
Remote Sensing of Environment 277 (2022) 113072

Available online 10 May 2022
0034-4257/© 2022 Elsevier Inc. All rights reserved.

Estimating 1 km gridded daily air temperature using a spatially varying 
coefficient model with sign preservation 

Tao Zhang a, Yuyu Zhou a,*, Li Wang b, Kaiguang Zhao c, Zhengyuan Zhu b 

a Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA 
b Department of Statistics, Iowa State University, Ames, IA 50011, USA 
c School of Environment and Natural Resources, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA   

A R T I C L E  I N F O   

Edited by Jing M. Chen  

Keywords: 
Air temperature 
Land surface temperature 
Spatially varying coefficient models 
Sign preservation 
MODIS 

A B S T R A C T   

Near-surface air temperature (Ta) is one of the key variables in a variety of studies such as hydrological 
modeling, assessment of heat waves, and energy modeling. Among existing methods, statistical algorithms are 
suitable for integrating auxiliary spatial data with station-based Ta data to produce gridded Ta over large areas. 
However, existing statistical algorithms (e.g., Geographically Weighted Regression (GWR)) cannot always 
correctly capture and preserve relationships between Ta and explanatory variables, which may increase un
certainties of relevant applications based on the estimated Ta with abnormal spatial patterns. This issue is mainly 
caused by the lack of enough observations due to the limited spatial coverage of weather stations, leading to 
abnormal relationships between Ta and explanatory variables. In order to address this issue, in this study, we 
introduced a new method named the Spatially Varying Coefficient Models with Sign Preservation (SVCM-SP) to 
estimate gridded Ta using gridded land surface temperature (LST) and elevation as explanatory variables with 
presetting positive and negative signs for coefficients, respectively. Using this method, first, we calculated the 
preset parameters of the bivariate spline surface. Second, we used the input data at weather stations and con
strained least squares regression to obtain the coefficient surface for both the explanatory variables (i.e., 
elevation and LST) and the intercept. Third, we calculated the gridded Ta using the 1 km gridded LST and 
elevation data, and the estimated spatially varying coefficient surfaces. We evaluated the model performance for 
estimating 1 km gridded daily maximum and minimum Ta (i.e., Tmax and Tmin) data in mainland China from 
2003 to 2016 using 10-fold cross-validation and compared its performance with the GWR model. The average 
root mean square error (RMSE) and mean absolute error (MAE) based on the SVCM-SP are 1.75 ◦C and 1.22 ◦C 
for Tmax, and 1.82 ◦C and 1.30 ◦C for Tmin, respectively. The SVCM-SP method showed better performance than 
the GWR in terms of accuracy, computing efficiency, and has more interpretable coefficients for explanatory 
variables to get more realistic spatial pattern of gridded Ta. More important, the sign preservation of the SVCM- 
SP method can mitigate the issue of abnormal relationships between Ta and explanatory variables in the 
traditional methods such as GWR, and therefore will contribute to future studies in developing better gridded air 
temperature or relevant data products.   

1. Introduction 

Air temperature (Ta) is an important meteorological parameter for a 
wide range of applications, such as public health (Lan et al., 2010; Zhang 
et al., 2019), disease vectors propagating (Lowen et al., 2007; Petrova 
and Russell, 2018; Wu et al., 2020), epidemic forecasting (Aggarwal 
et al., 2012; Connor et al., 1998), weather forecasting (Müller et al., 
2017; Smith et al., 1988), terrestrial hydrology and phenology (Lin 
et al., 2012; Ren et al., 2019; Wang et al., 2009), climate and 

environment change (Huang et al., 2019; Lamchin et al., 2018; Zhang 
et al., 2018a). Many methods and techniques exist to measure air tem
perature across space and over time. Most frequently, Ta is measured at 
2 m above the ground at isolated weather stations; despite the high- 
fidelity accuracies achieved, ground stations are rarely designed to 
capture detailed spatial variations of Ta over extensive geographic re
gions. Spatial interpolation, therefore, becomes essential to extend these 
isolated point measurements to continuous surface estimates. 

A wide array of interpolation techniques have been developed for 
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generating gridded Ta estimates, but the majority of these traditional 
spatial interpolation methods are generally suitable for applications 
with small heterogeneity of Ta and tend to be inaccurate in mountainous 
areas due to the limited spatial coverage of weather stations and the 
large heterogeneity of landscape. For example, three most widely used 
techniques, Inverse Distance Weighting (IDW), Spline, and Kriging 
interpolation, achieve good performances only when the densities of 
measurements are high and the heterogeneity of landscape is not large. 
Even complicated is the spatial heterogeneity of landscape forms and 
environmental conditions, all of which violate the assumption of many 
traditional interpolation methods (Shen et al., 2020; Shi et al., 2017). 
These problems have been widely recognized in previous studies that 
considered traditional interpolation techniques (Chai et al., 2011; 
Dodson and Marks, 1997; Li and Heap, 2011; Stahl et al., 2006), arguing 
for the need to develop new alternative methods. A common remedy is 
to further incorporate auxiliary spatial datasets to augment point-based 
station Ta measurements. 

Multiple gridded auxiliary datasets have been integrated with 
weather station data for high-resolution mapping of air temperature. 
Examples include elevation, latitude, distance from the ocean, distance 
to water, land surface temperature (LST), and normalized difference 
vegetation index (NDVI) (Li et al., 2018). These layers can be generally 
categorized into two types: static geographical datasets vs dynamic 
temporal layers. Of the static datasets, elevation is the most widely used 
variable because air temperature decreases with altitude; the physical 
relationship between air temperature and elevation is strong, especially 
over local regions, due to the adiabatic lapse processes (Heynen et al., 
2016; Zhang et al., 2021a; Zhu et al., 2017). Other static geographical 
variables, such as latitude and distance from the ocean, are linked to 
temperature trends over large regions, but they have limited predict
ability for local variations in Ta. Overall, due to their static nature, 
geographical variables cannot capture temporal changes of Ta associ
ated with changes in biophysical factors and human activities (e.g., land 
use change, vegetation growth, and building cooling and heating) (Li 
et al., 2018). In contrast, temporally-dynamic datasets can overcome the 
limitations of geographical datasets and have been combined with 
geographical datasets to estimate Ta (Chen et al., 2015a; Chen et al., 
2016; Cristóbal et al., 2008; Kloog et al., 2014; Li et al., 2018; Oyler 
et al., 2015; Shen et al., 2020). A major source of time-varying obser
vations over space is satellite remote sensing. Among the current satel
lite observations, LST is the most useful variable because of its strong 
positive relationship with Ta (Kim et al., 2021; Shen et al., 2020). NDVI 
has also been used for estimating gridded Ta (Cristóbal et al., 2008; Zhu 
et al., 2013). However, when both LST and NDVI were used for esti
mating Ta, the collinearity issue may occur as there are strong negative 
correlations between LST and NDVI. Despite their usefulness, the re
lationships between temporal satellite data and Ta typically vary across 
space and over time—a problem that also needs to be addressed by 
interpolation algorithms. 

Three groups of methods have been used to integrate auxiliary 
spatial data to grid station-based Ta data, including the Temperature- 
Vegetation Index (TVX) method, physical models, and statistical 
models. The TVX method assumes that the temperature of a fully 
vegetated canopy approximates near-surface Ta within the canopy so 
that the near-surface Ta can be estimated at the maximum NDVI point 
through a linear equation between NDVI and LST (Goward and Waring, 
1994; Nemani and Running, 1989; Zhu et al., 2013). Physically-based 
models rely on surface-air interactions, such as those based on energy 
balance and atmospheric vertical temperature gradient (Bisht and Bras, 
2010; Hou et al., 2013; Jocik, 2004; Sun et al., 2005; Zhu et al., 2017). 
The energy balance method was based on the energy balance equation, 
in which the net radiation is equal to the sum of the surface's sensible, 
soil, and latent heat fluxes, to estimate Ta based on LST and other cor
responding surface environmental parameters (Sun et al., 2005; Zhang 
et al., 2015). The atmosphere profile-based method was based on the 
adiabatic lapse rate (ALR) in the troposphere (Bisht and Bras, 2010; 

Jocik, 2004; Zhu et al., 2017). Statistical methods are generally based on 
correlative relationships between Ta and other variables, encompassing 
a host of regression methods. Examples include linear regression, 
spatial-temporal regression kriging, geographically weighted regression 
(GWR), Cubist, random forest, artificial neural network, and deep 
learning (Chen et al., 2015a; Hengl et al., 2012; Hrisko et al., 2020; Li 
and Zha, 2019; Li et al., 2018; Rao et al., 2019; Shen et al., 2020; Shi 
et al., 2017; Yoo et al., 2018). 

Of the major groups of methods explored before, statistical methods 
are most suitable for generating gridded Ta data with a high spatio
temporal resolution for a large spatial extent. Specifically, the TVX 
method is not suitable for estimating Ta when vegetation cover is low. 
Physically-based models are too restrictive in terms of model parameter 
input; in practice, biophysical parameters needed for the physical 
models are hard to be obtained (Mostovoy et al., 2006; Shen et al., 
2020). Atmosphere profile-based methods fail when temperature 
inversion occurs; another limitation is its relatively coarse spatial reso
lution (e.g., 5 km) (Zhu et al., 2017). In contrast, statistical methods are 
less restrictive in data requirements and they can be applied to extensive 
geographic regions (Noi et al., 2017; Shen et al., 2020; Xu et al., 2018). 

Despite the wide availability of statistical algorithms, a key draw
back remains that the existing algorithms cannot correctly capture and 
preserve relationships between Ta and explanatory variables. A mani
festation of this problem is that signs of coefficients for explanatory 
variables are not always stable and sometimes counter-intuitive. For 
example, Ta is supposed to negatively correlate with elevation. How
ever, the estimated air temperature based on existing statistical models, 
such as the GWR method, show positive relationships with elevation 
(Chen et al., 2015a; Li et al., 2018). Similar abnormal relationships 
between response variable and explanatory variables in regression 
methods can also be found in other applications such as spatial down
scaling of precipitation products (Ma et al., 2017; Xu et al., 2015; Zhang 
et al., 2018b), and estimating gridded PM2.5 (Yang et al., 2020; Zhang 
and Kondragunta, 2021). Another critical drawback with the existing 
methods is the computation needed for large-area applications. For 
example, in the GWR method, calculation of the distance between each 
grid to all meteorological stations is needed and the process is time- 
consuming, limiting its usability for large regions and datasets (Chen 
et al., 2015a; Li et al., 2018). 

Here, we reported and tested a class of Spatially Varying Coefficient 
Models with Sign Preservation (SVCM-SP) to estimate gridded Ta data. 
The SVCM-SP method was recently developed in the statistics commu
nity (Kim et al., 2021), but its potential has remained untapped for earth 
science applications. The SVCM-SP method was used to address the key 
limitations listed above in the existing statistical algorithms. The basic 
hypothesis of the SVCM-SP method is that the spatial variations of Ta 
can be expressed as a bivariate spline surface. More importantly, re
lationships between Ta and an explanatory variable are preset as posi
tive or negative, under the limitations of triangulations. We tested this 
algorithm to estimate 1 km gridded daily maximum and minimum Ta (i. 
e., Tmax and Tmin) using 10-fold cross-validation in mainland China 
and further compared its performance with the commonly used GWR 
method. The remaining of this paper describes in detail the study area 
and data (Section 2), the methodology of the SVCM-SP algorithm and 
accuracy assessment (Section 3), results and discussion (Section 4), and 
conclusions (Section 5). 

2. Study area and data 

2.1. Study area 

This study focused on mainland China (Fig. 1), because it is a 
geographically extensive area with complicated terrains and large 
elevation variations, which lead to strong variations of Ta in space and 
time (Chen et al., 2015a; Li and Zha, 2018; Yao et al., 2020). Meanwhile, 
there are hundreds of ground-based weather stations scattered across 
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the country (Fig. 1), providing high-quality Ta measurements to 
examine the robustness of the algorithm. Therefore, mainland China is 
an ideal region to test the general applicability of the algorithm for 
estimating 1 km resolution Ta using ground surface temperature and 
elevation data. 

2.2. Ground-based air temperature measurements 

Ground-based Ta measurements for estimating the gridded air tem
perature and evaluating the performance of our algorithm were ob
tained from the China Meteorological Data Service Centre (http://data. 
cma.cn/en). These ground-based data have been processed to ensure 
their high quality before sharing with the public. We chose to use the 
available daily maximum and minimum air temperature measurements 
from 2003 and 2016, which contain records of 793 ground weather 
stations across mainland China (Fig. 1). However, the records we ob
tained for the locations of these weather stations are not accurate 
enough due to the omitting of numeric at arc seconds (arcsec) for lati
tude and longitude. Therefore, we manually calibrated the locations of 
weather stations in the region with complicated terrains to reduce the 
uncertainties in the estimated air temperature data in this study (details 
in Appendix A of the supplement). 

2.3. Gap-filled land surface temperature data 

A seamless 1 km resolution daily (mid-daytime and mid-nighttime) 
land surface temperature (LST) dataset from 2003 to 2016 (Zhang 
et al., 2021b), which is available through Iowa State University's Data
Share platform (https://doi.org/10.25380/iastate.c.5078492), was 
used to estimate gridded Ta. This dataset was produced from MODIS 
daily LST product (MYD11A1/MOD11A1, from Terra and Aqua 

satellites) using a spatiotemporal gap-filling framework, with an accu
racy of Root Mean Square Error (RMSE) to be 1.88 ◦C and 1.33 ◦C, 
respectively for mid-daytime (1:30 pm) and mid-nighttime (1:30 am) at 
the global level (Zhang et al., 2022). These mid-daytime (1:30 pm) and 
mid-nighttime (1:30 am) LST data were used as explanatory variables 
for estimating gridded Tmax and Tmin, respectively, because LST and Ta 
of the corresponding time have the smallest time difference with high 
correlations. 

2.4. Elevation data 

The digital elevation model (DEM), used for gridded Ta estimation, is 
a multi-source based 30-arcsec (~1 km) spatial resolution global 
topography/bathymetry data (i.e., SRTM30_PLUS described by Becker 
et al. (2009)). The SRTM30_PLUS contains land topography and ocean 
bathymetry. Land elevation is mainly from the 30-arcsec resolution 
Shuttle Radar Topography Mission (SRTM30) topography (Hennig et al., 
2001; Rosen, 2000) within a latitude of ±55 degrees, GTOPO30 
topography (Danielson and Gesch, 2011) in the Arctic, and ICESat 
derived topography (Dimarzio et al., 2007) in Antarctica. 

3. Methodology 

3.1. Framework of the SVCM-SP algorithm 

The SVCM-SP algorithm was proposed by Kim et al. (2021). The 
value of response variable at a specific location was estimated based on 
the corresponding explanatory variables at the same location and their 
coefficients fitted by using the SVCM-SP algorithm (Eq. (1)). 

yi = βi0(ui, vi) +
∑m

j=1
βij(ui, vi) • xij(ui, vi) + εi (1) 

Fig. 1. Study area and locations of weather stations throughout mainland China. Ta from all the weather stations were used for accuracy assessment. Among them, 
four representative stations (i.e., Changsha, Miyun, Qingshuihe, and Bayinbuluke) were selected for a detailed analysis of the model performance such as daily 
residuals and coefficients of explanatory variables. Moreover, 23 typical urban stations (i.e., its 3 km surrounding is all urban regions) were selected for evaluating 
the accuracy of estimated Ta in urban regions. 
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where yi is the explanatory variable at the location i with the coordinate 
of (ui, vi), βij(ui,vi) is the coefficient for j-th (j = 1, …, m) explanatory 
variable xij(ui,vi) at the location i. βi0(ui,vi) is the corresponding intercept 
parameter and εi indicates the random error at the location i. In the 
SVCM-SP algorithm, unknown parameters βij(ui,vi) can be constrained to 
be positive or negative if the explanatory variables are positively or 
negatively correlated with Ta and no constraints if both positive and 
negative correlations exist. In other words, it is not necessary to use a 
positive or negative relationship between Ta and every explanatory 
variable for implementing the SVCM-SP method. We can also set no 
constraints on the coefficient of an explanatory variable using the 
SVCM-SP when there is no such positive/negative relationship. Specif
ically, βi0(ui,vi) has no constraints as it is an unknown intercept 
parameter. These unknown parameters were estimated by using a 
penalized bivariate spline method based on the triangulation technique 
under constraints (Kim et al., 2021). 

We applied the SVCM-SP algorithm to estimate daily gridded Ta and 
to build the 1 km spatial resolution Ta dataset in this study. The overall 
framework is presented in Fig. 2, wherein the input data include ground- 
based Ta measurements from weather stations, gap-filled 1 km resolu
tion daily MODIS-like LST, and 1 km resolution elevation data. We 
selected LST and elevation data as explanatory variables since they are 
consistently positively and negatively correlated with Ta, respectively, 
and are generally enough to be used for capturing the spatial variations 
of Ta. We used the data from weather stations to estimate the co
efficients of the equation between Ta and explanatory variables (i.e., 
elevation and LST) and the intercept for each 1 km grid. We then esti
mated the 1 km gridded Ta values based on the 1 km gridded elevation 
and LST data and the derived coefficients (Eq. (2)). 

Ta(i, j) = β0(i, j) + βelev(i, j) • Elev(i, j) + βlst(i, j) • LST(i, j) (2)  

where Ta(i, j) is the estimated Ta at the 1 km grid with a central 

coordinate of (i, j), Elev(i, j) and LST(i, j) are the values of elevation and 
LST at grid (i, j), and β0(i, j), βelev(i, j) and βlst(i, j) are the estimated 
intercept, coefficient values for elevation and LST at the grid (i, j) based 
on the SVCM-SP algorithm. Specifically, βelev(i, j) and βlst(i, j) are con
strained to be negative and positive, respectively, by the SVCM-SP al
gorithm (details in Appendix B.2 of the supplement). 

3.2. Implementing the SVCM-SP algorithm 

There are three steps for implementing the SVCM-SP algorithm 
(Fig. 3). First, we constructed a triangulation that covers the whole study 
area, and used it to compute the basis functions of the bivariate spline 
surface (Kim et al., 2021; Lai and Wang, 2013; Mu et al., 2018). The 
basis functions were determined by the triangularization, and the 
bivariate spline surface can be written as a linear combination of the 
spline basis functions. Spline basis functions for three sets of points were 
separately built across the study area using triangulations. The first set 
of points are the coordinates of centers for grids with a 0.25-degree 
resolution, which were used for controlling the basic shape of the 
bivariate spline surface to improve the computing efficiency. The second 
set of points are the coordinates of weather stations, which were used for 
fitting the unknown parameters of the bivariate spline surface in the 
second step. The third set of points are the coordinates of centers of 1 km 
grids, which are the locations of the output data. 

Second, we fitted the bivariate spline surface to obtain 1 km reso
lution coefficients of explanatory variables. We fitted the coefficient 
functions of the spline (i.e., spatially varying coefficient functions), 
which can control the specific shape of the bivariate spline surface, using 
sign-constrained least square regression based on the spline basis func
tions and the input data from weather stations. We then calculated the 
coefficients of explanatory variables (i.e., elevation and LST) at 1 km 
grids based on the same spatially varying coefficient functions. Third, 
we estimated 1 km gridded Ta based on 1 km gridded LST and DEM data, 

Fig. 2. Framework for estimating the gridded air temperature based on the SVCM-SP algorithm.  
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and their coefficients. 

3.3. Accuracy assessment 

We used 10-fold cross-validation to evaluate the accuracy of the 
SVCM-SP algorithm. That is, for each day, we randomly divided station 
observations into ten groups, and then used data from 9 groups to es
timate Ta for the remaining group. We then compared the estimated Ta 
with the actual observations of this remaining group to evaluate the 
accuracy of the estimated Ta. We repeated this evaluation ten times until 
observations from all groups were used. Finally, the accuracy for each 
year was calculated based on the mean value of daily accuracies for that 
year (results are shown in Table 1), and the accuracy for each station 
was calculated based on observations from all the days of a given year 
(results of the year 2010 are shown in Fig. 4). In addition, we used the 
widely used GWR as a benchmark and compared it with the SVCM-SP 
method using the same accuracy assessment strategy (i.e., 10-fold 
cross-validation). Moreover, we selected 23 typical urban stations 
(Fig. 1) to evaluate the model performance in urban regions. A typical 
urban station was identified if its 3 km surrounding is all urban regions 
based on the urban extent data (Zhou et al., 2018). 

In this study, we used the root mean square error (RMSE), mean 
absolute error (MAE), and coefficient of determination (R2) as the in
dicators of accuracy. 

4. Results and discussion 

4.1. Accuracy assessment using cross-validation 

The SVCM-SP algorithm performs well and shows higher accuracies 
than that of the GWR model according to the 10-fold cross-validation of 
estimated Ta from 2003 to 2016 (Tables 1 and 2). The estimated and 
observed Ta are strongly correlated with average R2 values of 0.93 and 
0.94 for Tmax and Tmin, respectively in the whole study area (Table 1). 
The average RMSE and MAE of the SVCM-SP method are 1.75 ◦C and 
1.22 ◦C for Tmax, and 1.82 ◦C and 1.30 ◦C for Tmin, respectively. The 
accuracies of the GWR model are lower than that of the SVCM-SP 
method with the average R2 of 0.90 and RMSE, MAE of 2.03 ◦C, 
1.40 ◦C for Tmax, and 0.93, 1.99 ◦C, 1.43 ◦C for Tmin, respectively. The 
estimated Ta based on the SVCM-SP in urban areas even performs better 
with lower RMSE and MAE values than those in the whole study area, 
possibly because most weather stations are in and around cities. 

The accuracy of estimated Ta using the SVCM-SP method varies in 
space with lower RMSE values for both Tmax and Tmin in Eastern China 
compared to Western China (i.e., the mountainous areas with sparse 
weather stations), which is similar to the results from the GWR (Fig. 4). 
This spatial variation is mainly due to two factors, i.e., topography and 
weather station density (Li et al., 2018). First, Ta may change dramat
ically with elevation due to complex topography. Meanwhile, the 

Fig. 3. Flow chart of the SVCM-SP algorithm. The spline basis function represents the preset parameters of bivariate spline surface; coefficient functions of the spline 
are the coefficients of spline basis functions for the fitted spline surface; explanatory variables include elevation and LST in this study. 

Table 1 
Ten-fold cross-validation of estimated Ta from 2003 to 2016 in mainland China using the SVCM-SP and GWR.  

Year Tmax Tmin 

RMSE (◦C) MAE (◦C) R2 RMSE (◦C) MAE (◦C) R2 

SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR 

2003 1.74 2.02 1.21 1.4 0.93 0.90 1.79 1.95 1.28 1.41 0.95 0.94 
2004 1.73 2.00 1.21 1.38 0.93 0.91 1.83 1.99 1.31 1.44 0.94 0.93 
2005 1.78 2.05 1.23 1.41 0.93 0.90 1.83 1.99 1.30 1.43 0.94 0.94 
2006 1.75 2.04 1.22 1.42 0.93 0.90 1.85 2.00 1.31 1.43 0.94 0.93 
2007 1.71 1.97 1.19 1.37 0.93 0.90 1.80 1.96 1.29 1.41 0.94 0.93 
2008 1.71 1.98 1.19 1.36 0.93 0.90 1.80 1.97 1.29 1.42 0.94 0.93 
2009 1.76 2.04 1.23 1.42 0.93 0.90 1.83 2.00 1.31 1.45 0.94 0.93 
2010 1.80 2.05 1.26 1.43 0.93 0.90 1.85 2.01 1.31 1.44 0.94 0.93 
2011 1.78 2.08 1.22 1.41 0.92 0.90 1.82 1.99 1.31 1.44 0.94 0.93 
2012 1.76 2.05 1.22 1.41 0.93 0.90 1.79 1.97 1.28 1.42 0.95 0.94 
2013 1.76 2.04 1.22 1.41 0.93 0.91 1.83 2.00 1.32 1.45 0.94 0.93 
2014 1.74 2.02 1.21 1.39 0.92 0.90 1.81 2.00 1.31 1.44 0.94 0.93 
2015 1.76 2.06 1.23 1.42 0.92 0.90 1.81 2.00 1.30 1.45 0.94 0.93 
2016 1.76 2.03 1.22 1.41 0.93 0.90 1.81 1.99 1.29 1.44 0.95 0.93 
Average 1.75 2.03 1.22 1.40 0.93 0.90 1.82 1.99 1.30 1.43 0.94 0.93  
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theoretically decreasing lapse rate of Ta, along with increasing elevation 
may also vary significantly in space and time (Heynen et al., 2016; 
Zhang et al., 2021a; Zhu et al., 2017) in the mountains, which leads to 
higher uncertainties in the estimated Ta in mountainous areas of 
Western China as compared with plain areas of Eastern China. Second, 
the density of weather stations in Western China is obviously sparser 
than that in Eastern China, which may lead to a weaker ability to capture 
the spatial variations of Ta in both methods. This has been reported in 
previous studies using the GWR model (Li et al., 2018). As shown in 
Fig. 4, the accuracy of estimated Ta using the SVCM-SP method tends to 
be higher than those of the GWR model since distinctly more stations 
with lower RMSE for the SVCM-SP than that of the GWR. The advantage 
of the SVCM-SP on accuracy is more obvious in Eastern China as 
compared with Western China, possibly due to the higher density of 
weather stations. 

The RMSE of the estimated Ta using the SVCM-SP method shows 
seasonal variations and is generally lower than that from the GWR 

model (Fig. 5). As shown in Fig. 5, the RMSEs of Tmax and Tmin using 
the SVCM-SP method show lower values in the Summer and higher 
values in the Winter, which is similar to those from the GWR model. This 
seasonal variation may be caused by plant phenology which leads to a 
closer relationship between Ta and LST in the Summer than that in the 
Winter (Benali et al., 2012; Cai et al., 2017; Lin et al., 2012). The esti
mated Tmax shows higher RMSE than that of Tmin in the Summer 
(Fig. 5), possibly due to the Tmax being less correlated with mid- 
daytime LST and elevation than the correlations of Tmin with mid- 
nighttime LST and elevation in the Summer across mainland China 
(Fig. D1). However, the estimated Tmax shows lower RMSE than that of 
Tmin in the Winter for both methods (Fig. 5). A possible reason is that 
the Tmin and mid-night LST are less correlated in local regions than the 
Tmax and mid-daytime LST due to the longer time lag for the former 
than that of the latter (Mostovoy et al., 2006; Vancutsem et al., 2010). 
Meanwhile, RMSE of Tmax and Tmin using the SVCM-SP method is al
ways lower than those estimated by the GWR model, for most of the days 

Fig. 4. Spatial patterns of RMSE for Tmax and Tmin at weather stations of mainland China in 2010.  

Table 2 
Accuracies of estimated Ta in urban stations based on ten-fold cross-validation from 2003 to 2016 in mainland China using the SVCM-SP and GWR.  

Year Tmax Tmin 

RMSE (◦C) MAE (◦C) R2 RMSE (◦C) MAE (◦C) R2 

SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR SVCM-SP GWR 

2003 1.09 1.3 0.83 0.97 0.94 0.92 1.12 1.25 0.86 0.97 0.96 0.95 
2004 1.06 1.21 0.81 0.91 0.94 0.91 1.15 1.30 0.88 1.01 0.95 0.94 
2005 1.14 1.26 0.87 0.96 0.92 0.90 1.08 1.23 0.83 0.95 0.95 0.94 
2006 1.13 1.30 0.86 0.99 0.92 0.90 1.12 1.28 0.86 0.98 0.95 0.94 
2007 1.06 1.19 0.81 0.91 0.93 0.91 1.14 1.33 0.88 1.02 0.95 0.94 
2008 1.07 1.21 0.82 0.92 0.93 0.91 1.15 1.37 0.88 1.04 0.96 0.94 
2009 1.14 1.32 0.87 0.99 0.92 0.89 1.18 1.42 0.90 1.08 0.95 0.94 
2010 1.16 1.29 0.88 0.96 0.92 0.90 1.21 1.39 0.91 1.05 0.94 0.93 
2011 1.09 1.22 0.83 0.94 0.93 0.90 1.24 1.46 0.94 1.11 0.94 0.93 
2012 1.06 1.24 0.81 0.94 0.93 0.90 1.14 1.37 0.88 1.05 0.95 0.94 
2013 1.14 1.30 0.87 0.99 0.93 0.91 1.25 1.44 0.96 1.10 0.95 0.94 
2014 1.09 1.24 0.85 0.94 0.92 0.90 1.26 1.45 0.97 1.11 0.95 0.94 
2015 1.18 1.28 0.89 0.96 0.91 0.89 1.24 1.45 0.94 1.11 0.95 0.94 
2016 1.09 1.26 0.84 0.96 0.92 0.90 1.21 1.45 0.93 1.11 0.95 0.94 
Average 1.11 1.26 0.85 0.95 0.93 0.90 1.18 1.37 0.90 1.05 0.95 0.94  
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in 2010 (Fig. 5). 
Accuracies of estimated Ta using the SVCM-SP can be affected by the 

quality of LST data to some extent. The RMSE and MAE of estimated 
Tmax increase with the missing ratio in original MODIS LST data from 
1.65 ◦C to 1.94 ◦C and 1.11 ◦C to 1.37 ◦C, respectively (Fig. 5 and 
Table F1). Accuracies of estimated Tmin are strongly affected by sea
sonal factors due to the distinct seasonal trend in RMSE of Tmin but 
impacts from missing ratios in original MODIS LST data are minor 
(Fig. 5). A possible reason is that clouds can lead to fluctuations in the 
relationship between daytime LST and Tmax (i.e., the lower difference 
between LST and Ta with clouds than that of clear sky condition in the 
daytime) by reducing solar radiation, while clouds might lead to smaller 
variations of correlation between nighttime LST and Tmin (i.e., the 
differences between LST and Ta are small for both cloud and clear sky 
conditions in nighttime) (Good, 2016). Overall, higher missing ratios in 
original MODIS LST (mainly caused by clouds) can result in weaker 
relationships between the gap-filled daytime LST (clear-sky) and Tmax. 

The estimated Ta using the SVCM-SP method illustrates comparable 
or higher accuracies than those from the GWR model at example 
weather stations (Fig. 6). Four representative weather stations in 
different geographical regions (i.e., Changsha, Miyun, Qingshuihe, and 
Bayinbuluke, in the South, North, Qinghai-Tibetan, and Northwest re
gions, respectively) spreading across mainland China (Fig. 1) were 
selected to explore the temporal pattern of residuals, i.e., differences 
between ground-based measurements and estimated Ta. The results 
illustrated that residuals of estimated Tmax for the SVCM-SP and GWR 
methods show similar temporal patterns, and the residuals of the former 
show lower absolute values than those of the latter for several periods, 
especially at Bayinbuluke in the Winter, indicating higher accuracies 
using the SVCM-SP method than those derived from the GWR model. 
Moreover, the residuals show seasonal variations at Bayinbuluke (ab
solute values are small in the Summer and large in the Winter), which is 
different from other stations. One possible reason is the lack of enough 
weather stations, which leads to an overestimation of Ta by 

extrapolating the fitted SVCM-SP (and GWR) model. The Bayinbuluke 
site is in the intermontane basin of the Tianshan Mountains with 
different climate characteristics (e.g., larger snow volume and higher 
snow frequency) and higher elevation compared to neighboring sites 
(out of the Tianshan Mountains), leading to lower temperature 
compared to other sites, especially in the Winter. When the SVCM-SP 
model was spatially extrapolated to regions where LST and elevation 
are out of the corresponding numeric ranges in the fitted SVCM-SP 
model, it might lead to biases in the estimated Ta since the relation
ship between Ta and LST/elevation might be different from that was 
estimated in the SVCM-SP model. Therefore, most of the residuals are 
negative (overestimation of Ta based on observed Ta from surrounding 
sites with higher values) and the accuracy of the estimate Ta at the 
Bayinbuluke site based on the neighboring sites is lower in the Winter 
compared to the Summer. 

The SVCM-SP algorithm is robust because the accuracies of esti
mated Ta using the SVCM-SP were always higher than those of the GWR 
with or without additional explanatory variables (i.e., NDVI and/or 
distance to water body) (Tables B1 and B2). Moreover, the SVCM-SP 
model using LST and elevation only (Eq. (2)) and the model with 
additional explanatory variables (Eqs. (B2)–(B4)) show similar perfor
mance (details in Appendix B of the supplement). This is possibly 
because elevation and LST are always physically negatively and posi
tively correlated with Ta in space and time, which can capture the 
majority of spatial and temporal variances in Ta. For example, NDVI is 
generally correlated with LST. The relationships between Ta and other 
explanatory variables (i.e., NDVI and distance to water body) are more 
complicated to be properly expressed by using the SVCM-SP to improve 
the accuracy of estimated Ta. The SVCM-SP model using additional 
NDVI and distance to water body with preserved negative and positive 
signs of coefficients, respectively, shows better performance than that 
without sign preservations, but shows similar performance with the 
SVCM-SP using only LST and elevation with preserved signs for co
efficients (Table B1). Due to the similar performance, we only included 

Fig. 5. Daily RMSE of Tmax and Tmin using the SVCM-SP (blue line) and GWR (red line) methods and their differences (green line), and relevant missing ratios in 
original MODIS LST, across mainland China in 2010. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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LST and elevation in our SVCM-SP model in terms of its simplicity and 
transferability. 

Generally, the accuracy of the estimated Ta dataset can meet the 
needs of most applications (e.g., urban heat island effects and hydro
logical modeling) over mainland China. In the previous studies in China, 
Fang et al. (2021) estimated 0.1◦ daily Ta with the RMSE ranges from 
0.78 to 2.09 ◦C based on ground observations from 699 weather stations; 
Chen et al. (2021) estimated 1 km resolution daily mean Ta over 
mainland China with the RMSE ranges from 1.615 to 1.957 K based on 
ground observations from 2384 weather stations. Our study used Ta 
observations from 793 weather stations and obtained 1 km resolution 
daily Tmax and Tmin with the RMSE ranges from 1.71 to 1.85 ◦C 
(Table 1). Considering the higher spatiotemporal resolution and the 
limited number of weather stations we used in this study, the accuracy is 
reasonable and acceptable. Specifically, there are some locations (e.g., 
the Bayinbuluke site) with low accuracies because of the low density of 
weather stations and the large variations of environmental conditions, 
which is consistent with the results in the study by Chen et al. (2021). 
When we estimated the gridded air temperature data, observations from 
all stations were used and the uncertainties in the estimated air tem
perature data should be lower compared to the evaluation. 

4.2. Coefficients of explanatory variables 

The SVCM-SP fitted model can consistently and correctly preserve 
the negative relationship between Ta and elevation as indicated by the 
negative coefficient of elevation across time (Fig. 7). As shown in Fig. 7, 
the coefficients of elevation at four representative weather stations using 
the SVCM-SP method are consistently negative. However, the co
efficients of elevation using the GWR model are consistently negative at 
Qingshuihe, but they are positive for Changsha, Miyun, and Bayinbuluke 
stations on some days. According to the adiabatic lapse rate, Ta gener
ally decreases along with the increase of elevation, i.e., a negative 
relationship (Heynen et al., 2016; Zhang et al., 2021a; Zhu et al., 2017). 
However, the GWR model cannot consistently preserve the negative 
relationship between Ta and elevation. 

The SVCM-SP fitted model can consistently and correctly preserve 
the positive relationship between Ta and LST as indicated by the positive 
coefficient of LST across time (Fig. 8). As shown in Fig. 8, the coefficients 
of LST at four representative weather stations using the SVCM-SP 
method are consistently positive. However, the coefficients of LST 
using the GWR model are positive or negative for different periods in the 
four stations. Ta generally increases along with the increase of LST, i.e., 

Fig. 6. Daily residuals of Tmax using the SVCM-SP (blue line) and the GWR (red line) methods at four representative stations in 2010. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a positive relationship (Kim et al., 2021; Shen et al., 2020). However, the 
GWR model cannot consistently preserve the positive relationship be
tween Ta and LST. Specifically, coefficients of LST are close to zero on 
some days, reflecting that the effect of LST on Ta is weak compared with 
that of elevation, possibly due to the correlations between LST and Ta at 
surrounding stations are not strong on these days. 

The SVCM-SP model can consistently preserve the negative rela
tionship between Ta and elevation and the positive relationship between 
Ta and LST across space (Figs. 9 and 10). As shown in the example day, 
coefficients for elevation are consistently negative in estimating Tmax 
and Tmin (Fig. 9). The largest absolute values for coefficients of eleva
tion, which indicates the strongest impacts of elevation on Ta, mainly 
occurred in south China, Tibetan Plateau, and Tianshan Mountains, 
which are mainly covered with mountains. It means that elevation is one 
of the key factors influencing the estimated Ta using the SVCM-SP model 
in mountainous regions. Coefficients for LST are consistently positive in 
estimating Tmax and Tmin (Fig. 9). The largest values for coefficients of 
LST, which indicate the strongest impacts of LST on Ta, mainly occurred 
in Eastern China (for Tmax) and western Gobi deserts (for Tmax and 
Tmin), where the change of elevation is small. It means that the LST is 
the main factor influencing the estimated Ta using the SVCM-SP method 

for these regions without the large effects of elevation. On the contrary, 
the GWR model cannot consistently and spatially preserve the correct 
relationship between Ta and explanatory variables (i.e., elevation and 
LST), as reported in the literature (Chen et al., 2015a). The consistently 
and correctly preserved relationships between Ta with LST and eleva
tion using the SVCM-SP method are shown in detail in representative 
cities (Fig. 10). However, in the GWR method, the βLST values are 
negative in Nanjing, Wuhan, and Hefei, contributing to opposite spatial 
patterns between estimated Ta (cold island) and LST (heat island) in 
urban areas (Section 4.4). 

4.3. Computing efficiency 

The computing efficiency of the SVCM-SP is significantly higher 
compared to the GWR model (Table 3). We compared the computing 
time of the SVCM-SP and GWR methods in a test region (360,000 grids of 
1 km resolution) using R codes. We also tested the GWR module in 
ArcGIS 10.7 software for the computing time of GWR in mainland China 
(7.65 MODIS tiles, each tile contains 1200 × 1200 grids of 1 km reso
lution). The computing time using R codes in the test region was con
verted for mainland China based on the area proportion between the two 

Fig. 7. Coefficients of elevation in estimating Tmax using the SVCM-SP (blue line) and the GWR (red line) methods at four representative stations in 2010. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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regions (i.e., 1:30.6). Results illustrate that the SVCM-SP method needed 
5.6 min and 20.4 h for estimating Ta for one day and one year (365 
days), respectively, for mainland China, while the GWR (R codes) 
needed 8.3 h and 126.8 days, about 89 and 149 times slower than that of 
the SVCM-SP method. The GWR module in ArcGIS 10.7 needed 79.1 min 
and 20.0 days for estimating Ta for one day and one year, respectively, 
about 14 and 23.5 times slower than that of the SVCM-SP method. The 
improvement of the computing efficiency for the SVCM-SP method is 
larger for the whole year compared to a single day because the 
computing time for the GWR method linearly increases with the number 
of days. The main reason for the high computing efficiency of the SVCM- 
SP method is that its parameters can be pre-calculated only once for a 
specific region. On the contrary, the parameters of the GWR model need 
to be calculated for each day (e.g., the best bandwidth) and each grid (e. 
g., the distances between the target grid and its neighboring stations 
within a specific best bandwidth), leading to a time-intensive computing 
process. 

4.4. Spatial pattern of air temperature 

The estimated air temperature data show significant spatial 

variations in mainland China (Fig. 11). Taking estimated Ta in one 
Summer day as an example, both Tmax and Tmin decrease from 
southeast to northwest region, i.e., the characteristics of air temperature 
change with latitude and elevation (Fig. 11). Ta in the Tibetan Plateau 
and the Tianshan Mountains are the lowest because the average eleva
tion of these regions exceeds 4000 m (Chen et al., 2015a; Li and Zha, 
2018; Yao et al., 2020). Ta in the northwestern China (e.g., Tarim Basin) 
shows the highest values since these regions are covered with Gobi de
serts (Yao et al., 2020). 

The estimated Ta using the SVCM-SP method shows a reasonable 
spatial pattern in mountainous regions, while there are issues with the 
GWR model (Fig. 12). Results of an example day in eastern Tibetan 
(mountainous region) illustrated that the estimated Ta using the SVCM- 
SP method were higher in the valleys than those on the surrounding 
hillsides, but an opposite spatial pattern was found in part of the 
example region in the estimate Ta using the GWR model (Fig. 12). Such 
abnormal spatial pattern using the GWR model tends to occur in the 
regions such as mountains with complex topography changes and 
sparsely distributed ground stations (Chen et al., 2015a), highlighting 
the difficulty of the GWR in capturing the accurate spatial variations of 
Ta in such regions also without adequate weather stations. A reliable 

Fig. 8. Coefficients of LST in estimating Tmax using the SVCM-SP (blue line) and the GWR (red line) methods, for the four stations in 2010. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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method such as the SVCM-SP can mitigate such limitations in estimating 
Ta in mountainous regions. 

The estimated Ta using the SVCM-SP method can well represent 
urban heat island (UHI) effect (i.e., higher temperature in urban region 
than that of the surrounding rural area) (Li et al., 2019; Zhou et al., 
2019b), while the estimated Ta using the GWR method shows a different 
pattern in some cases (Fig. 13). The estimated Ta using the GWR method 
shows UHI effect in Beijing, Shijiazhuang, and Zhengzhou, but it is lower 
in urban areas than those of the surrounding rural areas in Nanjing, 
Wuhan, and Hefei in the example day, although they are located at 
plains with small elevation variations. These abnormal spatial patterns 
of estimated Ta using the GWR method might lead to uncertainties for 
quantifying canopy UHI intensity, even though they may only occur on 
specific days in a few of the cities. Overall, the estimated Ta using the 
SVCM-SP method can provide more reasonable Ta data for urban ther
mal environment studies compared to the GWR model due to the reason 
discussed in Section 4.2, i.e., the former has the advantage of consis
tently and correctly preserved relationships between Ta with LST and 
elevation (expressed by signs of coefficients for LST and elevation in Eq. 
(2)) compare to the latter (Fig. 10). This is consistent with the quanti
tative results in Table 2, i.e., higher accuracies in urban regions using the 
SVCM-SP than those of the GWR model. 

The above-mentioned issues in the estimated Ta using the GWR 
model are possibly caused by the limited spatial coverage of weather 
stations (i.e., mainly in plains or river valleys, and sparse in moun
tainous regions), leading to abnormal relationships between Ta and 
explanatory variables. Although Ta is positively correlated with LST 
(Kim et al., 2021; Shen et al., 2020) and negatively correlated with 
elevation (Heynen et al., 2016; Zhang et al., 2021a; Zhu et al., 2017), 
these relationships can only preserve if other factors such as latitudes do 
not have large impacts on Ta in neighboring weather stations (e.g., 
winds, clouds, snow, and land cover types) (Cai et al., 2017; Good, 
2016). In Fig. 12, Ta from weather stations at plains or valleys show an 

increasing trend with elevation and this trend was applied to sites 
without weather stations using the GWR model. Similarly, in Fig. 13, the 
abnormal spatial patterns of Ta in Nanjing, Wuhan, and Hefei are mainly 
caused by the negative relationship between Ta and LST estimated using 
the GWR model. However, the SVCM-SP algorithm does not have this 
issue by borrowing features from other sites, i.e., implementing the 
penalized least squares method with smoothness and inequality con
straints based on the sign preservation (Kim et al., 2021). 

The spatial pattern of Ta using the SVCM-SP and GWR models might 
be different at the local scales in some limited days (Figs. 12 and 13) but 
did not lead to large difference in accuracy (Table 1), for the following 
possible two reasons. First, the accuracy in Table 1 is an annual average 
from daily accuracies for the entire region (mainland China), while these 
abnormal spatial patterns of Ta due to abnormal signs of coefficients for 
explanatory variables using the GWR only account for a small ratio 
(Table E1). Second, the weather stations we used cannot capture all the 
spatial variations of estimated Ta at the local scale because they are 
mainly located in flat regions such as plains and river basins, and a 
limited number of weather stations were used for accuracy assessment. 
For example, the results in Fig. 12 generated from the GWR model show 
that “Ta at higher altitudes are higher than those at lower altitudes” on 
mountain slopes and cannot be captured by weather stations (Fig. 12). 
Therefore, the spatial variations of Ta were corrected but the reported 
accuracies of estimated Ta were not largely improved using the SVCM- 
SP compared to the GWR model (Fig. 4). That is also the reason to 
show the advantages of the SVCM-SP by illustrating the spatial differ
ences of estimated Ta using the two models in Figs. 12 and 13. 

Our results using the GWR model are consistent with Chen et al. 
(2015a), as indicated in their Fig. 7, showing the coefficients of eleva
tion “Coefficients b(u)” for the GWR are positive mainly in the northwest 
of mainland China (including the Qilian mountains and Tianshan 
Mountains), indicating a positive relationship between Ta and elevation. 
Unfortunately, Chen et al. (2015a) did not show the estimated Ta of 

Fig. 9. Spatial patterns for standardized regression coefficients of elevation (βelev) and LST (βLST) in mainland China in an example day of 200 in 2010.  
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specific days at the local scale, and the monthly Ta across mainland 
China in Fig. 2 of their paper did not show the issue of the GWR that was 
found in this study. 

4.5. Potential applications of the SVCM-SP algorithm 

The SVCM-SP method offers great potentials in relevant applications 
of existing statistical methods. Taking the GWR method as an example, it 
is also widely used to estimate gridded variables such as PM10 (You 
et al., 2015), PM2.5 (Hu et al., 2013; Ma et al., 2014; Yang et al., 2020; 
Zhang and Kondragunta, 2021), and population density (Wang et al., 
2018), to spatially downscale remote sensing products such as precipi
tation (Chen et al., 2015b; Xu et al., 2015), soil moisture (Wen et al., 
2020), and LST (Luo et al., 2021), and to explore relationships between 
influential factors of items such as land cover changes (Pineda Jaimes 

et al., 2010; Ren et al., 2020), PM2.5 (Liu et al., 2020; Wang and Wang, 
2020; Zhou et al., 2019a), and COVID-19 incidence (Han et al., 2021; 
Mollalo et al., 2020). The physical unrealistic relationships between 
response variables and their explanatory variables using the GWR model 
have also been found in these applications such as the spatial down
scaling of precipitation (Xu et al., 2015; Zhang et al., 2018b) and PM2.5 
estimation (Yang et al., 2020; Zhang and Kondragunta, 2021). Taking 
spatial downscaling of precipitation as an example, precipitation at the 
hill slope increases with elevation until reaching a maximum precipi
tation altitude (Barry, 2008; Zhang et al., 2018b); however, the 
commonly used statistical models such as the GWR and the Cubist 
methods cannot well capture this relationship below the maximum 
precipitation altitude (Ma et al., 2017; Xu et al., 2015; Zhang et al., 
2018b). The SVCM-SP method can possibly be used for spatial down
scaling of precipitation to obtain precipitation data with a high spatial 
resolution (e.g., 1 km) below the maximum precipitation altitude. 
Similarly, the SVCM-SP method can also be used to obtain better esti
mations of variables such as PM2.5 and more accurate relationships for 
analyzing driving factors of variables such as land cover changes. 

4.6. Uncertainties and future work 

Despite the improved accuracies in estimating Ta using the SVCM-SP 
method, there are still uncertainties in the estimated Ta, depending on 
the availability of station observations, the accuracy of the gap-filled 
LST, and the relationship between Ta with elevation and LST. First, 
the estimated Ta in the Western China, especially in the mountainous 

Fig. 10. Spatial pattern for standardized regression coefficients of elevation (βelev) and LST (βLST) for estimating Tmax using the SVCM-SP and GWR methods in 
representative cities on the day of 194 in 2010. Red lines are boundaries between regions with positive and negative values. Black lines are boundaries of urban 
regions extracted from Li et al. (2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Estimated computing time for estimating Ta for the entire area of mainland 
China (7.65 MODIS tiles) using the SVCM-SP and GWR methods.   

SVCM-SP (R 
code) 

GWR (R code) GWR (ArcGIS 10.7) 

One day 336 s (5.6 min) 29,990 s (8.3 h) 4744 s (79.1 min) 
One 

year 
73,657 s (20.4 h) 10,946,514 s (126.8 

days) 
1,731,560 s (20.0 
days) 

Note: Tested on Intel® Core™ i7-9850H CPU @ 2.60GHz 2.59 GHz, 64bit 
computer with RAM of 32.0 GB. 
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areas, shows lower accuracy because of the complex topography and 
sparsely distributed weather stations. The fitted Ta surface might not 
capture adequately the complex change of Ta in mountainous regions of 
the Western China due to the limitation of the sparse weather stations. 
Using other gridded explanatory variables with proper consideration of 
their relationships with Ta might further improve the performance of the 
SVCM-SP method (possibly be further improved) in these areas. Second, 
the uncertainties in the gap-filled LST values, especially in the largely 

missing areas of the original MODIS LST data, could be propagated to 
the estimated Ta, especially for Tmax. Although the estimated Ta using 
the SVCM-SP method has already achieved reasonably good accuracy in 
this study, further improvements in gap-filled LST data may also 
improve the accuracy of the Ta data. Third, the estimated Ta might 
depend heavily on the LST itself, leading to highly similar spatial pat
terns as LST. However, other factors such as clouds, winds, snow, and 
land cover types could also affect Ta (Cai et al., 2017; Good, 2016). The 

Fig. 11. Spatial pattern of estimated Ta in mainland China in an example day of 200 in 2010.  

Fig. 12. Spatial pattern of maximum Ta in mountainous areas on the day of 004 in 2010 using the SVCM-SP and GWR method. The projections of elevation and Ta 
data are same as the MODIS projection. The projection of mainland China (right bottom figure) is the China Lambert Conformal Conic projection. 
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limited consideration of these factors might lead to some biases in the 
spatial pattern of estimated Ta compared to the actual Ta. 

This study opens several promising research avenues for the future. 
For example, based on the good performance and computing efficiency 
of the SVCM-SP method in mainland China, a global 1 km gridded Ta 
dataset is of great use for broader applications. Another promising area 
of research is the application of the SVCM-SP method for estimating and 
producing other gridded geophysical variable datasets. Moreover, using 
more gridded explanatory variables with proper consideration of their 
relationships with Ta may further improve the performance of the 
SVCM-SP method. 

5. Conclusions 

A key limitation of existing statistical algorithms (e.g., Geographi
cally Weighted Regression (GWR)) for estimating air temperature (Ta) is 
that they cannot always correctly capture and preserve relationships 
between Ta and explanatory variables due to limited spatial coverages of 
observations, possibly leading to abnormal relationships between Ta 
and explanatory variables, especially in largely heterogeneous areas. 
Accordingly, the estimated Ta with abnormal spatial patterns may 
provide misleading information in relevant studies such as quantifying 
urban thermal environment and hydrological modeling in mountains at 
specific times. In this study, we introduced the Spatially Varying Coef
ficient Models with Sign Preservation (SVCM-SP) method to assess re
lationships between the air temperature and explanatory variables (i.e., 
negative for elevation and positive for LST), for estimating Ta and 
developing 1 km gridded Ta product in mainland China. The choice of 

the study area was based on the availability of a comprehensive network 
of weather stations, and diverse geographical landscape features (i.e., 
desert and mountains) for evaluating the accuracy and robustness of the 
SVCM-SP method. Using this method, we estimated the 1 km gridded 
daily maximum and minimum Ta in mainland China from 2003 to 2016. 
The estimated Ta can preserve correctly and consistently the negative 
relationship between Ta and elevation, and the positive relationship 
between Ta and LST, which are represented with negative coefficients 
for elevation and positive coefficients for LST, respectively, across space 
and time. The SVCM-SP method showed better performance than the 
GWR method based on several evaluation criteria including accuracy, 
signs of coefficients for explanatory variables, and computing efficiency. 
The estimated Ta using the SVCM-SP can serve as a key data source for 
quantifying urban thermal environment and it offers potential for 
improving studies such as hydrological modeling in mountainous re
gions. The future work will focus on creating a 1 km global gridded Ta 
dataset using the SVCM-SP method for broader applications. Future 
studies on the improvement of the GWR model by preserving signs of 
coefficients can be also useful for relevant applications since GWR is a 
simple and widely used model. 
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