
Generating Physically-Realistic Tertiary Protein
Structures with Deep Latent Variable Models

Learning Over Experimentally-available Structures
Fardina Fathmiul Alam

Dept of Computer Science
George Mason University

Fairfax, VA 22030
falam5@gmu.edu

Amarda Shehu
Dept of Computer Science
George Mason University

Fairfax, VA 22030
amarda@gmu.edu

Abstract—Sophisticated deep neural networks have signifi-
cantly advanced our ability to predict a native structure of a
protein amino-acid sequence. However, going beyond a single-
structure view remains challenging. While rapid advances are
being made, fundamental questions on the ability of generative
deep modeling to learn to generate physically-realistic tertiary
structures remain. This paper makes two key contributions. It
first extends deep convolutional variable autoencoder networks to
be able to learn from experimentally-available tertiary structures
of proteins of variable lengths. The presented models learn
over distance matrix representations of tertiary structures. A
systematic and detailed analysis demonstrates that the design
of the training data is of primary importance to the ability
of the proposed models to learn key characteristics of tertiary
structures. The second contribution this paper makes is a
careful analysis along several metrics that measure the physical
realism of generated tertiary structures. The presented results are
promising and show that once seeded with sufficient, physically-
realistic structures, variational autoencoders are efficient models
for generating physically-realistic tertiary structures.

Index Terms—protein modeling; tertiary structure; generative
model; variational autoencoder; spatial pyramidal pooling.

I. INTRODUCTION

Knowledge of the active/native tertiary structure(s) of a
protein molecule is critical towards understanding its array
of biological functions as well as possible dysfunction in the
living cell [1]. The pluralism is intentional. We now know
proteins are intrinsically dynamic, and many harness their
ability to access significantly different structures at equilibrium
to regular their interactions with molecules in the cell [2].

The key role that protein structure plays in protein function
continues to motivate computational research. After several
decades of organized efforts through the CASP competition,
rapid breakthroughs ensued. A seemingly separate direction,
that of computing contacts between pairs of amino acids,
gained momentum by leveraging seminal developments in
deep learning. Work by Cheng and others showed that deep
neural networks can learn directly from sequences and struc-
tures of known proteins and accurately predict contacts of

This work is supported in part by NSF Grant No. 1907805, 1900061, and
1763233.

a novel amino-acid sequence [3]. In 2020, Xu’s ResNet [4]
showed a non-incremental advance had been made in our
ability to compute contacts de novo. DeepMind then refined
ResNet, adding to the network attention layers resulting in
AlphaFold2 [5], which recently demonstrated that deep learn-
ing can predict the native structure of a protein sequence with
extremely high accuracy.

RestNet and AlphaFold2 represent a seminal development
that is sure to support many structure-function studies in
molecular biology. However, going beyond a single-structure
view remains central to our ability to fully model protein
molecules. Decades of computational research on Molecu-
lar Dynamics-, Monte Carlo-, and other optimization-based
frameworks show that we can see more of the structure
space of a protein molecule relevant for function, but we
can rarely do it from knowledge of the amino-acid sequence
alone [1]. This remaining challenge and rapid momentum in
deep learning is now renewing interest in deep generative
models as alternative frameworks.

While rapid advances are being made in deep generative
learning of tertiary protein structures, fundamental questions
remain [6]. Most related work, much like the naming of
AlphaFold2, confounds protein folding, structure prediction,
and design. Deep learning researchers are eager to tackle
another challenging scientific domain, but in that rush, the
scientific objective is missed or not clearly formulated. A
review of related work, detailed in Section I-A, informs that
the main objective in most studies is to show that tertiary
structures generated by a neural network look like they belong
to proteins. Mostly, rigorous evaluation is lacking. Recent
work by Rahman and Shehu introduces key metrics to evaluate
whether a generated structure is protein-like [7].

Most work leverages the generative adversarial network
(GAN) architecture and builds over image-based convolution,
representing a tertiary protein structure as a contact map or
distance matrix, which are both 2D-based representations of
a 3D structure. However, even the GAN presented in [7] is
limited to hand-curated datasets of matrices of a fixed size and
is unable to learn from experimentally-available structures of

proteins of varying length.
In this paper, we present a deep latent variable model,

a convolutional variational autoencoder network (VAE) that
learns over distance matrix representations of tertiary struc-
tures. The VAE architecture allows us to readily accommodate
varying-size distance matrices through a technique known as
spatial pyramidal pooling (SPP), permitting our network to
learn directly from experimentally-available tertiary structures
of varying-length proteins in the Protein Data Bank (PDB) [8].
This is our first key contribution. However, our study demon-
strates that, when accommodating varying-size objects, it is
important to ensure sufficient representation in the training
dataset so that key characteristics are learned by the network.
A systematic and detailed analysis informs on the construction
of the training dataset. Finally, borrowing and adapting the
structure-derived metrics proposed in [7] to handle varying-
size structures, we demonstrate that the proposed SPP-VAE is
able to generate distance matrices corresponding to physically-
realistic tertiary structures. This is an important step towards
more powerful networks that can then be enhanced to generate
sequence-specific tertiary structures.

A. Related Work

Notable efforts have been made in deep generative mod-
eling of protein structures [7], [9]–[12]. Work in [11], [12]
introduces a convolutional GAN architecture learning over
fixed-size distance matrices corresponding to structural frag-
ments of an a-priori determined length (32, 64, or 128).
Learning remains a challenge. Some methods specialize the
loss function to focus the network to learn the symmetry
of contact maps [13] or the sparse long-range contacts [14].
Work in [7] shows that often the generated structures are
not physically-realistic through key metrics that assess local
and distal patterns. Rahman and colleagues also show that
training GANs is not trivial, and care has to be taken to
obtain convergence. The work proposes a Wasserstein GAN
which improves the quality of generated distance matrices
upon previous work.

Two related representations of tertiary protein structures
have been popular for deep generative modeling research,
distance matrices and contact maps. Both encode the spatial
proximity of pairs of amino acids; most works collapse each
amino acid to its central carbon – CA – atom. A matrix or
map is indexed by the position of CAs along the protein chain
of amino acids (ordered from the N- to the C-terminus). In a
distance matrix, one records the actual Euclidean distances
between all the CA pairs. A contact map is a binary version
of a distance matrix. Typically, a proximity threshold of 8Å is
utilized; two CAs not further than 8Å in Euclidean space are
in in contact, and so their corresponding entry in the contact
map is set to 1; otherwise, the entry is set to 0.

To the best of our knowledge, the VAE architecture has
remained under-utilized for generating tertiary structures. In
earlier work we showed its early promise when trained over
computationally-generated tertiary structures of a given pro-
tein; in fact, we showed that after sufficient training data,

a VAE could then replace Rosetta; its generated structures
were virtually indistinguishable from those generated by
Rosetta [15]. However, this work was focused on the single-
structure setting, built one model per sequence, and though
able to directly learn over Cartesian coordinates and so gen-
erate tertiary structures, it was also not able to accommodate
experimentally-available structures of different lengths.

As laid out in Section I, our focus in this paper is to advance
research in deep generative models for going beyond the
single-structure view and instead accessing the structure space
of a given amino-acid sequence. Like related work, though
all in GANs, we leverage the distance matrix representation,
which allows us to utilize image-based convolution. Unlike
related work, we utilize a VAE architecture, which has the
capacity to directly expose the underlying latent code. Unlike
related work, our convolutional VAE learns directly over
experimentally-available tertiary structures of varying lengths.
We now relate further methodological details in Section II.

II. METHODS

A. Tertiary Structure Representation and Training Datasets

The information present in a given tertiary protein struc-
ture is distilled into its distance matrix. The dataset that
is used to train our SPP-CVAE consists of distance matri-
ces corresponding to experimentally-available tertiary struc-
tures of proteins found in the Protein Data Bank [8]. In
a key distinction from work in [7], [11], [12], we do
not utilize the Namrata dataset of 115, 850 tertiary struc-
tures extracted from the PDB; we note that in this thread
of works, a targeted chain length is determined, and then
fragments of that length are extracted from the dataset of
115, 850. As work in [7] notes, this dataset is possibly
highly-redundant. Therefore, in this work, we utilize instead
a representative view of the PDB obtained via the PISCES
server [16]. We leverage the pre-compiled datasets; compro-
mising between good-quality tertiary structures (high resolu-
tion) and sufficient size of the training dataset, we choose
the “cullpdb pc20 res1.6 R0.25 d2021 07 02 chains2953”
set of 2953 tertiary structures. Their lengths vary between 20
and 830 amino acids. If we utilize this dataset as is, we find
that the SPP-CVAE is unable to learn key characteristics of
tertiary structures (local and distal patterns present in the back-
bone, short-range, and long-range contacts). So, instead, we
pursue five settings, where we ‘mix’ with varying percentages
distance matrices of different sizes, resulting in five models
that we compare along various metrics.

B. SPP-CVAE

While we assume some familiarity with the VAE architec-
ture, we summarize here its main characteristics for the sake of
completeness. A VAE builds over the AE architecture of an
encoder and decoder network, each containing one or more
layers of neurons/units. The encoder maps the input layer
x to its output layer y. The decoder performs the reverse
mapping from the same layer y to the output layer z. When

dealing with real values, training an AE entails minimizing
the reconstruction error ||x− z||2.

A VAE is similar to an AE in that it consists of an encoder
(inference model) and a decoder (generative model) network,
which are connected but independently-parameterized. The
training process in a VAE is regularized to ensure that the
latent space has the properties necessary to generate data via
the decoder [17]. The input distribution is assumed to be
Gaussian so that the encoder can be trained to return the mean
and covariance matrix. This assumption allows the latent space
regularization to be expressed naturally.

Specifically, the encoder assumes that x ∼ N(µx, σx)
exists and attempts to learn the input distribution’s parameters
µx and σx. Similarly, the latent representation z is assumed
to be Gaussian; i.e., z ∼ N(µx,x). The loss function is
L = |x− y|2 +KL(N(µx,x)−N(0, I)). The reconstruction
loss, which ensures that the decoder’s output is similar to
the input, is the first term. The second term measures the
Kullback-Leibler (KL) divergence between two probability
distributions. The loss function reflects the fact that to prevent
a VAE from behaving like an AE, both the covariance matrix
and the mean of the distribution returned by the encoder
must be regularized. This is accomplished by constraining
the distribution to resemble a standard normal distribution as
closely as possible (centered and reduced). As the loss function
indicates, the covariance matrix is required to be close to zero,
and the mean is also forced to be close to zero.

SPP-CVAE builds over the VAE architecture. The network
utilizes convolution layers in the encoder and decoder to learn
patterns in the 2D distance matrices corresponding to known
tertiary structures. A schematic is shown in Fig. 1. Recent
work in computer vision [18], proposes to extend CVAEs to
learn from varying-size images via the SPP mechanism, which
we also leverage here, as described next.

Fig. 1. The schematic shows the main components of the proposed CVAE-
SPP network. The network contains Convolutional layers in both the encoder
and decoder, so that it can learn patterns over distance matrices. An SPP layer
allows the encoder to handle distance matrices of varying size.

SPP works by performing pooling operations of different
sizes to extract features from data and process it to be the same
size. For each SPP layer, a resolution parameter n must be set;
larger values correspond to a higher resolution, where smaller
features can be identified by the pooling operation. Usually,
there will be multiple values assigned in a single pooling layer.
The sub-layers with smaller values of n will extract larger
features in the data, and the larger values of n will extract

smaller features. This gives the layers its pyramidal structure
and allows the model to learn from features of different scales.
In this way, using SPP makes the model agnostic of input size.

In summary, a encoder of SPP-CVAE is a stack of Convo-
lutional layers with activation function LeakyReLU and Batch
Normalization layers to help with the model optimization.
Each Convolutional layer is able to extract useful information
about the model so that the final latent representation will
be information-rich and allow the decoder to generate useful
information. At the end of the encoder, a SPP layer performs
the steps required to get a fixed-length output. In SPP-CVAE,
the SPP layer is comprised of 3 sub-layers of n = 1, 2, 4.

The first part of the decoder is a stack of Convolutional
transpose layers (along with activation function LeakyReLU
and Batch Normalization layers), which increases the input
data point from the smaller dimension all the way to the larger
one. Each Convolutional transpose layer performs decoding by
doubling the size of the height and width.

The SPP-CVAE architecture produces tensors that will be
of a fixed size but that are likely to be a lot smaller and
possibly of a different size than the target output. This is solved
using interpolation. Essentially what this does is align the
corners of data points and fills in the gaps by fitting different
functions. We use the ”nearest” interpolation mode. This
allows reshaping the data while still allowing backpropagation
to take place. Before this step is finished, a final Convolutional
layer is used as a final processing step to allow for better data
reconstruction/generation.

C. Evaluation Metrics

Building over work in [7], we employ and extend domain-
specific metrics to evaluate generated distance matrices of
varying lengths. Let us first summarize the three main metrics
that summarize a distance matrix with one value that measures
the presence of a backbone, short-range contacts, and long-
range contacts, respectively.

a) Evaluating the Presence of Backbone: We first eval-
uate whether a backbone is present in a distance matrix, as
this is a key characteristic of tertiary protein structures. More
specifically, we measure how many of the consecutive CAs
(entries [i, i+1] in a distance matrix) are at a distance between
3.6 and 4.0Å from each other. Ideally, this distance should
be closer to 3.83Å, but we allow for some variability, as
we observe small fluctuations even in experimentally-available
tertiary structures. If k−1 consecutive CAs meet this criterion
in a distance matrix of size k, then that distance matrix is
considered to have a backbone. To allow for a metric that is
independent of matrix size, we utilize ’% Backbone’ for the
evaluation in Section III – the percentage of distance matrices
in a set of interest (training or generated) that have a backbone.

b) Evaluation of the Presence of Short-range Contacts:
The second metric summarizes a distance matrix with the num-
ber of short-range contacts present in it; these are measured
as the number of [i, j] entries, where 1 < |j − i| ≤ 4 (the
lower bound excludes the backbone) and the distance between
corresponding CAs is no higher than 8Å. We refer to this

metric as SR-Nr, for short-range (contact) number. To extend
this metric to generated distance matrices of varying sizes, we
normalize this number by the number of CAs. We refer to this
metric as SR-Score.

c) Evaluation of the Presence of Long-range Contacts:
As work in [7] shows, learning the off-backbone contacts
that characterize tertiary protein structures is challenging, and
even more so for long-range contacts, where |j − i| > 4.
So, we measure the number of long-range contacts as an
additional metric and refer to it as LR-Nr for long-range
(contact) number. To allow for varying-size distance matrices,
we normalize this number by the number of CAs. We refer to
this metric as LR-Score.

D. Evaluation Metrics to Compare Two Distributions

Each of the above metrics provides us with one value to
summarize a distance matrix. Doing so over a set of matrices,
one can then obtain a distribution that characterizes the set. For
instance, one can measure the number of short-range contacts,
SR-NR, over the distance matrices in the training dataset.
Similarly, one can obtain a distribution of the same value over
the distance matrices generated by a trained SPP-CVAE model.
Obtaining two distributions that characterize the training and
generated dataset, respectively, permits answering the question
of physical realism, using the training dataset as an example
of what physical realism is.

Distance functions can be utilized to compare two distribu-
tions. Here, we utilize the Earthmover Distance (EMD) [19],
also known as the Wasserstein distance. EMD treats the two
given distributions as two different ways of piling up a certain
amount of dirt over the domain and calculates the minimum
cost to turn one pile into the other. The cost is the amount of
dirt moved times the distance by which it is moved. EMD can
be computed using any algorithm for the minimum cost flow
problem, such as the network simplex algorithm [19].

E. Trained and Evaluated SPP-CVAE Models

In recent related work in computer vision, it was demon-
strated that SPP was effective to accommodate varying-size
images, but the training dataset consisted of two different
sizes represented at similar ratios in the training dataset. Our
PISCES-derived dataset has great variability in the resulting
sizes of distance matrices. Indeed, utilizing it as is to train
a SPP-CVAE model results in very poor generated distance
matrices (results not shown). In this paper, we show the
importance of having sufficient representation of varying-size
distance matrices by exploring three main settings: one where
all distance matrices are of size 64×64 (that is, corresponding
to fragments of 64 amino acids extracted from the PISCES
dataset); another where the training dataset contains two types
of matrices, of size 64×64 and of size 72×72 at varying per-
centages; finally, a setting where the training dataset includes
a third type of matrices of size 90× 90.

In all, we train five different models, to which we
refer as: SPP-CVAE64, SPP-CVAE64(70%)+72(30%), SPP-
CVAE64(50%)+72(50%), SPP-CVAE64(40%)+72(30%)+90(30%),

and SPP-CVAE64(34%)+72(33%)+90(33%). Each of these models
is trained separately until convergence. Each trained model
is then used to generate/sample 2, 954 distance matrices (as
many as in the training dataset) which are analyzed in detail
to comparably evaluate model performance. For the purpose
of evaluation, particularly when we compare the generated
to the training datasets, the percentage of distance matrices
of a given size is kept as in the training dataset; that is, for
instance, 70% of the distance matrices sampled by the trained
SPP-CVAE64(70%)+72(30%) are of size 64 × 64, and the rest
are of size 72× 72.

F. Implementation Details

We use Pytorch Lightning [20] to implement, train, and
evaluate the various SPP-CVAE models. PyTorch Lightning
is an open-source python library that provides a high-level
interface for the PyTorch deep learning framework. Each of
the investigated models is trained for a total of 90 epochs (until
convergence is reached). For the SPP-CVAE64 model, we use
a batch size of 32. For the other four models, we use a batch
size of 1 to handle variable-length input data, as well as to
avoid mixed sizes within a batch. A learning rate of 0.0003
is used to prevent premature convergence. Training times for
the models vary from 120.889 to 161.127 seconds. All models
converge at around 40 epochs, as shown in Fig. 2.

Fig. 2. Loss is tracked over epochs. Models converge at around epoch 40.

III. RESULTS

Here we evaluate the five models describe in Section II
on their ability to learn directly from distance matrices
of experimentally-available tertiary structures and generate
physically-realistic distance matrices. We organize the eval-
uation around the three metrics presented in Section II that
capture the presence of a backbone, short-range contacts, and
long-range contacts.

A. Evaluating the Presence of Backbone

Table I summarizes the performance of the various models,
which are listed in Column 1. Column 2 shows the ‘%
Backbone’ over generated distance matrices. For instance,
Table I shows that 99% of distance matrices generated by CPP-
CVAE64 contain their backbone. The value out of parentheses
shows the ‘% Backbone’ over all distance matrices generated
by a model. The values in parentheses show this value over
subsets of distance matrices, grouped by size. For instance,
Table I shows that 96% of the distance matrices generated
by SPP-CVAE64(70%)+72(30%) have their backbone. When

separating the generated distance matrices by size (64 × 64
versus 72 × 72), the corresponding values become 97% and
92.5%. Overall, Table I shows that at least 93% of the distance
matrices generated by any model have their backbone. Slight
reductions are observed as the training datasets become more
varied, but overall all models learn the backbone well.

B. Evaluating Distribution of Short-range Contacts

Column 3 in Table I shows the EMD between the distribu-
tion of SR-Nr (number of short-range contacts in a distance
matrix) measured over the generated dataset and the distribu-
tion of SR-NR measured over the training dataset. Low SR-Nr
values provide evidence that the generated dataset are similar
to the training dataset. Column 3 shows that the lowest value
is reached by the CVAE-SPP64, which serves as a baseline
of performance. As the training datasets become varied in the
size of distance matrices, EMD values increase (though they
deviate only slightly from the baseline); interestingly, however,
when the representation of the varied distance matrices are
equal, as in SPP-CVAE64(50%)+72(50%), the EMD value is the
second-lowest and very close to that of the baseline model.
Proportional representation lowers the EMD value, as the
performance of SPP-CVAE64(34%)+70(33%)=90(33%) indicates,
but in such cases, larger datasets are surely to improve the
performance of the model even further. When normalizing
by the size of a distance matrix, as in Column 5 in Table I,
the EMD values appear closer among the models but largely
follow the same trend.

The top panel in Fig. 3 shows the EMD values comparing
the distribution of SR-NR (in red) and SR-Score (in blue) over
the generated and training datasets are tracked over training
epochs for CVAE-SPP64. To clarify, after every 10 epochs of
training, the model is arrested and used to obtain a generating
dataset, which is then compared to the training dataset (we
recall that the loss function converges at epoch 40). The top
panel in Fig. 3 shows improvements in the physical realism of
generated distance matrices (over models arrested at varying
number of epochs) in terms of short-range contact metrics,
and convergence is observed over the EMD values as the
loss function converges, as well; The bottom panel adds the
other four models and shows EMD values over SR-Score
distributions over epochs. Overall, all models reduce the EMD
values; that is, the generated distance matrices resemble the
training ones more closely (in terms of short-range contacts)
over epochs. In agreement with the summary results shown in
Table I, the lowest EMD values are obtained by the baseline
model, followed closely by the models where the varying-size
matrices have similar representation in the training dataset.

C. Evaluating Distribution of Long-range Contacts

Fig. 4 replicates the above analysis for long-range contacts.
The steep reduction in the EMD values is obtained by the base-
line model over epochs, and convergence is not demonstrated
(though each model’s loss function converges before or at
epoch 45). The bottom panel, which adds the other four models
but shows EMD values over LR-Score distributions, confirms

CVAE-SPP64 Short-Range Contact Evaluation

Fig. 3. Top panel: EMD values comparing the distribution of SR-NR (in
red) and SR-Score (in blue) over the generated and training datasets are
tracked over training epochs for CVAE-SPP64. Since SR-Nr and SR-Score
have different ranges, two y axes are utilized. Bottom panel adds the other
four models but shows only EMD over SR-Score distributions.

that all models reduce the EMD values; generated distance
matrices resemble the training ones more closely (in terms of
long-range contacts) over increasing epochs. Interestingly, as
Column 6 in Table I shows, normalizing for length, as in LR-
Score, makes all models competitive and actually suggests that
higher diversity (with proportional representation) improves
realism on long-range contacts.

D. Visualization of Distributions and Distance Matrices

Fig. 5 shows the distribution of SR-NR, SR-Score, LR-NR,
and LR-Score over the dataset generated by each model (left
to right panels). The distribution over the generated dataset
(in blue) is superimposed over the corresponding one over
the training dataset (in orange). Several observations can be
made. Fig. 5 shows that the distributions over the generated
and training datasets are closer for the baseline model, with
slightly more discrepancies as the training dataset varies in the
size of distance matrices. These visual observations confirm
the quantitative analysis related above.

Finally, we relate some distance matrices by drawing them
as heatmaps in Fig. 6. We select five at random over the
training dataset and over each dataset generated by each of
the models. The values are normalized, and a red-to-black
color scheme is used to indicate higher-to-lower distances;
that is, the contacts (backbone, short-range, and long-range)
visually emerge as black lines. Fig. 6 relates the richness of
patterns, further confirming the above quantitative analysis that
generated distance matrices are highly realistic and resemble
those of experimentally-available tertiary structures.

TABLE I
COLUMN 1 LISTS THE MODELS UNDER COMPARISON. COLUMN 2 SHOWS THE ‘% BACKBONE’ OVER DISTANCE MATRICES GENERATED BY A MODEL.
THE VALUES IN PARENTHESES SHOW THE ‘% BACKBONE’ OVER DISTANCE MATRICES OF THE SAME SIZE. COLUMN 3 SHOWS THE EMD DISTANCE

BETWEEN THE DISTRIBUTION OF SR-NR VALUES OVER THE GENERATED AND TRAINING DATASETS, RESPECTIVELY. WE RECALL THAT SR-NR
MEASURES THE NUMBER OF SHORT-RANGE CONTACTS IN A DISTANCE MATRIX. COLUMN 4 DOES SO FOR LR-NR, WHICH MEASURES THE NUMBER OF

LONG-RANGE CONTACTS. COLUMNS 5 AND 6 NORMALIZE SR-NR AND LR-NR, RESPECTIVELY, BY THE SIZE OF A DISTANCE MATRIX.
Model % Backbone SR-Nr-EMD LR-Nr-EMD SR-Score-EMD LR-Score-EMD

CVAE-SPP64 99.0 8.694 17.098 0.121 0.301
CVAE-SPP64(70%)+72(30%) 96 (97, 92.5) 10.031 18.738 0.156 0.335
CVAE-SPP64(50%)+72(50%) 97.9 (99, 96.91) 8.758 16.947 0.118 0.221

CVAE-SPP64(40%)+72(30%)+90(30%) 94.3 (97.5, 94, 93.4) 12.370 22.421 0.190 0.321
CVAE-SPP64(34%)+72(33%)+90(33%) 95.29 (96.4, 94.3, 95.15) 11.182 20.148 0.130 0.209

CVAE-SPP64 Long-Range Contact Evaluation

Fig. 4. Top panel: EMD values comparing the distribution of LR-NR (in
red) and LR-Score (in blue) over the generated and training datasets are
tracked over training epochs for CVAE-SPP64. Since LR-Nr and LR-Score
have different ranges, two y-axes are utilized. The bottom panel adds the other
four models but shows only EMD over LR-Score distributions.

IV. CONCLUSION

Growing momentum in deep generative modeling presents
an opportunity and an alternative framework to structure space
sampling and going beyond the single-structure view. The
majority of existing deep generative models leverage the GAN
architecture and are trained over fixed-size contact maps or
distance matrices (that distill the essential information in a
tertiary protein structure). Fundamental questions on whether
deep generative models can learn to generate physically-
realistic tertiary structures (whether in contact map or distance
matrix representation) need to be addressed.

In this paper, we advance deep generative modeling for
sampling the structure space of a sequence-agnostic protein
chain in several directions. First, we debut a convolutional
VAE architecture. We equip it with an SPP layer so that the re-
sulting model can learn directly from experimentally-available

tertiary structures (and so accommodate distance matrices of
varying size in the training dataset). We demonstrate that the
training dataset needs to be carefully constructed and have an
adequate representation of distance matrices of varying-size.
A rigorous analysis along metrics that interrogate a generated
distance matrix for the presence of backbone, short-range, and
long-range contacts as in experimentally-available structures
show that all presented models generate distance matrices that
correspond to physically-realistic tertiary structures.

Our evaluation shows that the presented SPP-CVAE network
results in several models that generate tertiary-structures of the
same physical realism as the training dataset, insofar as the
metrics that measure the presence of backbone, short-range
contacts, and long-range contacts provide such information.
Interestingly, adding distance matrices of varying size often
helps the model; for instance, better results are obtained
on the metrics that interrogate the presence of short-range
contacts; when normalized for chain length, the models with
the highest diversity of distance matrices in the training dataset
perform better even on long-range contacts. We caution that
the presented study constitutes a well-controlled experiment
and that adding more diversity, while it may further improve
the physical realism, may also require a larger training dataset
for adequate representation of proteins of different length.

Several directions of future research remain. We need to
investigate conditioning a generated dataset on a given amino-
acid sequence. Scoring of generated structures will also be
useful. End-to-end frameworks that include dihedral angles
in order to directly generate Cartesian coordinates of tertiary
structures will also be helpful for further and more detailed
analysis of generated structures. Graph-based representations
of tertiary structures may also be appealing and open the way
for graph-based GANs and VAEs, as well as graph neural
network architectures, as preliminary work in [21] shows for
prediction of a single structure.

ACKNOWLEDGMENT

Computations were run in part on ARGO, a research com-
puting cluster provided by the Office of Research Computing
at George Mason University, VA (URL: http://orc.gmu.edu).
This material is additionally based upon work supported by
(while serving at) the National Science Foundation. Any opin-
ion, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

SR-NR

SR-Score

LR-NR

LR-Score

Fig. 5. Left to right: SPP-CVAE64, SPP-CVAE64(70%)+72(30%), SPP-CVAE64(50%)+72(50%), SPP-CVAE64(40%)+72(30%)=90(30%), and SPP-
CVAE64(34%)+70(33%)=90(33%). Distributions of SR-NR, SR-Score, LR-NR, and LR-Score over the generated dataset (blue) are superimposed over the
training dataset (orange).

REFERENCES

[1] T. Maximova, R. Moffatt, B. Ma, R. Nussinov, and A. Shehu, “Princi-
ples and overview of sampling methods for modeling macromolecular
structure and dynamics,” PLoS Comp. Biol., vol. 12, no. 4, p. e1004619,
2016.

[2] D. D. Boehr, R. Nussinov, and P. E. Wright, “The role of dynamic
conformational ensembles in biomolecular recognition,” Nature Chem
Biol, vol. 5, no. 11, pp. 789–96, 2009.

[3] J. Hou, T. Wu, R. Cao, and J. Cheng, “Protein tertiary structure modeling
driven by deep learning and contact distance prediction in CASP13,”
Proteins, vol. 87, no. 12, p. 1165–1178, 2019.

[4] J. Xu, M. McPartlon, and J. Lin, “Improved protein structure prediction
by deep learning irrespective of co-evolution information,” Nature Mach
Intel, vol. 3, pp. 601–609, 2020.

[5] J. Jumper, R. Evans et al., “Highly accurate protein structure prediction
with alphafold,” Nature, 2021.

[6] P. Hoseini, L. Zhao, and A. Shehu, “Generative deep learning for
macromolecular structure and dynamics,” Curr. Opinion Struct. Biol.,
vol. 67, pp. 170–177, 2020.

[7] T. Rahman, Y. Du, L. Zhao, and A. Shehu, “Generative adversarial
learning of protein tertiary structures,” Molecules, vol. 26, no. 5, p.
1209, 2021.

[8] H. M. Berman, K. Henrick, and H. Nakamura, “Announcing the world-
wide Protein Data Bank,” Nature Structural Biology, vol. 10, no. 12, pp.
980–980, 2003.

[9] J. Ingraham, , A. Riesselman, C. Sander, and D. Marks, “Learning pro-
tein structure with a differentiable simulator,” in Intl Conf on Learning
Representations (ICLR), 2019.

[10] S. Sabban and M. Markovsky, “RamaNet: Computational de novo
protein design using a long short-term memory generative adversarial
neural network,” BioRxiv, p. 671552, 2019.

[11] A. Namrata and H. Po-Ssu, “Generative modeling for protein structures,”
in Advances in Neural Information Processing Systems, 2018, pp. 7494–
7505.

[12] A. Namrata, E. Raphael, and H. Po-Ssu, “Fully differentiable full-atom
protein backbone generation,” in Intl Conf on Learning Representations
(ICLR) Workshops: DeepGenStruct, 2019.

[13] H. Hang, M. Wang, Z. Yu, X. Zhao, and A. Li, “GANcon: Protein
contact map prediction with deep generative adversarial network,” IEEE
Access, vol. 8, pp. 80 899–80 907, 2020.

[14] W. Ding and H. Gong, “Predicting the real-valued inter-residue distances
for proteins,” Advanced Science, vol. 7, no. 19, p. 2001314, 2020.

[15] A. F. Fardina and A. Shehu, “Variational autoencoders for protein
structure prediction,” in ACM Conf on Bioinf and Comp Biol, New York,
NY, USA, 2020.

[16] G. Wang and R. Dunbrack, “PISCES: a protein sequence culling server,”
Bioinformatics, vol. 19, no. 12, pp. 1589–1591, 2003.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[18] A. Ashiquzzaman, H. Lee, K. Kim, H.-Y. Kim, J. Park, and J. Kim,
“Compact spatial pyramid pooling deep convolutional neural network
based hand gestures decoder,” Applied Sciences, vol. 10, no. 21, p. 7898,
2020.

[19] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” International journal of computer vision,
vol. 40, no. 2, pp. 99–121, 2000.

[20] e. a. Falcon, WA, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

[21] T. Xia and W. Ku, “Geometric graph representation learning on protein
structure prediction,” in KDD ’21: The 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, Singapore,
August 14-18, 2021. ACM, 2021, pp. 1873–1883.

Training Dataset

CVAE-SPP64 Generated Dataset

CVAE-SPP64(70%)+72(30%) Generated Dataset

CVAE-SPP64(50%)+72(50%) Generated Dataset

CVAE-SPP64(40%)+72(30%)+90(30%) Generated Dataset

CVAE-SPP64(34%)+72(33%)+90(33%) Generated Dataset

Fig. 6. We show here a few distance matrices sampled at random over the training dataset (top panel) and the datasets generated by each of the other 4
models (other four rows). Distance matrices are drawn as heatmaps. Distance values are normalized, and darker colors indicate lower values.

