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Abstract Graph Neural Networks (GNNs) are becoming increasingly popular and
powerful tools in molecular modeling research due to their ability to operate over
non-Euclidean data, such as graphs. Because of their ability to embed both the inher-
ent structure and preserve the semantic information in a graph, GNNs are advancing
diverse molecular structure-function studies. In this chapter, we focus on GNN-
aided studies that bring together one or more protein-centric sources of data with
the goal of elucidating protein function. We provide a short survey on GNNs and
their most successful, recent variants designed to tackle the related problems of pre-
dicting the biological function and molecular interactions of protein molecules. We
review the latest methodological advances, discoveries, as well as open challenges
promising to spur further research.

1 From Protein Interactions to Function: An Introduction

Molecular biology is now reaping the benefits of big data, as rapidly advancing high-
throughput, automated wet-laboratory protocols have resulted in a vast amount of
biological sequence, expression, interactions, and structure data [, 2, 3, 4, 5, 6].
Since functional characterization has lagged behind, we now have millions of pro-
tein products in databases for which no functional information is readily available;
that is, we do not know what many of the proteins in our cells do [7].

Answering the question of what function a protein molecule performs is key not
only to understanding our biology and protein-centric disorders, but also to advanc-
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ing protein-targeted therapies. Hence, this question remains the driver of much wet-
and dry-laboratory research in molecular biology [8, 9]. Answering it can take many
forms based on the detail sought or possible. The highest amount of detail provides
an answer to the question by directly exposing the other molecules with which a
target protein interacts in the cell, thus revealing what a protein does by elucidating
the molecular partners to which it binds.

In this brief survey, we focus on how graph neural networks (GNNs) are ad-
vancing our ability to answer this question in silico. This chapter is organized as
follows: First, a brief historical overview is provided, so that the reader understands
the evolution of ideas and data that have made possible the application of machine
learning to the problem of protein function prediction. Then, a brief overview of the
(shallow) models prior to GNNs is provided. The rest of the survey is devoted to
the GNN-based formulation of this question, a summary of state-of-the-art (SOTA)
GNN-based methods, with a few selected methods highlighted where relevant, and
an exposition of remaining challenges and potential ways forward via GNNs.

1.1 Enter Stage Left: Protein-Protein Interaction Networks

Historically, the earliest methods devised for protein function prediction related pro-
tein sequence similarity to protein function similarity. This led to important discov-
eries until remote homologs were identified, which are proteins with low sequence
similarity but highly similar three-dimensional/tertiary structure and function. So
methods evolved to utilize tertiary structure, but their applicability was limited, as
determination of tertiary structure was and remains a laborious process. Other meth-
ods utilized patterns in gene expression data to infer interacting proteins, based on
the insight that proteins interacting with one another need foremost to be expressed
in the cell at the same time.

With the development of high-throughput technologies, such as two-hybrid
analysis for the yeast protein interactome [10], tandem-affinity purification and
mass spectrometry (TAP-MS) [1 1] for characterizing multi-protein complexes and
protein-protein associations [ 2], high-throughput mass spectrometric protein com-
plex identification (HMS-PCI) [13], co-immunoprecipitation coupled to mass spec-
trometry [ 4], protein-protein interaction (PPI) data suddenly became available, and
in large amounts. PPI networks, with edges denoting interacting protein nodes, of
many species, such as human, yeast, mouse, and others, suddenly became available
to researchers. PPI networks, as small as a few nodes or as large as tens of thousands
of nodes, gave a boost to machine learning methods and improved the performance
of shallow models. Surveys such as Ref. [15] provide a detailed history of the evo-
lution of protein function prediction methods as different sources of wet-laboratory
data became available to computational biologists.
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1.2 Problem Formulation(s), Assumptions, and Noise: A Historical
Perspective

A natural question arises. If we have access to PPI data, then what else remains
to predict with regards to protein function? Despite significant progress, the reality
remains that there are many unmapped PPIs. This is formally known as the link pre-
diction problem. For various reasons, PPI networks are incomplete. They entirely
miss information on a protein, or they may contain incomplete information on a
protein. In particular, we now know that PPIs suffer from high type-I error, type-1I
error, and low inclusion [16, 17]. The total number of PPI links that are experimen-
tally determined is still moderate [18]. PPI data are inherently noisy as experimen-
tal methods often produce false-positive results [19]. Therefore, predicting protein
function computationally remains an essential task.

The problem of protein function prediction is often formulated as that of link
prediction, that is, predicting whether or not there exists a connection between two
nodes in a given PPI network. While link prediction methods connect proteins on
the basis of biological or network-based similarity, researchers report that inter-
acting proteins are not necessarily similar and similar proteins do not necessarily
interact [20].

As indicated above, information on protein function can be provided at dif-
ferent levels of detail. There are several widely-used protein function annotation
schemes, including the Gene Ontology [21] (GO) Consortium, the Kyoto Encyclo-
pedia of Genes and Genomes [22] (KEGG), the Enzyme Commission [23] (EC)
numbers, the Human Phenotype Ontology [24], and others. It is beyond the scope
of this paper to provide an explanation of these ontologies. However, we empha-
size that the most popular one remains the GO annotation, which classifies proteins
into hierarchically-related functional classes organized into 3 different ontologies:
Molecular Function (MF), Biological Process (BP), and Cellular Component (CC),
to describe different aspects of protein functions. Systematic benchmarking efforts
via the Critical Assessment of Functional Annotation (CAFA) community-wide ex-
periments [8, 9, 25] and MouseFunc [26] have been central to the automation of
protein function annotation and rigorous assessment of devised methodologies.

1.3 Shallow Machine Learning Models over the Years

Many shallow machine learning approaches have been developed over the years.
Xue-Wen and Mei propose a domain-based random forest of decision trees to infer
protein interactions on the Saccharomyces cerevisiae dataset [27]. Shinsuke et al.
apply multiple support vector machines (SVMs) for predicting interactions between
pairs of yeast proteins and pairs of human proteins by increasing more negative pairs
than positives [28]. Fiona et al. assess naive bayes (NB), multi-layer perceptron
(MLP) and k-nearest neighbour (KNN) methods on diverse, large-scale functional
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data to infer pairwise (PW) and module-based (MB) interaction networks [29].
PRED_PPI provides a server developed on SVM for predicting PPIs in five or-
ganisms, such as humans, yeast, Drosophila, Escherichia coli, and Caenorhabdi-
tis elegans [30]. Xiaotong and Xue-wen integrate features extracted from microar-
ray expression measurements, GO labels and orthologous scores, and apply a tree-
augmented NB classifier for human PPI predictions from model organisms [31].
Zhu-Hong et al. propose a multi-scale local descriptor feature representation scheme
to extract features from a protein sequence and use random forest [32]. Zhu-Hong
et al. propose SVM on a matrix-based representation of protein sequence, which
fully considers the sequence order and dipeptide information of the protein primary
sequence to detect PPIs [33].

Although many advances were made by shallow models, as summarized in Ta-
ble 1, the problem of protein function prediction is still a long way from being
solved. Shallow machine learning methods depend greatly on feature extraction and
feature computation, which hinder performance. The task of feature engineering,
particularly when integrating different sources of data (sequence, expression, in-
teractions) is complex, laborious, and ultimately limited by human creativity and
domain-specific understanding of what may be determinants of protein function. In
particular, feature-based shallow models cannot fully incorporate the rich, local and
distal topological information present in one or more PPI networks. These reasons
have prompted researchers to investigate GNNSs for protein function prediction.

Table 1 Summary of performance of shallow models as reported in [27, 30, 31, 32, 33]
Literature Model Dataset Sensitivity Specificity Accuracy
(%) (%) (%)
Xue-Wen and Mei, 2005 [27] RF Saccharomyces 79.78 64.38 NA*
cerevisiae
Yanzhi et al., 2010 [30] SVM Human 89.17 92.17 90.67
Yeast 88.17 89.81 88.99

Drosophila 99.53 80.65 90.09
Escherichia coli 95.11 90.35 92.73
Caenorhabditis  96.46 98.55 97.51

elegans
Xiaotong and Xue-wen, 2012 Tree- Human 88 70 NA*
[31] Augmented
Naive Bayes
(TAN)
Zhu-Hong et al., 2015 [32] RF Saccharomyces 94.34 NA* 94.72
cerevisiae
Zhu-Hong et al., 2015 [33] SVM Saccharomyces 85.74 94.37 90.06

cerevisiae

* Not available
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1.4 Enter Stage Right: GNNs

This section first relates a general formulation of a GNN and forsakes detail in the
interest of space, assuming readers are already somewhat familiar with GNNs. The
rest of the section focuses on three task-specific formulations that allow leveraging
GNN:ss for protein function prediction.

1.4.1 Preliminaries

Assume an undirected and unweighted molecular-interaction graph, i.e., a PPI net-
work, is represented by G = (V,£), where V and £ denote the set of vertices rep-
resenting proteins and the edges indicating interactions among proteins, respec-
tively. Let the i-th protein be represented as an m-dimensional feature vector; that
is, p; € R™. The objective of a GNN is to learn an embedding, 4;, using the message
passing protocol which essentially aggregates and transforms neighboring informa-
tion to update the current node’s vector representation. Assuming f and g are two
parametric functions that compute the embedding and output considering a single
protein, following [34], we formulate follows:

hi = f(piape[i]vpne[i]ahne[i]) 0

o; = g(hi, pi) 2

where pi, pefi, Pne[i) and hy,[; denote the feature representation of the i-th protein,
features of all connected edges to the i-th protein, neighboring proteins’ features and
embeddings of neighborhood proteins of the i-th protein, respectively.

Let us now consider |V| = n proteins. All proteins are represented as a matrix,
P € R The adjacency matrix A € R"*" encodes the connectivity of the proteins;
namely, A; ; indicates whether or not there exists a link between proteins i and j.
Enforcing the self-loops with each protein, the updated adjacent matrix is A = A +1.
The degree diagonal matrix, D, can then be defined, such that D; ; = 27:1 A,-_y j- From
there, one can compute the symmetric Laplacian matrix L = D — A. Finally, one can
then formulate the following iterative process:

H'™™' = F(H',P||A||L||X) 3)

0 = G(H,P||A||L|IX) )

where H' denotes -th iteration of H, (+||-) indicates the aggregation operation based
on the task at hand, and O is the final stacked output.
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1.4.2 GNN:s for Representation Learning

We now want to encode complex high-dimensional information, such as a protein,
P, or a biological interaction, A, or an interaction network, G, into low-dimensional
embeddings, Z, by capturing linearity and non-linearity among nodes and edges.
In principle, the representation should contain all the information for downstream
machine learning tasks, such as link prediction, protein classification, protein cluster
analysis, interaction prediction, etc.

Suppose we want to learn a graph embedding, Z, from the network G. A graph
auto-encoder neural network [35] can be applied to learn Z:

Z =GNN(P,A; 64n) (%)

where 0,,, denotes GNN (encoder)-specific learnable parameters.

1.4.3 GNN:s for the Link Prediction Problem

Given two proteins, we want to predict if there is a link between them, where prob-
ability p(A; j) ~ 1 indicates there exists an interaction with high confidence; con-
versely p(A; ;) ~ 0 indicates a low interaction confidence. The prediction of a link
between two given proteins can bet set up as a binary classification problem. The
relations among nodes can be of several types; so, an edge of type r from node u to
v can be defined as u — v € & , which can be formulated as a multi-relational link
prediction problem.

Using GNNs, one can map graph nodes into a low-dimensional vector space
which may preserve both local graph structure and dissimilarities among node fea-
tures. To address link prediction, one can employ a two layer encoder-decoder ap-
proach where the model learns Z from equation 5:

A= DECODER(Z|P,A; 84ccoder) (©)

where 6,040 denotes decoder (task)-specific learnable parameters, and A] j indi-
cates the confidence score with the predicted link between protein i and j.

1.4.4 GNNs for Automated Function Prediction as a Multi-label Classification
Problem

Given n-GO terms and m-proteins, u = m — [ proteins need to be annotated with
term(s), whereas [ proteins are already annotated. So for the i-th protein, the pre-
diction willbe y; =y, 1,y;2,--,¥;, where y; ; € {0, 1}. This task can be considered
as a binary multi-label classification problem, since a protein usually participates
in multiple biological functions. This could be protein-centric, where GO-terms are
annotated for each protein, or GO-term centric, where proteins are annotated for
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each GO-term, or protein-term pair centric, where a probability association score is
predicted for each pair.

2 Highlighted Case Studies

In the following, we highlight three selected methods that exemplify SOTA tech-
niques and performance.

2.1 Case Study 1: Prediction of Protein-Protein and Protein-Drug
Interactions: The Link Prediction Problem

Liu ez al. [36] apply a graph convolutional neural network (GCN) for PPI prediction
as a supervised binary classification task. Learned representations of two proteins
are fed to the model, and the model predicts the probability of interaction between
the proteins. The model first captures position-specific information inside the PPI
network and combines amino-acid sequence information to output final embeddings
for each protein. The model encodes each amino acid as a one-hot vector and em-
ploys a graph convolutional layer to learn a hidden representation from the graph. To
do that, Liu et al. [36] use the message passing protocol to update each protein em-
bedding by aggregating the original features and first-hop neighbors’ information,
which is formulated as following:

X| = ReLU (D™ 'AXWj) (7

where Xy € R"*" is the original protein feature matrix which is an identity matrix;
X, € R™/ is the final output feature matrix, where f is the feature dimension of
each protein after the graph convolution operation and W is the trainable weight
matrix. In the prediction phase, the authors utilize fully connected layers followed
by batch normalization and dropout layers to extract high-level features; softmax is
then used to predict the final interaction probability score. The experiments show
that the method achieves mean AUPR (area under precision-recall curve) of 0.52
and 0.45 on yeast and human datasets, respectively, which outperforms sequence-
based SOTA methods. Additionally, the authors report achieving 95% accuracy on
yeast data under 93% sensitivity. Therefore, the extracted information from the PPI
graph suggests that a single graph convolutional layer is capable of extracting useful
information for the PPI prediction task.

Brockschmidt [37] proposes a novel GNN variant using feature-wise linear
modulation (GNN-FiLM), originally introduced by Perez et al. [38] in the visual
question-answering domain, and evaluates on three different tasks, including node-
level classification of PPI networks. The targeted application in this work is the
classification of proteins into known protein families or super-families, which is of
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great importance in numerous application domains, such as precision drug design.
Typically, in GNN variants, the information is passed from the source to the tar-
get node considering the learned weights and the representation of the source node.
However, the GNN-FiLM method proposes a hypernetwork, neural networks, that
compute parameters for other networks [39], in graph settings, where the feature
weights are learned dynamically based on the information that the target node holds.
Therefore, considering function g as a learnable function to compute the parameters
for the affine transformation, the update rule is defined for the /-th layer as follows:

B = g(n!);6,,) )
Wh=c| ¥ wowi! +pY ©)
uL)VES

where g is implemented as a single linear layer in practice considering ﬁ§’3 and

yéfﬁ as the hyperparameters of the message passing operation in GNN, and u < v
indicates that message is passing from u to v through a type r edge. In experiments,
GNN-FiLM achieves micro-averaged F1 score of 99% which outperforms other
variants when evaluated on protein classification tasks.

Zitnik et al. [40] employ GCNs to predict polypharmacy side effects, which
emerge from drug-drug interactions when using drug combinations on patients’
treatments. The problem can be formulated as a multi-relational link prediction
problem in multimodal graph structured data. Specifically, Zitnik et al. [40] con-
sider two types of nodes, proteins and drugs, and construct the network using
protein-protein, protein-drug, and drug-drug interactions as polypharmacy side ef-
fects, whereas each side effect can be of different types of edges, called Decagon.
More precisely, a relation of type » between two nodes (proteins or drugs), u and v, is
defined as (u,r,v) € £. Here, the relations can be a side effect between two proteins,
binding affinity of two proteins, or relation between a protein and a drug. More
formally, given a drug pair (u,v), the task is to predict the likelihood of an edge,
Ay = (u,r,v). For this purpose, they develop a non-linear and multi-layer graph
convolutional encoder to compute the embeddings of each node using original node
features, called Decagon. To update a node’s representation, authors transform the
information of neighboring nodes by aggregation and propagation operations over
the edges. The update operator is defined using the following rule:

W= L Y cdwn el (10)
rjeNE

where ¢ denotes non-linear activation function, h,m indicates hidden state of the i-th

node at the [-th layer, Wr(l) means relation-type specific learnable parameter matrix,

j € N are the neighboring nodes of i, ¢,/ = ———— and ¢! = \i\f"\ are the

VIV
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normalization constant. Finally, a tensor factorization model is used to predict the
polypharmacy side effects using these embeddings. The probability of a link of type
r between node u and v is defined as:

x4 = o (g(u,nv)) (11)

where o is the sigmoid function and g is defined as follows:

e(urv) = {ZZD,RD,ZV if u and v both denote drug nodes (12)

2IM,z, if any of u or v is not drug node

where D,, R and M, are parameter matrices, such that D, defines side-effect-specific
diagonal matrix, R is global drug-drug interaction matrix, and M, is relation-type-
specific parameter matrix. Decagon achieves an AUPR of 83% under 80% precision,
outperforming other baselines by up to 69%. The authors attribute the large margin
in improvement to two components, the graph-structured convolution encoder and
the tensor factorization model.

2.2 Case Study 2: Prediction of Protein Function and
Functionally-important Residues

Automated Function Prediction (AFP) problems are often formulated as a multi-
label classification problems and are more nuanced than predicting interactions be-
tween two proteins. Many works report that proteins connected in the same molec-
ular network share the same functions [4 1], but recent developments show that in-
teracting proteins are not necessarily similar, and similar proteins do not necessarily
interact [20]. Moreover, more than 80% of proteins interact with other molecules
while functioning [42]. Therefore, identifying or predicting the roles of proteins in
organisms is vital, and community-wide challenges have been organized to advance
research towards this goal. These include the Critical Assessment of Function An-
notation (CAFA) [8, 9, 25] and MouseFunc [26].

Many computation methods have been developed to this end to analyze protein-
function relationships. Traditional machine learning approaches, such as SVMs [43,

, 45], heuristic-based methods [46], high dimensional statistical methods [47],
and hierarchical supervised clustering methods [48] have been extensively studied
in AFP tasks and found that integration of several features, such as gene and protein
network or structure outperforms sequence-based features. However, these tradi-
tional approaches rely strongly on hand-engineered features.

Deep learning methods have become prevalent. For example, DeepSite [49],
Torng et al. [50], and Enzynet [51] apply 3D convolutonal neural networks (CNNs)
for feature extraction and prediction from protein structure data. However, storing
the high-resolution 3D representation of protein structure and applying 3D convo-
lutions over the representation is inefficient [7]. Very recently, GCNs [52] [53, 54]
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have been shown to generalize convolutional operations on graph-like molecular
representations and overcome these limitations.

In particular, Ioannidis er al. [55] adapt the graph residual neural network
(GRNN) approach for a semi-supervised learning task over multi-relational PPI
graphs to address AFP. The authors formulate a multi-relational connectivity graph
as an n x n x [ tensor S, where S, v ; captures the edge between proteins v, and
v,y for the i-th relation. The n proteins are encoded in a feature matrix X € R"*/,
where the i-th protein is represented as an f x 1 feature vector. Furthermore, a label
matrix ¥ € R™* encodes the k labels. Subsets of proteins are associated with true
labels, and the task is to predict the labels of proteins with unavailable labels. The
neighborhood aggregation for the n-th protein and the i-th relation at the /-th layer
is defined by the following formula:

l ~ (-1
H) = Y Sy, (13)
n’E./\f,gi)

where n’ denotes the neighboring nodes of the n-th protein, and Zg;]) denotes the
feature vector of the n-th protein in the i-th relation at the /-th to the first layer.
Neighboring nodes are defined as one-hop only, which essentially incorporates one-

hop diffusion. However, successive operations eventually spread the information

across the network. To apply multi-relational graphs, the authors combine Hful-)
across i as follows:

GY) = ZI: RYHY (14)
i'=1

i n it

where RE?/ is the learnable parameter. Then, a linear operation mixes the extracted

features as follows:
z0 =gl w!) -1 (15)
where W, ; is the learnable parameter. In summary, the neighborhood convolution
and propagation step can be shown as:
z0 = f(z0-1; 0"y (16)

where 62@ is comprised of two weight matrices, W and R, which linearly combine
the information of neighboring nodes and the multi-relational information, respec-
tively. Moreover, the authors incorporate residual connection to diffuse the input, X,
across L-hop neighborhoods to capture multi-type diffusion; that is:

z0 = p(z=9;01) + r(x; 0" (17)

A softmax classification layer is used for the final prediction. The authors apply
this model on three multi-relational networks, comprising generic, brain, and circu-
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lation cells. The model is shown to perform better than general graph convolutional
neural networks.

Recently, Gligorijevic et al. [7] employ DeepFRI, based on GCNs, for func-
tionally annotating protein sequences and structures. DeepFRI outputs probabilities
for each function. A Long Short-Term Memory Language Model (LSTM-LM) [56]
is pretrained on around 10 million protein sequences from protein family database
(Pfam) [3] to extract residue-level position-context features. The following equation
is used:

H® = H"™" = ReLU (H"™MW™ + XWX + b) (18)

where HY is the final residue-level feature representation and the first graph con-
volutional layer. WY, WX and b are learnable parameters trained with the graph
convolutional layers. Contact-map features, which encode tertiary protein structure,
combined with LSTM-LM task-agnostic sequence-embeddings are fed to a GCN
while keeping LSTM-LM frozen. The [-th layer of the convolution takes sequence-
embeddings and the contact map A and outputs residue-level embeddings to the
next, (I + 1)-th, layer. Residue level features are extracted by propagating residue
information to proximal residues. The rule for updating the node representation is:

HY = ReLU (D~ 2AD 2 HOwW ) (19)

The features are then concatenated into a single feature matrix as a protein embed-
ding. Intuitively, embeddings from different layers can be thought as context-aware
features. Additionally, the feature extraction strategy exploits linear or non-linear
relationships from neighbouring residues, as well as residues distant in sequence
but proximal in structure.

The learned protein representation is fed into two consecutive fully connected
layers to obtain predictions as class probabilities for all the GO-terms. The au-
thors evaluate their model on experimental and predicted structures and compare
with existing baseline models, including CAFA-like BLAST [44] and CNN-based
sequence-only DeepGOPlus [57], on each sub-ontology of GO-terms and EC num-
bers and outperform in every category.

Zhou et al. [58] apply a GCN model, DeepGOA, to predict maize protein func-
tions. The authors exploit both GO structure information and protein sequence in-
formation for a multi-label classification task. Since GO organizes the functional
annotation terms into a directed acyclic graph (DAG), the authors utilize the knowl-
edge encoded in the GO hierarchy. First, amino acids of a protein are encoded into
one-hot encodings, a 21-dimensional feature vector for each amino acid, as there are
20 amino acids and sometimes there are undetermined amino acids in a protein. Pro-
teins might be different in length; therefore, the authors only extract the first 2000
amino acids for those proteins which are longer than that. Otherwise, the encodings
are zero-padded. So the i-th protein is represented as

Xi = [Xi1,Xi2,Xi3, -+ +-Xi2000] (20)
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To learn the low-dimensional feature representation of each protein sequence,
the authors apply CNNs of four different sizes of convolutional kernels, such as
8, 16, 24 and 32, to extract hypothetical non-linear secondary or tertiary structure
information. The 1D convolution operation is formulated as follows:

Cim = f(w*xi(m:1n+h))7m € [kah] @n

where £ is the sliding window length, w € R?!*” is a convolutional kernel, and f(-)
is a non-linear activation function. Then, the authors incorporate the GO structure
into the model. To do that, graph convolutional layers are deployed to generate the
embeddings of the GO terms by propagating information among GO terms using
neighboring terms in the GO hierarchy. For T number of GO terms, initial one-hot
feature description, H? € R™7, and correlation matrix, A € R™7 are computed as
input. For the /-th layer’s representation, H' is updated using the following neigh-
borhood information propagating equation:

H' = f(AH'"'W') (22)

where A € R™ is the symmetrically normalized correlation matrix derived from A,
f(-) is a non-linear activation function, and W/ € R%-1*% is the learnable transfor-
mation matrix. Then, such graph convolutional layers are stacked to capture high-
and low-order information of the GO DAG. In this way, DeepGOA learns a se-
mantic representation of GO-terms, H € R™, and protein sequence representa-
tion, Z € R, in some d-dimensional semantic space. Dot product is used to then
compute protein-term pair association probabilities as follows:

Yy =HZ" (23)

Cross-entropy loss for the multi-label loss function is used to train the model end-
to-end. The authors experiment on the Maize PH207 inbred line [59] and the human
protein sequence dataset and show that DeepGOA outperforms SOTA methods.

2.3 Case Study 3: From Representation Learning to
Multirelational Link Prediction in Biological Networks with
Graph Autoencoders

Yang et al. [60] employ signed variational graph auto-encoder (S-VGAE) to auto-
matically learn graph representation, and incorporate protein sequence information
as features for the PPI prediction task. The authors report SOTA performance com-
pared to existing sequence-based models on several datasets.

The protein interaction network is encoded as an undirected graph, with different
signs (i.e., positive, negative or neutral) added the edges in the adjacency matrix to
extract fine-grained features, where the model is assumed to learn negative impact of
highly negative interactions. Moreover, the authors consider only high-confidence
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interactions in the cost function, enabling the model to learn embeddings more ac-
curately. First, protein sequences are encoded using the CT method [61]. All amino
acids are divided into seven categories considering their dipole and side-chain vol-
umes. Each group represents analogous mutations due similar characteristics. Thus,
aprotein can be represented as a sequence of numbers representing a category. Then,
a window of size 3 amino acids slides over the numeric sequence one step at a time
and counts the number of occurrences of each triad. Thus, the size of a protein CT
vector is 343(=m), which can be defined as follows:

V=1[r,r, . rum] (24)

where r; is the number of occurrences of each triad type. For n proteins, the input
features of each protein can be summarized in a matrix X € R, Afterwards,
S-VGAE is employed to extract protein embeddings by combining both graph
structure and sequence information, following Kipf and Welling’s [35] variational
graph auto-encoder. Considering the primary/sequence features, its neighborhood
structures and positions in the graph, the encoder maps each protein x; to a low-
dimensional vector z;. The idea is to map proteins’ original features X into low
dimensional embeddings Z using an augmented information adjacency matrix A.
The encoding rule is formulated as follows:

N

q(z|X,A) =[]4(zilZ,A) (25)
i=1

q(ailZ,A) = N (zi|wi, diag(c})) (26)

Mean vector, U;, and standard deviation vector, o;, is defined as follows:

1t = GCNy(X,A) Q27

logo = GCN4(X,A) (28)

where GCN is a neighborhood aggregation propagation step formulated as below:

GCN(X,A) = AReLU (AXWp) (29)
GCN,(X,A) = AReLU (AXW)) (30)
GCNg(X,A) = AReLU (AXW,) 31

where Wy, Wi and W, are trainable parameters and, GCN, and GCNg share Wy
to reduce parameters. The decoder predicts the classification label of protein i and
J by taking the dot product of their lower-dimensional embeddings z; and z;; the
interaction probability indicates whether there is a connection between two proteins.
This is defined as follows:
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N N
pAZ) =T ][] rAijlz,z)) (32)

i=1j=1

p(Aij =1lzi,z;) = 0(2] zj) (33)

where o (-) is the logistic sigmoid function. Thus, the S-VGE learns to encode pro-
tein embeddings into low-dimensional features by solving the task of decoding the
learned embeddings back to the original graph structure. Instead of using the de-
coder as the final classification layer, the authors utilize it as a generative model for
learning latent features. Then, three fully connected layers perform the final classi-
fication task. Overall, the model achieves more than 98% accuracy on five different
datasets.

Hasibi er al. [62] propose a graph feature auto-encoder (GFAE) model, called
FeatGraphConv, which is trained on a feature reconstruction task instead of graph
reconstruction task. The model performs well on predicting unobserved node fea-
tures on biological networks, such as transcriptional, protein-protein and genetic
interaction networks. FeatGraphConv investigates how well GNNs might preserve
node features. The authors aim to identify whether or not the graph structure and
feature values encode similar information. The relationship between a graph G and
latent embeddings Z can be formulated using graph convolutional layers as messag-
ing passing protocol by aggregating neighborhood information as follows:

Z =GCN(G;0) = GCN(X,A;0) (34)
Z = o (AReLU (AXWy)W;) (35)
where 0 contains learnable weights, defined as 8 = Wy; Wy;...... W;, and o is a non-

linear task-specific mapping function. The authors leverage four message passing
and neighborhood information aggregation operations. The GCN update rule [63] is
followed for the i-th protein’s representation, h{?, at the /-th layer as follows:

K

1
= w
l jeJ\;(’i)ui Vdeg(i) /deg(j)

The GraphSAGE [64] update rule is then deployed:

-1
) (36)

hf = Wl l’lll<_1 +W2M€anj€N<i)Uihi'_1 (37)
Additionally, the authors employ the GraphConv [65] operator:

Hi=Wihi Y Woh! (38)
JEN()

A new update rule is also proposed:

hy = Wa (Wil ™" ||Mean e prioyoi(Wik")) (39
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where (-||-) denotes a concatenation operation. The authors train the learnable pa-
rameters on the embeddings ability to reconstruct the adjacency matrix, which is
formulated as follows:

A = Sigmoid(ZZ") (40)

Cross-entropy loss between A and A and gradient descent are used to update the
weights. Finally, the embeddings Z are used to predict the class Y in predicting
missing links in the adjacency matrix and thus in the graph.

3 Future Directions

As this survey indicates, many variants of GNNs have been applied to obtain infor-
mation on protein function. Much work remains to be done. Future directions can
be broadly divided into two categories, methodology-oriented and task-oriented.

Many existing GNN-based approaches are limited to proteins of the same size
(number of amino acids). This essentially weakens model capacity for the particular
task at hand. Therefore, future research needs to focus on size-agnostic, as well as
task-agnostic models. Choosing the right model is always a difficult task. However,
benchmark datasets and available packages are making it easier to develop models
expediently.

Enhancing model explainability is also an important direction. Some community
bias has been observed towards focusing model development on GCNs for learn-
ing semantic and topological information for the function prediction task. However,
there are many other variants of GNNs. For instance, graph attention networks may
prove useful. Existing literature also often ignores ablation studies, which are impor-
tant to provide a strong rationale for choosing a particular component of the model
over others.

Most of the PPI prediction tasks assume training a single model for an organism.
Leveraging multi-organisms PPI networks provides more data and may result in
better performance. In the same spirit, leveraging multi-omics data combined with
sequence and structural data may advance the state of the art.

Finally, we draw attention to the site-specific function prediction task, which
provides more information and highlights specific residues that are important for
a particular function. This fine-grained function prediction task can be even more
critical to support other tasks, such as drug design. Transfer learning across related
tasks may additionally provide insights for learning important attributes.
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