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We develop a statistical model for the testing of
disease prevalence in a population. The model
assumes a binary test result, positive or negative, but
allows for biases in sample selection and both type
I (false positive) and type II (false negative) testing
errors. Our model also incorporates multiple test
types and is able to distinguish between retesting and
exclusion after testing. Our quantitative framework
allows us to directly interpret testing results as a
function of errors and biases. By applying our testing
model to COVID-19 testing data and actual case data
from specific jurisdictions, we are able to estimate and
provide uncertainty quantification of indices that are
crucial in a pandemic, such as disease prevalence and
fatality ratios.

This article is part of the theme issue ‘Data science
approach to infectious disease surveillance’.

1. Introduction

Real-time estimation of the level of infection in a
population is important for assessing the severity of an
epidemic as well as for guiding mitigation strategies.

© 2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2021.0121&domain=pdf&date_stamp=2021-11-22
https://doi.org/10.1098/rsta/380/2214
mailto:lucasb@g.ucla.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Downloaded from https://royalsocietypublishing.org/ on 22 November 2021

Several previous studies have addressed the issue of correcting for errors and testing
biases. However, inferring disease prevalence via patient testing is challenging due to testing
inaccuracies, testing biases and heterogeneous and dynamically evolving populations and
severity of the disease.

There are two major classes of tests that are used to detect previous and current SARS-CoV-2
infections [1]. Serological, or antibody, tests measure the concentration of antibodies in infected
and recovered individuals. Since antibodies are generated as a part of the adaptive immune
system response, it takes time for detectable antibody concentrations to develop. Serological tests
should thus not be used as the only method to detect acute SARS-CoV-2 infections. An alternative
testing method is provided by viral-load or antigen tests, such as reverse transcription polymerase
chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and rapid antigen tests,
which are able to identify ongoing SARS-CoV-2 infections by directly detecting SARS-CoV-2
nucleic acid or antigen.

Test results are mainly reported as binary values (0 or 1, negative or positive) and often do
not include further information such as the cycle threshold (Ct) for RT-PCR tests. The cycle
threshold Ct defines the minimum number of PCR cycles at which amplified viral RNA becomes
detectable. Large values of Ct indicate low viral loads in the specimen. An increase in Ct by a
factor of about 3.3 corresponds to a viral load that is about one order of magnitude lower [2].
Cycle threshold cutoffs are not standardized across jurisdictions and range from values between
37 and 40, making it difficult to compare RT-PCR test results [3]. Lower Ct cutoffs in the range of
30-35 may be more reasonable to avoid classifying individuals with insignificant viral loads as
positive [3].

Further uncertainty in COVID-19 test results arises from different type I errors (false positives)
and type II errors (false negatives) that are associated with different assays. Note that inherent to
any test, the threshold (such as Ct mentioned above) may be tunable. Therefore, besides intrinsic
physical limitations, binary classification of ‘continuous-valued’ readouts (e.g. viral load) may
also lead to an overall error of either type [4]. In this work, we will assume that there is a
standardized threshold and the test readout is binary; if any virus is detected, the test subject
is positive. We will not explicitly model the underlying statistics of the errors but assume that
the test readouts are binary but can be erroneous at specified rates. Some uninfected individuals
will be wrongly classified as infected with rate FPR and some infected individuals will be
wrongly classified as uninfected with rate FNR. For serological COVID-19 tests, the estimated
proportions of false positives and false negatives are relatively low, with FPR ~0.02—0.07 and
FNR ~ 0.02—0.16 [5-8]. The FNRs of RT-PCR tests depend strongly on the actual assay method
[9,10] and may be significantly larger than those of serological tests. Typical values of FNR for
RT-PCR tests lie between 0.1 and 0.3 [11,12] but might be as high as FNR ~ 0.68 if throat swabs
are used [7,12]. False-negative rates may also vary significantly depending on the time delay
between initial infection and testing [8]. According to a systematic review [13] that was conducted
worldwide, the initial value of FNR is about 0.54, underlying the importance of retesting. Similar
to serological tests, reported false-positive rates of RT-PCR tests are about FPR =0.05 [7].

Estimates of disease prevalence and other surveillance metrics [14,15] need to account for FPRs
and FNRs, in particular if reported positive-testing rates [16] are in the few percent range and
potentially dominated by type I errors. In addition to type I/1II testing errors, another confounding
effect is biased testing [17], that is preferential testing of individuals that are expected to carry a
high viral load (e.g., symptomatic and hospitalized individuals). Biasing testing towards certain
demographic and risk groups leads to additional errors in disease prevalence estimates that need
to be corrected for.

In §2, we discuss related studies that developed statistical methods to correct for erroneous
and biased testing. To account for type I/1I errors, bias, retesting and exclusion after testing, we
develop a corresponding framework for disease testing in §3. We apply our testing model to
COVID-19 testing and case data in §4 and estimate testing bias by comparing random-sampling
testing data [18] with officially reported, biased COVID-19 case data in §5. We conclude our study
in §6.
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2. Related work

Several previous studies have addressed the issue of correcting for errors and testing biases. In
the random-sampling study [18], specificity and sensitivity corrected ELISA results are reported
without specifying the actual statistical correction method. In another work [19], corrected case
numbers for different European countries are derived based on the assumption that the infection
fatality ratio (IFR) is independent of the geographical location. If the IFR were known exactly,
this method could be used to estimate the sampling bias by comparing the reported number
of cases with the corresponding reported number of deaths divided by IFR. However, the
framework in [19] does not account for false negatives and false positives. In addition, there are
geographical variations of the IFR that may be attributed to significant differences in incidence
rates, population density, preparedness of public health systems and age structure [14,20,21].
Therefore, the assumption of a time and location-independent IFR may yield inaccurate results.

In [22], a semi-Bayesian probabilistic bias analysis is used to estimate the cumulative number
of SARS-CoV-2 infections in the United States. The employed corrections for erroneous testing
are similar to the results that we derive in §4. Corrections for incomplete testing are based on
distributions associated with random sampling studies similar to [18], which we use in §5.

One major difference between [22] and our work is that we derive the distributions with and
without retesting, and explicitly account for test-type-dependent specificities and sensitivities.

3. Statistical testing model

Here, and in the following subsections, we develop a general statistical model for estimating the
number of infected individuals in a jurisdiction by testing a sample population. The relevant
variables and parameters to be used in our derivations are listed and defined in table 1. Suppose
we randomly administer Q tests within a given short time period (e.g. within 1 day or 1
week) to a total effective population of N previously untested individuals. This population
comprises S susceptible, I infected and R removed (i.e. recovered or deceased) individuals, which
are unknown. S, I and R can dynamically change from one testing period to another due to
transmission and recovery dynamics, as well as removal from the untested pool by virtue of being
tested. The total population N =S + I 4+ R can also change through intrinsic population dynamics
(birth, death and immigration), but can assumed to be constant over the typical time scale of an
epidemic that does not cause mass death.

We start the derivation of our statistical model by first fixing S, I and R, assuming both perfect
error-free testing, considering a ‘testing with replacement’ scenario, in which tested individuals
can be retested within the same time window. Under these conditions, the probability that g tests
are returned positive and Q™ = Q — g tests are returned negative is

Prae(@* =41Q,5,1,R) = (‘j)ﬂ(l e (31)
where the parameter
I+R I
fE( L ) orN, (3.2)

is the probability of identifying currently and previously infected individuals with tests such as
serological (antibody) tests, or of detecting current infections with viral load tests, respectively.
Note that testing with replacement renders Py dependent only on Q and f, and not explicitly on
I,S,R or N. The binomial expression (3.1) is accurate when the number of tests are much smaller
than the population (I + R) or I.

Equation (3.1) describes perfect error-free and random testing. However, if there is some
prior suspicion of being infected, the administration of testing may be biased. For example,
certain jurisdictions focus testing primarily on hospitalized patients and people with significant
symptoms [17], thus biasing the tests to those that are infected. We quantify such testing
biases through a biased-testing function K(Q") € R, leading to the following modification of
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Table 1. Overview of variables used in testing model. An overview of the main variables and parameters that will be used in
developing our testing model. The sets [0, N]1and [0, Q] contain all integers from 0 up to Q and N, respectively. The set f, f,, fy:
[0, 1] denotes all rational numbers between 0 and 1. For FNR, FPR, [0, 1] represents all real numbers between 0 and 1. We assume
thatQ, 0*, @, f, := Q* /Qand f, := Q" /Qare determined by testing a population of known size N.

symbol definition

population in jurisdiction

number of tests administered

FNR: [0,

equation (3.1):
(Q)f7(1 — H-IK(g)
Yo (=K

We define the biased-testing function K(g) as a weight over the number of returned g positive
and Q — g negative tests. A convenient choice is K(g) = e1! e(Q-DUs which weights each of the
q positive tests from actually infected patients, by the factor e/, and each of the Q — ¢ negative
tests, from non-infected, susceptible persons, by the factor e!/s. The bias is implicitly defined via
the quantity b= Uj — Us, so that if b 0 the two test results carry different weights, with b >0
favouring infected patients over non-infected persons, and vice versa for b < 0. The quantities
el eUs can also be interpreted as costs to administer tests to infected and susceptible persons,
respectively. The inclusion of K(g) in Pyue(Q1 = ¢g|f, Q) yields

P ol f o DD Qe -pe 64
true =q\<,f,0)= ZkQ=0 (%)fk(l _f)ka okb T+ (e — 1)f]Q ’ .

A Gaussian approximation to equation (3.4) can be found using the de Moivre-Laplace theorem
[23], which leads to

Ptrue(Q+ = ‘ﬂQrf) =

(3.3)

- oL @—n(f,b)?
Prac(Q” =q1Qf, D)~ = exp [_ 207(f,b) ] o
where
— eb 2 — _ M(f! b)
“(f’b)_iug(eb—nf and  o2(f,b) = u(f, b) (1 5 ) (3.6)

In addition to describing the probability distribution in equation (3.5) as a function of the number
of positive tests QF, we can also express it in terms of the observed positive (and potentially
sample-biased) testing fraction f, := Q*/Q:

Ptrue(fb :3C|Q/f/b)z

_ (x — /:L(f/ b))2:| i (3.7)

1
5,V L [ 252(f,b)
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Figure 1. lllustration of a bias function B(f, b). (a) The bias function B(f, b) (equation (3.9)) for three different fractions f
of currently (and previously) infected individuals. Grey dashed lines indicate the asymptotic value B(f, oo) =1/f. A value
b > Oindicates a testing bias towards currently and/or previously infected individuals while susceptible and/or non-infectious
individuals are preferentially tested for b < 0. Unbiased testing corresponds to b = 0 and B(f, 0) = 1/f. (b) The variance o?
exhibits a maximum value of 1/(4Q) at a typical value of bias b* = In[(1 — f) /f]. (Online version in colour.)

where here

fe

~2 _ = -
Tr@—ny W TED=aEHA-afb)/Q (3.8)

af,b)=n/Q=
A standard rule for validity of the de Moivre-Laplace theorem is to assert that the product
of sample population, success probability, and its counter probability is larger than 9 [24];
in this case, equations (3.5) and (3.7) will hold if w(f,b)(1 — u(f,b)/Q)>9 or equivalently if
a1 —Q>9.
The expected value of fy,, ii(f, b), can be understood as a product of the true underlying infected
fraction f and a bias function B(f, b) that depends on f and the bias parameter b, i.e. ii(f, b) = fB(f, b),
where B(f, b) is given by

eb

BEO = e

(3.9)
Note that equation (3.9) implies that when b >0, the currently and/or previously infected
population is favoured to be tested, while for b <0, the non-infected and/or susceptible
population is favoured. The limits of b — +oc indicate testing that is completely biased such
that only infected and susceptible individuals are tested, respectively. Realistic values of our bias
parameter b are positive and ~ O(1).

Figure 1a shows the bias function (3.9) as a function of b for different infection fractions f.
For B(f,b) > 1, the biased-testing fraction fB is larger than the unbiased-testing fraction f. The
opposite holds for B(f,b) < 1. If only susceptible individuals are tested (i.e. b — —o0), the bias
function B(f, b) and the expected observed positive testing fraction ji(f, b) = fB(f, b) approach zero.
For a complete bias towards infected individuals (i.e. b — oc), the bias function approaches f~!
and f(f,b) — 1.

The variance 52 of the Gaussian approximation (3.7) is plotted as a function of b in figure 1b
and exhibits a maximum value of 1/(4Q) at b* =In[(1 — f)/f].

The probabilities Piye derived in equations (3.1) and (3.3) correspond to ‘testing with
replacement’. The opposite limit is ‘testing without replacement’; once an individual is tested
they are labelled as such and removed from the pool of test targets, at least within the specified
testing period. This concept of sampling with and without replacement commonly arises in
the measurement of diversity in ecological settings [25]. Without replacement, and still under
conditions of perfect random testing, two slightly different forms for P arise for the different
type of tests (e.g. antibody versus PCR/viral load). For antibody tests that perfectly identify
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recovered (or deceased) individuals as being previously infected, equation (3.1) is replaced by

: () oy e e
Pons@ =151, R @ =~ = (A T (0 ) [To k=0 TT 6 60
Q i=0 j=0

where the binomial coefficients for 4 =0,Q are zero. On the other hand, if the perfect test only
identifies individuals that currently carry a viral load, the susceptible and recovered (or deceased)
individuals both test negative, and Piye is described by

n=0

(Q) q N-—n

The expressions for Pyye When tested subjects are not replaced, unlike in the case of testing with
replacement, depend explicitly on S,I, R and N.

To incorporate testing bias into the probabilities Piye for testing without replacement, we first
consider equation (3.11) where (é) ((Sgtlz) can be interpreted as the number of ways of distributing
q positive tests among I infected individuals, and Q — g negative tests among S + R uninfected
individuals. As in the biased-testing formulation of equation (3.3), we interpret the bias as a factor

K(g) that assigns more weight to tests in the I or S + R pools
Iy (S+R
Q (I\(N-I ’
20 (W) (K
To obtain the ‘testing without replacement’ equivalent of equation (3.4), we again set K(g) =
et oQ-nUs — gbg oQUSs By using the Chu-Vandermonde identity

i @ (g:D B (g) (3.13)

k=0

n=0

I\ (S+R Q-1 q-1 Q—q-1
P @ = 5,1 R, Q) = 20 _ ()T (=) Ma=o TT s+r=p. G
i=0 j=0

Ptrue(Q+ :q|Q/ S/ I/ R/ b) = (3.12)

we verify that when b = 0 equation (3.12) reduces to equation (3.11).
The above choice for K(q) also allows us to explicitly evaluate the denominator in equation
(3.12)

Q
> (;{) (g:]i)ekb = (Né I>2F1(—I, —~Q;N—I-Q+1eY, (3.14)
k=0

where >F; denotes the (ordinary) hypergeometric function. Thus, the distribution of positive tests
Q™ under biased testing without replacement for viral load-type tests can be expressed as

—1 _
()T, (s
2F1(-[,—Q;N —1—-Q+1;eb)’

The distribution of positives under biased testing without replacement for antibody-type tests
(using equation (3.10) as a starting point) is

Ptrue(Q+ = qu/ S/ I/ R/ b) =

(3.15)

-1 —
(T (25%)

P *=4|Q,S,I,R,b) = !
true(Q q1Q ) oFi(-I—R,—-Q;N—I—-R—Q+1;eb)

(3.16)

where Q™ =Q — g. The above two expressions are equivalent except for the merging of the R
pool with uninfected susceptibles S in one case, or with current infecteds I in the other. Because
the testing decreases with the number of tests administered, equations (3.15) and (3.16) cannot be
reduced to functions of a simple positive-test fraction f;, or to simple Gaussian forms.

(a) Testing errors

The probability distributions Piye that we derived in equation (3.3) and in equations (3.10)-
(3.11) assume that testing is error-free, i.e. that the false-negative rate FNR=1 — TPR=0 and
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false-positive rate FPR =1 — TNR =0, or equivalently that the true positive rate TPR =1 and the
true negative rate TNR = 1. To incorporate erroneous testing, we now construct the probability
distribution of error-generated deviation Per(QF =¢|Qt =4') over the number of ‘apparent’
positives g from tests that carry nonzero FPRs and FNRs, given that ¢’ positives would be recorded
if the tests were perfect. If g apparent positive tests are tallied, p of them might have been true
positives drawn from the perfect-test positives g4’ in (‘Z;) ways, while the remaining k=g —p
apparent positives might have been erroneously counted as positives drawn fromthe Q" =Q — 4’
true negatives. The remaining 4’ — p true positive tests might have been erroneously tallied as
false negatives, while the remaining Q™ — k negative tests might have been correctly tallied as
true negatives. Assuming non-zero FPR and FNR, we find that the probability distribution of
finding 0 < g < Q apparent positive tests is

Per(Q" =q1Q* =¢/, Q FPR,FNR)
q / Q o
=) (" )(TPR)P(FNR)V’*P( 1 )(FPR)q*P(TNR)Q*q’*W*W, (3.17)
=0 \P q-p

where we invoked the identities TPR + FNR=1 and FPR+ TNR=1. The total error-prone
distribution Pror(Qt = q1Q,S,1, R, b) of recording q positives after having administered Q tests
under bias and/or testing errors is given by convolving the probability Pe,r of finding g apparent
tests given g’ true positive tests with the probability Piye of finding ¢’ positive tests under perfect
testing (equation (3.4) or equation (3.15)):

Pror(Q" =4Q,S,1,R, b, FPR, FNR)

Q
=Y Perr(Q" =q1Q" =4',Q FPR, FNR)Pire(Q" =41Q, S, I, R, b). (318)
7=0

This convolution can be further simplified by taking the Gaussian limit of the binomial
distributions that appear in Perr and in Pirye, once more invoking the de Moivre-Laplace theorem
[23]. To be concrete, we use Pirye as written in equation (3.3) under the testing with replacement
scenario and use the approximation (3.5). The same Gaussian approximation can be used for
both binomial terms in Pe;r from equation (3.17), under the conditions illustrated above, which
yield TPR(1 — TPR)Q* > 9, FPR(1 — FPR)(Q — Q") > 9. These will complement the condition
(1 — 1)Q > 9 that arises from using equation (3.5) in lieu of equation (3.17). Once the summand
in equation (3.17) has been expressed as a product of two Gaussians, we approximate the
summation over p € (0,q) by an integral over p € (—oo,00). Provided g is sufficiently large, we
find

X [_ (9—q' TPR—(Q — ¢')FPR)? ]
P | ~ 2/FNR TPR+2(Q — )FPR INR

V27 /fFNRTPR + (Q — ¢)FPRTNR'

We now convolve equation (3.5) with equation (3.19) as prescribed by equation (3.18) to find
)2

exp |:_(6]MT)i| , (3.20)

2
20¢

(3.19)

Perr(QJr =4|Q, Q= q,, FPR,ENR) ~

- 1
P = ,f, b, FPR,FNR) ~
ToT(QT =41Q,f ) =

where
wr(f, b, FPR, FNR) = Q[iu(f, b)(1 — FNR) + (1 — a(f, b)) FPR],
o3(f, b, FPR, ENR) = Q(1 — ji(f, b))FPR(1 — FPR) + Q/(f, b)FNR(1 — FNR) (3.21)
+ Qiu(f, b)(1 — iu(f, b))(1 — FNR — FPR)?,

with ji(f, b) the mean value of the fraction of observed positives under biased, but perfect testing
(see equation (3.8)). To derive equation (3.20), we replaced the summation over g’ € (0, Q) by an
integral over g’ € (—oo, 00). This approximation is valid if the value of the two Gaussians that
approximate Perr and Pirye in equation (3.18) are negligible when evaluated at 4 <0 and 4’ > Q
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for all values of 5. We have verified that this is true provided that 0 <2/(Q + 2) < FPR, FNR,
i< Q/(Q+2) <1. In the limit of large numbers of tests Q, this condition will almost always be
satisfied. Finally, to perform the integral that now appears in equation (3.18), we fixed the value of
q' = [ in the ¢’-dependent variance in equation (3.19). We do this to obtain an analytic expression
for the integral of PerrPirue Over g, and select the value ¢’ = i for the variance of Perr as the one
that carries the most weight from Pirye.

Equation (3.20) reveals that the mean number of apparent positive tests ut is given by the sum
of the expected value of true positive tests (i.e. Qf(f, b)(1 — FNR) = Qji(f, b))TPR) and the expected
value of false positive tests (i.e. Q(1 — iu(f,b))FPR). Based on the derived expressions for u and
a%, we define the random variable as the fraction of observed positive tests fb =0 /Q under
biased and error-prone testing and obtain

o (e—qrY/(253)

Pror(f, =x|Q,f,b,FPR, FNR)~r —
Tot(fo =*|Q,f ) Py

(3.22)

where
at(f,b, FPR,ENR) = [(f, b)(1 — FNR) + (1 — (f, b))FPR]
and Q&3(f, b, FPR, FNR) = (1 — i(f, b))FPR(1 — FPR) + ji(f, b))FNR(1 — FNR) (3.23)
+ a(f, b)(1 — @(f, b))(1 — FNR — FPR)?.

We have numerically verified that the Gaussian approximation (3.23) is quite accurate provided
that (i) the number of positive and apparent positive tests, Q* =4 and Q* =g, are sufficiently
large, and (ii) the quantities 1, FNR and FPR are not too close to 0 or 1. This is shown in figure 2
and is in accordance with the conditions implied by using the de Moivre-Laplace theorem and
by exchanging the sum with the integration when evaluating equation (3.18), as described above.
Figure 2 shows the distribution of apparently infected individuals Pror for different numbers of
infected /recovered individuals (figure 2a), testing biases (figure 2b), and testing sensitivities (i.e.
true positive rates, TPRs) and specificities (i.e. true negative rates, TNRs) (figure 2c—d). Solid light
blue lines (colour available in online version) represent the Gaussian approximation (3.22) and
dashed black lines and the remaining thicker coloured lines are calculated by directly evaluating
equation (3.18) with replacement (equation (3.3)) and without replacement (equation (3.16)),
respectively. The FNRs that we consider in figure 2c are chosen in accordance with reported
sensitivities of serological and RT-PCR tests for SARS-CoV-2 [9-12]. We observe that an increase
in the FNR slightly shifts the distribution Ptor towards smaller values of apparently infected
individuals, which is consistent with the FNR dependence of the mean jiT (equation (3.23)). For
serological and RT-PCR tests, the FPR =1 — TNR is about 5%. A smaller specificity would lead to
larger FPRs and a shift of Pror towards larger values of Q* and f, (figure 2d). Our results show
that Pror is more affected by variations in the testing specificity than by variations in testing
sensitivity.

(b) Temporal variations and test heterogeneity

Up to now, we have discussed single viral-load and antibody tests (with and without
replacement) but have not considered temporal variations in the number of tests Q, the number
of returned positives QF, and heterogeneity in FNR and FPR that are associated with different
classes (types, manufacturing batches, etc.) of assays. To make our model applicable to empirical
time-varying testing data, we use S, I, Ry to denote the number of susceptible, infected and
removed individuals at time ¢ (or in successive time windows labelled by t), respectively. If
K >1 test classes are present, we also include an additional index ce{1,...,K} in all relevant
model parameters. The testing bias and the total number of tests may be both test-class and time-
dependent. That is, b =b; and Q = Q; .. Test specificity and sensitivity mainly depend on the
assay type and not on time. We thus set FPR = FPR; and FNR = FNR,.
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Figure 2. Distribution of apparently positive tests. Plots of Pror(@" =qlQ,1,5, R b)withN =S + | + R =10%,Q =103,
and different (a) values of | 4 R, (b) testing biases b, (c) FNRs, and (d) FPRs. The Gaussian approximation (solid light blue lines)
of equation (3.22) provides an accurate approximation of Pro. Dashed black lines correspond to distributions with replacement
and the remaining thicker solid coloured lines correspond to those without replacement. (Online version in colour.)

4. Inference of prevalence and application to COVID-19 data

One often wishes to infer the evolution of It + R; and Sy, or I; and St + R; over a given time
period from values of bt ¢, Qtc and g; . Since by is difficult to independently ascertain, one may
only be able to infer (f,);c = f(St, I, Ry, by ). For a single test result ;. (or (f):c), e can generate
the maximum likelihood estimate (MLE) of the bias-modified prevalence (fb)t,c by setting the
measured value (ﬁ,)t,C = ﬂT[(fb)t,c] to find

(Fodte = (o)e,e(1 — ENRe) 4 (1 — ()1 c)FPR, (4.1)
and R .
O1)7. ~ G (fo)e.cl. (4.2)

According to equation (3.23), the variance estimate (éT)tz,c is inversely proportional to the total
number of tests Q. Since all other terms in (cch)tZ,C are products of quantities with values between
0 and 1, the variance (3T)% . approaches zero as Q — oc. Since (]?b)t,c = ]A‘t,CB(ft,c, bt ), equation (4.1)
can be solved for ﬁ,c

5 fo)tc — FPR.
fre=— (odre _ . 4.3)
e’te[1 — FNR¢ — (fp)t.c] + (fo)r.c — FPRe
The posterior distribution Ppost over values of f can be found through Bayes’ theorem
~ Pror(Q1|Q,f, FPR, FNR)P,
Poost(fIO*, Q, FPR, ENR) = To1(Q"1Q.f )Po(f) (4.4)

I3 Pror(Q+1Q,f/, FPR, ENR)Po(f") df’”

where Py(f) is a prior distribution over the underlying infection fraction f in the population. For
notational brevity, we did not include the indices c and ¢ in equation (4.4). We can again simplify
the analysis by using the Gaussian approximation and a simple initial uniform prior, Po(f < fmax <
=1/ fmax-
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Figure 3. Observed and corrected proportions of positive tests in the USA. (a) The solid black line represents the 7-day average
of the proportion of positive tests (f,); = (~2§r /Q; inthe United States. Blue and red bars show the corresponding total number
of daily tests Q and apparent positive tests (jf“ respectively. (b) The corrected proportion of positive tests ﬁ found by inverting
equation (4.1), for different FPR, FNR and bias combinations. (Online version in colour.)

As an example, we collected US testing data [26] from March 2020 to March 2021. Figure 3a
shows the daily number of observed positive tests Q? (red bars) and the corresponding total
daily number of tests Q; (blue bars). The 7-day average of the observed positive testing rate
(fb)f = Q?' /Q¢ is indicated by the black solid line. The first drop in (fb)t in March 2020 was
associated with the initially very limited number of available SARS-CoV-2 testing infrastructure
followed by the ramping up of testing capacity. After new cases surged by the end of March and in
April 2020, different types of stay-at-home orders and distancing policies with different durations
were implemented across the USA [27]. In June and July 2020, reopening plans were halted and
reversed by various jurisdictions to limit the resurgence of COVID-19 [28].

In figure 3b, we show the corrected proportion of positive tests ft, found by numerically
inverting equation (4.1) for different FPR, FNR and bias combinations. We observe that a small
FPR = 0.04 shifts values (/Zb)t ~0.05 towards zero such that the corrected positive testing rate ft ~ 0.
Reducing the FNR from 0.2 to 0.1 has only little effect on the corrected proportion of positive tests
ft (solid black and dashed lines in figure 3b). Accounting for a positive testing bias of b=1 (i.e.
preferential testing of infected and symptomatic individuals by a factor of e), however, markedly
changes the inferred fi (dashed-dotted black line in figure 3b). Since the 7-day average of the
number of tests Q is about 10° in the USA (figure 3a), the variance terms (O:‘T)% are very small
compared to the values of fi.

5. Inference of bias b

One way to estimate the testing bias b is to identify a smaller subset of control tests within a
jurisdiction that is believed to be unbiased and compare it with the reported fraction of positive
tests obtained via standard (potentially biased) testing procedures. Given this scenario, we can
derive a rather complete methodology to estimate bias by formally comparing the statistics of two
sets of tests applied to the same population. The first set of control tests with testing parameters
0o = {Qo, FPRy, FNRp} is known to be unbiased (has prior distribution §(b)), while the second set
is taken with known parameters 6 = {Q, FPR, FNR}, but unknown testing bias b. For example,
the control set may consist of a smaller number Qg of tests that are administered completely
randomly, while the second set may be the scaled-up set of tests with Q > Qp. Since both sets of
tests are applied roughly at the same time to the same overall population, the underlying positive
fraction f is assumed to be the same in both test sets. We can then use Bayes’ rule on the first
unbiased test set to infer f

Pror(folf, 60, b= 0)Po(f) '
f(l) Pror(folf’, 60, b = 0)Po(f") df’

Ppost(flfO/ 6o, b=0)= (6.1)
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The probability distribution over b for a specified value of f can also be constructed from Bayes’
rule _

Pror(folf, 0, b)Po(b)
I Pror(fulf, 0, 0)Po(b') db/
where Py(-) are prior distributions over the relevant parameters. The final distribution over the

bias factor, given the two measurements fy and f, derived from the two sets of tests with testing
parameters 6y and 6, can be found using

Ppost(h[fb/f/ 9) =

(5.2)

~ ~ 1 ~ -~
Po (bl for 6, 60) = L Poost(0lforf, O)Ppost(f1fo, 60, b = O)df. (5.3)

Of course, a simpler MLE can also be applied to data by first inferring the most likely value
of f from the control test set. We can use the number of positive tests in the control sample Q7
to define the variable fo = Qa' /Qo. One can then maximize PTQT(fo f, 60, b =0) with respect to f
and use this value f in PTOT(fb [f,@,b). Maximizing PTOT(]?b [f,@,b) with respect to b then gives
the MLE estimate b. We can use random and unbiased sampling results obtained in the German
jurisdiction of Gangelt, North Rhine-Westphalia [18]. A total of 600 adult persons with different
last names were randomly selected from a population of 12597 and asked to participate in the
study together with their household members. The resulting study comprised of Qp = 919 subjects
who underwent serological and PCR testing between 31 March and 6 April 2020. The specificity
and sensitivity corrected, unbiased positive test fraction was determined to be f =15.53% (95%
CI 12.31-18.96%). Thus, we use this value as an estimate for the true underlying positivity ratef.
The larger sample taken across North Rhine-Westphalia between 30 March 30 and 5 April 2020
was measured (Q ~ 25 000) to be fb ~ 0.1 [29]. Assuming that this value is also error-corrected, an
estimate of the bias b in this main testing set can be found by solving for01= uT(f 0.1553,b,
FPR=FNR=0)= p,(f 0.1553, b) for b. We find that the difference between the unbiased positive
testing rate of 15.53% and 10% corresponds to a bias of b= —0.50. This negative bias likely arises
because Gangelt was an infection hotspot within the entire North Rhine-Westphalia region, so
the control sample was probably not unbiased. For comparison, a higher biased positive testing
rate of 20% would lead to an estimated testing bias b=031.

The number of total deaths on 6 April 2020 amounted to 7. Hence, the corresponding estimate
of the IFR, the number of disease-induced deaths D; divided by the total number of cases N; at
time ¢, in this jurisdiction on 6 April 2020 was 7/(0.1553 x 12,597) = 0.36% (95% CI 0.29-0.45%)
[18]. If only a biased estimate of the proportion of positive cases is known and not the true value
f, we can use our framework to distinguish between the true IFR; = D;/(N; — St) = D¢/(fN¢) and
the observed infection fatality ratio

—~ Dy Dy

TR TN, T B Ny o4
Figure 4 shows the observed IFR as a function of testing bias b for the aforementioned example of
the German jurisdiction of Gangelt. Values of b > 0 correspond to preferential testing of infected
individuals and thus lead to an apparently lower IFR. The opposite holds for b < 0.

6. Summary and conclusion

Radiological testing methods such as chest computed tomography are used sporadically to
identify COVID-19-induced pneumonia in patients with negative tests [30]. However, the
overwhelming majority of COVID-19 tests are based on serological (or antibody) tests and rapid
antigen tests, ELISA and RT-PCR assay [1]. These tests are designed to subsequently output a
binary signal, either infected or not. The population statistics of this output are affected by testing
errors and bias. False-positive and false-negative rates of serological tests are generally smaller
than those of rapid antigen tests and RT-PCR tests. However, serological tests are unable to
identify early-stage infections since they are measuring antibody titres that usually develop a
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Figure 4. Dependence of the observed IFR on testing bias. The observed infection fatality ratio IFR (equation (5.4)) as a function
of testing bias b. We used the example of the German jurisdiction Gangelt and set f = 0.1553,0 =7 and N = 12,597. A value
b > Oindicates a testing bias towards currently and/or previously infected individuals while susceptible and/or non-infectious
individuals are preferentially tested for b < 0. Unbiased testing corresponds to b = 0.

few days up to a few weeks after infection. In addition to the occurrence of false positives and
false negatives (i.e. type I and type II errors), certain demographic groups (e.g. elderly people
or those with comorbidities such as heart and lung diseases) may be overrepresented in testing
statistics.

To quantify the impact of both type I/1I errors and testing bias on reported COVID-19 case and
death numbers, we developed a mathematical framework that describes erroneous and biased
sampling (both with and without replacement) from a population of susceptible, infected and
removed (i.e. recovered or deceased) individuals. We identify a positive testing bias b > 0 with
an overrepresentation of previously or currently infected individuals in the study population.
Conversely, a negative testing bias b <0 corresponds to an overrepresentation of susceptible
and/or non-infectious individuals in the study population. We derived MLEs of the testing-error
and testing-bias-corrected fraction of positive tests. Our methods can be also applied to infer the
full distribution of corrected positive testing rates over time and for different types of tests across
different jurisdictions.

The mathematical quantity that underlies most of our analysis is the proportion of apparent
positive tests. As pointed out in [31], the absolute number of positive tests may not capture the
actual growth of an epidemic due to limitations in testing capacity. Still, many jurisdictions report
absolute case numbers without specifying the total number of tests or additional information
about test type, date of test and duplicate tests [32], rendering interpretation and application
to epidemic surveillance challenging. For a reliable picture of COVID-19 case numbers, more
complete testing data, including total number of tests, number of positive tests, test type and
date of test, has to be reported and made publicly available at online data repositories. To correct
for false positive, false negatives and testing bias in testing statistics (figure 3), it will be also
important to further improve estimates of FPR, FNR, and b through in field studies. In particular,
estimating the testing bias b requires random sampling studies similar to that carried out in [18].
Finally, while we have presented our analysis in the context of the COVID-19 pandemic, the
general results presented in this paper apply to testing and estimation of severity of any infectious
disease afflicting a population.
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