Digital Chemical Engineering 3 (2022) 100020

Contents lists available at ScienceDirect

Digital Chemical Engineering

journal homepage: www.elsevier.com/locate/dche @
Integration of surface-enhanced Raman spectroscopy (SERS) and machine 7))
learning tools for coffee beverage classification ot

Qiang Hu®'!, Chase Sellers®', Joseph Sang-Il Kwon?®", Hung-Jen Wu®*

2 The Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
b Texas A&M Energy Institute, Texas A&M University, College Station, TX 77845, USA

ARTICLE INFO ABSTRACT

Keywords:

Surface-enhanced Raman spectroscopy (SERS)
Machine learning

Feature extraction

Coffee

Classification

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for molecule identification. However, profil-
ing complex samples remains a challenge because SERS peaks are likely to overlap, confounding features when
multiple analytes are present in a single sample. In addition, SERS often suffers from high variability in signal
enhancement due to nonuniform SERS substrate. The machine learning classification techniques widely used for
facial recognition are excellent tools to overcome the complexity of SERS data interpretation. Herein, we re-
ported a sensor for classifying coffee beverages by integrating SERS, feature extractions, and machine learning
classifiers. A versatile and low-cost SERS substrate, called nanopaper, was used to enhance Raman signals of di-
lute compounds in coffee beverages. Two classic multivariate analysis techniques, Principal Component Analysis
(PCA) and Discriminant Analysis of Principal Components (DAPC), were used to extract the significant spectral
features, and the performance of various machine learning classifiers was evaluated. The combination of DAPC
with Support Vector Machine (SVM) or K-Nearest Neighbor (KNN) shows the best performance for classifying
coffee beverages. This user-friendly and versatile sensor has the potential to be a practical quality-control tool

for the food industry.

1. Introduction

Raman spectroscopy is a valuable tool for chemical identification
in its ability to provide fingerprint information of molecules. A signif-
icant challenge of Raman spectroscopy is the inherently weak Raman
scattering signal; surface-enhanced Raman spectroscopy (SERS) is an
excellent approach to overcome this challenge. SERS amplifies the lo-
cal electromagnetic field near nanostructured metal surfaces, providing
magnitudes of enhancement of Raman signals for molecules adsorbed
on metal surfaces (Sharma et al., 2012). The large signal enhancement
makes SERS an effective tool for the detection of dilute analytes.

However, two prominent factors inhibit the interpretation of spec-
tral data in SERS sensing applications. First, SERS signals often suffer
from high variability (Fornasaro et al., 2020). The signal enhancement
of SERS is primarily caused by localized electric field enhancement and
is particularly significant in hot spots, such as nanoscale gaps between
metal particles and highly structured metal surfaces (Weatherston et al.,
2016). A tiny variation of SERS substrates could lead to a high variability
of SERS signal. Second, many applications of Raman spectroscopy, such
as food quality analysis and disease diagnosis, intend to compare sam-
ples that contain similar types of chemicals. The sample states are deter-
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mined by the relative concentrations of multiple chemicals (Kuhar et al.,
2018). Although Raman spectroscopy provides molecular fingerprint
spectra, Raman peaks are likely to overlap when a large number of an-
alytes are present in a sample. Thus, sample states cannot be simply
determined by a few prominent Raman bands. Instead, the whole Ra-
man spectra that include the covariate features of multiple molecules
should be considered (Liu et al., 2020). Therefore, advanced data anal-
ysis techniques like machine learning are needed to uncover patterns of
Raman spectra.

To address complex Raman data interpretation, we applied multi-
variate analysis and machine learning classifiers widely used in pat-
tern recognition applications (e.g., facial recognition). Similar to SERS
spectra, image datasets often suffer from high variability caused by fa-
cial expression, illumination, blocking, resolution, and noise, leading
to practical challenges in computer vision applications (Wright et al.,
2009). Multivariate analysis has been applied to extract the relevant fea-
tures and minimize data variations (Jade et al., 2003, Kim et al., 2010,
Seena and Yomas, 2014). The dimension reduction of the high dimen-
sion image dataset is achieved through feature extraction and feature
selection. The removal of the data unrelated to classification improves
the dataset quality and classification performance (Khalid et al., 2014).

Received 26 January 2022; Received in revised form 3 March 2022; Accepted 3 March 2022
2772-5081/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.dche.2022.100020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dche
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dche.2022.100020&domain=pdf
mailto:hjwu@tamu.edu
https://doi.org/10.1016/j.dche.2022.100020
http://creativecommons.org/licenses/by-nc-nd/4.0/

Q. Hu, C. Sellers, J.S.-I. Kwon et al.

(@) 9o  Silver nanoparticle

Glass fiber

Digital Chemical Engineering 3 (2022) 100020

) 300

250

200

150

100

Raman Intensity (A.U)

50

400 600 800 1000 12001 1400 1600
Wavenumber (cm™)

Fig. 1. SERS measurement of the coffee. (a) Schematic illustration of nanopaper, a glass fiber paper coated with the silver nanoparticle. (b) SEM image of
nanopaper. The scale bar is 10 pm. (c) Averaged Raman spectra (N = 80) of coffee Sample 1 on nanopaper (red), and on the bare glass fiber paper (blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Similarly, SERS suffers from high variability in signals; therefore, the
combination of feature extractions and machine learning classifiers
could serve as a powerful tool to identify the SERS spectra of com-
plex samples (Lussier et al., 2020). In the past decade, multivariate
analysis, such as Principal Component Analysis (PCA) and Discriminant
Analysis of Principal Components (DAPC), have already been utilized
to analyze Raman and SERS spectra for different applications, including
medical diagnosis (Chen et al., 2013; Liu et al., 2016; Muratore, 2013;
Senger et al., 2020; Sigurdsson et al., 2004), explosive compound de-
tection (Hwang et al., 2013), material research (Mao et al., 2020), bi-
ological samples identification (Jamieson et al., 2018; Liu et al., 2020;
Lu et al., 2018; Prakash et al., 2020; Senger and Scherr, 2020), and food
industry (de Toledo et al., 2017; Jiang et al., 2021).

In this study, we developed a sensor for classifying coffee using
Raman spectroscopy. Flavors of coffee beverages are determined by
a large number of flavor and aroma compounds. The compositions
of these compounds are highly dependent on the growth of coffee
beans, the fermentation and roasting processes, and the drying and
storage conditions (Poltronieri and Rossi, 2016). Although quality as-
surance is typically performed by experienced tasters, analytical meth-
ods that provide rapid, robust, and precise quality evaluations are de-
sired (Wermelinger et al., 2011). Raman spectroscopy has been used
to discriminate Arabica and Robusta coffee samples (El-Abassy et al.,
2011; Rubayiza and Meurens, 2005; Wermelinger et al., 2011). For ex-
ample, Wermelinger et al. quantified the fraction of the Robusta beans
in the coffee blend by measuring the intensity ratio of 1570/1665 cm™1
and 1570/1460 cm~! (Wermelinger et al., 2011). The Raman peak at
1570 cm™! is associated with kahweol in Arabica coffee and is absent
in Robusta coffee. When the composition of Robusta coffee increased,
the peak position at 1665 cm~! shifted towards a lower wavenumber
because Robusta coffee contains a higher amount of unsaturated fatty
acids. In another study, Rubayiza et al. observed the absence of 1567
and 1487 cm~! peaks in Robusta coffee due to the trace kahweol con-
tent in Robusta (Rubayiza and Meurens, 2005). Moreover, EI-Abassy
et al. discriminated between Arabica and Robusta coffee beans based
on chlorogenic acid (CGA) and lipid contents (El-Abassy et al., 2011).
These tests only selected a few molecules as indicators to differentiate
Arabica and Robusta beans. Such analysis, however, cannot distinguish
the same types of coffee beans treated by distinct roasting, fermentation,
and aging processes. Caprioli et al. had a review on coffee aroma profiles
and found there are more than 40 types of potent odorants of roast cof-
fee with many more still not being identified (Caprioli et al., 2015). All
of these flavor and aroma compounds are essential for quality control
(Cruz et al., 2012; Semmelroch and Grosch, 1996).
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Fig. 2. Flow chart for the classification algorithm.

Herein, we integrate SERS, feature extractions, and machine learn-
ing classifiers to overcome the challenges in coffee beverage analy-
sis. First, to enhance Raman signals of dilute compounds, we used
a versatile and inexpensive SERS substrate, called nanopaper (i.e., a
glass fiber paper decorated with silver nanoparticles) as shown in
Fig. 1 (Weatherston et al., 2018; Weatherston et al., 2019). Second, we
integrated feature extraction algorithms and machine learning classi-
fiers to address the high variability in SERS signals with spectral overlap
in high fluorescing coffee samples. The workflow is shown in Fig. 2. We
selected two multivariate analysis techniques for feature extraction, in-
cluding Principal Component Analysis (PCA) and Discriminant Analysis
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of Principal Components (DAPC), and four machine learning classifiers,
including Naive Bayes, Decision Tree, Support Vector Machine (SVM),
and K-Nearest Neighbor (KNN) (Kotsiantis et al., 2007; Yuan et al., 2019;
Yuan et al., 2020). Feature extraction tools, such as PCA, have already
been utilized for Raman analysis (Lussier et al., 2020). DAPC applies
PCA then discriminant analysis to further explore variances between
sample groups (Jombart et al., 2010). Our results show that DAPC has a
better performance than PCA for all classifiers. In addition, the combina-
tion of DAPC with SVM or KNN delivers the best performance for classi-
fying coffee beverages. The results also show that the machine learning
classifiers can detect trivial differences among similar SERS spectra.

2. Experimental methods
2.1. Materials

Double deionized (DDI) water was produced with a Milli-Q system
from Millipore. Five different types of ground coffee samples were pur-
chased at a local grocery store. Four of them were Arabica beans from
the Colombia Region with varying degrees of roasting, and one of them
was the Robusta bean (The detailed information about coffee products
is listed in Supplementary Information). Filter paper (Qualitative P8
- Fluted, Fisher Brand), binder-free glass microfiber filters (Whatman
grade 934-AH, 110 mm circles), sodium hydroxide, methanol, silver ni-
trate (99.9995% (metals basis), Alfa Aesar), and 2-propanol were ob-
tained from Fisher Scientific. Sodium citrate dihydrate, potassium hy-
droxide, ammonia hydroxide solution (28%-30%) were purchased from
Sigma-Aldrich. Citric acid and D-glucose anhydrous were purchased
from VWR International. All chemicals were ACS grade or better and
used without further purification.

2.2. Nanopaper fabrication and characterization

Nanopapers were fabricated as previously reported (Weatherston
et al., 2018). In brief, a typical synthesis consisted of mixing aqueous
solution of ammonia and silver nitrate with potassium hydroxide; 40 mL
of 35% aqueous D-glucose solution was added to a 2L glass beaker and
shaken vigorously by hand. Glass microfiber papers were immersed into
the solution, and the container was shaken for 5 min by hand. The con-
tainer was covered with aluminum foil to minimize the exposure to light
and left at room temperature for 1 h. The filter papers were then rinsed
thoroughly with DDI water and 2-propanol. The final products, i.e., the
nanopapers, were stored in 2-propanol and the container was covered
with aluminum foil and stored in drawers to protect from light expo-
sure. Before the Raman measurement, the nanopaper was dried in a hot
air oven and cut into a 1 cm X 1 cm square shape.

2.3. Coffee beverage preparation

Ground coffee sample (1.2 g) was added to 10 mL of deionized water.
The solution was vigorously vortexed and kept at 4 °C for 15 h. The
solution was then centrifuged by a Thermofisher Megafuge Centrifuge
at 2500 RPM for 15 mins, and the resulting liquid was stored in a 4 °C
fridge and covered with aluminum foil.

2.4. Raman measurements

Nanopapers were washed with 0.1 M citrate buffer (pH = 3.6) and
immersed afterwards into the coffee extract solution for one minute.
Then, the paper was dried in a hot air oven at 70 °C and transferred to
the Raman microscope for SERS measurement. The Raman spectra were
collected from a 780 nm diode laser with a 10x objective lens, a Rayleigh
rejection filter, a diffraction grating (4.7-8.7 cm™! resolution), a 25 um
pinhole, and a black-illuminated charged-coupled device (CCD) detec-
tor using a Thermo Scientific DXR Raman microscope (Thermo Fisher
Scientific, Inc.). Each spectrum was acquired at 1 mW laser power with
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10 accumulations of 90 s integration time each, 15 min in total. To in-
vestigate the reproducibility of spectra, the same experiment protocol
was repeated on five different days. A total number of 400 spectra were
collected, with 80 spectra per sample.

2.5. Data processing and multivariate data analysis

Data processing, multivariate analysis, and classification algorithms
were conducted using Matlab 2021(Mathworks Inc., Natick, US) Fig. 2.
shows the data process flow chart. The spectra were first processed using
Asymmetric Least Square (ALS) baseline correction with OriginPro Soft-
ware (OriginLab Corp., Northampton, 2021). Then, baselined spectra
were vector normalized and Savitzky-Golay smoothed (4™ order poly-
nomial, with a frame size of 37) using Matlab 2021. Finally, multivariate
analysis techniques and classification algorithms were performed in the
spectral range, 300-1670 cm™!.

Before applying classifiers, the normalized and smoothed spectra
were processed using multivariate statistical analysis to reduce the com-
plexity of Raman spectra and extract the significant features that explain
the most variance. The two multivariate analysis methods chosen to pro-
cess the spectra were namely Principal Component Analysis (PCA) and
Discriminant Analysis of Principal Components (DAPC) (Jombart et al.,
2010; Yang and Yang, 2003). PCA is a multivariate statistical analy-
sis that calculates the orthogonal combinations of the original variables
and summarizes the variances in data. The dimension reduction of data
was achieved by considering the number of significant principal compo-
nents (PCs) that explain the most variance. For DAPC, PCA was applied
to reduce the complexity of the spectra dataset; then, a supervised multi-
variate analysis, Discriminant Analysis, was used to further discriminate
the dataset by correlating the variation in the data with the coffee in-
formation for each sample.

After feature extraction, common machine learning classifiers were
used to classify coffee beverages. The classification classifiers in the
Statistics and Machine Learning Toolbox of Matlab, including Decision
Tree, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and
Naive Bayes, were selected. The number of the principal components
(PCs) or canonical variables from the PCA or DAPC was varied from 1 to
80 in order to observe its influence on classification performance. The in-
fluences of the classifier hyperparameters on the classification accuracy
were also evaluated. For SVM, linear and polynomial kernel functions
were selected (Kancherla et al., 2019). For KNN, we assessed the impact
of the number of nearest neighbors and the distance metrics, includ-
ing Euclidean, Cosine, Chebyshev, Cityblock, Correlation, Mahalanobis,
and Spearman (Abu Alfeilat et al., 2019; Chomboon et al., 2015). For
Naive Bayes, the classic Gaussian model was used. The classification
model parameters from the training dataset were used to predict the
validation dataset in each repetition. A 5-fold cross-validation was per-
formed to assess the suitability of each classification algorithm, avoid-
ing overfitting (Berrar, 2019). In brief, the training and the validation
sets were established by randomly selecting from the Raman spectra
data. The training dataset was used to generate a classification model,
and the model predicted the validation dataset to evaluate the perfor-
mance. The cross-validation approach was repeated five times, wherein
the validation set consisted of 80 randomly selected Raman spectra in
each repetition. The performance of the model was measured by classifi-
cation accuracies, sensitivity, and selectivity. The accuracy, sensitivity,
and the selectivity are defined as (Trevethan, 2017):

True positive + True negative

Accuracy = — -
Total positive and negative cases
L True positive
Sensitivity = — :
True positive and False negative cases
.. True negative
Selectivity = &

True Negative and False Positive

An additional two packages of Sample 3 were purchased to demon-
strate the potential of the sensor for quality control. The SERS spectra



Q. Hu, C. Sellers, J.S.-I. Kwon et al.

—
Q
~

700—— ]

600,
500,
400
300,

200,

Raman Intensity (A.U)

100

LIS B L L L B L B L

ol | ‘«'"‘?"‘1 ail ;\‘l oz 1T 9 M N1
400 600 800 1000 1200
Wavenumber (cm™)

Digital Chemical Engineering 3 (2022) 100020

—
O
~

74070 o e e s e e e

600

(o))
=
=

S
o
(=}

300

N
o
(=]

NI EEERENEENE SRR ARENE RN

oy
o
(=]

Raman Intensity (A.U)

400 600 800 ;000 1200
Wavenumber (cm™)

1400 1600

Fig. 3. SERS spectra with high variations. (a) 5 individual SERS spectra of Sample 1 on a single SERS substrate at five random locations. (b) The average (red curve)
and one standard deviation (grey area) of Sample 1 SERS spectra collected on 5 different days. (N = 80). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

from the additional coffee batches were collected using the same proto-
col described above, and 40 spectra were collected for each batch. The
original 400 SERS spectra were used to train the classification models,
and the established models were used to predict the class label of 80
spectra from the two new coffee batches. The performance was evalu-
ated by the prediction accuracy.

3. Results and discussion
3.1. SERS spectra of coffee beverages

To evaluate the flavors of coffee beverages, we prepared aqueous
coffee samples using the classic cold brew method (Baggenstoss et al.,
2008; Rao et al., 2020; Semmelroch and Grosch, 1996). Although water
extraction is better for evaluating flavor and aroma compounds in coffee
beverages than organic extraction methods, strong fluorescent signals
and extremely dilute analytes in coffee beverages impede aqueous coffee
analysis using standard Raman spectroscopy (Dias and Yeretzian, 2016;
El-Abassy et al., 2015). This issue could be resolved by SERS. A home-
made SERS substrate, called nanopaper, was used to enhance Raman
signals of coffee samples. The nanopaper is made by decorating a dense
layer of silver nanoparticles on glass fiber paper, which possesses sig-
nificant SERS enhancement (Fig. 1. (a) and Fig. 1. (b)). This low-cost
SERS substrate was made by the well-known silver mirror reaction in
a batch reactor. Our prior study has shown that the enhancement fac-
tor can reach 1.15 x 105, sufficient to detect dilute molecules in coffee
beverages (Weatherston et al., 2018). In Fig. 1. (c), the SERS spectral
features of the coffee beverage are much more significant than those in
the Raman spectrum (Fig. 1. (c)).

SERS enhancement is highly dependent on hot spots, such as
nanoscale gaps between nanoparticles or highly structured surfaces. A
SERS substrate with uniform signal enhancement is almost impossible
to make; thus, SERS often suffers from high variability in Raman sig-
nals Fig. 3. (a) shows five individual SERS spectra from the same cof-
fee sample collected on a single SERS substrate at different locations;
it is apparent that the uneven distributions and size variations of silver
particles led to high variability in SERS signals. Moreover, SERS is a
near-field electromagnetic effect, and signal enhancement decays expo-
nentially due to distance from nanoparticle surfaces. Therefore, uneven
adsorption of analytes on SERS substrates could also introduce signal
variations.
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Fig. 4. Averaged Vector Normalized and Smoothed SERS spectra of coffee (1)
Sample 1, (2) Sample 2, (3) Sample 3, (4) Sample 4, (5) Sample 5.

The inter-day and inter-substrate variations were also evaluated
Fig. 3. (b) shows the average and standard deviation of SERS spectra
(n = 80) collected on 5 different days using different SERS substrates.
Although SERS signals fluctuate significantly, the overall morphologies
of SERS spectra are relatively similar. Therefore, multivariate analysis
can be applied to extract the significant features of SERS spectra.

To evaluate the performance of this coffee classifier, we purchased
five commercial coffees from local stores. Four of them (Sample 1 to
Sample 4) were 100% Arabica beans from the Colombia Region with
various degrees of roasting. The fifth sample (Sample 5) was the Ro-
busta bean. The brand information is available in the Supplementary
Materials. The averaged SERS spectra of these five samples are shown
in Fig. 4. The peaks identified in the average SERS spectra were com-
pared with the peaks reported in the literature. The positions of SERS
peaks were shifted slightly from the positions of typical Raman spec-
tra due to the interaction between chemical molecules and SERS sub-
strates (Blum et al., 2012). We assigned those Raman bands to the clos-
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Table 1
Tentative Peak Assignment Table.
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SERS Position Band Assignment

Reference Position Ref.

(ecm™) (ecm™)

311 "Chain expansion" n-Alkanes 150-425 (Lin-Vien et al., 1991)

325 "Chain expansion" n-Alkanes 150-425 (Lin-Vien et al., 1991)

348 Skeletal deformation Monoalkyl acetylenes 335-355 (Lin-Vien et al., 1991)

411 "Chain expansion" n-Alkanes 150-425 (Lin-Vien et al., 1991)

440 Unknown

495 C-N-C 482 (El-Abassy et al., 2015)

544 Unknown

564 Unknown

686 ring breathing hydrothiophene 688 (Lin-Vien et al., 1991)

709 Ring Vibration Alkyl cyclohexanes 700-785 (El-Abassy et al., 2011, Lin-Vien et al., 1991)

734 0=C-C 742 (El-Abassy et al., 2015)

760 Ring Vibration Alkyl cyclohexanes 700-785 (Lin-Vien et al., 1991)

799 N-C-H 801 (El-Abassy et al., 2015)

842 Polysaccharides 835 (Rubayiza and Meurens, 2005)

903 Polysaccharides 911 (El-Abassy et al., 2011, El-Abassy et al., 2015, Wermelinger et al.,
2011)

937 ring breathing 1,3-Dioxolane 939 (Lin-Vien et al., 1991)

952 Symmetric COC stretch from Aliphatic ethers 830-930 (Lin-Vien et al., 1991)

1011 Trigonal ring breathing from Pyridines, CGA 1010-1030 (El-Abassy et al., 2011, Lin-Vien et al., 1991, Zhang et al., 2016)

1033 asymmetric stretching of N-CH3 1029 (El-Abassy et al., 2015, Zhang et al., 2016)

1060 Polysaccharides 1062 (Zhang et al., 2016)

1077 deformation of C-C 1072 (El-Abassy et al., 2015, Zhang et al., 2016)

1098 CC stretch n-alkynes, CGA 950-1150 (El-Abassy et al., 2011, Lin-Vien et al., 1991)

1120 cyclohexane (cyc) CH,COH bending 1120 (Rubayiza and Meurens, 2005)

1190 phenyl ring CH,COH bending 1193 (Wermelinger et al., 2011)

1215 ring vibrations from Para-disubstituted benzenes 1200-1230 (Lin-Vien et al., 1991, Luna et al., 2019)

1240 deformation vibration of CH-N 1250 (Wermelinger et al., 2011)

1290 Stretching Vibration Mode of C-N 1291 (Figueiredo et al., 2019, Rubayiza and Meurens, 2005,
Zhang et al., 2016)

1327 Unknown (Wermelinger et al., 2011)

1387 Ring stretch from Anthracenes, CGA 1385-1415 (El-Abassy et al., 2011, Lin-Vien et al., 1991)

1484 Kahweol C=C Furan 1485 (Rubayiza and Meurens, 2005, Wermelinger et al., 2011)

1509 16-methyl-O-cafesto 1507 (El-Abassy et al., 2011, Figueiredo et al., 2019)

1602 phenyl ring stretching/CGA 1605/1606 (El-Abassy et al., 2011, Figueiredo et al., 2019)

1634 C=C ethylenic stretch vibration 1630 (El-Abassy et al., 2011)

1662 C=C cyclohexane 1657 (Figueiredo et al., 2019, Rubayiza and Meurens, 2005)

est peaks reported in the literatures and books (Table 1) with some of
the peaks that have not been identified yet. Most observed SERS peaks
are associated with aroma and flavor molecules in coffee beverages, in-
cluding aromatic compounds (e.g., furan, kahweol, etc.), saccharides,
organic acids, and caffeine (Caprioli et al., 2015). Although SERS pro-
vides rich structural information, the spectral difference among coffee
samples is subtle. Therefore, multivariate analysis is used to extract sig-
nificant spectral features such as the trivial difference between peaks,
which are required to distinguish between the coffee samples properly.

In this study, the performance of PCA and DAPC was evaluated. PCA
was used to extract the features that explain the most difference among
spectral data Fig. 5. (a) shows that the scatter plots of the top three PCA
scores accounted for 74.6% (PC1, 44.4%; PC2, 20.0%; PC3, 10.1%) of
the total Raman variations for the whole spectra. The loading plots of
the top 3 PCs show the critical peaks explaining the variances among
the coffee samples (Fig. S1). The major variations of Raman peaks are
correlated to aroma and flavor molecules. Because PCA did not include
group information, the coffee samples were not separated well Fig. 5.
(b) shows the scatter plot of DAPC analysis fed by the top 27 PCs that
accounted for 95.1% of the total variations. Since the spectral difference
among the coffee samples is subtle, a higher number of PCs is required
for catching trivial differences. The DAPC plot shows a better separation
between coffee samples than the PCA plot.

Before moving to classification, we investigated whether the back-
ground signals interfere with the SERS spectra from the coffee (Fig.
S2). No significant overlapping were observed in coffee SERS spectra.
To ensure the background interference is minimal, we repeated the ex-
periments on different days using nanopapers from different synthesis
batches.

3.2. Machine learning classifiers

After feature extraction, the principal components (PCs) from PCA or
canonical variables from DAPC were used as input variables for training
machine learning classifiers. The prior studies often combined proba-
bilistic classifiers with DAPC or DA for classification (Fisher et al., 2018;
Liu et al., 2016). In this study, the performance of a few common clas-
sifiers was evaluated, including Naive Bayes, Decision Tree, K-Nearest
Neighbor (KNN), Support Vector Machine (SVM). The Naive Bayes clas-
sifier is a straightforward probabilistic classifier with the independence
assumption based on Bayes’ theorem. However, the efficiency of the
Naive Bayes classifier depends on the size of the dataset and the proba-
bility models (Archana and Sachin, 2015). The Decision tree classifier is
a standard machine learning algorithm and has been applied for facial
recognition (Huang et al., 1996).

Both SVM and KNN have shown superior performance in the fields
of computer vision and Raman analysis (Archana and Sachin, 2015;
Bouzalmat et al., 2014; Li et al., 2009; Rebrosova et al., 2017). SVM finds
a hyperplane to enhance the separation between classes, and according
to the types of kernel functions, SVM could be applied to classify lin-
ear and nonlinear tasks (Kancherla et al., 2019; Savas and Dovis, 2019).
In this study, we selected the linear and 3rd polynomial functions to
evaluate the performances (Kancherla et al., 2019).

KNN is a non-parametric classifier that relies on distance metrics
for classification. Therefore, the number of nearest neighbors and the
choice of the distance measures could affect the performance of KNN
(Abu Alfeilat et al., 2019). To select the best hyperparameters, we first
found the optimal number of nearest number (k). Then, we evaluated
the effect of distance metrics on classification accuracy.
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Fig. 5. Scatter plots of PCA and the DAPC scores. (a) Top three PCA scores. (b) Top three DAPC canonical scores for 27 PCs.

3.3. Comparison of feature extraction and classification algorithms

We evaluated the performances of feature extraction (PCA and
DAPC) and classification (Naive Bayes, Decision Tree, KNN, SVM) algo-
rithms using the 5-fold cross-validation. In the feature extraction step,
SERS spectra from training data are first processed with PCA to reduce
the dimensionality of the data and obtain the PC scores. Then, the de-
sired number of PCs from PCA is used in the following process. If PCA
is chosen for feature extraction, PCs will be directly used to train classi-
fiers. For DAPC, PCs are further processed by discriminant analysis (DA)
to obtain the canonical variables, and these canonical variables are then
used to train classifiers. The 5-fold cross-validation accuracies of classi-
fication with different feature extractions and classifiers are reported in
Table S1 and S2.

We first compared the combination of the Naive Bayes classifier with
PCA or DAPC (Fig. 6). The DAPC method gives better accuracies regard-
less of the number of PCs. The best classification accuracies of PCA and
DAPC were 95.25% and 98.25%, respectively. The number of PCs used
to train classifiers influences the classification accuracies, the maximum
accuracies for PCA and DAPC were observed at 31 and 60 PCs, respec-
tively. The confusion matrix, sensitivity, and selectivity of the best clas-
sification case are reported in Figure S3. In the PCA case with 31 PCs
(95.7% of total variance explained), the classification accuracy reached
95.25%, and the sensitivity and selectivity of all samples were above
90%. In the DAPC case with 60 PCs (98.1% of total variance explained),
the classification accuracy was improved to 98.25%, and the sensitivity
and selectivity of all samples were over 93%.

The Decision Tree classifier also shows a similar trend (Fig. 6). The
best accuracies of the decision tree were 88.75% for PCA and 95.75%
for DAPC. The maximum accuracies for PCA and DAPC were observed
at 6 and 35 PCs, respectively. DAPC improved the classification perfor-
mances for both classifiers. However, the overall classification perfor-
mances of the Decision Tree were worse than the Naive Bayes classifier
(Fig. S4). Beyond these maximum points, we observed that the increase
of PCs provides no additional benefits in improving classification accu-
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Fig. 6. Classification accuracies for Naive Bayes classifier (Red) and Decision
Tree classifier (Blue) with different numbers of PCs from spectra processed by
PCA (Solid) or DAPC (Dash). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

racies. This trend is similar to data reported in the literature (Rebrosova
et al., 2017). Overfitting of classifiers with noise in the training dataset
could be the cause of this phenomenon (Ying, 2019).

Fig. 7 shows the classification accuracies of SVM with PCA or DAPC.
It has been reported that the kernel functions influence the performance
of SVM (Kancherla et al., 2019; Savas and Dovis, 2019). Here, we studied
the impact of the linear and the third-order polynomial kernel functions
on classification performance. For PCA-SVM, the classification accura-
cies of linear kernel are worse than that of the polynomial kernel; how-
ever, for DAPC-SVM, the linear kernel offers better accuracy. Kancherla
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article.)

et al. has provided a general guideline regarding the use of SVM ker-
nel functions based on the boundaries (Kancherla et al., 2019). If the
class boundaries are nonlinear or overlapping, the nonlinear kernels are
the more appropriate choices for SVM. In contrast, the linear kernel is
preferable for a dataset with linear boundaries. Since PCA is a linear
method, the polynomial kernel should provide better classification per-
formance. For DAPC, the class boundaries are well defined (Fig. 5), so
the linear kernel is a superb choice. In general, DAPC-SVM offers supe-
rior performance when compared to PCA-SVM. In addition, the maxi-
mum accuracy of SVM reached 99% with 75 PC (98.74% of total vari-
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ables explained), which is superior to the Decision Tree classifiers and
comparable to the Naive Bayes classifier. The corresponding sensitivity
and selectivity of each sample are close to 99% (Fig. S5).

The performance of KNN depends on the hyperparameters, such as
the number of nearest neighbors (k) and the distance metrics. Here, we
selected seven typical distance metrics, including Minkowski distances
(i.e., Euclidean, Cityblock, and Chebyshev), inner product distance (i.e.,
Cosine), and other distance measures (i.e., Correlation, Mahalanobis,
and Spearman) (Abu Alfeilat et al., 2019; Chomboon et al., 2015). Before
comparing the effects of distance metrics, we first searched the optimal
number of nearest neighbors (k). Fig. S7 shows the average accuracy of
KNN with different k values. The optimal accuracy appeared at k = 9;
thus, we conducted the 9-nearest neighbor algorithm to evaluate the
performance of the distance metrics.

The accuracies of PCA-KNN with different distance metrics are re-
ported in Fig. 8. (a). Euclidean distance offers the best classification
accuracy among seven metrics. For the PCA case, the maximum accu-
racy of the Euclidean distance reached 98.25% when 13 PCs (91.6% of
total variance explained) were used to train the classifier. The Maha-
lanobis distance is observed to be sensitive to the number of PCs. The
accuracy dropped when the number of PCs increased. In general, DAPC
improves the classification accuracy of KNN, regardless of the selection
of the distance metrics (Fig. 8. (b)). The maximum accuracies of differ-
ent distance metrics except Mahalanobis are similar (98~99%). Still, the
Euclidean Distance, Cosine Distance, and Correlation Distance offered
the best accuracies (98.75%) using 24 PCs (94.6% of total variance ex-
plained) and 45 PCs (97.1% of total variance explained), respectively.
The corresponding sensitivity and selectivity of each coffee sample were
near 99%. In summary, the overall performance of KNN is comparable
to the SVM linear kernel in DAPC.

To demonstrate the potential application as a quality control tool, we
analyzed the same coffee product from different packages. Coffee Sam-
ple 3 was selected for this multi-batch test because this coffee product
was purchased from a source with better quality management. A total
of 80 spectra from the two new coffee packages were collected (Fig. S8).
The intensities of the spectra vary slightly, likely due to the variations
of SERS enhancement and the content variations among coffee batches,
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but the overall morphologies are similar. The original 400 SERS spectra
were used to build the classification model; then, the established model
was used to predict the class label of the 80 new SERS spectra. The data
points of these three different batches cluster together in the DAPC load-
ing plot (Fig. S9). A 100% prediction accuracy was achieved by Naive
Bayes and SVM classifiers.

4. Conclusion

We demonstrated a coffee classifier that integrates SERS, feature ex-
traction, and machine learning classifiers. The signal enhancement of
SERS substrates enables the detection of the dilute molecules in coffee
beverages. Although we observed high variability in SERS signals, the
combinations of feature extraction tools and machine learning classifiers
could successfully classify coffee beverages. Compared with PCA, DAPC
improved the accuracies of all the classifiers tested in this study. SVM
and KNN are superior to the Naive Bayes and the Decision Tree classi-
fiers. The performances of DAPC-SVM and DAPC-KNN are comparable
(99% for SVM vs. 98.75% for KNN). The prior classification studies of-
ten combined DAPC or DA with probabilistic classifiers, such as Naive
Bayes classifier (Fisher et al., 2018; Liu et al., 2016). Thus, SVM and
KNN could serve as an alternative choice for Raman spectra classifica-
tion. In conclusion, this platform successfully classified coffee beverages
with high accuracy using our machine learning tool and the inexpensive,
versatile nanopaper.
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