estimators
is nearly constant for all six triangular prisms, indicating that the number of
triangular prism elements is not very important when there is a fair amount
of noise. When the triangular prism is too fine, often there is a slight penalty
of statistical accuracy, especially when the sample size is small. Figure D.4 in
the Supplementary Material shows sequences of spatial plots of the estimated
coefficient functions using the TPST with different triangular prisms with ng =
100, np = 30, and o9 = 0.5. The plots are very similar. Table D.1 summarizes
the numerical results for these TPST estimators. The results indicate similar
estimation performance across different triangular prisms.

Next, we compare our method with the classical spatiotemporal autoregres-
sive linear model (STAR-LM), where all the coefficients are treated as constant.
We also consider the GTWAR model, in which all the coefficients are treated as
varying-coefficient functions. In Table 2, we use “LM,” “VCM,” and “PLVCM”
to distinguish three classes of spatiotemporal autoregressive models with different
types of coefficients. We use the R package spdep to fit the STAR-LM, and use
B\m as the estimator of By (s1, s2,t). The GTWAR is implemented in R, and we
apply 10-fold CV to select the proper bandwidth in the kernel smoothing proce-
dure. In Wu, Li and Huang (2014), the global parameter «g, 100, 701, and 12
are all considered as spatiotemporally varying functions. Therefore, in this simu-
lation example, the GTWAR estimators of ag, 1gg, Mo1, and g2 are the averages
of the estimated functions for 80 x 50 x 50 grid points over €2 x 7. In addition, to
illustrate the prediction capability, we conduct 10-fold CV for each Monte Carlo
sample and compare the CV mean squared prediction error (MSPE). The perfor-
mance of our method, the STAR-LM, and the GTWAR is reported in Table 2.
From Table 2, one can observe that both the estimation error and the prediction
error of our method are much lower than those of the STAR-LM and GTWAR.

Finally, we check the accuracy of the proposed standard error formula in
Section 4.3 for ay, ag , Moo, Mo1, and mp2. The results, shown in Table 3, indicate
that the averages or medians of the estimated standard errors are very close to the
true standard deviations, which verifies the accuracy of the proposed standard
error formula. In addition, the SEiqr are much smaller than those of the other
three SEs, which implies that the variance of the standard error calculated by
our formula is very small.
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Table 2. Mean squared error (MSE) and mean integrated squared error (MISE) of the
estimators of the constant (functional) parameters and 10-fold cross-validation mean
squared prediction error (MSPE) of Y in Simulation Study 2.

MSE (x10?) MISE(x10%) MSPE  Time
(ng,nr) o9 Model Method 5 :
ap o oo Mo1 Moz Bo1 Y (seconds)
LM STAR-LM 0.57 278.71 58.36 0.21 0.21 303.38 0.54 44.2
0.5 VCM GTWAR 0.76 — 75.24 0.16 0.16 4539 034 1,673.7
(100,30) PLVCM TPST(&;) 0.34  0.06 34.77 0.10 0.08 7.21 0.27 413.7
LM STAR-LM 1.11 277.26 113.84 0.49 0.45 303.75 1.29 42.7
1.0 VCM GTWAR 2.18 — 216.41 0.41 0.59 123.17 1.15 1,675.3
PLVCM TPST(&;) 1.04  1.08 106.18 0.39 0.33 19.09 1.03 429.4
LM  STAR-LM 0.38 275.58 37.65 0.11 0.09 303.11 0.53 154.4
0.5 VCM GTWAR 0.81 - 82.22 0.13 0.13 49.30 0.31 2,428.0
(100,50) PLVCM TPST(&;) 0.25  0.03  25.02 0.04 0.04 5.39  0.26 570.1
LM STAR-LM 0.73 275.80 73.75 0.22 0.20 303.40 1.29 155.1
1.0 VCM GTWAR 2.11 — 212.83 0.30 0.31 88.81 1.12 2,318.6
PLVCM TPST(&;) 0.76  0.55 76.68 0.16 0.16 14.10 1.02 585.2
LM  STAR-LM 0.36 280.24 36.34 0.08 0.09 30244  0.54 451.3
0.5 VCM GTWAR 0.54 - 54.13 0.14 0.10 50.05 0.32 2,554.2
(200,30) PLVCM TPST(&;) 0.18  0.03 18.51 0.03 0.05 4.44  0.26 874.3
LM STAR-LM 0.63 279.26 64.63 0.18 0.22 302.62 1.29 447.3
1.0 VCM GTWAR 1.42 — 143.90 0.41 0.31 67.27 1.12 2,700.2
PLVCM TPST(&) 059  0.51 59.54 0.13 0.18 11.71 1.02 874.7
LM  STAR-LM 0.18 275.79 17.36 0.05 0.04 30244 053 1,891.3
0.5 VCM GTWAR 0.24 — 24.25 0.06 0.05 39.80 0.30 4,267.6
(200,50) PLVCM TPST(&;) 0.08  0.02  8.44 0.03 0.02 3.25 0.26  2,296.8
LM  STAR-LM 0.34 273.90 33.58 0.14 0.10 302.53 1.28  1,838.6
1.0 VCM GTWAR 0.76 — 75.24 0.16 0.16 45.39 1.08 4,001.9
PLVCM TPST(&;) 0.29  0.29 29.50 0.13 0.09 8.20 1.02 2,346.1

6. An Empirical Application to COVID-19 Infection and Death Data

6.1. COVID-19 data

As an empirical illustration, we apply the proposed methodology to a study
of the spread of COVID-19 in the United States. For infectious diseases, the

transmission pattern depends on many factors and varies with location and time.

For example, in COVID-19 studies, the effect of control policy on the spread

of SAS-CoV-2 differs from county to county. Government agencies also adjust

the control measures at different stages of disease spread. The above obser-

vations motivate us to consider a spatiotemporally varying-coefficient model to
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Table 3. Standard error estimates of the constant parameters in Simulation Study 2.

(ng,nr) Parameter 90 = 0.5 o0 = 1.0
’ SEmc SEmean SEmedian SEIQR SEmC SEmean SEmedian SEIQR
o 0.018 0.018 0.018 0.0005 0.034 0.031 0.031 0.0008
o} 0.006  0.006 0.006 0.0002 0.025 0.025 0.025 0.0007
(100,30) 100 0.186  0.176 0.176 0.0052 0.346  0.309 0.310 0.0085
701 0.010  0.009 0.009 0.0002 0.020 0.018 0.018 0.0004
No2 0.009  0.009 0.009 0.0002 0.018 0.018 0.018 0.0004
Qg 0.015 0.014 0.014 0.0003 0.027  0.024 0.024 0.0005
o} 0.005  0.005 0.005 0.0001 0.019  0.020 0.020 0.0004
(100,50) 700 0.154  0.137 0.137 0.0038 0.274 0.241 0.241 0.0054
o1 0.007  0.007 0.007 0.0001 0.013 0.014 0.014 0.0002
702 0.006  0.007 0.007 0.0001 0.013 0.014 0.014 0.0003
o 0.014  0.013 0.013 0.0002 0.023  0.022 0.022 0.0004
o 0.005  0.005 0.005 0.0001 0.020 0.018 0.018 0.0004
(200,30) 100 0.138  0.125 0.125 0.0024 0.231  0.220 0.220 0.0039
No1 0.006  0.006 0.006 0.0001 0.012 0.013 0.013 0.0002
o2 0.007  0.006 0.006 0.0001 0.013 0.013 0.013 0.0002
o 0.010  0.010 0.010 0.0002 0.020 0.017 0.017 0.0003
ot 0.004  0.004 0.004 0.0001 0.015 0.014 0.014 0.0002
(200,50) 100 0.100  0.098 0.098 0.0019 0.204 0.172 0.172 0.0026
701 0.006  0.005 0.005 0.0001 0.011  0.010 0.010 0.0001
Moz 0.005  0.005 0.005 0.0001 0.010 0.010 0.010 0.0001

SEmec, the standard deviation of estimated parameters based on 100 Monte Carlo samples (can be viewed
as the true values for SE); SEmecan, mean of the estimated SE from 100 simulations; SEedian, median of
the estimated SE from 100 simulations; SEjqr, interquartile range of the estimated SE from 100 Monte
Carlo replications divided by 1.349.

capture the heterogeneity across space and time. In particular, we focus on the
spatiotemporal dynamics of the disease, accounting for mobility and other local
features. The data for the COVID-19 outbreak are collected and cleaned from a
combination of public data repositories. These data sets are introduced and their
sources are provided in Table D.2 in the Supplementary Material. We consider
five types of local features: socioeconomic status, healthcare infrastructure, de-
mographic characteristics, mobility, and a rural/urban factor. See Table D.3 in
the Supplementary Material for a detailed explanation of the covariates.

6.2. Estimation results

We collect the daily infection count data for 3,104 counties in the 48 contigu-
ous states and the District of Columbia from April 22 to June 21, 2020. In total,
we have 186,240 observations with space-time points {(Si,71),...,(Sn,Th)}},
where ng = 3,104 is the number of observed spatial points, np = 60 is the length
of the observed date, and S; = (5;1,S;2) is the latitude and longitude of the
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geographic center of a county. Denote Y; as the new confirmed cases at county
S; and date T;. We take log(Y; + 1) as the response variable, and consider the
following model for the infection count:

log(Y; +1) = alwijlog(Vj + 1) + 1§ + mAA; + ndHL; + n3PD; + n{Old;

j=1
+ 15 ISex; + g I Affluence; + M7 Dlsadvantage + 13 !Gini; + g lUrban; + nlONHIC
+ nl,EHPC; 4 nl, TBed! + nf;Mobility; + 8% (S;, T;) log(I; 4+ 1) + !, (6.1)

where I; is the number of active cases for county location S; and day 7T; — 1. We
also apply our proposed model and method to the number of fatal cases. Let D;
be the number of new deaths for county location S; and day T;. According to
CDC (2020), the median number of days from symptom onset to death is around
15 days. Therefore, in our death model, we consider the variable I/ D which is
the number of active cases for county location S; and day T; — 15. We consider
the following death model:

log(D; +1 Za wijlog(Dj + 1) + 0y +mAA; + ny’ HL; 4+ 15’ PD} + n{ Old;

+ 15 DSex; + Mg Afﬂuencei +n7 DDisadvantage; + 775 Gini; + 779D Urban; + U%NHICZ-
+ N EHPC; + nfy TBed} + nf3Mobility; + 87 (S;, T;) log(IP + 1) +eP. (6.2

In this empirical study, to create the the weight matrix W, we need to gen-
erate the spatial weight matrix Wg and the temporal weight matrix Wy, as
described in Section 4.4. We follow the idea in Nappi and Maury (2009) to con-
struct the spatial and temporal weight matrices Wg = (wjj;,5) and W = (wjj; 1),
respectively, as follows: for any 4,7 = 1,...,n, wijs = I(S; and S; are adjacent
counties, and T = T; — 1), wiyjr = I(1 < T; —T; < rg and S; = S;), where I(-)
is the indicator function and we take ro = 7. Similarly to Pace et al. (1998) and
Nappi and Maury (2009), we construct the weight matrix W = ¢\A7\7T+(1—¢)WS,
where 0 < ¢ < 1, and Ws and WT are the matrices obtained from W g and W,
respectively, by normalizing their row sums to one. The parameter ¢ is chosen
by partitioning the data into training and testing groups and evaluating its pre-
diction errors; ¢ = 0.8 in this application. We use the TPST with triangulation
presented in Figure D.5 in the Supplementary Material and three evenly dis-
tributed interior knots within 60 days to fit the infection model (6.1) and death
model (6.2). We also consider the STAR model with the same autoregressive
structure, but no additional predictors. Table 5 presents the estimated o and o2
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Table 4. Estimated linear coefficients (Est), estimated standard errors(SE), and the
corresponding p-values of county-level predictors in STAR-PLVCM.

Infection model Death model
Parameter
Est (x10%) SE (x10%)  p-value Est (x10%) SE (x102) p-value

Intercept —7.0952 0.4345 <1078 —2.9294 0.1746 < 10-8
AA 0.0938 0.2767 0.7347 0.5880 0.1164 4.38 x 1077
HL 1.0838 0.2640 4.03 x 107> 0.0546 0.1098 0.6188
Gini 2.5419 0.1754 <10°8 0.9575 0.0749 <10°8
Affluence 0.2953 0.2482 0.2341 0.0030 0.1057 0.9775
Disadvantage —0.9565 0.2702 4.00 x 10~* —0.1685 01143 0.1403
Urban 3.6082 0.2637 <10-8 0.2732 0.1123 1.50 x 10~2
NHIC 1.5829 0.2449 <10°8 0.6273 0.1039 <10°8
EHPC —0.0552 0.1542 0.7202 0.0302 0.0657 0.6462
Sex —0.1764 0.1598 0.2698 —0.0694 0.0682 03089
PD 1.7372 0.3310 1.54 x 1077 —0.0501 0.1375 0.7158
TBed 1.9764 0.1625 <10°8 0.4414 0.0693 <10-8
Oold —0.9226 0.1980 3.17 x 10~ 0.2782 00841 9.35 x 10~*
Mobility 1.7222 0.1625 <10°8 0.4249 0.0690 <10-8

and the corresponding 95% confidence intervals for both the infection and the
death models.

Table 4 reports the estimated coefficients and their corresponding p-values in
both models using the STAR-PLVCM, which reveals how the county-level predic-
tors influence the daily new cases. In the infection model, one can observe that
“HL,” “Gini,” “Urban,” “NHIC,” “PD,” “TBed,” and “Mobility” have signifi-
cantly positive effects on the number of daily new infection cases. This suggests
that when the population density is high, people have more contact, and thus
have more opportunities to spread the disease. The mobility data describe traffic
trends for each county. When people commute more, they are more likely to
get infected, and there are more daily new infection cases. In addition, “Disad-
vantage” and “Old” have negative effects on the number of daily new infection
cases. For the death model (6.2), our analysis shows that “AA,” “Gini,” “Ur-
ban,” “NHIC,” “TBed,” “Old,” and “Mobility” have positive effects on daily
new deaths. The risk of severe illness increases with age. Thus, communities
with larger proportions of older adults tend to have a larger number of daily new
deaths. However, at the same time, older adults have stricter precautions, which
reduce the number of new infection cases.

The fitted varying-coefficient functions of 3 in infection model (6.1) are
shown in Figure 3 (a)—(f) at six different days from April to June. At the end of
April, higher values are captured in regions such as the northeast and west coast
and the Midwestern states. After slightly slowing down in May, coronavirus
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Table 5. Estimated (Est) a and o2, estimated standard errors (SE), and the correspond-
ing 95% confidence intervals (CIs) of county-level predictors in STAR-PLVCM.

Model Paramete Infection model Death model
et TR SE 95% CI Est  SE 95% CI
@ 0.9107 0.0029 (0.9051, 0.9164)  0.9107 0.0033 (0.9042, 0.9172)
STAR-PLVCM o? 0.3626 0.0012 (0.3603, 0.3649)  0.0661 0.0002 (0.0656, 0.0665)
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Figure 3. Spatial plots of the estimated coefficient functions in infection model.

cases started to surge in June in states such as Arizona and Texas, which is also
reflected in the fitted varying-coefficient map. Figures D.6 (a)—(f) present the
estimated coefficient function of 57 for the death model (6.2). The numbers of
fatal cases in California and Arizona have been increasing at a faster pace than
in other states since April, which corresponds to a higher value in the varying-
coefficient function maps. In contrast, in the state of New York, the number of
new fatal cases decreased significantly after mid-April.

6.3. Prediction performance

We compare the proposed methods with the STAR, STAR-LM, and SIR
in terms of their short-term prediction performance. The STAR model does
not include county-level predictors. The STAR-LM assumes the ! and g” in
the Models (6.1) and (6.2) are constant. The SIR fits a Susceptible—lnfectious—
Recovered model for each county. For simplicity, we denote Il 4+n and I t 4p @8
the h-day-ahead prediction of the infected cases and deaths in county ¢ based
on the data before day ¢, while I; ;5 and I t 45, are the actual observed number
of cases. We use data collected from April 2 to June 23, 2020, to evaluate the

prediction performance. Each time, we fit the model with a set of ny = 60 days
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Table 6. Root mean squared prediction error (RMSPE) of STAR-PLVCM, STAR-LM,
STAR, and SIR models for COVID-19 data.

Model RMSPE (Infection) RMSPE (Death) Avg. Time(s)

R! R} R! RP RY RY
STAR-PLVCM  29.1966 54.0458 81.2411  1.1806 1.988 2.7109 2,630.89
STAR-LM 31.9166 60.0774 91.0084  1.1585 1.9275 2.6116 7.05
STAR 33.1791 62.8897 95.4139  1.1752 1.9652 2.6798 5.77
SIR 135.4645 156.9696 180.4252 - - - 4,682.32

of the county-level data for the estimation, and then the h-day-ahead predictions
are computed, where h = 1,2,3. The procedure is repeated 20 times. The root
mean squared prediction errors (RMSPEs) are calculated and presented in Table
6: for h=1,2,3 and T =20, R = T"' "7 {0t S (Lo — Ligon)?}/? and
R =T 0 {ng" S0 (T — Tho) Y2

As expected, the STAR-PLVCM outperforms the STAR, STAR-LM, and
SIR in terms of the infection model’s prediction accuracy. By adding county-
level predictors and considering spatiotemporally varying-coefficient functions,
the STAR-PLVCM is more flexible and can capture more local features. For the
death model, the STAR, STAR-LM, and STAR-PLVCM have similar prediction
performance. Compared with infected cases, deaths counts are more rare across
the United States. Many counties have zero daily new deaths. Therefore, a
flexible model with a more complex structure has a limited advantage under
this scenario. Figures D.7 (a)—(d) in the Supplementary Material show example
cases when the traditional SIR model does not work. Without integrating nearby
information, the county-level prediction of the SIR is sensitive to the observed
data of each county. For example, in Figures D.7 (b) and (d), there are jumps
in the cumulative infected cases, which lead to severe over-predictions in the
following seven days.

7. Conclusion

We have addressed several challenges arising from the inclusion of spatiotem-
poral effects in regression models. The first kind concerns the unrealistic assump-
tion of stationary or structural stability over time and space in the regression
modeling. The second addresses how to model and estimate spatiotemporal au-
tocorrelation and heterogeneity simultaneously. We propose a flexible class of
spatiotemporal autoregressive regression models that extends the ordinary spa-
tial autoregressive models to accommodate the spatiotemporal effects of some
covariates. We develop a profiled ML approach to estimate the constant param-
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eters and varying-coefficient functions in the proposed semiparametric models.
Our work is novel, and it also has merits in the following aspects. First, our
proposed method solves the problem of “leakage” across complex domains (i.e.,
the inappropriate linking of parts of the domain separated by physical barriers),
suffered by many conventional smoothing tools. Second, because our method
does not require the data to be evenly distributed or on regular-spaced grids, it
is generally applicable to many spatiotemporal data analysis problems. Finally,
compared with existing approaches, such as kriging and kernel approaches, our
proposed method is much more computationally efficient using the spline basis
expansion technique.

The Specification of the varying covariates is crucial in the modeling of the
STAR-PLVCM. Model misspecification could lead to biased regression coefficients
or reduce the estimation efficiency. A test against the parametric linear coefficient
will help to identify covariates with constant linear coefficients. We can use a
wild bootstrap to test whether the coefficient function Box(s,t) is constant by
following the idea in Ferraty, Keilegom and Vieu (2010). Such tests require
simulation-based validation and a theoretical guarantee, which we leave to future
work.

Owing to the existence of pre-symptomatic and asymptomatic COVID-19
cases and the potentially limited testing capacity, many infection cases may not
have been reported. Our study does not consider the under-reported issue in
order to simplify the illustration of the proposed methodology. Incorporating
this issue is left to future work.

Supplementary Material

In the Supplemental Material, we provide the technical assumptions and
proofs for the main theorems, additional results from the simulation studies, and
a description of the county-level predictors used in the study of the dynamics of
COVID-19.
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