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a b s t r a c t 

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for molecule identification. However, profil- 
ing complex samples remains a challenge because SERS peaks are likely to overlap, confounding features when 
multiple analytes are present in a single sample. In addition, SERS often suffers from high variability in signal 
enhancement due to nonuniform SERS substrate. The machine learning classification techniques widely used for 
facial recognition are excellent tools to overcome the complexity of SERS data interpretation. Herein, we re- 
ported a sensor for classifying coffee beverages by integrating SERS, feature extractions, and machine learning 
classifiers. A versatile and low-cost SERS substrate, called nanopaper, was used to enhance Raman signals of di- 
lute compounds in coffee beverages. Two classic multivariate analysis techniques, Principal Component Analysis 
(PCA) and Discriminant Analysis of Principal Components (DAPC), were used to extract the significant spectral 
features, and the performance of various machine learning classifiers was evaluated. The combination of DAPC 
with Support Vector Machine (SVM) or K-Nearest Neighbor (KNN) shows the best performance for classifying 
coffee beverages. This user-friendly and versatile sensor has the potential to be a practical quality-control tool 
for the food industry. 
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. Introduction 

Raman spectroscopy is a valuable tool for chemical identification
n its ability to provide fingerprint information of molecules. A signif-
cant challenge of Raman spectroscopy is the inherently weak Raman
cattering signal; surface-enhanced Raman spectroscopy (SERS) is an
xcellent approach to overcome this challenge. SERS amplifies the lo-
al electromagnetic field near nanostructured metal surfaces, providing
agnitudes of enhancement of Raman signals for molecules adsorbed
n metal surfaces ( Sharma et al., 2012 ). The large signal enhancement
akes SERS an effective tool for the detection of dilute analytes. 
However, two prominent factors inhibit the interpretation of spec-

ral data in SERS sensing applications. First, SERS signals often suffer
rom high variability ( Fornasaro et al., 2020 ). The signal enhancement
f SERS is primarily caused by localized electric field enhancement and
s particularly significant in hot spots, such as nanoscale gaps between
etal particles and highly structured metal surfaces ( Weatherston et al.,
016 ). A tiny variation of SERS substrates could lead to a high variability
f SERS signal. Second, many applications of Raman spectroscopy, such
s food quality analysis and disease diagnosis, intend to compare sam-
les that contain similar types of chemicals. The sample states are deter-
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ined by the relative concentrations of multiple chemicals ( Kuhar et al.,
018 ). Although Raman spectroscopy provides molecular fingerprint
pectra, Raman peaks are likely to overlap when a large number of an-
lytes are present in a sample. Thus, sample states cannot be simply
etermined by a few prominent Raman bands. Instead, the whole Ra-
an spectra that include the covariate features of multiple molecules
hould be considered ( Liu et al., 2020 ). Therefore, advanced data anal-
sis techniques like machine learning are needed to uncover patterns of
aman spectra. 
To address complex Raman data interpretation, we applied multi-

ariate analysis and machine learning classifiers widely used in pat-
ern recognition applications (e.g., facial recognition). Similar to SERS
pectra, image datasets often suffer from high variability caused by fa-
ial expression, illumination, blocking, resolution, and noise, leading
o practical challenges in computer vision applications ( Wright et al.,
009 ). Multivariate analysis has been applied to extract the relevant fea-
ures and minimize data variations ( Jade et al., 2003 , Kim et al., 2010 ,
eena and Yomas, 2014 ). The dimension reduction of the high dimen-
ion image dataset is achieved through feature extraction and feature
election. The removal of the data unrelated to classification improves
he dataset quality and classification performance ( Khalid et al., 2014 ).
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Fig. 1. SERS measurement of the coffee. (a) Schematic illustration of nanopaper, a glass fiber paper coated with the silver nanoparticle. (b) SEM image of 
nanopaper. The scale bar is 10 μm. (c) Averaged Raman spectra (N = 80) of coffee Sample 1 on nanopaper (red), and on the bare glass fiber paper (blue). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Flow chart for the classification algorithm. 
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imilarly, SERS suffers from high variability in signals; therefore, the
ombination of feature extractions and machine learning classifiers
ould serve as a powerful tool to identify the SERS spectra of com-
lex samples ( Lussier et al., 2020 ). In the past decade, multivariate
nalysis, such as Principal Component Analysis (PCA) and Discriminant
nalysis of Principal Components (DAPC), have already been utilized
o analyze Raman and SERS spectra for different applications, including
edical diagnosis ( Chen et al., 2013 ; Liu et al., 2016 ; Muratore, 2013 ;
enger et al., 2020 ; Sigurdsson et al., 2004 ), explosive compound de-
ection ( Hwang et al., 2013 ), material research ( Mao et al., 2020 ), bi-
logical samples identification ( Jamieson et al., 2018 ; Liu et al., 2020 ;
u et al., 2018 ; Prakash et al., 2020 ; Senger and Scherr, 2020 ), and food
ndustry ( de Toledo et al., 2017 ; Jiang et al., 2021 ). 
In this study, we developed a sensor for classifying coffee using

aman spectroscopy. Flavors of coffee beverages are determined by
 large number of flavor and aroma compounds. The compositions
f these compounds are highly dependent on the growth of coffee
eans, the fermentation and roasting processes, and the drying and
torage conditions ( Poltronieri and Rossi, 2016 ). Although quality as-
urance is typically performed by experienced tasters, analytical meth-
ds that provide rapid, robust, and precise quality evaluations are de-
ired ( Wermelinger et al., 2011 ). Raman spectroscopy has been used
o discriminate Arabica and Robusta coffee samples ( El-Abassy et al.,
011 ; Rubayiza and Meurens, 2005 ; Wermelinger et al., 2011 ). For ex-
mple, Wermelinger et al. quantified the fraction of the Robusta beans
n the coffee blend by measuring the intensity ratio of 1570/1665 cm 

− 1 

nd 1570/1460 cm 
− 1 ( Wermelinger et al., 2011 ). The Raman peak at

570 cm 
− 1 is associated with kahweol in Arabica coffee and is absent

n Robusta coffee. When the composition of Robusta coffee increased,
he peak position at 1665 cm 

− 1 shifted towards a lower wavenumber
ecause Robusta coffee contains a higher amount of unsaturated fatty
cids. In another study, Rubayiza et al. observed the absence of 1567
nd 1487 cm 

− 1 peaks in Robusta coffee due to the trace kahweol con-
ent in Robusta ( Rubayiza and Meurens, 2005 ). Moreover, EI-Abassy
t al. discriminated between Arabica and Robusta coffee beans based
n chlorogenic acid (CGA) and lipid contents ( El-Abassy et al., 2011 ).
hese tests only selected a few molecules as indicators to differentiate
rabica and Robusta beans. Such analysis, however, cannot distinguish
he same types of coffee beans treated by distinct roasting, fermentation,
nd aging processes. Caprioli et al. had a review on coffee aroma profiles
nd found there are more than 40 types of potent odorants of roast cof-
ee with many more still not being identified ( Caprioli et al., 2015 ). All
f these flavor and aroma compounds are essential for quality control
 Cruz et al., 2012 ; Semmelroch and Grosch, 1996 ). 
c  

2 
Herein, we integrate SERS, feature extractions, and machine learn-
ng classifiers to overcome the challenges in coffee beverage analy-
is. First, to enhance Raman signals of dilute compounds, we used
 versatile and inexpensive SERS substrate, called nanopaper (i.e., a
lass fiber paper decorated with silver nanoparticles) as shown in
ig. 1 ( Weatherston et al., 2018 ; Weatherston et al., 2019 ). Second, we
ntegrated feature extraction algorithms and machine learning classi-
ers to address the high variability in SERS signals with spectral overlap
n high fluorescing coffee samples. The workflow is shown in Fig. 2 . We
elected two multivariate analysis techniques for feature extraction, in-
luding Principal Component Analysis (PCA) and Discriminant Analysis
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s  
f Principal Components (DAPC), and four machine learning classifiers,
ncluding Naïve Bayes, Decision Tree, Support Vector Machine (SVM),
nd K-Nearest Neighbor (KNN) ( Kotsiantis et al., 2007 ; Yuan et al., 2019 ;
uan et al., 2020 ). Feature extraction tools, such as PCA, have already
een utilized for Raman analysis ( Lussier et al., 2020 ). DAPC applies
CA then discriminant analysis to further explore variances between
ample groups ( Jombart et al., 2010 ). Our results show that DAPC has a
etter performance than PCA for all classifiers. In addition, the combina-
ion of DAPC with SVM or KNN delivers the best performance for classi-
ying coffee beverages. The results also show that the machine learning
lassifiers can detect trivial differences among similar SERS spectra. 

. Experimental methods 

.1. Materials 

Double deionized (DDI) water was produced with a Milli-Q system
rom Millipore. Five different types of ground coffee samples were pur-
hased at a local grocery store. Four of them were Arabica beans from
he Colombia Region with varying degrees of roasting, and one of them
as the Robusta bean (The detailed information about coffee products
s listed in Supplementary Information). Filter paper (Qualitative P8
Fluted, Fisher Brand), binder-free glass microfiber filters (Whatman
rade 934-AH, 110 mm circles), sodium hydroxide, methanol, silver ni-
rate (99.9995% (metals basis), Alfa Aesar), and 2-propanol were ob-
ained from Fisher Scientific. Sodium citrate dihydrate, potassium hy-
roxide, ammonia hydroxide solution (28%-30%) were purchased from
igma-Aldrich. Citric acid and D-glucose anhydrous were purchased
rom VWR International. All chemicals were ACS grade or better and
sed without further purification. 

.2. Nanopaper fabrication and characterization 

Nanopapers were fabricated as previously reported ( Weatherston
t al., 2018 ). In brief, a typical synthesis consisted of mixing aqueous
olution of ammonia and silver nitrate with potassium hydroxide; 40 mL
f 35% aqueous D-glucose solution was added to a 2L glass beaker and
haken vigorously by hand. Glass microfiber papers were immersed into
he solution, and the container was shaken for 5 min by hand. The con-
ainer was covered with aluminum foil to minimize the exposure to light
nd left at room temperature for 1 h. The filter papers were then rinsed
horoughly with DDI water and 2-propanol. The final products, i.e., the
anopapers, were stored in 2-propanol and the container was covered
ith aluminum foil and stored in drawers to protect from light expo-
ure. Before the Raman measurement, the nanopaper was dried in a hot
ir oven and cut into a 1 cm × 1 cm square shape. 

.3. Coffee beverage preparation 

Ground coffee sample (1.2 g) was added to 10 mL of deionized water.
he solution was vigorously vortexed and kept at 4 °C for 15 h. The
olution was then centrifuged by a Thermofisher Megafuge Centrifuge
t 2500 RPM for 15 mins, and the resulting liquid was stored in a 4 °C
ridge and covered with aluminum foil. 

.4. Raman measurements 

Nanopapers were washed with 0.1 M citrate buffer (pH = 3.6) and
mmersed afterwards into the coffee extract solution for one minute.
hen, the paper was dried in a hot air oven at 70 °C and transferred to
he Raman microscope for SERS measurement. The Raman spectra were
ollected from a 780 nm diode laser with a 10x objective lens, a Rayleigh
ejection filter, a diffraction grating (4.7-8.7 cm 

− 1 resolution), a 25 μm
inhole, and a black-illuminated charged-coupled device (CCD) detec-
or using a Thermo Scientific DXR Raman microscope (Thermo Fisher
cientific, Inc.). Each spectrum was acquired at 1 mW laser power with
3 
0 accumulations of 90 s integration time each, 15 min in total. To in-
estigate the reproducibility of spectra, the same experiment protocol
as repeated on five different days. A total number of 400 spectra were
ollected, with 80 spectra per sample. 

.5. Data processing and multivariate data analysis 

Data processing, multivariate analysis, and classification algorithms
ere conducted using Matlab 2021(Mathworks Inc., Natick, US) Fig. 2 .
hows the data process flow chart. The spectra were first processed using
symmetric Least Square (ALS) baseline correction with OriginPro Soft-
are (OriginLab Corp., Northampton, 2021). Then, baselined spectra
ere vector normalized and Savitzky–Golay smoothed (4 th order poly-
omial, with a frame size of 37) using Matlab 2021. Finally, multivariate
nalysis techniques and classification algorithms were performed in the
pectral range, 300-1670 cm 

− 1 . 
Before applying classifiers, the normalized and smoothed spectra

ere processed using multivariate statistical analysis to reduce the com-
lexity of Raman spectra and extract the significant features that explain
he most variance. The two multivariate analysis methods chosen to pro-
ess the spectra were namely Principal Component Analysis (PCA) and
iscriminant Analysis of Principal Components (DAPC) ( Jombart et al.,
010 ; Yang and Yang, 2003 ). PCA is a multivariate statistical analy-
is that calculates the orthogonal combinations of the original variables
nd summarizes the variances in data. The dimension reduction of data
as achieved by considering the number of significant principal compo-
ents (PCs) that explain the most variance. For DAPC, PCA was applied
o reduce the complexity of the spectra dataset; then, a supervised multi-
ariate analysis, Discriminant Analysis, was used to further discriminate
he dataset by correlating the variation in the data with the coffee in-
ormation for each sample. 
After feature extraction, common machine learning classifiers were

sed to classify coffee beverages. The classification classifiers in the
tatistics and Machine Learning Toolbox of Matlab, including Decision
ree, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and
aïve Bayes, were selected. The number of the principal components
PCs) or canonical variables from the PCA or DAPC was varied from 1 to
0 in order to observe its influence on classification performance. The in-
uences of the classifier hyperparameters on the classification accuracy
ere also evaluated. For SVM, linear and polynomial kernel functions
ere selected ( Kancherla et al., 2019 ). For KNN, we assessed the impact
f the number of nearest neighbors and the distance metrics, includ-
ng Euclidean, Cosine, Chebyshev, Cityblock, Correlation, Mahalanobis,
nd Spearman ( Abu Alfeilat et al., 2019 ; Chomboon et al., 2015 ). For
aïve Bayes, the classic Gaussian model was used. The classification
odel parameters from the training dataset were used to predict the
alidation dataset in each repetition. A 5-fold cross-validation was per-
ormed to assess the suitability of each classification algorithm, avoid-
ng overfitting ( Berrar, 2019 ). In brief, the training and the validation
ets were established by randomly selecting from the Raman spectra
ata. The training dataset was used to generate a classification model,
nd the model predicted the validation dataset to evaluate the perfor-
ance. The cross-validation approach was repeated five times, wherein
he validation set consisted of 80 randomly selected Raman spectra in
ach repetition. The performance of the model was measured by classifi-
ation accuracies, sensitivity, and selectivity. The accuracy, sensitivity,
nd the selectivity are defined as ( Trevethan, 2017 ): 

ccuracy = 

True positive + True negative 
Total positive and negative cases 

ensit ivit y = 

True positive 
True positive and False negative cases 

elect ivit y = 

True negative 
True Negative and False Positive 

An additional two packages of Sample 3 were purchased to demon-
trate the potential of the sensor for quality control. The SERS spectra
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Fig. 3. SERS spectra with high variations. (a) 5 individual SERS spectra of Sample 1 on a single SERS substrate at five random locations. (b) The average (red curve) 
and one standard deviation (grey area) of Sample 1 SERS spectra collected on 5 different days. (N = 80). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 4. Averaged Vector Normalized and Smoothed SERS spectra of coffee (1) 
Sample 1, (2) Sample 2, (3) Sample 3, (4) Sample 4, (5) Sample 5. 
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rom the additional coffee batches were collected using the same proto-
ol described above, and 40 spectra were collected for each batch. The
riginal 400 SERS spectra were used to train the classification models,
nd the established models were used to predict the class label of 80
pectra from the two new coffee batches. The performance was evalu-
ted by the prediction accuracy. 

. Results and discussion 

.1. SERS spectra of coffee beverages 

To evaluate the flavors of coffee beverages, we prepared aqueous
offee samples using the classic cold brew method ( Baggenstoss et al.,
008 ; Rao et al., 2020 ; Semmelroch and Grosch, 1996 ). Although water
xtraction is better for evaluating flavor and aroma compounds in coffee
everages than organic extraction methods, strong fluorescent signals
nd extremely dilute analytes in coffee beverages impede aqueous coffee
nalysis using standard Raman spectroscopy ( Dias and Yeretzian, 2016 ;
l-Abassy et al., 2015 ). This issue could be resolved by SERS. A home-
ade SERS substrate, called nanopaper, was used to enhance Raman
ignals of coffee samples. The nanopaper is made by decorating a dense
ayer of silver nanoparticles on glass fiber paper, which possesses sig-
ificant SERS enhancement ( Fig. 1 . (a) and Fig. 1 . (b)). This low-cost
ERS substrate was made by the well-known silver mirror reaction in
 batch reactor. Our prior study has shown that the enhancement fac-
or can reach 1.15 × 10 5 , sufficient to detect dilute molecules in coffee
everages ( Weatherston et al., 2018 ). In Fig. 1 . (c), the SERS spectral
eatures of the coffee beverage are much more significant than those in
he Raman spectrum ( Fig. 1 . (c)). 
SERS enhancement is highly dependent on hot spots, such as

anoscale gaps between nanoparticles or highly structured surfaces. A
ERS substrate with uniform signal enhancement is almost impossible
o make; thus, SERS often suffers from high variability in Raman sig-
als Fig. 3 . (a) shows five individual SERS spectra from the same cof-
ee sample collected on a single SERS substrate at different locations;
t is apparent that the uneven distributions and size variations of silver
articles led to high variability in SERS signals. Moreover, SERS is a
ear-field electromagnetic effect, and signal enhancement decays expo-
entially due to distance from nanoparticle surfaces. Therefore, uneven
dsorption of analytes on SERS substrates could also introduce signal
ariations. 
4 
The inter-day and inter-substrate variations were also evaluated
ig. 3 . (b) shows the average and standard deviation of SERS spectra
n = 80) collected on 5 different days using different SERS substrates.
lthough SERS signals fluctuate significantly, the overall morphologies
f SERS spectra are relatively similar. Therefore, multivariate analysis
an be applied to extract the significant features of SERS spectra. 
To evaluate the performance of this coffee classifier, we purchased

ve commercial coffees from local stores. Four of them (Sample 1 to
ample 4) were 100% Arabica beans from the Colombia Region with
arious degrees of roasting. The fifth sample (Sample 5) was the Ro-
usta bean. The brand information is available in the Supplementary
aterials. The averaged SERS spectra of these five samples are shown
n Fig. 4 . The peaks identified in the average SERS spectra were com-
ared with the peaks reported in the literature. The positions of SERS
eaks were shifted slightly from the positions of typical Raman spec-
ra due to the interaction between chemical molecules and SERS sub-
trates ( Blum et al., 2012 ). We assigned those Raman bands to the clos-
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Table 1 

Tentative Peak Assignment Table. 

SERS Position 
(cm 

− 1 ) 
Band Assignment Reference Position 

(cm 
− 1 ) 

Ref. 

311 "Chain expansion" n-Alkanes 150-425 ( Lin-Vien et al., 1991 ) 
325 "Chain expansion" n-Alkanes 150-425 ( Lin-Vien et al., 1991 ) 
348 Skeletal deformation Monoalkyl acetylenes 335-355 ( Lin-Vien et al., 1991 ) 
411 "Chain expansion" n-Alkanes 150-425 ( Lin-Vien et al., 1991 ) 
440 Unknown 
495 C-N-C 482 ( El-Abassy et al., 2015 ) 
544 Unknown 
564 Unknown 
686 ring breathing hydrothiophene 688 ( Lin-Vien et al., 1991 ) 
709 Ring Vibration Alkyl cyclohexanes 700-785 ( El-Abassy et al., 2011 , Lin-Vien et al., 1991 ) 
734 O = C-C 742 ( El-Abassy et al., 2015 ) 
760 Ring Vibration Alkyl cyclohexanes 700-785 ( Lin-Vien et al., 1991 ) 
799 N-C-H 801 ( El-Abassy et al., 2015 ) 
842 Polysaccharides 835 ( Rubayiza and Meurens, 2005 ) 
903 Polysaccharides 911 ( El-Abassy et al., 2011 , El-Abassy et al., 2015 , Wermelinger et al., 

2011 ) 
937 ring breathing 1,3-Dioxolane 939 ( Lin-Vien et al., 1991 ) 
952 Symmetric COC stretch from Aliphatic ethers 830-930 ( Lin-Vien et al., 1991 ) 
1011 Trigonal ring breathing from Pyridines, CGA 1010-1030 ( El-Abassy et al., 2011 , Lin-Vien et al., 1991 , Zhang et al., 2016 ) 
1033 asymmetric stretching of N-CH3 1029 ( El-Abassy et al., 2015 , Zhang et al., 2016 ) 
1060 Polysaccharides 1062 ( Zhang et al., 2016 ) 
1077 deformation of C-C 1072 ( El-Abassy et al., 2015 , Zhang et al., 2016 ) 
1098 CC stretch n-alkynes, CGA 950-1150 ( El-Abassy et al., 2011 , Lin-Vien et al., 1991 ) 
1120 cyclohexane (cyc) CH,COH bending 1120 ( Rubayiza and Meurens, 2005 ) 
1190 phenyl ring CH,COH bending 1193 ( Wermelinger et al., 2011 ) 
1215 ring vibrations from Para-disubstituted benzenes 1200-1230 ( Lin-Vien et al., 1991 , Luna et al., 2019 ) 
1240 deformation vibration of CH-N 1250 ( Wermelinger et al., 2011 ) 
1290 Stretching Vibration Mode of C-N 1291 ( Figueiredo et al., 2019 , Rubayiza and Meurens, 2005 , 

Zhang et al., 2016 ) 
1327 Unknown ( Wermelinger et al., 2011 ) 
1387 Ring stretch from Anthracenes, CGA 1385-1415 ( El-Abassy et al., 2011 , Lin-Vien et al., 1991 ) 
1484 Kahweol C = C Furan 1485 ( Rubayiza and Meurens, 2005 , Wermelinger et al., 2011 ) 
1509 16-methyl-O-cafesto 1507 ( El-Abassy et al., 2011 , Figueiredo et al., 2019 ) 
1602 phenyl ring stretching/CGA 1605/1606 ( El-Abassy et al., 2011 , Figueiredo et al., 2019 ) 
1634 C = C ethylenic stretch vibration 1630 ( El-Abassy et al., 2011 ) 
1662 C = C cyclohexane 1657 ( Figueiredo et al., 2019 , Rubayiza and Meurens, 2005 ) 
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st peaks reported in the literatures and books ( Table 1 ) with some of
he peaks that have not been identified yet. Most observed SERS peaks
re associated with aroma and flavor molecules in coffee beverages, in-
luding aromatic compounds (e.g., furan, kahweol, etc.), saccharides,
rganic acids, and caffeine ( Caprioli et al., 2015 ). Although SERS pro-
ides rich structural information, the spectral difference among coffee
amples is subtle. Therefore, multivariate analysis is used to extract sig-
ificant spectral features such as the trivial difference between peaks,
hich are required to distinguish between the coffee samples properly.
In this study, the performance of PCA and DAPC was evaluated. PCA

as used to extract the features that explain the most difference among
pectral data Fig. 5 . (a) shows that the scatter plots of the top three PCA
cores accounted for 74.6% (PC1, 44.4%; PC2, 20.0%; PC3, 10.1%) of
he total Raman variations for the whole spectra. The loading plots of
he top 3 PCs show the critical peaks explaining the variances among
he coffee samples (Fig. S1). The major variations of Raman peaks are
orrelated to aroma and flavor molecules. Because PCA did not include
roup information, the coffee samples were not separated well Fig. 5 .
b) shows the scatter plot of DAPC analysis fed by the top 27 PCs that
ccounted for 95.1% of the total variations. Since the spectral difference
mong the coffee samples is subtle, a higher number of PCs is required
or catching trivial differences. The DAPC plot shows a better separation
etween coffee samples than the PCA plot. 
Before moving to classification, we investigated whether the back-

round signals interfere with the SERS spectra from the coffee (Fig.
2). No significant overlapping were observed in coffee SERS spectra.
o ensure the background interference is minimal, we repeated the ex-
eriments on different days using nanopapers from different synthesis
atches. 
5 
.2. Machine learning classifiers 

After feature extraction, the principal components (PCs) from PCA or
anonical variables from DAPC were used as input variables for training
achine learning classifiers. The prior studies often combined proba-
ilistic classifiers with DAPC or DA for classification ( Fisher et al., 2018 ;
iu et al., 2016 ). In this study, the performance of a few common clas-
ifiers was evaluated, including Naïve Bayes, Decision Tree, K-Nearest
eighbor (KNN), Support Vector Machine (SVM). The Naïve Bayes clas-
ifier is a straightforward probabilistic classifier with the independence
ssumption based on Bayes’ theorem. However, the efficiency of the
aïve Bayes classifier depends on the size of the dataset and the proba-
ility models ( Archana and Sachin, 2015 ). The Decision tree classifier is
 standard machine learning algorithm and has been applied for facial
ecognition ( Huang et al., 1996 ). 
Both SVM and KNN have shown superior performance in the fields

f computer vision and Raman analysis ( Archana and Sachin, 2015 ;
ouzalmat et al., 2014 ; Li et al., 2009 ; Rebro š ová et al., 2017 ). SVM finds
 hyperplane to enhance the separation between classes, and according
o the types of kernel functions, SVM could be applied to classify lin-
ar and nonlinear tasks ( Kancherla et al., 2019 ; Savas and Dovis, 2019 ).
n this study, we selected the linear and 3rd polynomial functions to
valuate the performances ( Kancherla et al., 2019 ). 
KNN is a non-parametric classifier that relies on distance metrics

or classification. Therefore, the number of nearest neighbors and the
hoice of the distance measures could affect the performance of KNN
Abu Alfeilat et al., 2019 ). To select the best hyperparameters, we first
ound the optimal number of nearest number (k). Then, we evaluated
he effect of distance metrics on classification accuracy. 
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Fig. 5. Scatter plots of PCA and the DAPC scores. (a) Top three PCA scores. (b) Top three DAPC canonical scores for 27 PCs. 
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Fig. 6. Classification accuracies for Naïve Bayes classifier (Red) and Decision 
Tree classifier (Blue) with different numbers of PCs from spectra processed by 
PCA (Solid) or DAPC (Dash). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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.3. Comparison of feature extraction and classification algorithms 

We evaluated the performances of feature extraction (PCA and
APC) and classification (Naïve Bayes, Decision Tree, KNN, SVM) algo-
ithms using the 5-fold cross-validation. In the feature extraction step,
ERS spectra from training data are first processed with PCA to reduce
he dimensionality of the data and obtain the PC scores. Then, the de-
ired number of PCs from PCA is used in the following process. If PCA
s chosen for feature extraction, PCs will be directly used to train classi-
ers. For DAPC, PCs are further processed by discriminant analysis (DA)
o obtain the canonical variables, and these canonical variables are then
sed to train classifiers. The 5-fold cross-validation accuracies of classi-
cation with different feature extractions and classifiers are reported in
able S1 and S2. 
We first compared the combination of the Naïve Bayes classifier with

CA or DAPC ( Fig. 6 ). The DAPC method gives better accuracies regard-
ess of the number of PCs. The best classification accuracies of PCA and
APC were 95.25% and 98.25%, respectively. The number of PCs used
o train classifiers influences the classification accuracies, the maximum
ccuracies for PCA and DAPC were observed at 31 and 60 PCs, respec-
ively. The confusion matrix, sensitivity, and selectivity of the best clas-
ification case are reported in Figure S3. In the PCA case with 31 PCs
95.7% of total variance explained), the classification accuracy reached
5.25%, and the sensitivity and selectivity of all samples were above
0%. In the DAPC case with 60 PCs (98.1% of total variance explained),
he classification accuracy was improved to 98.25%, and the sensitivity
nd selectivity of all samples were over 93%. 
The Decision Tree classifier also shows a similar trend ( Fig. 6 ). The

est accuracies of the decision tree were 88.75% for PCA and 95.75%
or DAPC. The maximum accuracies for PCA and DAPC were observed
t 6 and 35 PCs, respectively. DAPC improved the classification perfor-
ances for both classifiers. However, the overall classification perfor-
ances of the Decision Tree were worse than the Naïve Bayes classifier
Fig. S4). Beyond these maximum points, we observed that the increase
f PCs provides no additional benefits in improving classification accu-
6 
acies. This trend is similar to data reported in the literature ( Rebro š ová
t al., 2017 ). Overfitting of classifiers with noise in the training dataset
ould be the cause of this phenomenon ( Ying, 2019 ). 
Fig. 7 shows the classification accuracies of SVM with PCA or DAPC.

t has been reported that the kernel functions influence the performance
f SVM ( Kancherla et al., 2019 ; Savas and Dovis, 2019 ). Here, we studied
he impact of the linear and the third-order polynomial kernel functions
n classification performance. For PCA-SVM, the classification accura-
ies of linear kernel are worse than that of the polynomial kernel; how-
ver, for DAPC-SVM, the linear kernel offers better accuracy. Kancherla
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Fig. 7. Classification accuracies for SVM classifier with the linear kernel (Blue) 
or 3rd order polynomial kernel (Red) with different number of PCs from spectra 
processed by PCA (Solid) or DAPC (Dash). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.) 
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t al. has provided a general guideline regarding the use of SVM ker-
el functions based on the boundaries ( Kancherla et al., 2019 ). If the
lass boundaries are nonlinear or overlapping, the nonlinear kernels are
he more appropriate choices for SVM. In contrast, the linear kernel is
referable for a dataset with linear boundaries. Since PCA is a linear
ethod, the polynomial kernel should provide better classification per-
ormance. For DAPC, the class boundaries are well defined ( Fig. 5 ), so
he linear kernel is a superb choice. In general, DAPC-SVM offers supe-
ior performance when compared to PCA-SVM. In addition, the maxi-
um accuracy of SVM reached 99% with 75 PC (98.74% of total vari-
ig. 8. Classification accuracies for KNN classifier using different distance metrics 
anobis) with varying numbers of PCs from spectra processed by (a) PCA or (b) DAPC

7 
bles explained), which is superior to the Decision Tree classifiers and
omparable to the Naïve Bayes classifier. The corresponding sensitivity
nd selectivity of each sample are close to 99% (Fig. S5). 
The performance of KNN depends on the hyperparameters, such as

he number of nearest neighbors (k) and the distance metrics. Here, we
elected seven typical distance metrics, including Minkowski distances
i.e., Euclidean, Cityblock, and Chebyshev), inner product distance (i.e.,
osine), and other distance measures (i.e., Correlation, Mahalanobis,
nd Spearman) (Abu Alfeilat et al., 2019 ; Chomboon et al., 2015 ). Before
omparing the effects of distance metrics, we first searched the optimal
umber of nearest neighbors (k). Fig. S7 shows the average accuracy of
NN with different k values. The optimal accuracy appeared at k = 9;
hus, we conducted the 9-nearest neighbor algorithm to evaluate the
erformance of the distance metrics. 
The accuracies of PCA-KNN with different distance metrics are re-

orted in Fig. 8 . (a). Euclidean distance offers the best classification
ccuracy among seven metrics. For the PCA case, the maximum accu-
acy of the Euclidean distance reached 98.25% when 13 PCs (91.6% of
otal variance explained) were used to train the classifier. The Maha-
anobis distance is observed to be sensitive to the number of PCs. The
ccuracy dropped when the number of PCs increased. In general, DAPC
mproves the classification accuracy of KNN, regardless of the selection
f the distance metrics ( Fig. 8 . (b)). The maximum accuracies of differ-
nt distance metrics except Mahalanobis are similar (98 ∼99%). Still, the
uclidean Distance, Cosine Distance, and Correlation Distance offered
he best accuracies (98.75%) using 24 PCs (94.6% of total variance ex-
lained) and 45 PCs (97.1% of total variance explained), respectively.
he corresponding sensitivity and selectivity of each coffee sample were
ear 99%. In summary, the overall performance of KNN is comparable
o the SVM linear kernel in DAPC. 
To demonstrate the potential application as a quality control tool, we

nalyzed the same coffee product from different packages. Coffee Sam-
le 3 was selected for this multi-batch test because this coffee product
as purchased from a source with better quality management. A total
f 80 spectra from the two new coffee packages were collected (Fig. S8).
he intensities of the spectra vary slightly, likely due to the variations
f SERS enhancement and the content variations among coffee batches,
(Euclidean, Chebyshev, Correlation, Spearman, Cosine, City block, and Maha- 
. 
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ut the overall morphologies are similar. The original 400 SERS spectra
ere used to build the classification model; then, the established model
as used to predict the class label of the 80 new SERS spectra. The data
oints of these three different batches cluster together in the DAPC load-
ng plot (Fig. S9). A 100% prediction accuracy was achieved by Naïve
ayes and SVM classifiers. 

. Conclusion 

We demonstrated a coffee classifier that integrates SERS, feature ex-
raction, and machine learning classifiers. The signal enhancement of
ERS substrates enables the detection of the dilute molecules in coffee
everages. Although we observed high variability in SERS signals, the
ombinations of feature extraction tools and machine learning classifiers
ould successfully classify coffee beverages. Compared with PCA, DAPC
mproved the accuracies of all the classifiers tested in this study. SVM
nd KNN are superior to the Naïve Bayes and the Decision Tree classi-
ers. The performances of DAPC-SVM and DAPC-KNN are comparable
99% for SVM vs. 98.75% for KNN). The prior classification studies of-
en combined DAPC or DA with probabilistic classifiers, such as Naïve
ayes classifier ( Fisher et al., 2018 ; Liu et al., 2016 ). Thus, SVM and
NN could serve as an alternative choice for Raman spectra classifica-
ion. In conclusion, this platform successfully classified coffee beverages
ith high accuracy using our machine learning tool and the inexpensive,
ersatile nanopaper. 
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