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This paper presents a new numerical method for div-curl systems with the normal boundary condition by using 
a finite element technique known as primal-dual weak Galerkin (PDWG). The PDWG finite element scheme for 
the div-curl system has two prominent features in that it offers not only an accurate and reliable numerical 
solution to the div-curl system under the low �� -regularity (� > 0) assumption for the true solution, but also 
an effective approximation of the normal harmonic vector fields on domains with complex topology. Seven 
numerical experiments are conducted and the results are presented to demonstrate the performance of the PDWG 
algorithm, including one example on the computation of discrete normal harmonic vector fields.

1. Introduction

In this paper we are concerned with the development of new nu-
merical methods for div-curl systems equipped with normal boundary 
conditions. For simplicity, consider the model problem that seeks a vec-
tor field � = �(�) satisfying

∇ ⋅ (��) = �, in Ω, (1.1)

∇× � = �, in Ω, (1.2)

�� ⋅ � = �1, on Γ, (1.3)

where Ω ⊂ ℝ3 is an open, bounded and connected polyhedral domain. 
Γ = �Ω is the boundary of Ω. Assume that the domain boundary is the 
union of a finite number of disjoint surfaces Γ =

⋃	

=0

Γ
, where Γ0 is the 
exterior boundary of Ω, Γ
 (
 = 1, ⋯ , 	) are the other connected com-
ponents with finite surface areas. The load function � = � (�) and the 
vector field � = �(�) are given in the domain Ω, the coefficient matrix 
� = {�
� (�)}3×3 is assumed to be symmetric and uniformly positive def-
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inite in Ω, and the entries �
� (
, � = 1, 2, 3) are in 	∞(Ω). The normal 

boundary data �1 is a given function in �
−

1
2 (Γ).

The solution uniqueness for the normal boundary value problem 
(1.1)-(1.3) depends on the topology of the domain Ω. It is well-known 
that the solution uniqueness holds true for simply connected Ω, while 
the solution is unique up to a normal �-harmonic function in ℍ��,0(Ω)
defined in (2.2) when the domain Ω is not simply connected. The di-
mension of ℍ��,0(Ω) is identical to the first Betti number of Ω, which is 
the rank of the first homology group of Ω.

The div-curl system (1.1)-(1.2) arises in many applications such 
as electromagnetic fields and fluid mechanics. Computational electro-
magnetics plays an important role in many areas of science and en-
gineering such as radar, satellite, antenna design, waveguides, optical 
fibers, medical imaging and design of invisible cloaking devices [15]. In 
linear magnetic fields, the function � (�) vanishes, � represents the mag-
netic field intensity and �(�) is the inverse of the magnetic permeability 
tensor. In fluid mechanics fields, the coefficient matrix �(�) is diago-
nal with diagonal entries being the local mass density. In electrostatics 
fields, �(�) is the permittivity matrix.
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Several numerical methods based on finite element approaches have 
been proposed and analyzed for the div-curl system (1.1)-(1.2). Bossavit 
[3] proposed a classical numerical method for solving the magneto-
static problem by introducing a scalar or vector potential. A covolume 
method was developed in three dimensional space by using the Voronoi-
Delaunay mesh pairs [20]. The control volume method [19] was pro-
posed directly for planar div-curl problems. A discrete duality finite 
volume method [9] was presented for div-curl problems on almost ar-
bitrary polygonal meshes. In [4,17], the authors introduced a mimetic 
finite difference scheme for the three dimensional magneto-static prob-
lems on general polyhedral partitions, which has a closer connection 
with the discretization schemes to be presented than any other existing 
methods in literature. The numerical algorithm [21] was designed for 
constructing a finite element basis for the first de Rham cohomology 
group of the computational domain, which was further used for a nu-
merical approximation of the magnetostatic problem. In [8], the authors 
developed a mixed finite element method for three dimensional axisym-
metric div-curl systems through a dimension reduction technique based 
on the cylindrical coordinates in simply connected and axisymmetric 
domains. In [2], the authors developed a least-squares finite element 
method for two types boundary value problems. Another least-squares 
method was proposed for the div-curl problem based on discontinuous 
elements on nonconvex polyhedral domains in [1]. In [23], the au-
thors proposed a weak Galerkin finite element method for the div-curl 
system with either normal or tangential boundary conditions. Another 
weak Galerkin scheme was introduced in [16] by using a least-squares 
approach for the div-curl problem. In [18], the authors developed a 
primal-dual weak Galerkin finite element method for the div-curl sys-
tem with tangential boundary conditions and proved that the scheme 
works well with low-regularity assumptions on the exact solution.

There are two main challenges in the approximation of the div-curl 
system (1.1)-(1.3): (1) the low-regularity of the true solution � which 
limits the stability and accuracy of the numerical solutions, and (2) the 
non-uniqueness of the solution � on domains with complex topology. In 
particular, for domains with positive first Betti number, the Helmholtz
decomposition in Theorem A.1 involves a nontrivial space of harmonic 
field ℍ��,0(Ω) so that the solution to the div-curl system (1.1)-(1.3)
is non-unique. The second challenge can be relaxed to certain extent 
by seeking a particular solution orthogonal to the space of normal �-
harmonic vector space ℍ��,0(Ω), but with an immediate obstacle lying 
in the determination of the space ℍ��,0(Ω) or an effective approxima-
tion of this space. To address these challenges, we shall devise a new 
primal-dual weak Galerkin (PDWG) scheme for (1.1)-(1.3) by following 
the framework developed in [18] for the div-curl system with tangen-
tial boundary conditions. The difference between the present work and 
[18] lies in the second challenge (i.e., the solution non-uniqueness) 
for which the tangential boundary value problem does not have, and 
hence, less difficulty was encountered in [18]. For problems with non-
unique solutions, good numerical methods must be able to inform the 
computational practitioners about where and how the numerical solu-
tions are converging to. Our new PDWG scheme will do exactly this 
job for the model div-curl problem (1.1)-(1.3). It should be noted that 
the PDWG framework was originated in [25] and further developed in 
[22,27,28,5,24,14,26] for several other model problems. A similar nu-
merical method, known as stabilized finite element methods, was devised 
by Burman in a different context [11,12,10].

Our PDWG numerical method for (1.1)-(1.3) has two prominent fea-
tures over the existing numerical methods: (1) it offers an effective 
approximation of the normal �-harmonic vector space ℍ��,0(Ω) regard-
less of the topology of the domain Ω (see Example 7 for an illustration); 
and (2) it provides an accurate and reliable numerical solution for the 
div-curl system (1.1)-(1.3) with low �� -regularity (� > 0) assumption 
for the true solution �.

The paper is organized as follows. Section 2 is devoted to nota-
tions and the derivation of a weak formulation for the div-curl system 
(1.1)-(1.3) that involves no partial derivatives over the vector field �. 

Section 3 offers a brief review on the discrete weak gradient and dis-
crete weak curl operators. Section 4 is dedicated to the presentation 
of the PDWG algorithm for the div-curl problem, together with an algo-
rithm for computing discrete normal �-harmonic vector fields. Section 5
is devoted to a discussion of the solution existence and uniqueness for 
the PDWG scheme. Section 6 contains a convergence theory for the 
PDWG approximation, and Section 7 demonstrates the performance of 
the PDWG algorithm through seven test examples.

2. Notations and preliminaries

We follow the usual notation for Sobolev spaces and norms, see for 
example [7,13]. For an open bounded domain 
 ⊂ ℝ3 with Lipschitz 
continuous boundary and any given real number � ≥ 0, we use ‖ ⋅ ‖�,

and | ⋅ |�,
 to denote the norm and seminorm in the Sobolev space 
��(
), respectively. The space �0(
) coincides with 	2(
), for which 
the norm and the inner product are denoted by ‖ ⋅ ‖
 and (⋅, ⋅)
 , respec-
tively. We use �(�
��; 
) to denote the closed subspace of [	2(
)]2 so 
that ∇ ⋅ (��) ∈ 	2(
). The space �(�
�; 
) corresponds to the case of 
� = � . Analogously, we use �(����; 
) to denote the closed subspace of 
[	2(
)]2 so that ∇ × � ∈ [	2(
)]3. Denote by

�0(����;
) ∶= {� ∈�(����;
), � × � = 0 on �
}

the closed subspace with vanishing tangential boundary values. When 

 = Ω, we shall drop the script 
 in the notations. For simplicity, we 
shall denote by ⟨⋅, ⋅⟩Γ
 the inner product in 	2(Γ
) and use “≲” to denote 
“less than or equal to up to a general constant independent of the mesh 
size or functions appearing in the inequality”.

Introduce the following Sobolev space

��(Ω) = {� ∈�0(����) ∩�(�
��), ∇ ⋅ (��) = 0, ⟨�� ⋅ �
,1⟩Γ
 = 0,


 = 1,⋯ ,	}. (2.1)

A vector field � ∈ [	2(Ω)]3 is said to be �-harmonic on Ω if it is �-
solenoidal and irrotational on Ω. The space of normal �-harmonic vector 
fields, denoted by ℍ��,0(Ω), consists of all �-harmonic vector fields sat-
isfying the zero normal boundary condition; i.e.,

ℍ��,0(Ω) = {� ∈ [	2(Ω)]3 ∶ ∇×� = 0, ∇ ⋅ (��) = 0, �� ⋅ � = 0 on Γ}. (2.2)

When � = � is the identity matrix, the space ℍ��,0(Ω) shall be denoted as 
ℍ�,0(Ω). Analogously, the space of tangential �-harmonic vector fields, 
denoted by ℍ��,0(Ω), consists of all �-harmonic vector fields satisfying 
the zero tangential boundary condition; i.e.,

ℍ��,0(Ω) = {� ∈ [	2(Ω)]3 ∶ ∇×� = 0, ∇ ⋅ (��) = 0, � × � = 0 on Γ}.

2.1. A weak formulation

By testing the equation (1.1) against any � ∈�1(Ω) and then using 
the normal boundary condition (1.3) we obtain

(�, �∇�) = ⟨�1, �⟩− (�,�), ∀� ∈�1(Ω). (2.3)

Next, we test the equation (1.2) against any � ∈�0(����; Ω) to obtain

(�,∇×�) = (�,�), ∀� ∈�0(����;Ω). (2.4)

Summing the equations (2.3) and (2.4) gives the following

(�, �∇�+∇×�) = (�,�) − (�,�) + ⟨�1, �⟩
for all � ∈�1(Ω) and � ∈�0(����; Ω).

Definition 2.1. A vector-valued function � ∈ [	2(Ω)]3 is said to be a 
weak solution of the normal boundary value problem for the div-curl 
system (1.1)-(1.3) if it satisfies the following equation

(�, �∇�+∇×�) = (�,�) − (�,�) + ⟨�1, �⟩ (2.5)

for all � ∈�1(Ω) and � ∈�0(����; Ω).
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The solution to the variational problem (2.5) is generally non-
unique. In fact, the homogeneous version of (2.5) seeks � ∈ [	2(Ω)]3

satisfying

(�, �∇�+∇×�) = 0 ∀� ∈�1(Ω), � ∈�0(����;Ω). (2.6)

The equation (2.6) is easily satisfied by any �-harmonic function � = 	 ∈

ℍ��,0(Ω), and hence the solution non-uniqueness when the �-harmonic 
space ℍ��,0(Ω) has a positive dimension. The solution to the div-curl 
system with normal boundary condition is unique when the solution is 
further required to be �-weighted 	2 orthogonal to ℍ��,0(Ω).

2.2. An extended weak formulation

Denote by �1
0�
(Ω) the space of functions in �1(Ω) with vanishing 

value on Γ0 and constant values on other connected components of the 
boundary; i.e.,

�1
0�
(Ω) = {� ∈�1(Ω) ∶ �|Γ0 = 0, �|Γ
 = �
, 
 = 1,… ,	}.

Introduce the following bilinear form:

�(�, �;�,�) ∶= (�, �∇�+∇×�) + (� , �∇�). (2.7)

The extended weak formulation for the normal boundary value problem 
of the div-curl system seeks (�, �) ∈ [	2(Ω)]3 ×�1

0�
(Ω) such that

�(�, �;�,�) = � (�,�) ∀� ∈�1(Ω),∀� ∈�0(����;Ω), (2.8)

where

� (�,�) = (�,�) − (�,�) + ⟨�1, �⟩.
Note that by testing the curl equation in the div-curl system against 

any � ∈�1
0�
(Ω) we have

(�,∇�) = 0, ∀� ∈�1
0�
(Ω), (2.9)

which gives rise to the following compatibility condition:

∇ ⋅ � = 0, ⟨� ⋅ �
,1⟩Γ
 = 0, for 
 = 1,⋯ ,	. (2.10)

Theorem 2.1. Under the compatibility condition (2.10) for �, the solution 
(�; �) of (2.8) satisfies the following equations:

∇ ⋅ (��) = �, in Ω, (2.11)

∇× � = �, in Ω, (2.12)

� = 0, in Ω, (2.13)

�� ⋅ � = �1, on Γ. (2.14)

Proof. By letting � = 0 in (2.8) we have

(�, �∇�) = −(�,�) + ⟨�1, �⟩Γ
for all � ∈�1(Ω). It follows that ∇ ⋅ (��) = � and �� ⋅ � = �1 on Γ, which 
leads to (2.11) and (2.14). Next, by letting � = 0 in (2.8) we arrive at

(�,∇×�) + (� , �∇�) = (�,�), ∀� ∈�0(����;Ω),

which leads to

(∇ × �+ �∇�,�) = (�,�),

and thus

∇× �+ �∇� = �, in Ω. (2.15)

Now from (2.15) we have

(∇ × �+ �∇�,∇�) = (�,∇�),

which, by the usual integration by parts, gives

⟨� × �,∇�⟩Γ + (�∇�,∇�) = (�,∇�),

and by the boundary condition of � = ����� on each Γ
 and the compati-
bility condition (2.10)

(�∇�,∇�) = ⟨�,� ×∇�⟩Γ + (�,∇�) = 0.

It follows that ∇� = 0 so that � ≡ 0. This completes the proof of the 
theorem. □

The homogeneous dual problem of (2.8) seeks � ∈�1(Ω)∕ℝ and 
 ∈

�0(����; Ω) satisfying

�(�, �;�,
) = 0 ∀� ∈ [	2(Ω)]3, � ∈�1
0�
(Ω). (2.16)

Theorem 2.2. The solution to the homogeneous dual problem (2.16) is 
unique.

Proof. The problem (2.16) can be rewritten as

(�, �∇�+∇× 
) + (
, �∇�) = 0 (2.17)

for all � ∈ [	2(Ω)]3 and � ∈�1
0�
(Ω). Note that the test against � ∈�1

0�
(Ω)

and � = 0 ensures ∇ ⋅ (�
) = 0 and ⟨�
 ⋅ �, 1⟩Γ
 = 0 for all 
 ∈ {1, ⋯ , 	}. In 
addition, by letting � = 0 and varying � ∈ [	2(Ω)]3 we arrive at

�∇�+∇× 
 = 0,

which, by testing against ∇�, leads to

(�∇�,∇�) = 0,

so that � ≡ 0 and hence

∇× 
 = 0.

Thus, we have


 ∈ℍ��,0(Ω), ⟨�
 ⋅ �
,1⟩Γ
 = 0 for 
 = 1,⋯ ,	,

which yields 
 ≡ 0. □

3. Discrete weak gradient and weak curl

The extended weak formulation (2.8) is based on the gradient and 
curl differential operators. In this section, we shall review the notion of 
discrete weak gradient and weak curl which forms a corner stone of the 
weak Galerkin finite element method. To this end, let � be a polyhedral 
domain with boundary �� and unit outward normal direction � on �� . 
Define the space of weak functions in � by

 (� ) = {� = {�0, �!} ∶ �0 ∈	2(� ), �! ∈	2(�� )},

where �0 represents the value of � in the interior of � , and �! represents 
some specific boundary information of �. Analogously, define the space 
of vector-valued weak functions on � by

" (� ) = {� = {�0,�!} ∶ �0 ∈ [	2(� )]
3,�! ∈ [	2(�� )]

3}.

Let #� (� ) the space of polynomials on � with total degree � and less. 
For any � ∈ (� ), the discrete weak gradient, denoted by ∇$,�,� �, is 
defined as the unique vector-valued polynomial in [#� (� )]3 satisfying

(∇$,�,� �,�)� = −(�0,∇ ⋅�)� + ⟨�!,� ⋅ �⟩�� , ∀� ∈ [#� (� )]
3. (3.1)

Analogously, the discrete weak curl of � ∈ " (� ), denoted by ∇$,�,� × �, 
is defined as the unique vector-valued polynomial in [#� (� )]3, satisfying

(∇$,�,� × �,�)� = (�0,∇×�)� − ⟨�! × �,�⟩�� , ∀� ∈ [#� (� )]
3. (3.2)

49



S. Cao, C. Wang and J. Wang Computers and Mathematics with Applications 114 (2022) 47–59

4. PDWG numerical algorithm

Let ℎ be a finite element partition of the domain Ω consisting of 
polyhedra that are shape-regular [29]. Denote by ℎ the set of faces in ℎ and 0

ℎ
= ℎ ⧵ �Ω the set of interior faces. Denote by ℎ� the diameter 

of the element � ∈ ℎ and ℎ =max�∈ℎ ℎ� the meshsize of the partition ℎ.
For a given integer & ≥ 0, we introduce the following finite element 

spaces subordinated to ℎ:
� ℎ ={� ∶ �|� ∈ [#&(� )]

3,∀� ∈ ℎ},
'ℎ ={{�0, �!} ∶ �0|� ∈ #&(� ), �!|�� ∈ #&(�� ),∀� ∈ ℎ, �!|Γ0 = 0,

�!|Γ
 is a constant},
(ℎ ={{�0, �!} ∶ �0|� ∈ #&(� ), �!|�� ∈ #&(�� ),∀� ∈ ℎ, ∫

Ω

�0 = 0},


 ℎ ={� = {�0,�!} ∶ �0|� ∈ [#&(� )]
3,�!|�� ∈)&(�� ),∀� ∈ ℎ,

�!|Γ = 0},

where )&(�� ) ∶= [#&(*)]
3 × �* is the space of polynomials of degree &

in the tangent space of �� .
For simplicity of notation, for * ∈ 'ℎ or * ∈(ℎ, denote by ∇$*

the discrete weak gradient ∇$,&,� * computed by using (3.1) on each 
element � ; i.e.,

(∇$*)|� =∇$,&,� (*|� ), * ∈ 'ℎ or * ∈(ℎ.

Analogously, for 
 ∈ 
 ℎ, denote by ∇$ × 
 the discrete weak curl 
∇$,&,� × 
 computed by using (3.2) on each element � ; i.e.,

(∇$ × 
)|� =∇$,&,� × (
|� ), 
 ∈
 ℎ.

An approximation of the bilinear form �(⋅; ⋅) is given as follows:

�ℎ(�ℎ, �ℎ;�,�) ∶= (�ℎ, �∇$�+∇$ ×�) + (�0, �∇$�ℎ) (4.1)

for �ℎ ∈ � ℎ, �ℎ ∈ 'ℎ, � ∈(ℎ, � ∈
 ℎ.
The following is the PDWG finite element method for the div-curl 

model system (1.1)-(1.3).

Algorithm 1 (PDWG Algorithm). For an approximate solution of (1.1)-
(1.3), one may compute �ℎ ∈ � ℎ, together with three auxiliary variables 
�ℎ ∈ 'ℎ, �ℎ ∈(ℎ, and 
ℎ ∈
 ℎ satisfying

{
�1(�ℎ,
ℎ;�,�) +�ℎ(�ℎ, �ℎ;�,�) = � (�,�), ∀� ∈(ℎ, � ∈
 ℎ,

−�2(�ℎ, �) +�ℎ(�, �;�ℎ,
ℎ) = 0, ∀� ∈ � ℎ, � ∈ 'ℎ.

(4.2)

Here the stabilizer �1 is given by

�1(�ℎ,
ℎ;�,�) = �1
∑
�∈ℎ

ℎ−1
�

⟨�0 − �!, �0 −�!⟩�� (4.3)

+ �2
∑
�∈ℎ

ℎ−1
�

⟨
0 × �− 
! × �,�0 × �−�! × �⟩�� ,

and �2 is defined accordingly in the space (ℎ as follows

�2(�ℎ; �) = �3
∑
�∈ℎ

ℎ
−+

�
⟨�0 − �!, �0 − �!⟩�� ,

where + ≥ −1 and �
 > 0 are parameters with values at user’s discretion.

The PDWG scheme (4.2) further provides an approximation of the 
space of normal �-harmonic vector fields ℍ��,0(Ω), as revealed by The-
orem 6.2 in that the difference 	ℎ = ℎ� − �ℎ is sufficiently close to a 
true normal �-harmonic vector field 	. For this purpose, we introduce 
the following notation of discrete normal �-harmonic functions.

Definition 4.1 (discrete normal �-harmonic functions). A vector field 	ℎ ∈
� ℎ is said to be a discrete normal �-harmonic function if there exists a 
vector field � ∈�(�
��; Ω) ∩�(����; Ω) such that

	ℎ =ℎ�− �ℎ, (4.4)

where ℎ is the 	2 projection operator onto the finite element space 
� ℎ and �ℎ is the solution of (4.2) for a div-curl system (1.1)-(1.3) with 
load functions � , �, and �1 determined by �.

In practical computation, a discrete normal �-harmonic function can 
be readily obtained from (4.4) by choosing a smooth vector field � and 
one solving of the PDWG system (4.2).

5. Solution existence and uniqueness

Introduce two semi-norms as follows:

⦀(�ℎ,
ℎ)⦀ =
(
�1(�ℎ,
ℎ;�ℎ,
ℎ)

) 1
2
, �ℎ ∈(ℎ, 
ℎ ∈
 ℎ, (5.1)

⦀�ℎ⦀ =
(
�2(�ℎ; �ℎ)

) 1
2
, �ℎ ∈ 'ℎ. (5.2)

For simplicity, assume that � is piecewise constant with respect to the 
partition ℎ. Note that all the results can be generalized to piecewise 
smooth � without any difficulty.

Denote by -0 the 	2 projection operator onto #&(� ) and -! the 	2

projection operator onto #&(*) on each face * ∈ �� . Denote by -ℎ the 
projection operator onto the weak finite element space 'ℎ or (ℎ such 
that

(-ℎ$)|� = {-0$|� ,-!$|�� }.
Analogously, we use ℚ0, ℚ! and ℚℎ to denote the 	2 projection opera-
tors onto [#&(� )]3, )&(*) = [#&(*)]

3 × �* , and 
 ℎ, respectively. The 	2

projection operator onto the finite element space � ℎ is denoted as ℎ.

Lemma 5.1. [29] The 	2 projections -ℎ and ℎ satisfy the commutative 
property

∇$(-ℎ$) =ℎ(∇$), ∀$ ∈�1(� ), (5.3)

∇$ × (ℚℎ�) =ℎ(∇ ×�), ∀� ∈�(����;� ). (5.4)

Theorem 5.2. The kernel of the matrix of the PDWG finite element scheme 
(4.2) is given by

/ℎ = {(�ℎ, �ℎ = 0, �ℎ = 0,
ℎ = 0) ∶ �ℎ ∈ � ℎ ∩ℍ��,0(Ω)}.

In other words, the kernel of the matrix of the PDWG scheme (4.2) is iso-
morphic to the subspace of ℍ��,0(Ω) consisting of harmonic functions that 
are piecewise polynomial of degree &.

Proof. Let (�ℎ, �ℎ, �ℎ, 
ℎ) be a solution of (4.2) with homogeneous data. 
It follows that

�1(�ℎ,
ℎ;�ℎ,
ℎ) = 0, �2(�ℎ, �ℎ) = 0, (5.5)

(�ℎ, �∇$�+∇$ ×�) + (�0, �∇$�ℎ) = 0, ∀� ∈(ℎ,� ∈
 ℎ, (5.6)

(
0, �∇$�) + (�, �∇$�ℎ +∇$ × 
ℎ) = 0, ∀� ∈ � ℎ, � ∈ 'ℎ. (5.7)

From (5.5) we have

�0 = �!, 
0 × � = 
! × �, �0 = �!, on �� , (5.8)

so that �0 ∈ 0(Ω), �0 ∈ 0(Ω) and 
0 ∈�0(����; Ω). Hence,

∇�0 =∇$�ℎ, ∇× 
0 =∇$ × 
ℎ. (5.9)
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Next, by letting � = 0 and varying � in (5.7) we have

�∇$�ℎ +∇$ × 
ℎ = 0,

which, together with (5.9), implies

�∇�0 +∇× 
0 = 0. (5.10)

From 
0 ∈�0(����; Ω), we have

(�∇�0 +∇× 
0,∇�0) = (�∇�0,∇�0) + (∇ × 
0,∇�0)

= (�∇�0,∇�0) + ⟨� × 
0, �0⟩
= (�∇�0,∇�0).

Thus,

(�∇�0,∇�0) = 0,

which gives ∇�0 = �, and hence �0 ≡ 0 as a function with mean value 0. 
This further leads to �! ≡ 0. Thus, from (5.10) we have

∇× 
0 = 0, in Ω.

Observe that 
0 satisfies

(
0, �∇$�) = 0 ∀� ∈ 'ℎ,

which leads to 
0 ∈�(�
��; Ω) and

∇ ⋅ (�
�) = 0, ⟨
0 ⋅ �
,1⟩Γ
 = 0,

for 
 = 1, 2, ⋯ 	. This, together with ∇ × 
0 = 0 and 
� ∈ �0(����; Ω)
shows that 
0 ≡ 0, and hence 
! = � × (
! × �) = � × 0 = 0.

Next, from the Helmholtz decomposition (A.1), we have

�ℎ = �
−1∇× �̃ +∇�̃+ 	̃,

with some 	̃ ∈ ℍ��,0(Ω) and �̃ ∈�0(����; Ω) satisfying ∇ ⋅ (��̃) = 0 and 
⟨��̃ ⋅�
, 1⟩Γ
 = 0 for 
 = 1, ⋯ , 	. From �2(�ℎ, �ℎ) = 0 we have �0 = �! on ��
for each element � ∈ ℎ so that �0 ∈�1(Ω). It follows that ∇$�ℎ = ∇�0. 
If ℍ��,0(Ω) has dimension 0, then 	̃ = 0. In (5.6), by choosing the test 
function � and � to be the 	2 projection of the corresponding function 
in the Helmholtz decomposition we arrive at

0 =(�ℎ, �∇$-ℎ�̃+∇$ ×ℚℎ�̃) + (ℚ0�̃ , �∇$�ℎ)

=(�ℎ,ℎ�∇�̃+ℎ∇× �̃) + (�̃ , �∇�0)

=(�ℎ, �∇�̃+∇× �̃) + (�̃ , �∇�0)

=(��ℎ,�ℎ − 	̃) + (�̃ , �∇�0)

=(�(�ℎ − 	̃),�ℎ − 	̃),

(5.11)

which leads to �ℎ − 	̃ = 0; i.e., �ℎ is a harmonic function. As a harmonic 
function and piecewise polynomial of degree &, the first term on the 
left-hand side of (5.6) becomes to be zero for all test functions � ∈(ℎ
and � ∈
 ℎ. It follows that ∇$�ℎ = 0 so that ∇�0 =∇$�ℎ = 0 and hence 
�0 ≡ 0, so is �! ≡ 0. □

The following is our main result concerning the solution existence 
and uniqueness of the numerical scheme (4.2).

Theorem 5.3. The PDWG finite element scheme (4.2) has one and only one 
solution for all the components except �ℎ. The solution �ℎ is unique up to a 
harmonic function 	ℎ ∈ℍ��,0(Ω) that is a piecewise polynomial of degree &.

Remark 5.4. For the PDWG element of lowest order (i.e., & = 0), any 	ℎ
in the kernel /ℎ of the PDWG operator of (4.2) would be a piecewise 
constant vector field that is continuous across each interior element 
interface and has vanishing value on the domain boundary along the 
normal direction. It follows that 	ℎ ≡ 0, or equivalently, the PDWG fi-
nite element scheme (4.2) has one and only one solution for all the 
components.

6. Error analysis

For the exact solution {�; � = 0} of the div-curl system, we have from 
(3.1) and (3.2) that

�ℎ(ℎ�,-ℎ�;�,�) =(ℎ�, �∇$�+∇$ ×�) + (�0, �∇$-ℎ�)

=(ℎ�, �∇�0 +∇×�0)

+ ⟨ℎ�, ��(�! −�0) + (�0 −�!) × �⟩ℎ
=(�, �∇�0 +∇×�0)

+ ⟨ℎ�, ��(�! −�0) + (�0 −�!) × �⟩ℎ
=− (∇ ⋅ (��), �0) + (∇ × �,�0)

+ ⟨�, ��(�0 −�!) + (�! −�0) × �⟩ℎ
+ ⟨ℎ�, ��(�! −�0) + (�0 −�!) × �⟩ℎ
+ ⟨�1, �!⟩�Ω

=⟨�1, �!⟩�Ω − (�,�0) + (�,�0)

+ ⟨�−ℎ�, ��(�0 −�!) + (�! −�0) × �⟩ℎ .

(6.1)

Combining the above equation with the fact that � = 0, 
 = 0 we obtain

�1(-ℎ�− �ℎ,ℚℎ
 − 
ℎ;�,�) +�(ℎ�− �ℎ,-ℎ�− �ℎ;�,�)

=⟨�−ℎ�, ��(�0 −�!) + (�! −�0) × �⟩ℎ .
(6.2)

The second error equation can be easily obtained as follows:

−�2(-ℎ�− �ℎ, �) +�(�, �;-ℎ�− �ℎ,ℚℎ
 − 
ℎ) = 0, (6.3)

where we have used the fact that � = 0, 
 = 0, and � = 0.
Denote the error functions by

2� =ℎ�− �ℎ, 2� =-ℎ�− �ℎ, 2� =-ℎ�− �ℎ, 2
 =ℚℎ
 − 
ℎ.

Theorem 6.1. For the numerical solution �ℎ, �ℎ, �ℎ, 
ℎ arising from the 
PDWG scheme (4.2), the following estimate holds true:

⦀(2�, 2
)⦀+ ⦀2�⦀ ≲ ℎ&+3‖�‖&+3 , (6.4)

provided that � ∈ [�&+3(Ω)]3 for 3 ∈ (1∕2, 1].

Proof. From (6.2) and (6.3) we have

�1(2�, 2
 ; 2�, 2
) + �2(2�, 2�) = ⟨�−ℎ�, ��(2�,0 − 2�,!) + (2
,! − 2
,0) × �⟩ℎ ,
which leads to

⦀(2�, 2
)⦀2 + ⦀2�⦀2 ≲ ℎ&+3‖�‖&+3⦀(2�, 2
)⦀, (6.5)

where 3 ∈ (1∕2, 1] and & is the order of polynomials for the finite ele-
ment space � ℎ. This completes the proof of the theorem. □

To derive an estimate for the error function 2�, we use the Helmholtz 
decomposition (A.1) to obtain a �̃ ∈ �1(Ω), �̃ ∈ �0(����; Ω), and 	̃ ∈

ℍ��,0(Ω) such that

2� = �
−1∇× �̃ +∇�̃+ 	̃. (6.6)

Assume the following �� -regularity holds true for some fixed � ∈

(1∕2, 1]:

‖�̃‖� + ‖�̃‖� ≲ ‖2� − 	̃‖0. (6.7)

The following is the main convergence result of this paper.
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Theorem 6.2. Let � be a solution of the div-curl system (1.1)-(1.3). Assume 
that the Helmholtz decomposition (6.6) has the �� -regularity estimate (6.7). 
For a numerical solution �ℎ, �ℎ, �ℎ, 
ℎ arising from (4.2), there exists a 
harmonic function 	̃ ∈ℍ��,0(Ω) such that the following estimate holds true:

‖�1∕2(�ℎ + 	̃−ℎ�)‖ ≲ ℎ&+3+�−1‖�‖&+3 , (6.8)

provided that � ∈ [�&+3(Ω)]3 for 3 ∈ (1∕2, 1].

Proof. From the first error equation (6.2), we have

�1(2�, 2
 ;�,�) +�(2�, 2�;�,�) =⟨�−ℎ�, ��(�0 −�!) + (�! −�0) × �⟩ℎ .
(6.9)

Recall the Helmholtz decomposition (6.6) for the error function 2�. By 
letting � =-ℎ�̃ and � =-ℎ�̃ , we obtain from Lemma 5.1

�(2�, 2�;�,�) =(2�, �∇$-ℎ�̃+∇$ ×ℚℎ�̃) + (ℚ0�̃ , �∇$2�)

=(2�, �ℎ∇$�̃+ℎ∇$ × �̃) + (ℚ0�̃ , �∇$2�)

=(2�, �∇�̃+∇× �̃) + (ℚ0�̃ , �∇$2�)

=(�2�, 2� − 	̃) + (�ℚ0�̃ ,∇$2�)

=(�(2� − 	̃), 2� − 	̃) + (�ℚ0�̃ ,∇$2�).

(6.10)

From the definition of the weak gradient we have

(�ℚ0�̃ ,∇$2�) =(�ℚ0�̃ ,∇2�,0) + ⟨�ℚ0�̃ ⋅ �, 2�,! − 2�,0⟩ℎ
=(��̃ ,∇2�,0) + ⟨�ℚ0�̃ ⋅ �, 2�,! − 2�,0⟩ℎ
=− (∇ ⋅ (��̃),∇2�,0) + ⟨��̃ ⋅ �, 2�,0⟩ℎ
+ ⟨�ℚ0�̃ ⋅ �, 2�,! − 2�,0⟩ℎ

=⟨��̃ ⋅ �, 2�,0 − 2�,!⟩ℎ + ⟨�ℚ0�̃ ⋅ �, 2�,! − 2�,0⟩ℎ
=⟨�(�̃ −ℚ0�̃) ⋅ �, 2�,0 − 2�,!⟩ℎ .

Substituting the above into (6.10) then (6.9) yields

‖�1∕2(2� − 	̃)‖2 =�(2�, 2�;�,�) − ⟨�(�̃ −ℚ0�̃) ⋅ �, 2�,0 − 2�,!⟩ℎ
=⟨�−ℎ�, ��(�0 −�!) + (�! −�0) × �⟩ℎ
− �1(2�, 2
 ;�,�) − ⟨�(�̃ −ℚ0�̃) ⋅ �, 2�,0 − 2�,!⟩ℎ ,

which leads to

‖�1∕2(2� − 	̃)‖2 ≲ℎ3‖�−ℎ�‖3⦀(�,�)⦀+ ⦀(2�, 2
)⦀⦀(�,�)⦀
+ ℎ�+(+−1)∕2‖�̃‖�⦀2�⦀.

It can be proved that

⦀(�,�)⦀ ≲ ℎ�−1‖(�̃, �̃)‖� .

It follows that

‖�1∕2(2� − 	̃)‖2 ≲ℎ3‖�−-ℎ�‖3ℎ�−1‖(�̃, �̃)‖� + ⦀(2�, 2
)⦀ℎ�−1‖(�̃, �̃)‖�
+ ℎ�+(+−1)∕2‖�̃‖�⦀2�⦀,

so that

‖�1∕2(2� − 	̃)‖ ≲ℎ�+3−1‖�−-ℎ�‖3 + ℎ�−1⦀(2�, 2
)⦀+ ℎ�+(+−1)∕2⦀2�⦀
≤ℎ&+3+�−1‖�‖&+3 ,

which gives rise to the error estimate (6.8). □

7. Numerical experiments

In this section, we present some numerical results for the PDWG fi-
nite element method proposed and analyzed in previous sections. For 
simplicity, we choose the lowest order PDWG element; i.e., & = 0 so 
that the solution � is approximated by discontinuous piecewise con-
stant vector fields. The exact solution � has various regularities ranging 
from smooth to corner singular. The computational domain includes 
convex and non-convex polyhedral regions; some have cavities or mul-
tiple toroidal topology. The implementation uses an open-source and 
publicly available MATLAB package iFEM [6]. The computational do-
main is first partitioned into cubes, and each cube is further divided 
into 6 tetrahedra of equi-volume to form a shape-regular finite element 
partition. On each tetrahedral element � with boundary �� = ∪4


=1
�
, 

the local finite element space consists of functions given as follows: for 
& = 0, 1

�ℎ|� ∈
[
#&(� )

]3
, (7.1)

�ℎ|� =
{
�0, �!

}
∈
{
#&(� ),Π

4

=1
#&(�
)

}
, (7.2)

�ℎ|� =
{
�0, �!

}
∈
{
#&(� ),Π

4

=1
#&(�
)

}
, (7.3)

�ℎ|� =
{
�0,�!

}
∈
{[
#&(� )

]3
, �&(�� )

}
. (7.4)

When the true solution is singular, we choose & = 0, and �0(�� ) is tan-
gential to the boundary and is given by

�0(�� ) ∶= {� ∶��
,� ∈
[
#0(�
)

]3
× ��
 , � = 1,2 and 
 = 1,2,3,4},

where ��
 is the outer unit normal vector to face �
. The basis functions 
for the first three spaces are straightforward. For �0(�� ), on each face 
�
 we choose the normalized vectors representing the directional vector 
of any 2 edges (� = 1, 2) among 3 on ��
, such that its weak curl is the 
co-normal vector of this edge with respect to �
 (
 = 1, 2, 3, 4),

∇$ ×
{
�,��
,�

}
= 3��
,� × (∇4
),

where 4
 is the barycentric coordinate associated with the vertex oppo-
site to face �
.

When the true solution has extra smoothness than being �1-regular, 
we compare & = 0 and & = 1 cases. We choose the linear Nédélec el-
ements and their facewise tangential projections locally as the basis 
functions for # 1(� ) and # 1(�
), respectively.

For each test problem, we specify a vector field � as the true solu-
tion, while the right-hand sides of the div-curl system (1.1)-(1.3) are 
computed accordingly. We shall evaluate the following errors for the 
PDWG finite element solution:

‖�1∕2��‖ ∶= ‖�1∕2(�− �ℎ)‖, (7.5)

|||(2�, �
)||| ∶=
(
�1(�ℎ,
ℎ;�ℎ,
ℎ)

)1∕2
, (7.6)

|||2�||| ∶=
(
�2(�ℎ; �ℎ)

)1∕2
, (7.7)

where the 	2(Ω)-norm ‖�1∕2��‖ is computed by using a higher order 
Gaussian quadrature on each element.

7.1. Example 1

Ω = (0, 1)3, � = diag(3, 2, 1), the true solution � ∈
(
�1(Ω)

)3
is given by

�(5, 6, 7) =

⎛
⎜⎜⎝

sin(85) cos(86)

− sin(86) cos(85)

0

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

5

6

7

⎞
⎟⎟⎠
.

The performance of the PDWG finite element solution for this test prob-
lem is illustrated in Table 1. It can be seen that ��, (2�, �
), and 2� all 
have optimal rate of convergence for & = 0 as shown in Theorem 6.2. 
The plot of the true solution and the PDWG approximation can be found 
in Fig. 1.
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Fig. 1. The true solution vector field shown in (a) of Example 1 versus the WG approximation (b). The vector fields are plotted on four 7 = � planes. The distribution 
of ‖�1∕2��‖� locally is plotted in (c) on the cut plane 5 = 1∕2 with ℎ = 1∕8.

Fig. 2. The true solution vector field shown in (a) of Example 2 versus the PDWG approximation (b). The vector fields are plotted on four 7 = � planes. The 
distribution of ‖�1∕2��‖� locally is plotted in (c) on the cut plane 5 = 6 with ℎ = 1∕8.

Table 1
Errors and corresponding rates of convergence for Example 1.

1∕ℎ ‖�1∕2��‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

2 1.64e-1 – 2.95e-1 – 3.96e-2 –
4 8.16e-2 1.01 1.68e-1 0.82 1.86e-2 1.09
8 3.93e-2 1.03 8.72e-2 0.88 8.79e-3 1.09
16 1.93e-2 1.03 4.41e-2 0.98 4.48e-3 0.98

Table 2
Errors and corresponding rates of convergence for Example 2 with & = 0 in (4.2).

1∕ℎ ‖�1∕2��‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

2 1.13e-1 – 2.07e-1 – 1.74e-2 –
4 5.20e-2 1.12 1.20e-1 0.78 1.05e-2 0.73
8 2.50e-2 1.05 6.27e-2 0.94 5.53e-3 0.93
16 1.23e-2 1.02 3.18e-2 0.98 2.82e-3 0.97

7.2. Example 2

The second example is adopted from [16] with � = � and a singular 

solution in 
(
�

1+
2
3
−9
(Ω)

)3
with Ω = (0, 1)3:

�(5, 6, 7) =

⎛⎜⎜⎝

5(1 − 5)

6(1 − 6)

�2∕3 sin(23)7(1 − 7)

⎞⎟⎟⎠
,

in which � =
√
52 + 62, and 3 = arctan(6∕5) + � in the cylindrical coor-

dinates. Similar to Example 1, for & = 0, the result in Table 2 shows 
optimal rates of convergence for ��, while slightly sub-optimal in the 
coarsest two levels for (2�, �
), and 2�, respectively. When & = 1, i.e., 
the local finite element approximation spaces are all linear, the result 
in Table 3 shows sub-optimal rates for �� and (2�, �
) in the coarsest 
two levels, and then optimal once the mesh gets finer thus leveraging 

Table 3
Errors and corresponding rates of convergence for Example 2 with & = 1 in (4.2).

1∕ℎ ‖�1∕2��‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

2 1.38e-2 – 7.69e-2 – 5.39e-3 –
4 4.89e-3 1.50 2.50e-2 1.62 1.51e-3 1.84
8 1.46e-3 1.62 7.64e-3 1.67 4.52e-4 1.79
16 4.25e-4 1.76 2.44e-3 1.68 1.45e-4 1.69

the extra smoothness of �. The plot of the true solution and the PDWG 
approximation for & = 0 can be found in Fig. 2.

7.3. Example 3

This test problem is defined on a non-convex domain Ω = (−1, 1)2 ×
(0, 1)∖[0, 1] × [−1, 0] × [0, 1] with � = � and the singular solution in (
�2∕3−9(Ω)

)3
:

� =∇×
⟨
0,0, �2∕3 sin

(
2

3
3

)⟩
.

The true solution � is a solenoidal vector field (see Fig. 3). Similar to 
Example 2, � =

√
52 + 62 and 3 = arctan(6∕5) + � are the cylindrical coor-

dinates, where � is chosen such that � ∈�(�
�) ∩�(����). Since �(5, 6, 7)
has unbounded derivatives as (5, 6, 7) approaches {5 = 0, 6 = 0} ∩ �Ω, the 
Gaussian quadrature would yield large error on elements with bound-
ary intersecting 7-axis. To overcome this difficulty, we replace the true 
solution by its 	2-projection in the error computation:

‖�1∕2�ℎ�‖ ∶= ‖�1∕2(ℎ�− �ℎ)‖.
It is observed that �ℎ�, (2�, �
), and 2� all have maximum possible rate 
of convergence (≈ ℎ2∕3) on the finer meshes (see Table 4). The plot of 
the true solution and the PDWG approximation can be found in Fig. 4.
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Fig. 3. The true solution vector field shown in (a) of Example 3 view from above on 7 = 1∕4 plane together with the level set of its 7-component. A coarse mesh 
(ℎ = 1∕2) used in Example 3 is illustrated in (b).

Fig. 4. The vector field of ℎ� is shown in (a) of Example 3 versus the PDWG approximation (b). The vector fields are plotted on several 7 = � planes. The distribution 
of ‖�1∕2�ℎ�‖� locally is plotted in (c) on the cut plane 7 = 1∕4 when ℎ = 1∕8.

Table 4
Errors and corresponding rates of convergence for Example 3.

1∕ℎ ‖�1∕2�ℎ�‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

2 5.29e-2 – 3.35e-1 – 4.99e-2 –
4 3.13e-2 0.75 2.19e-1 0.61 3.30e-2 0.60
8 1.91e-2 0.72 1.41e-1 0.63 2.14e-2 0.62
16 1.16e-2 0.72 9.03e-2 0.65 1.37e-2 0.64

7.4. Example 4

This test problem is defined on the domain Ω = (−3∕2, 1∕2)3∖[−1, 0]3

such that the domain boundary �Ω consists of two disjoint connected 
components Γ0 = �(−3∕2, 1∕2)3 and Γ1 = �(−1, 0)3. The true solution is 
given by

� =∇(�1∕6), with � =
√
52 + 62 + 72.

It is straightforward to see that � is singular near (0, 0, 0) which is one of 
the nonconvex corners of the cavity (see Fig. 5), and � ∈ [�2∕3−9(Ω)]3.

Table 5 illustrates the convergence of the PDWG method for Exam-
ple 4. It can be seen that �ℎ� has the optimal rate of convergence of 
:(ℎ2∕3). On the other hand, the convergence for (2�, �
) and 2� seems to 
be approximating the optimal rate in this numerical test.

For � = {�0, �!}, when solving the algebraic system, we seek a con-
stant �1 such that �!|Γ1 = �1 through a simple post-processing by treating 
�!|Γ1 as the fixed DoFs first. Denote by � the vector representation of 
the solution (�ℎ, �ℎ, �ℎ, 
ℎ), and �� = �1�, � = (0, ⋯ , 1, ⋯ , 1, ⋯ , 0), the in-
dicator vector representing a solution with �! = 1 on Γ1 while all other 

Table 5
Errors and corresponding rates of convergence for Example 4.

1∕ℎ ‖�1∕2�ℎ�‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

2 1.90-1 – 2.51e-1 – 2.04e-2 –
4 1.23e-1 0.63 1.93e-1 0.38 1.69e-2 0.27
8 7.78e-2 0.66 1.35e-1 0.51 1.24e-2 0.44
16 4.91e-2 0.66 9.03e-2 0.58 8.47e-3 0.55

DoFs are zero. Let ; be the full stiffness matrix including from all nodal 
bases (including boundary faces), while ;int be the stiffness matrix for 
all the free DoFs: including the interior DoFs for �ℎ, �ℎ, and 
ℎ, all 
except 1 fixed DoF for �ℎ. Let < be the restriction operator such that 
< ∶ � ↦ �int , which is the vector representing all the aforementioned 
free DoFs. First we solve the following algebraic system:

;int
�
int =<�,

where � is the full vector of the right hand side. Then the constant �1 is 
sought by solving the following minimization problem:

�1 = argmin
=∈ℝ

‖;(�int + =�) − �‖�2 .

The plot of the projection of the true solution and the PDWG approxi-
mation is shown in Fig. 6.

7.5. Example 5

In this example we consider singular solutions in the following vec-
tor potential form on a toroidal domain: Ω =

(
(−1, 1

2
)2∖[−

1

2
, 0]2

)
× (0, 1

2
)
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Fig. 5. (a): plot of the true solution field of Example 4, view from above on 7 = 0 plane. (b): a coarse mesh (ℎ = 1∕2) used in Example 4 cut by the plane 5 = 0, with 
boundary faces of Γ1 being highlighted in red.

Fig. 6. The vector field ℎ� is shown in (a) for Example 4 versus the PDWG approximation (b). The vector fields are plotted on several 7 = � planes. The error 
distribution of ‖�1∕2�ℎ�‖� is plotted in (c) on the cut plane 7 = 0 with meshsize ℎ = 1∕8.

Fig. 7. Example 5: Plot of the singular true solution vector field with + = 3∕4 and � = 2 is shown in (a), view from above on 7 = 0 plane. The level set contours are 
for the 7-component of the vector potential. The coarse mesh (ℎ = 1∕2) is shown in (b).

� =∇×
⟨
0,0, �+ sin

(
�3

)⟩
,

where � and 3 are the cylindrical coordinates defined as in Example 
3. It can be verified that for + ≠ 1, � ∈

(
�+−9(Ω)

)3
, and for + < 1, this 

vector field is singular near a non-convex corner centered at 7-axis (see 
Fig. 7).

Unlike Example 7.3 in which + = � was set on an L-shaped domain, 
we choose � = 2 in this example, so that the resulting vector field is 
non-harmonic for + ≠ �, and
∇× � =

⟨
0,0,−Δ

(
�+ sin

(
�3

))⟩
=
⟨
0,0,

(
�2 − +2

)(
52 + 62

)+∕2−1
sin (�3)

⟩
.

Consequently, ∇ × � ∉ 	2(Ω) if + ≤ 1. Nevertheless, due to the unique 
nature of the PDWG method, we still obtain noteworthy convergence 
result for the case of + ≤ 1. In Table 6, we have compiled several cases 
ranging from smooth to singular and plotted the PDWG approximation 
vs ℎ� in Fig. 8.
• Regular case + = 1.25: �� and 2� show the optimal rates of conver-
gence at :(ℎ), while �ℎ� shows a superconvergence. (2�, �
) only 
shows a slightly suboptimal rate of convergence during first two 
refinements, and optimal thereafter.
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Table 6
Errors and the rates of convergence with different + for Example 5.

1∕ℎ ‖��‖ Rate ‖�1∕2�ℎ�‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

+ = 5∕4 (smooth) 2 3.96e-1 – 1.62e-1 – 9.01e-1 – 8.23e-2 –
4 2.09e-1 0.92 7.69e-2 1.07 4.94e-1 0.87 5.12e-2 0.68
8 1.07e-1 0.96 3.23e-2 1.25 2.63e-1 0.91 2.70e-2 0.93
16 5.44e-2 0.98 1.26e-3 1.35 1.37e-1 0.94 1.32e-2 1.03

+ = 1 (singular) 2 5.34e-1 – 2.46e-1 – 1.20e0 – 1.42e-1 –
4 3.06e-1 0.80 1.28e-1 0.94 7.11e-1 0.76 8.95e-2 0.66
8 1.67e-1 0.87 5.58e-2 1.19 4.04e-1 0.81 4.94e-2 0.86
16 8.82e-2 0.88 2.55e-2 1.13 2.25e-1 0.85 2.56e-2 0.95

+ = 2∕3 (singular) 2 8.87e-1 – 4.55e-1 – 2.05e0 – 3.41e-1 –
4 5.87e-1 0.59 2.75e-1 0.73 1.40e0 0.55 2.39e-1 0.51
8 3.70e-1 0.67 1.39e-1 0.98 9.28e-1 0.60 1.53e-1 0.65
16 2.34e-1 0.66 7.51e-2 0.89 6.01e-1 0.62 9.51e-2 0.68

Fig. 8. Example 5: The vector field of ℎ� is shown in (a) versus the PDWG approximation (b) for + = 2∕3 (singular case). The vector fields are plotted on several 
7 = � planes. The distribution of ‖�1∕2��‖� locally is plotted in (c) on the cut plane 7 = 1∕4 with meshsize ℎ = 1∕8.

Fig. 9. Example 6: the singular true solution vector field when +1 = 1∕2, +2 = 2∕3, and � = 2 is shown in (a) view from above on 7 = 0 plane. The level set contours 
are for the 7-component of the vector potential used. The coarse mesh (ℎ = 1∕2) is illustrated in (b).

• Singular case + = 1: In this case, we have � ∈ �1−9
���

(Ω) and � ∉

�(��	
). �� shows a rate of convergence at :(ℎ0.9) asymptotically. 
Like the smooth case, �ℎ� shows a superconvergence with rates 
higher than 1. (2�, �
) and 2� show an optimal rate of convergence 
asymptotically.

• Singular case + = 2∕3: In this case, one has � ∈ �2∕3−9(Ω), and 
� ∉ �(��	
). Both �� and 2� show optimal rate of convergence at 
:(ℎ2∕3). Similarly to previous two cases, �ℎ� exhibits superconver-
gence with a rate of :(ℎ0.9). (2�, �
) shows a convergence with a 
slightly suboptimal rate of :(ℎ0.6).

7.6. Example 6

In this example we consider a singular solution bearing the 
same form with that in Example 5 on a toroidal domain: Ω =[
(−1, 3

2
)2∖

{
[−

1

2
, 0]2 ∪ [

1

2
, 1] × [−

1

2
, 0]

}]
× [0, 1

2
]

� =∇×
⟨
0,0, �

+1
1
sin

(
�31

)
+ �
+2
2
sin

(
�32

)⟩
,

where (�
, 3
) are the cylindrical coordinates centered at two different 
points; specifically, �1 =

√
52 + 62, �2 =

√
(5− 1)2 + 62, 31 = arctan(6∕5) +

�1, and 32 = arctan
(
6∕(5 − 1)

)
+ �2. In this example, we choose +1 = 1∕2

and +2 = 2∕3 such that the vector field is singular near the noncon-
vex corners of the domain (see Fig. 9). In fact, the vector field � be-
haves as �1∕2−9 -regular in a neighborhood of the edge {5 = 0, 6 = 0}, 
and as �2∕3−9 -regular in a neighborhood of the edge {5 = 1, 6 = 0}. 
In this example, one has � ∉ �(��	
) as in Example 5. The conver-
gence results are shown in Table 7. It can be seen that ��, (2�, �
), 
and 2� show optimal rates of convergence at :(ℎ1∕2). The local er-
ror is more prominent near one of the nonconvex corners where 
� locally is �1∕2−9 -regular (see Fig. 10). Similarly to previous two 
cases, �ℎ� shows superconvergence with a rate approximately at 
:(ℎ3∕4).
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Table 7
Errors and the rates of convergence for Example 6.

1∕ℎ ‖��‖ Rate ‖�1∕2�ℎ�‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

+1 = 1∕2

+2 = 2∕3

2 1.49e0 – 8.37e-1 – 3.39e0 – 6.38e-1 –
4 1.04e0 0.52 5.18e-1 0.69 2.48e0 0.45 4.74e-1 0.43
8 6.99e-1 0.57 2.84e-1 0.87 1.77e0 0.49 3.27e-1 0.54
16 4.79e-1 0.55 1.70e-1 0.73 1.24e0 0.51 2.22e-1 0.55

Fig. 10. Example 6: The vector field of ℎ� is shown in (a) versus the PDWG approximation (b) for +1 = 1∕2 and +2 = 2∕3 (singular case). The vector fields are plotted 
on several 7 = � planes. The distribution of ‖�1∕2��‖� locally is plotted in (c) on the cut plane 7 = 1∕4 with meshsize ℎ = 1∕8.

Table 8
Errors and the rates of convergence with different @ for Example 7.

1∕ℎ ‖��‖ Rate ‖�1∕2�ℎ�‖ Rate |||(2� , �
 )||| Rate |||2�||| Rate

+ = 2∕3

@ = 1

2 1.26e0 – 8.08e-1 – 2.52e0 – 3.68e-1 –
4 8.78e-1 0.52 6.35e-1 0.35 1.63e0 0.63 2.54e-1 0.53
8 6.71e-1 0.39 5.55e-1 0.19 1.03e0 0.66 1.58e-1 0.68
16 5.82e-1 0.21 5.33e-1 0.06 6.44e-1 0.67 9.72e-2 0.70

+ = 2∕3

@ = 5

2 3.42e0 – 2.75e0 – 5.32e0 – 6.52e-1 –
4 2.89e0 0.25 2.66e0 0.05 3.16e0 0.75 4.05e-1 0.69
8 2.71e0 0.09 2.64e0 0.01 1.79e0 0.82 2.21e-1 0.87
16 2.66e0 0.03 2.64e0 0.00 1.01e0 0.82 1.27e-1 0.80

7.7. Example 7

In this example, we report some computational results for a test 
problem on a toroidal domain with first Betti number 1. As illustrated 
in Table 8, no convergence can be seen for the approximate solution �ℎ, 
which is consistent with Theorem 6.2 due to the presence of a nontrivial 
harmonic vector field. The true solution is obtained by combining the 
ones used in Examples 1 and 5:

�(5, 6, 7) = ∇ ×
⟨
0,0, �+ sin

(
�3

)⟩
+ @

⎛
⎜⎜⎝

sin(85) cos(86)

− sin(86) cos(85)

0

⎞
⎟⎟⎠
.

In this test, we choose � = 2, + = 2∕3, such that � ∈�2∕3−9 , while the 
extra term with coefficient @ is smooth thus not affecting the regular-
ity of the solution. Observe that the extra @ term is not divergence free. 
The optimal rate of convergence should be of order :(ℎ2∕3) on simply-
connected domains unaffected by the @ term. As @ varies, the numerical 
results do not demonstrate any convergence for the vector field �, while 
optimal order of convergence is seen for both (2�, �
) and 2�. The nu-
merical performance is in consistency with our theory as established in 
Theorem 6.1 for the convergence of (2�, �
) and 2� and Theorem 6.2 for 
the convergence of the vector field �ℎ up to a harmonic field. The vec-
tor fields of ℎ� and �ℎ are plotted in Fig. 11 (see (a) and (b)), while 
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Fig. 11. Example 7: The vector fields of ℎ� in (a) and that of the PDWG approximation (b) are visually different when � is not divergence-free on a toroidal domain. 
The discrete harmonic field 	ℎ =ℎ�− �ℎ is plotted in (c). The plots are on several 7 = � planes.

their difference 	ℎ = ℎ� − �ℎ is plotted in the same figure as (c). Ac-
cording to Theorem 6.2, the vector field 	ℎ is an approximate harmonic 
field with normal boundary condition.
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Appendix A. Helmholtz decomposition

Theorem A.1. For any vector-valued function � ∈ [	2(Ω)]3, there exists a 
unique � ∈�0(����; Ω), � ∈�1(Ω)∕ℝ, and 	 ∈ℍ��,0(Ω) such that

� = �−1∇×� +∇�+ 	, (A.1)

∇ ⋅ (��) = 0, ⟨�� ⋅ �
,1⟩Γ
 = 0, 
 = 1,… ,	. (A.2)

Moreover, the following estimate holds true

‖�‖�(curl;Ω) + ‖∇�‖0 ≲ (��,�)
1
2 . (A.3)

Proof. The following is a sketch of the proof. Consider the problem of 
seeking � ∈��(Ω) such that

(�−1∇×� ,∇×�) = (�,∇×�), ∀ � ∈��(Ω). (A.4)

Denote by

=(� ,�) ∶= (�−1∇×� ,∇×�)

the bilinear form defined on ��(Ω). We claim that =(⋅, ⋅) is coercive 
with respect to the �(curl; Ω)-norm. To this end, it suffices to derive the 
following estimate

‖�‖0 ≲ ‖∇× �‖0, � ∈��(Ω). (A.5)

In fact, for � ∈ ��(Ω), from Theorem 3.4 (Chapter 1) of [13], there 
exists a vector potential function � ∈ [�1(Ω)]3 such that

�� =∇×�, ∇ ⋅� = 0, ‖�‖1 ≲ (��,�)
1
2 . (A.6)

Using the integration by parts and the condition �×� = 0 on Γ, we have

(��,�) = (∇ ×�,�) = (�,∇× �).

It follows from the Cauchy-Schwarz inequality and (A.6) that

(��,�) ≤ ‖�‖0 ‖∇× �‖0 ≲ (��,�)
1
2 ‖∇× �‖0,

which implies (A.5).
Now from the Lax-Milgram Theorem, there exists a unique � ∈

��(Ω) satisfying the equation (A.4) such that

‖�‖�(curl;Ω) ≲ (��,�).

It is easy to see that ��(Ω) is equivalent to the following quotient space:

�0(curl;Ω)∕(∇�
1
0�
(Ω)) = {� ∈�0(curl;Ω) ∶ (��,∇�) = 0, ∀� ∈�1

0�
(Ω)}.

Thus, by using a Lagrangian multiplier A ∈�1
0�
(Ω), the problem (A.4)

can be re-formulated as follows: Find � ∈ �0(curl; Ω) and A ∈ �1
0�
(Ω)

such that
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(�−1∇×� ,∇×�) + (�∇A,�) = (�,∇×�), ∀ � ∈�0(curl;Ω),

(� , �∇�) = 0, ∀ � ∈�1
0�
(Ω).

(A.7)

It follows from the first equation of (A.7) that

∇× (�− �−1∇×�) − �∇A = 0.

Since A ∈�1
0�
(Ω), the two terms on the left-hand side of the above equa-

tion are orthogonal in the �−1-weighted 	2(Ω) norm. Thus, we have

∇× (�− �−1∇×�) = 0,

which gives

�− �−1∇×� ∈�0(curl;Ω).

Thus, there exist unique � ∈�1(Ω)∕ℝ and 	 ∈ℍ��,0(Ω) such that

�− �−1∇×� =∇�+ 	,

which completes the proof of the theorem. □
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