
Environmental Modelling and Software 144 (2021) 105164

Available online 13 August 2021
1364-8152/© 2021 Elsevier Ltd. All rights reserved.

Interoperability engine design for model sharing and reuse among OpenMI,
BMI and OpenGMS-IS model standards

Fengyuan Zhang a,e,f, Min Chen a,e,f,*, Albert J. Kettner b, Daniel P. Ames c, Quillon Harpham d,
Songshan Yue a,e,f, Yongning Wen a,e,f, Guonian Lü a,e,f

a Key Laboratory of Virtual Geographic Environment (Ministry of Education of PR China), Nanjing Normal University, Nanjing, 210023, China
b Community Surface Dynamics Modelling System (CSDMS), Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO, USA
c Department of Civil and Environmental Engineering, Brigham Young University, Provo, UT, USA
d HR Wallingford, Oxfordshire, UK
e Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
f State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, China

A R T I C L E I N F O

Keywords:
Model interoperation
Model standards
Interoperability engine
OpenMI
BMI
OpenGMS-IS

A B S T R A C T

Owing to the heterogeneity of geo-analysis models, many scholars and researchers have designed and promul-
gated standards in an attempt to address this. However, models based on different standards still cannot be
shared and reused easily among different model frameworks. For example, models based on the OpenMI, BMI
and OpenGMS-IS standards have heterogeneous development styles and formats, so they cannot interoperate.
This article analyses the challenges faced when sharing and reusing models across different standards and
provides a solution for model interoperation among them. By mapping fields, converting functions, and reor-
ganizing components, our “interoperability engine” allows models that use one standard to be operated within a
framework that supports a different standard. This article discusses the developed interoperability method and
provides case studies (using e.g. SWMM, FDS, and the Permamodel Frost Number component) to successfully
demonstrate model interoperation.

1. Introduction

Modeling and simulation are important analytical methods in
geographical and environmental research, and various geoanalysis
models have been developed and used for different domains, such as
hydrological, ecological, geological, public healthy, and coastal models
(Serreze, 2011; Granell et al., 2013; Laniak et al., 2013; Chen et al.,
2015; Tóth et al., 2016; Belete et al., 2017a; Conde-Cid et al., 2019;
Nourani et al., 2019; Sun et al., 2019; Wang et al., 2019; Shi and Lin,
2020; Baig et al., 2020). Models are useful tools for the simulation of
dynamic phenomena and processes, analysing global/regional geo-
hypotheses, and supporting decision/policy making (Chen et al., 2013,
2020, 2021; Lin et al., 2013a, 2013b; Lin and Chen, 2015; Lü et al.,
2019; Belete et al., 2017b; Ma et al., 2021). With the development of
geographical and environmental research, the reuse of such models can
help users replicate studies or reduce time to further develop a model.
Thus, existing models can help users integrate these models for

geographical simulations and hence geographical and environmental
sciences can accelerate by sharing and reusing models thereby reducing
repetitive re-work.

Different researchers and domain communities use similar tech-
niques to share models for reuse, by using open-source codes, by sharing
model executables, or by making models sharable through web appli-
cations. However, the lack of universal model standards reduces model
reuse between different domain communities and, in some cases, even
within a domain community. To address this problem, an increasing
number of model standards that rely on sets of different best practice
techniques have been designed for model sharing. Owing to their
effectiveness and accessibility, component-based models and service-
oriented standards are popular in model standard design (Goodall
et al., 2011; Whelan et al., 2014). Both of these have advantages and
therefore, many platforms or groups implement these techniques at
various levels. The Open Modeling Interface (OpenMI), Community
Surface Dynamics Modeling System (CSDMS), and Open Geographic

* Corresponding author. Key Laboratory of Virtual Geographic Environment (Ministry of Education of PR China), Nanjing Normal University, Nanjing, 210023,
China.

E-mail address: chenmin0902@163.com (M. Chen).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2021.105164
Accepted 5 August 2021

mailto:chenmin0902@163.com
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.105164
https://doi.org/10.1016/j.envsoft.2021.105164
https://doi.org/10.1016/j.envsoft.2021.105164
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.105164&domain=pdf

Environmental Modelling and Software 144 (2021) 105164

2

Modeling and Simulation (OpenGMS) have their own respective stan-
dards and software platforms, which have broad applications for model
sharing within their user community but currently this does not happen
across communities at any scale. OpenMI has a set of standard interfaces
for model sharing through the use of components that are linked
together to form a composition (Gregersen et al., 2007; Harpham et al.,
2019). The basic model interface (BMI) is an open-source library spec-
ification for plug-and-play components in the PyMT framework,
designed by CSDMS (Peckham et al., 2013; Jiang et al., 2017). OpenGMS
is an open platform for model sharing and reuse (Chen et al., 2020) that
has the interface standards OpenGMS Interface Set (OpenGMS-IS),
which consists of a model encapsulation interface, model description
interface, and sim-task operation interface, for model sharing by web
services (Zhang et al., 2020b).

Each of these different model standards has been demonstrated to
operate successfully by case studies and applications in geographical
and environmental modeling. OpenMI has been employed in many case
studies in hydrological modeling, including hydrological modeling sys-
tems and model integration (Bulatewicz et al., 2010; Castronova et al.,
2013; Shrestha et al., 2013). It is an open-source software standard that
enables model coupling that can be applied to a wide variety of models
(Knapen et al., 2013). It has been implemented in a variety of languages
including C#, C++, Java and Matlab for both commercial models and
those used for research, OpenMI can also be applied to web services that
support web processing to help users share and reuse models (Zhang
et al., 2020a). CSDMS offers its community a platform through which
open-source models can be easily listed and discovered through detailed
model descriptions. To date, a subset of the more than 380 listed
open-source models and tools in the model repository of CSDMS have
been componentized following BMI standards (Hutton et al., 2020). BMI
enables the ability to couple models, making it possible to simulate
complex geographical or environmental processes (Drost et al., 2020).
OpenGMS presents many models in OpenGMS portal libraries that are
wrapped by OpenGMS-IS, such as the Soil and Water Assessment Tool
(SWAT), Storm Water Management Model (SWMM), Weather Research
and Forecasting Model (WRF) and more. With the help of OpenGMS-IS,
these models can be published as web services for sharing and reuse
(Zhang et al., 2019, 2020b). This enables geographical simulation ap-
plications for model users, such as modeling online systems, model
integration, and collaboration (Wang et al., 2018; Xiao et al., 2019; Chen
et al., 2019; Yue et al., 2020).

When models and applications are based on one specific standard (e.
g. OpenMI, BMI, or OpenGMS-IS), these models and applications can be
shared and reused with each other. However, OpenMI, BMI, and
OpenGMS-IS based models and applications have heterogeneous

development styles and formats for sharing and are, therefore, not
interoperable out-of-the-box.

Notwithstanding any subtle differences of approach and application,
a number of structural technical aspects prevent this automatic inter-
operability. First, these standards have different description fields and
strategies to expose these fields. Model description information provides
users with detailed information about the models themselves. These
description fields for the different standards are heterogeneous, so the
same information could be expressed in different fields or be commu-
nicated in a different manner. For example, for certain standards, the
model name field may be marked as ‘component name’. Such minor
differences could mislead the user, at the least presenting a barrier for
model application and making the model incompatible with other
platforms and standards. Each standard may also follow different
description strategies. Fields in some standards are defined in a corre-
sponding description file, whereas other standards provide such infor-
mation through an application programming interface (API).

Second, different standards have different invoking methods that
cannot interoperate with each other directly. Even if the same functions
are used, the parameters can be different. For example, BMI has a
function named update for the next simulation step, whereas OpenMI
invokes the function getValue to obtain the model simulation for the next
time step. Both BMI and OpenMI are component-based standards, but
OpenGMS-IS is a service-oriented standard for model sharing. Mean-
while, different standards have heterogeneous formats for data input/
output (I/O). For example, BMI uses an in-memory data stream for data
I/O, and this data is communicated between model components
following standard names that define variables. In contrast, model ser-
vices in OpenGMS use file transport for data exchange, and the data
format can follow universal data exchange (UDX) for data mapping and
conversion (Yue et al., 2015).

Third, file organizations and file dependencies are different for each
standard. Different standards follow different development styles (such
as component-based and service-oriented styles) and use different pro-
gramming languages (such as C#, Python, JAVA). A file used in one
standard can be challenging to be reused for another standard, which
hinders the model invoking across different standards.

These three structural technical challenges make the base imple-
mentations of these different standards incompatible, which restricts the
reuse and integration of models between frameworks that use these
different standards. This research presents a solution for model inter-
operation among standards developed by CSDMS, OpenMI and
OpenGMS. The standards presented in this study are specifically
developed for sharing and integration of models. Such a design is
intended to help users reuse a model compatible with one standard that

Fig. 1. Visual representation of three conceptual solutions of model interoperability between different model standards.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

3

is not supported by another, and thereby enrich the model repository of
systems or applications based the collection of compatible standards.
For example, with the help of the interopability engine, the system based
on OpenGMS can use the models based on BMI or OpenMI. Thus, this
study would benefit users that prefer to use a particular model that
contains a specific standard to be used in a framework that uses a
different model standard.

Due to the heterogeneity of these standards, this research describes
an interoperability engine to reuse models that are based on different
standards. The interoperability engine contains three modules: (1) the
field mapping module, (2) the functions conversion module and (3)
component reorganization module, which can help users rewrap stan-
dardized models, and reuse them in different standards. The rewrapped
model would keep the original fields and functions while following new
standard. Proof of concept of model interoperations between models
with different standards is provided through case studies using the
models SWMM, Permamodel Frost Number, and FDS.

The paper is organized as follows: Section 2 introduces the potential
solutions for the model interoperation. Section 3 presents the design of
the interoperability engine, including field mapping, function conver-
sion, and component reorganization. Section 4 introduces the imple-
mentation of the interoperability engine. Section 5 introduces the case
studies of these model interoperation. Section 6 discusses the advan-
tages and limitations of this research. Section 7 presents the conclusions
and potential directions for future work.

2. Potential model interoperation solutions

This section describes the engine designs to enable model interop-
erability between models of different standards. Three solutions are
considered for engine design. Fig. 1 presents the three conceptual so-
lutions for engine development: Solutions A, B and C. The different
shapes describe models that are based on three different standards
(Standards α, β, and γ). The interoperability engines that make the
models that are based on different standards interoperable are indicated
by lines with an arrow at each end.

Solution A aims to build a set of engines to connect the models with
each other. As shown in Fig. 1 (a), every model following a standard
should have an interoperability engine that makes a connection possible
with models following a different standard. In this solution, if a model
with a new standard is included, the engines that make all former

models interoperable should each be adjusted. This entails significant
work for each new model added to the system.

Solution B describes a universal standard that includes all fields and
functions, among other standards, and operates as a transfer station that
connects all the standards. As shown in Fig. 1 (b), models of each
standard are interoperable by using the universal standard. If a model is
included from an additional standard, then this model must be made
compatible with the universal standard.

Solution C also makes use of a universal standard. However, solution
C differs from solution B in that this universal standard only remains part
of the core and makes only use of rudimentary fields and functions that
are essential in supporting interoperability. The approach is extendable
to unique fields and functions and supports the interoperability between
them. As shown in Fig. 1(c), the basic universal standard is less elaborate
than that of solution B and has other interoperability engines to ensure
connections. Additionally, the engine between two models that have
different standards should only be developed when necessary.

Solutions A and B both have advantages and limitations. When
dealing with a variety of model standards with solution A, the engine
that ensure interoperability will be elaborate and require many
communication operations to handle data transfer between all of the
models. As model standardization is more detailed, so the engine
development work and complexity will increase. Without universal
standards, it becomes difficult to add new standards with this approach.
Solution B is easier to implement. New standards adapt to the universal
standard to become interoperable with any standard that is compatible
with the universal standard. However, this assumes the presence of a
satisfactory universal standard with sufficient coverage across other
standards and with a degree of future-proofing to other standards that
may come along. This is clearly difficult to achieve for all fields and
methods and may require a degree of foresight. Solution C achieves a
balance between Solutions A and B. It maintains universal standards
only for the basic fields and methods but still has an engine for inter-
operation between models that have different standards. There is
therefore a measure of the strengths and weaknesses of Solutions A and
B and it also requires an assessment of the aspects necessary for inclusion
in the universal standard – the ‘basic fields and methods’.

3. Engine design

Based on Solution C (Fig. 1), this study has designed and developed

Fig. 2. The engine design among the models based on OpenMI, BMI, and OpenGMS-IS.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

4

an interoperability engine for models that are based on OpenMI, BMI,
and OpenGMS-IS (Fig. 2). First, a basic universal standard is developed
that can help users interoperate models based on the other standards.
The basic universal standard contains tables for description fields and
functions, which can support the interoperability engine design between
the models that are based on different standards. Then, the operations
between every two standards are bidirectional, so that there are two
interoperation functions developed between each pair of standards. For
example, the engine should two interoperation functions between
OpenMI and OpenGMS: convert OpenMI based models to OpenGMS and
the reversed one. The model that is initiating a call to another model is
named the “model in source standards” (MSS), while the model that has
been called is named the “model in target standards” (MTS).

As shown in Fig. 3, the model interoperability engine is designed to
convert MSS to MTS. The engine design consists of three modules: field
mapping, function conversion, and component reorganization. The field
mapping module maps the description fields between the models in
different standards. The description fields of different standards are
heterogeneous, so fields in one standard may not exist in other stan-
dards. Therefore, field mapping has two functions: information trans-
mitting, and attribute retaining and completing. Information
transmitting aims to transmit the matching information from MSS to
MTS. Attribute retaining and completing is designed to preserve the
fields and retain missing fields in the MTS from the MSS. The function
conversion module maps functions between the MSS and MTS to enable
interfaces from the MTS to invoke and interact with the MSS. This
module consists of function linking and data and parameter exchanging.
Function linking is used to link related functions together between every
two standards to allow the MTS to invoke or interoperate with the MSS.
Data and parameter exchanging is designed to convert the input/output
data/parameter formats or content between every two standards. Due to
the heterogeneity of the model components, component reorganization
reorders the file to reformat the model from the MSS to the MTS via
component parsing and generating and file completing. Component
parsing and generating is applied to parse the MSS and generate the
components of the MTS. After parsing, file completion can supply
necessary files in the MTS that allow the model to be reused with the
target standard.

3.1. Field mapping

Different standards have different fields to describe a model. Some
are the same or similar, such as model name, brief description, inputs,
and outputs, but some are different. A number of fields with the same
meaning can be matched together between the MSS and MTS (such as
ModelName/Title and ModelDes/Info). Some fields cannot be matched, as

some cannot be found in either the MTS or the MSS. Moreover, the
methods used to obtain these fields are also different. For some models,
the fields can be obtained from a file, while for other models the in-
formation of fields can be obtained from the API. Therefore, the het-
erogeneity of a model description will lead to misunderstanding and as
such, create a barrier for the reuse of models in different standards.

To address these problems, this research designs a common field
table for basic field mapping. The lookup table is presented in Table 1.
The lookup table contains the basic fields for the three standards, which
makes it possible for models to map to different description fields with
other standards’ fields or APIs to obtain the corresponding information
of the fields. As shown in Fig. 3, the field ModelName, ModelDes, Request,
and Response in the MSS are mapped to Name, Description, Inputs, and
Outputs in the common fields table. Then, these fields can be mapped to
the MTS as Title, Info, Inputs, and Outputs. For the fields that differ be-
tween the MSS and MTS, the method is designed to create supplement
documents and preserved documents: supplement documents are put in
place to complete missing fields from the MSS to the MTS; preserving
documents can be used to retain useful fields missing in the MTS that
may be used in future. As shown in Fig. 4, the field keywords and cate-
gories in the MSS are missing in the target standard, and these fields can
be retained in the preserved documents in the MTS. Meanwhile, the field
platform and dimensions cannot be found in the source standard, so these
can be completed by the supplement document. The fields in preserving
documents may not be used in the MTS, but they can be useful when the
MTS or the applications for MTS are upgraded.

3.2. Function conversion

The functions in these standards show strong heterogeneity and data
in the I/O of related functions also need conversion for interoperability
purposes. First, the functions for invoking differ between standards. For
example, in BMI, the function update can be used to perform a time step;
in OpenMI, the equivalent function is GetValues. Even if the functions

Fig. 3. The framework of the interoperability engine.

Table 1
Common fields table for model interoperation.

Common Fields Description

Name The name of the model or model component
Description Brief description about the model
Inputs The input items in the model
Outputs The output items in the model
InputsCount The count of input items
OutputsCount The count of output items
InputType The type of input items
OutputType The type of output items

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

5

can be converted, the logic in the corresponding functions may differ.
The update function in BMI (python) does not set any parameters, but
GetValues in OpenMI can set time and linkID and obtain the corre-
sponding result. Furthermore, the data that need to be transported in
functions can also differ, as different standards have diverse re-
quirements for data formats and content. For example, the OpenGMS
model service can be inputted with raw data files or streams or UDX
model-based data; models based on BMI should be inputted with data
formatted as an array, and each data point should be associated with one
standard name (Yue et al., 2015; Jiang et al., 2017).

To address these issues a function conversion module has been
designed that consists of linking functions and data exchange. First,

Fig. 4. Fields mapping design in the interoperability engine.

Fig. 5. Function linking design in the interoperability engine.

Table 2
Common functions table for model interoperation.

Common Functions Description

Init() Initialize the model
NextStep() Execute the model or push the model into the next step
Finish() Finish the model and release the related resource
GetInput() Get the input data
SetInput() Set the input data
GetOutput() Get the output data
SetOutput() Set the output data

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

6

function linking, as shown in Fig. 5, has a common functions table
(Table 2) for reference to link functions between standards. Different
from the common fields table, the function linking in the common

functions table may experience cases in which one function can be
linked with multiple other functions during different usage situations.
The reason for this problem is that the standards are used by different

Fig. 6. Data exchanging in the interoperability engine.

Fig. 7. File reorganization in the interoperability engine.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

7

roles: model wrappers and model users. Model wrappers would provide
the model resource in specific standard, and model users play the role of
“model customers” for the simulations. In the standards for components
(such as BMI and OpenMI), the functions can be the same for wrappers
and users; however, in the standards for services (such as OpenGMS), the
functions are different. Therefore, in the table, a function may be linked
by two functions in different situations or a combination of two or more
functions. For example, as shown in Fig. 4, the function Init() in the
common functions table can be linked to Init() in the MSS and Initialize()
and Prepare() in the MTS.

Second, data exchange, as shown in Fig. 6, can help users convert the
data/parameter format or map the data/parameter content from MTS to
MSS. The heterogeneity of data consists of format and content differ-
ences. Therefore, the interoperability engine has the functions of format
transformation and content mapping. Format transformation can help
users convert the data format between standards. For example, the input
data in OpenGMS models can be a file (such as TIFF, IMG, CSV, etc.), and
the input for models based on BMI should be provided as arrays: if
OpenGMS wants to interoperate with a BMI model, it should convert the
file into an array. Content mapping aims to reorganize the data content
to fit the data to the target standard. For example, the I/O data in
OpenMI may be configured in the arguments together but do not
distinguish input and output, which is necessary for other standards.
Therefore, the interoperability engine should supply a function to map
the data in the MTS to input and output data to the MSS.

3.3. Component reorganization

A model following a specific standard often has a fixed set of de-
pendency files such as dynamic link library (DLL), shared library (SO),
or python module (PY) files to support invoking. However, the file or-
ganization between MSS and MTS is more heterogeneous. For example,
the model organization between the models wrapped by BMI and
OpenGMS is different. The former needs the file that supports BMI

component, and the later needs OpenGMS related files for service
generating. Therefore, the files in MSS are reorganized such that they
follow the target standard when the MTS needs to interoperate the MSS.

The component reorganization module in the engine has functions
for component parsing and generating, and file completing. First, the
engine parses the MSS to perform the operation for file completion.
Owing to the differences of a model when applied to different standards,
the components of models have different development styles to repre-
sent a model. Some are plug-and-play components, others are web ser-
vices. There, the engine for the different standards have diverse
strategies for parsing. After file completion, with following the target
standard, the model is rewrapped as MTS by the engine. Then, as shown
in Fig. 7, to ensure that the MSS can be invoked, all the files from the
MSS should be retained. Meanwhile, the MSS should append some other
files to support the model reusability for the target standard. These files
include a wrapper file that includes the dependency files for target
standard. The wrapper file that is appended in the MTS can help the
model interoperate with the MSS solve functions.

4. Implement

To validate the design in this research, an interoperability engine
was constructed based on the aforementioned design principles. The
engine between the MSS and the MTS is bidirectional, which means that
there should be at least two functions between every two standards.
Even if models follow the same standard, they could have different
development styles with different methods for interoperation. Two sub-
engines are developed among OpenMI, BMI, and OpenGMS-IS. Owing to
the different development styles, these engines have different methods
to fit different kinds of models to the source standard.

This study discusses several functions for the interoperation among
these standards. The collection of engines is shown in Table 3. There are
four functions for the two pairs of standards, two functions each. The
engine is developed in python, and the engine only contains the inter-
operation of OpenMI/OpenGMS and BMI/OpenGMS. Owing to the
programming hetereogenity of different standards, some parts of these
engines would use other languages to meet the requirement of stan-
dards, such as the component of OpenMI, which uses C#. The rules for
field mapping and function conversation can be referred in Supple-
mentary Information, Appendix A and B.

4.1. OpenGMS-OpenMI

The function OpenGMS-OpenMI is designed to convert the OpenGMS
model service to the OpenMI component. As shown in Fig. 8, at first, this
engine parses the APIs of the OpenGMS service, and maps the attributes

Table 3
Sub-engines and functions in the interoperability engine.

Sub-engine name Function Description

OpenMI-
OpenGMS
Engine

convertOpenGMS2OpenMI Convert the OpenGMS service to
the OpenMI component

convertOpenMI2OpenGMS Convert the OpenMI component
to the OpenGMS service

BMI-OpenGMS
Engine

convertOpenGMS2BMI Convert the OpenGMS service to
the BMI component

convertBMI2OpenGMS Convert the BMI component to
the OpenGMS service

Fig. 8. A function description of an OpenGMS model service to an OpenMI component.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

8

in model services to the OMI file by a model service address. All the
input and output data in the OpenGMS model service are mapped as
arguments in the OMF file. The missing fields are supplied by the sup-
plement document, such as component name and data. Then, the engine
generates the template file for function conversion between OpenGMS
service and OpenMI component. Finally, the engine copies related
resource files and dependency libraries to the component.

As models in OpenGMS are web services, the engine would not read

the model attributes directly. It would link the related API to the
interface in OpenMI, so the attributes displayed in the converted
OpenMI component are dynamic. In this case, the OpenMI components
use C#, so the engine for OpenMI-OpenGMS-IS is developed in C# and
python. The python is used for API and C# is used for the template file.

Fig. 9. A function description of converting an OpenMI component to an OpenGMS model service.

Fig. 10. A function description of converting an OpenGMS model service to a BMI component.

Fig. 11. A function description of converting a BMI component to an OpenGMS model service.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

9

4.2. OpenMI-OpenGMS

The function OpenMI-OpenGMS is designed to wrap the OpenMI
component to an OpenGMS service. As shown in Fig. 9, first, with the
help of OpenGMS SDK, the engine parses the APIs of the OpenMI
component to fields and functions. The fields parsed from the APIs and
the supplied fields in supplement document are mapped in a MDL
document. The functions in OpenMI component are then converted to
the OpenGMS wrapping interface, to a wrapping file, which is generated
by a configuration file and an entry template file. The configuration file
is used to indicate the input data and output data. And the entry tem-
plate file can be converting the corresponding wrapping file of the
OpenGMS model service package. Then, with the help of the MDL
document, the wrapping file and the related dependency files, the en-
gine reorganizes the component as OpenGMS model service package,
which can be deployed as an OpenGMS model service.

4.3. OpenGMS-BMI

The function OpenGMS-BMI is designed to convert OpenGMS model
services to BMI components. As shown in Fig. 10, the engine parses the
APIs of OpenGMS model services. Then, the engine records the basic
fields of the component (including service’s IP, port and id) and converts
related functions. Similar to the function OpenGMS-OpenMI, the fields
of the converted BMI component are dynamic. Then the engine gener-
ates a BMI component by a template file. The template file has estab-
lished rules for function conversion. Finally, the engine appends the BMI
necessary files with dependency files and generates a BMI component. In
the BMI component, the data I/O in BMI is mapped as an array stream
and each I/O has a standard name. Therefore, in the conversion of data,
each I/O would be formatted as data files and have a specific parameter
name.

4.4. BMI-OpenGMS

The function BMI-OpenGMS is designed to convert BMI components
to the OpenGMS model service. As shown in Fig. 11, first, the engine
parses the BMI component, and map the fields to the MDL document.
Any missing fields are added by the supplement document, like e.g.
running environment information. Then, the engine converts the func-
tions to the OpenGMS wrapping interface by using the template file, and
generate a wrapping file. The data I/O in OpenGMS are transferred by
files and the data I/O in BMI are transferred by a stream. Therefore, the
engine would generate a temporary file for data I/O. Finally, the engine
reorganizes the file as an OpenGMS model service package by the MDL

Table 4
Geo-analysis models in case studies to validate the model interoperation.

Model Description Source Reference

Permamodel
Frost Number

A model component in
Permamodel to calculate
frost number

BMI Overeem et al.
(2018); Nelson and
Outcalt (1987)

SWMM A dynamic rainfall-
runoff simulation model

OpenMI Rossman (2010)

Fire Dynamic
Simulators
(FDS)

Indoor fire disaster
simulation model

OpenGMS McGrattan et al.
(2013)

Fig. 12. Case study of OpenGMS-IS interoperating SWMM based on OpenMI.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

10

document file and the wrapping file.

5. Case studies

For this study we used different geo-analysis models to validate the
effectiveness of developed interoperability engines. The models are
shown in Table 4. The Permamodel Frost Number is a model component
developed by Nelson and Outcalt to calculate “Frost Number” in
permafrost, which is a dimensionless ratio based on freezing and

thawing degree days in the year. SWMM model is a model developed by
U.S. Environmental Protection Agency (EPA) to simulate rainfall-runoff
for an urban area. Fire Dynamic Simulators (FDS) is a model developed
by U.S. National Institute of Standards and Technology (NIST) to
simulate indoor fire disasters.

As shown in Figs. 12 and 13, we use SWMM and FDS model services
to validate the interoperability engine between OpenGMS and OpenMI
for this study. As shown in Fig. 12(a) and (b), the interoperability engine
interoperates SWMM OpenMI component as model service. Then, as

Fig. 13. Case study of OpenMI interoperating FDS based on OpenGMS model service.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

11

shown in Fig. 12(c), we use the network test data (*.inp) to invoke the
SWMM OpenGMS service and obtain the result. As shown in Fig. 13(a)
and (b), the interoperability engine interoperates FDS model service as
an OpenMI component. Then, as shown Fig. 13(c), we use the test data
(*.fds) to invoke the FDS model service by OpenMI.

As shown in Figs. 14 and 15, we use the Permamodel and FDS model
services to validate the interoperability engine between OpenGMS and
OpenMI for this study. As shown in Fig. 14(a) and (b), the interopera-
bility engine interoperates the Permamodel Frost Number component as
a model service. Then, as shown in Fig. 15(c), we use the test data to
invoke Permamodel Forestnumber OpenGMS service and obtain the
result. As shown in Fig. 13(a) and (b), the interoperability engine
interoperate FDS model service as a BMI component. Then, as shown
Fig. 13(c), we use the test data (*.fds) to invoke the FDS model service by
BMI.

6. Discussion

6.1. Standards selection

OpenMI, BMI, and OpenGMS-IS are supported by different commu-
nities or groups, but all have a focus toward developing or implementing
models. Although when developing models, these communities use

different technological styles and usage logics, they have broad appli-
cations in different domains, such as hydrology, land, atmosphere, etc.
OpenMI has a component-based style and pays more attention to model
integration in simulations. Models based on BMI are supported by the
CSDMS community. They also use component-based models, where
components written in different languages can be wrapped. OpenGMS-
IS is the interface standard applied in OpenGMS and it aims to share
and reuse models in an open web environment. So, models with
OpenGMS-IS are services on the web. With wide application and
different developing styles of these standards in the simulation for
different domains, they can be good paradigms for model interoperation
among standards.

In addition to the heterogeneities of these standards, they also share
common ground. For example, each standard has a model description
for introduction and a statement for the model’s input/output. So, the
common tables (including common fields table and common functions
table) can be generated for interoperation among the different stan-
dards. However, the tables are only applied among OpenMI, BMI, and
OpenGMS-IS. Therefore, if any new standards are introduced, the tables
can be reconsidered and reorganized, such as via field or function
appending.

Fig. 14. Case study of OpenGMS-IS interoperating Permamodel Forestnumber based on BMI.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

12

6.2. Wrapping or linking

Owing to different developing styles, the interoperability engine
follows different approaches for the model interoperation among
different standards. As shown in Fig. 16, there are two approaches to
design interoperability engines: wrapping and linking. Wrapping, as
shown in Fig. 13(a), means that the engine wraps the model with
completed dependency files as model components in a new standard,
such as OpenMI or BMI component to OpenGMS model service. In
contrast, as shown in Fig. 13(b), linking means that the engine utilizes

MTS to link the MSS on the web, and in the model in MTS, it would not
have - or just partly have - model files in the source standard, such as
OpenGMS model service to an OpenMI or BMI component. Compared
with linking, wrapping does not change the original model and its
components, and a change in the raw MSS would not influence the
model in the MTS. Thus, wrapping is more suitable for component-based
models (i.e., BMI and OpenMI). However, linking only links the func-
tions between the MSS and MTS, and any changes in the MSS would
change or even destroy the target model. Thus, a linked connection
might be more flexible and lighter to make models interoperable and

Fig. 15. Case study of BMI interoperating Permamodel Forestnumber based on OpenGMS model service.

Fig. 16. Two approaches to design interoperability engines.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

13

might be more suitable for service-oriented models (i.e., OpenGMS).

6.3. Liebig’s law

In the model interoperation, comparison with the native model and
the MSS, the MTS always has fewer fields and functions. For example,
the OpenGMS model service doesn’t include the related grid information
of input data of the BMI model component. After the model interoper-
ation, we found that the MTS followed the Liebig’s law in fields and
functions transferred from native models. Liebig’s law, also called the
Liebig law of the minimum, states that growth is not determined by the
total available resources but by the scarcest resources, i.e., the limiting
factor (Danger et al., 2008). This law is applicable to interoperability
among standards. Owing to the limitations of standards and the native
models, the numbers of description fields and available functions de-
creases from the native model to the MTS. As shown in Fig. 17, once the
native model is wrapped in MSS, owing to the limitations of the wrap-
ping standard, Field b, Field d, and Function 2 are missing. When the
model is made interoperable with MTS, in addition to Field b, Field d, and
Function 2, Function 3 becomes also unavailable. Thus, all the functions
in the final standard are determined by the intersection among native
models and standards.

6.4. Models’ independency of standards

After model interoperation, some models may still not be interop-
erable given the new standards. That is, models that are using the same
standard could still be coded using a different architecture. Owing to the
different habits or development styles of researchers and scholars,
despite using the same standard, these models could still need additional
files or components for invoking. For example, models can be part of a
special system or framework and, as such, require dependency files to
run. In the dependency of models, some are based on standards or sys-
tem libraries, such as system dynamic link libraries, or BMI interface
files. However, some dependencies are customized for special applica-
tion, such as personal library files (*.dll, *.py). These models are tightly
coupled in a framework and are no longer independent components that
can be reused in other systems or frameworks. Therefore, although they

follow the same standard, dependent models cannot be shared and
reused in other systems that follow specific standards.

7. Conclusions and future work

This research analyzed the interoperability of models that are
developed using different standards. By comparing three potential so-
lutions to make models more interoperable, this research offers a suit-
able solution for model interoperation among different standards
(OpenMI, BMI, and OpenGMS-IS). The solution includes a design that
consists of three modules for field mapping, function conversion and
component reorganization to interoperate models across these stan-
dards. By means of this design, this research developed an interopera-
bility engines among OpenMI, BMI, and OpenGMS-IS that can reuse
models across these standards. This research used models (including
SWMM, Permamodel, FDS, and FVCOM) to demonstrate that such a
design can be helpful in model interoperation among different stan-
dards. Finally, some key points for model interoperation are discussed,
including model selection and interoperation approaches. The presented
work also identified certain limitations.

The engines presented in this paper are tight couplings, which makes
them more difficult for reuse. With the help of a basic universal stan-
dard, the engine development is simpler, but there is still much work
needed to develop each engine. With more model standards being
developed, the need for engines is increasing as well. Therefore, reusable
and plug-and-play components for engine development are necessary to
grant interoperability between different model standards.

Different standards have different rules for their data exchange
within models. OpenMI has interface IExchangeItem for data
exchanging when users link different models. BMI has standard names
for their input and output data exchanging in different models.
OpenGMS also has UDX for data exchanging in model integration. This
research presented a data exchanging method for format transmitting
and content mapping, which can be helpful for data exchanging among
different standards. However, owing to heterogeneity of data exchange
rules, the data in models can be problematic when reused in other
models. So, a set of data preprocessing or post-processing methods
should be provided in data exchanging.

Fig. 17. Liebig’s law in model interoperation.

F. Zhang et al.

Environmental Modelling and Software 144 (2021) 105164

14

The engine can be customized in different modules for the engine
design. Based on the designed universal standards, the modules in the
engine design can be reused in other engines. The modules (including
field mapping, function conversion and component reorganization) in
the engine between two standards have something in common, so it can
be a base class supporting the design of all modules.

More standards could be incorporated into the method to make
models interoperable as described in this paper, thereby extending the
community of interoperability. This research only presented three
standards for model interoperability, but there are more standards for
model sharing and reuse that need to be considered. The basic universal
standard, as presented in this research, would be extended accordingly.
The design of these standards benefits from flexibility to enable them to
be incorporated into this method.

Software availability

Software name: Model Interoperable Engine.
Developer: Fengyuan Zhang, Min Chen.
Year first official release: 2020.
Hardware requirements: PC.
System requirements: Windows, Linux, Mac.
Program language: Python3.7.
Program size: 5 MB.
Availability: https://github.com/franklinzhanggis/model-interope

rable-engine.
License: MIT.
Documentation: https://github.com/franklinzhanggis/model-inte

roperable-engine/blob/master/README.md.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We appreciate the detailed suggestions and comments from the
anonymous reviewers. We express heartfelt thanks to the other members
of the OpenGMS team. This work was supported by NSF of China [grant
numbers 41930648, 42071363, 42071361, 41871285 and U1811464].

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2021.105164.

References

Baig, M.R.I., Ahmad, I.A., Shahfahad, Tayyab, M., Rahman, A., 2020. Analysis of
shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an
application of digital shoreline analysis system (DSAS). Spatial Sci. 26 (4), 361–376.

Belete, G.F., Voinov, A., Laniak, G.F., 2017a. An overview of the model integration
process: from pre-integration assessment to testing. Environ. Model. Software 87,
49–63.

Belete, G.F., Voinov, A., Morales, J., 2017b. Designing the distributed model integration
framework–DMIF. Environ. Model. Software 94, 112–126.

Bulatewicz, T., Yang, X., Peterson, J.M., Staggenborg, S.A., Welch, S.M., Steward, D.R.,
2010. Accessible integration of agriculture, groundwater, and economic models
using the Open Modeling Interface (OpenMI): methodology and initial results.
Hydrol. Earth Syst. Sci. 14, 521–534.

Castronova, A.M., Goodall, J.L., Ercan, M.B., 2013. Integrated modeling within a
hydrologic information system: an OpenMI based approach. Environ. Model.
Software 39, 263–273.

Chen, M., Lin, H., Hu, M., He, L., Zhang, C., 2013. Real-geographic-scenario-based virtual
social environments: integrating geography with social research. Environ. Plann.
Plann. Des. 40 (6), 1103–1121.

Chen, Y., Zhou, H., Zhang, H., Du, G., Zhou, J., 2015. Urban flood risk warning under
rapid urbanization. Environ. Res. 139, 3–10.

Chen, M., Voinov, A., Ames, D.P., Kettner, A.J., Goodall, J.L., Jakeman, A.J., Barton, M.
C., Harpham, Q., Cuddy, S.M., DeLuca, C., Yue, S., Wang, J., Zhang, F., Wen, Y.,
Lü, G., 2020. Position paper: open web-distributed integrated geographic modelling
and simulation to enable broader participation and applications. Earth Sci. Rev.,
103223

Chen, M., Yue, S.S., Lü, G., Lin, H., Yang, C.W., Wen, Y.N., Hou, T., Xiao, D.W., Jiang, H.,
2019. Teamwork-oriented integrated modeling method for geo-problem solving.
Model. Softw. 119, 111–123.

Chen, M., Lv, G., Zhou, C., Lin, H., Ma, Z., Yue, S., Wen, Y., Zhang, F., Wang, J., Zhu, Z.,
Kai, X., He, Y., 2021. Geographic modeling and simulation systems for geographic
research in the new era: some thoughts on their development and construction. Sci.
China Earth Sci. 64, 1207–1223.

Conde-Cid, M., Fernández-Calviño, D., Nóvoa-Muñoz, J.C., Núñez-Delgado, A.,
Fernández-Sanjurjo, M.J., Arias-Estévez, M., Álvarez-Rodríguez, E., 2019.
Experimental data and model prediction of tetracycline adsorption and desorption in
agricultural soils. Environ. Res. 177, 108607.

Danger, M., Daufresne, T., Lucas, F., Pissard, S., Lacroix, G., 2008. Does Liebig’s law of
the minimum scale up from species to communities? Oikos 117 (11), 1741–1751.

Drost, N., Hut, R., Van De Giesen, N., van Werkhoven, B., Aerts, J.P., Camphuijsen, J.,
Pelupessy, I., Weel, B., Verhoeven, S., van Haren, R., Hutton, E., Alidoost, F., van den
Oord, G., Dzigan, Y., Andela, B., Kalverla, Peter, 2020, May. Coupling Hydrological
models using BMI in eWaterCycle. In: EGU General Assembly Conference Abstracts,
11730.

Granell, C., Schade, S., Ostländer, N., 2013. Seeing the forest through the trees: a review
of integrated environmental modelling tools. Comput. Environ. Urban Syst. 41,
136–150.

Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P., 2007. OpenMI: open modelling interface.
J. Hydroinf. 9 (3), 175–191.

Goodall, J.L., Robinson, B.F., Castronova, A.M., 2011. Modeling water resource systems
using a service-oriented computing paradigm. Environ. Model. Software 26 (5),
573–582.

Harpham, Q.K., Hughes, A., Moore, R.V., 2019. Introductory overview: the OpenMI 2.0
standard for integrating numerical models. Environ. Model. Software 122, 104549.

Hutton, E.W.H., Piper, M.D., Tucker, G.E., 2020. The Basic Model Interface 2.0: A
Standard Interface for Coupling Numerical Models in the Geosciences. JOSS. https://
doi.org/10.21105/joss.02317.

Jiang, P., Elag, M., Kumar, P., Peckham, S.D., Marini, L., Rui, L., 2017. A service-oriented
architecture for coupling web service models using the Basic Model Interface (BMI).
Environ. Model. Software 92, 107–118.

Knapen, R., Janssen, S., Roosenschoon, O., Verweij, P., De Winter, W., Uiterwijk, M.,
Wien, J.E., 2013. Evaluating OpenMI as a model integration platform across
disciplines. Environ. Model. Software 39, 274–282.

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P.W., Whelan, G.,
Geller, G., Quinn, N., Blind, M., Peckham, S., Reaney, S., Gaber, N., Kennedy, R.,
Hughes, A., 2013. Integrated environmental modeling: a vision and roadmap for the
future. Environ. Model. Software 39, 3–23.

Lin, H., Chen, M., Lu, G., Zhu, Q., Gong, J., You, X., Wen, Y., Xu, B., Hu, M., 2013a.
Virtual geographic environments (VGEs): a new generation of geographic analysis
tool. Earth Sci. Rev. 126, 74–84.

Lin, H., Chen, M., Lu, G., 2013b. Virtual geographic environment: a workspace for
computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 103 (3), 465–482.

Lin, H., Chen, M., 2015. Managing and sharing geographic knowledge in virtual
geographic environments (VGEs). Spatial Sci. 21 (4), 261–263.

Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A.X., Chen, M., 2019. Reflections and
speculations on the progress in Geographic Information Systems (GIS): a geographic
perspective. Int. J. Geogr. Inf. Sci. 33 (2), 346–367.

Ma, Z., Chen, M., Yue, S., Zhang, B., Zhu, Z., Wen, Y., Lü, G., Lu, M., 2021. Activity-based
process construction for participatory geo-analysis. GIScience Remote Sens. 58 (2),
180–198.

McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K.,
2013. Fire Dynamics Simulator User’s Guide, vol. 1019. NIST special publication, 6.

Nelson, F.E., Outcalt, S.I., 1987. A computational method for prediction and
regionalization of permafrost. Arct. Alp. Res. 19 (3), 279–288.

Nourani, V., Gökçekuş, H., Umar, I.K., 2019. Artificial intelligence based ensemble model
for prediction of vehicular traffic noise. Environ. Res., 108852

Overeem, I., Jafarov, E., Wang, K., Schaefer, K., Stewart, S., Clow, G., et al., 2018.
A modeling toolbox for permafrost landscapes. Eos, Trans. Am. Geophys. Union
(Online) 99. LA-UR-18-20806).

Peckham, S.D., Hutton, E.W., Norris, B., 2013. A component-based approach to
integrated modeling in the geosciences: the design of CSDMS. Comput. Geosci. 53,
3–12.

Rossman, L.A., 2010. Storm Water Management Model User’s Manual. version 5.0.
National Risk Management Research Laboratory, Office of Research and
Development, US Environmental Protection Agency, Cincinnati, p. 276.

Serreze, M.C., 2011. Climate change: rethinking the sea-ice tipping point. Nature 471
(7336), 47.

Shi, X., Lin, H., 2020. Introduction: advances in geospatial analysis for health research.
Spatial Sci. 26 (3), 217–218.

Shrestha, N.K., Leta, O.T., De Fraine, B., Van Griensven, A., Bauwens, W., 2013. OpenMI-
based integrated sediment transport modelling of the river Zenne, Belgium. Environ.
Model. Software 47, 193–206.

Sun, A.Y., Zhong, Z., Jeong, H., Yang, Q., 2019. Building complex event processing
capability for intelligent environmental monitoring. Environ. Model. Software 116,
1–6.

F. Zhang et al.

https://github.com/franklinzhanggis/model-interoperable-engine
https://github.com/franklinzhanggis/model-interoperable-engine
https://github.com/franklinzhanggis/model-interoperable-engine/blob/master/README.md
https://github.com/franklinzhanggis/model-interoperable-engine/blob/master/README.md
https://doi.org/10.1016/j.envsoft.2021.105164
https://doi.org/10.1016/j.envsoft.2021.105164
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref7
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref7
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref10
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref10
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref10
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref10
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref12
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref12
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref17
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref17
https://doi.org/10.21105/joss.02317
https://doi.org/10.21105/joss.02317
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref21
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref21
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref21
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref21
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref22
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref22
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref22
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref24
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref24
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref28
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref28
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref29
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref29
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref34
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref34
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref35
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref35
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref35
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref36

Environmental Modelling and Software 144 (2021) 105164

15

Tóth, G., Hermann, T., Da Silva, M.R., Montanarella, L., 2016. Heavy metals in
agricultural soils of the European Union with implications for food safety. Environ.
Int. 88, 299–309.

Wang, J., Chen, M., Lü, G., Yue, S., Chen, K., Wen, Y., 2018. A study on data processing
services for the operation of geo-analysis models in the open web environment. Earth
Space Sci. 5 (12), 844–862.

Wang, X., Huang, R., Li, L., He, S., Yan, L., Wang, H., Wu, X., Yin, Y., Xing, B., 2019.
Arsenic removal from flooded paddy soil with spontaneous hygrophyte markedly
attenuates rice grain arsenic. Environ. Int. 133, 105159.

Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., Parmar, P.,
Babendreier, J., Galvin, M., 2014. Design of a component-based integrated
environmental modeling framework. Environ. Model. Software 55, 1–24.

Xiao, D., Chen, M., Lu, Y., Yue, S., Hou, T., 2019. Research on the construction method of
the service-oriented web-SWMM system. ISPRS Int. Geo-Inf. 8 (6), 268.

Yue, S., Wen, Y., Chen, M., Lu, G., Hu, D., Zhang, F., 2015. A data description model for
reusing, sharing and integrating geo-analysis models. Environ. Earth Sci. 74 (10),
7081–7099.

Yue, S.S., Chen, M., Song, J., Yuan, W.P., Chen, T.X., Lu, G.N., Shen, C.R., Ma, Z.Y.,
Xu, K., Wen, Y.N., Song, H.Q., 2020. Participatory intercomparison strategy for
terrestrial carbon cycle models based on a service-oriented architecture. Future
Generat. Comput. Syst. 112, 449–466.

Zhang, F., Chen, M., Ames, D.P., Shen, C., Yue, S., Wen, Y., Lü, G., 2019. Design and
development of a service-oriented wrapper system for sharing and reusing
distributed geoanalysis models on the web. Environ. Model. Software 111, 498–509.

Zhang, M., Jiang, L., Yue, P., Gong, J., 2020a. Interoperable web sharing of
environmental models using OGC web processing service and Open Modeling
Interface (OpenMI). Environ. Model. Software 133, 104838.

Zhang, F., Chen, M., Yue, S., Wen, Y., Lü, G., Li, F., 2020b. Service-oriented interface
design for open distributed environmental simulations. Environ. Res. 191, 110225.

F. Zhang et al.

http://refhub.elsevier.com/S1364-8152(21)00207-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref45
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref45
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref45
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00207-3/sref46

	Interoperability engine design for model sharing and reuse among OpenMI, BMI and OpenGMS-IS model standards
	1 Introduction
	2 Potential model interoperation solutions
	3 Engine design
	3.1 Field mapping
	3.2 Function conversion
	3.3 Component reorganization

	4 Implement
	4.1 OpenGMS-OpenMI
	4.2 OpenMI-OpenGMS
	4.3 OpenGMS-BMI
	4.4 BMI-OpenGMS

	5 Case studies
	6 Discussion
	6.1 Standards selection
	6.2 Wrapping or linking
	6.3 Liebig’s law
	6.4 Models’ independency of standards

	7 Conclusions and future work
	Software availability
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References

