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Abstract—This paper presents an approach to enable rela-
tional database take full advantage of modern storage hard-
ware with built-in transparent compression. Advanced storage
appliances (e.g., all-flash array) and some latest SSDs (solid-
state drives) can perform hardware-based data compression,
transparently from OS and applications. Moreover, the growing
deployment of hardware-based compression capability in Cloud
storage infrastructure leads to the imminent arrival of cloud-
based storage hardware with built-in transparent compression.
To make relational database better leverage modern storage
hardware, we propose to deploy a dual in-memory vs. on-storage
page format: While pages in database cache memory retain the
conventional row-based format, each page on storage devices
has a column-based format so that it can be better compressed
by storage hardware. We present design techniques that can
further improve the on-storage page data compressibility through
additional light-weight column data transformation. We the
impact of compression algorithms on the selection of column data
transformation techniques. We integrated the design techniques
into MySQL/InnoDB by adding only about 600 lines of code, and
ran Sysbench OLTP workloads on a commercial SSD with built-
in transparent compression. The results show that the proposed
solution can bring up to 45% additional reduction on the storage
cost at only a few percentage of performance degradation.

I. INTRODUCTION

This paper studies how relational database can take full
advantage of modern storage hardware with built-in trans-
parent compression capability. Modern all-flash array prod-
ucts (e.g., Dell EMC PowerMAX [9], HPE Nimble Stor-
age [13], and Pure Storage FlashBlade [21]) have built-in
hardware-based transparent compression. SSDs with built-
in transparent compression are emerging on the commercial
market (e.g., computational storage drive from ScaleFlux [23]
and Nytro SSD from Seagate [12]). Cloud vendors have started
to integrate hardware-based compression capability into cloud
infrastructure (e.g., Microsoft Corsia [7] and AWS Gravi-
ton2 [3]), leading to imminent arrival of cloud-based stor-
age hardware with built-in transparent compression. Although
most relational database (e.g., MySQL and Oracle) incorporate
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record/page-level compression capability, it is not uncommon
that users disable such feature in order to avoid performance
degradation. Hence, when running on such modern storage
hardware, relational database can benefit from storage cost
reduction without sacrificing performance and CPU usage.
This work is interested in how one could make relational
database gain more storage cost reduction from such storage
hardware. The key is to increase the database compressibility
at minimal impact on the database performance. In order to
well serve OLTP (on-line transactional processing) workloads,
most relational databases use the convenient row-based page
format, with the typical page size of 8KB or 16KB. Mean-
while, it is well known that, by clustering the same-type data
together, column-based storage format [1] enables better data
compressibility than row-based format. This motivates us to
study the potential of deploying dual page format in relational
database: When a page resides in database cache memory,
it keeps the conventional row-based format, and all the on-
storage pages have a column-based format. When database
fetches a page from storage or flushes a page to storage, it
accordingly carries out on-the-fly row-column format conver-
sion. Such dual in-memory vs. on-storage page format can
largely enhance the storage cost saving and meanwhile keep
the database query processing engines completely intact.
Beyond the row-column conversion, we apply certain col-
umn data transformation to further boost the data compress-
ibility. To minimize the impact on database performance, we
propose several light-weight data transformation schemes that
can leverage SIMD (single instruction, multiple data) CPU
instructions. We note that column data transformation has
a fundamentally different purpose from column data encod-
ing (e.g., dictionary and run-length encoding) in column-store:
The former aims at improving the column data compressibility
so that the storage hardware can achieve better compression
ratio, while the latter aims at directly compressing the column
data. Storage hardware with built-in transparent compression
always performs general-purpose LZ-family compression that
either does LZ-search only (e.g., 1z4 [17]) or concatenates LZ-
search with entropy coding (e.g., ZSTD [30] and zlib [29]). We



show that different type of LZ-family compression algorithms
may favor different data transformation schemes. For the
purpose of evaluation, we modified the InnoDB storage engine
in MySQL 8.0 to support the proposed dual page format,
by adding only about 600 lines of code. We ran Sysbench
OLTP workloads on a commercial 3.2TB SSD with built-
in transparent compression [23]. The results show that our
proposed techniques can improve the storage cost savings by
up to 45% and meanwhile only incur a few percentage MySQL
TPS (transactions per second) performance loss. In summary,
this paper makes the following main contributions:

1) We propose a dual in-memory vs. on-storage page format
design framework that enables relational database take
full advantage of the growing family of storage hardware
with built-in transparent compression;

2) We develop light-weight column data transformation that
can largely improve the on-storage page data compress-
ibility with very small impact on database performance;

3) We analyze the impact of compression algorithms being
implemented in storage hardware on the selection of
column data transformation;

4) Using MySQL as a test vehicle, we demonstrated the
effectiveness of this proposed approach on a commercial
SSD with built-in transparent compression.

II. BACKGROUND

A. Compression in Relational Database

In order to better serve OLTP workloads, mainstream rela-
tional database by default uses B-tree index structure in which
each leaf page stores data tuples in the row-based format.
Relational database typically provides users with different
compression options (e.g., row/prefix/dictionary compression
in SQL Server, and table/page compression in MySQL). How-
ever, compression inevitably incurs CPU overhead and longer
latency, leading to database performance degradation. For the
demonstration, on a 2U server with 32-core Xeon CPU, we
ran MySQL 8.0 with Sysbench OLTP benchmarks (32 client
threads in all the experiments). Fig. 1 shows the TPS perfor-
mance under three different configurations: (1) the default no
compression, and (2) 1z4-based page compression, and (3) zlib-
based page compression. Compared with zlib compression, 1z4
compression consumes less CPU resource at the loss of data
compression ratio. The results show that page compression
can significantly degrade MySQL performance, especially
under relatively write-intensive workloads. Therefore, it is not
uncommon that users turn off the database compression in
spite of good user data compressibility.

B. Storage-level Transparent Compression

By realizing data compression at the storage level (e.g.,
filesystem or block device), we can allow all the upper-level
user applications to benefit from storage cost reduction without
explicitly handling data compression. Industry has integrated
transparent compression into many storage-level software. For
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Fig. 1. MySQL TPS under Sysbench OLTP benchmarks under three different
configurations.

example, ZFS [5] and Btrfs [22] support filesystem-level trans-
parent compression, latest Red Hat Enterprise Linux contains a
VDO (Virtual Data Optimizer) module that realizes block-level
transparent compression. However, all the software solutions
consume CPU resource to implement and management data
compression, which makes the system still subject to the
performance vs. storage cost trade-off.

If we can migrate data compression into the storage hard-
ware, systems will be free from the performance vs. storage
cost trade-off. Modern all-flash arrays integrate hardware-
based block-level transparent compression. Another option
is to directly push compression into each individual storage
device (e.g., SSD or HDD). Fig. 2 illustrates the structure
of an SSD with built-in transparent compression. Data (de-
)compression are carried out directly on the IO path by the
hardware engine inside the SSD controller, and the FTL (flash
translation layer) inside the SSD controller manages the
mapping/indexing of all the variable-length compressed data
blocks. Such SSDs [23], [12] are now emerging on the
commercial market. Moreover, by deploying hardware-based
compression capability [7], [3], Cloud data storage infras-
tructure becomes ready to support transparent compression.
Regardless of the specific implementation, storage hardware
should always compress each 4KB sector individually in order
to avoid random IO performance degradation.
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Fig. 2. Illustration of an SSD with built-in transparent compression.
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III. PROPOSED DESIGN SOLUTIONS

When running on storage hardware with built-in transparent
compression, relational database can seamlessly benefit from
storage cost reduction without any source code changes. This
work studies the potential of further reducing the storage cost
by slightly modifying relational database. Motivated by the
success of column-store, this work centers around the simple
idea of deploying a dual in-memory vs. on-storage page format
as illustrated in Fig. 3: When a page (with the typical size of
8KB or 16KB) resides in the database cache memory (e.g.
buffer pool in MySQL), it retains the conventional row-based
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Fig. 3. Illustration of the proposed dual in-memory vs. on-storage page format.

format. When residing on the storage devices, each page has
a column-based format. Moreover, we may apply additional
data transformation functions (e.g., f; for the i-th column as
illustrated in Fig. 3) to further improve the data compressibility
of on-storage pages. Different from data encoding in column-
store, the function f; does not try to reduce the column data
size at all. Instead, its goal is to CPU-efficiently manipulate
data content to improve its compressibility.

To support dual page format, relational database must carry
out on-the-fly page content conversion. When database flushes
a page from its cache memory to storage, the page content con-
version consists of two steps: (1) Row-to-column conversion:
Let n denote the number of table fields, m denote the number
of rows in one page, and e; ; denote the j-th element of the
i-th row in one page. We convert the page from the row-based
layout [R{,R2,- -+ ,Ry], where each row R; = [e; 1,€;2, - ,€in],
to a column-based layout [Cy,C,,- -+ ,Cy,], where each column
Cj=le1j,e2j, - ,em,;]. (2) Column data transformation: We
further apply a transformation function f; to the j-th column so
that the transformed column fj(e; j,e2j, - ,en ;) has a higher
compressibility than the original column [ej j,es j, -+ ,em |-
When database fetches one page from storage into its cache
memory, it performs the reverse conversion, i.e., first apply
the reverse transformation f;fl) on each column, and then
carry out column-to-row conversion to reconstruct the original
row-based page. In spite of the simple idea underlying the
dual page format design approach, its practical implementation
faces the following two conflicting objectives:

1) Reduce database performance degradation: By carrying
out data conversion/transformation on the page IO path, it
consumes extra CPU cycles and hence causes longer page
IO latency, which may degrade the database performance.
Aiming to largely retain the database performance, we
should reduce the CPU overhead as much as possible.

2) Improve page data compressibility: Storage cost reduc-
tion solely depends on how well the page content con-
version/transformation can improve data compressibility.
The more complicated each column data transformation
function f; is, the more it can improve the column data
compressibility, but consumes more CPU cycles.

To assist relational database better explore trade-offs be-
tween the above two conflicting objectives, we further present
techniques that improve the on-storage page compressibility

with different compressibility improvement vs. CPU overhead
trade-off. Most storage hardware with built-in transparent
compression compress each 4KB sector using LZ-family algo-
rithms, under which data compressibility is determined by two
types of data redundancy: (i) repeated byte-string redundancy
that is measured by the length and occurrence frequency
of repeated byte-strings, and (ii) entropy redundancy that is
measured by the distribution of the entropy of different byte
symbols. Accordingly, there are two categories of LZ-family
algorithms: (1) LZ-only algorithms (e.g., 1z4 and Snappy) that
only exploit the repeated byte-string redundancy: They only
carry out LZ-search that searches for repeated byte-strings
and replaces them with pointers. (2) LZ+EC algorithms (e.g.,
zlib and ZSTD) that exploit both types of redundancy: They
concatenate LZ-search with additional entropy coding (EC),
e.g., Huffman [14] or arithmetic coding [26]. These two cat-
egories of LZ-family algorithms represent different trade-offs
between implementation cost and compression ratio. Subject
to different cost constraint, storage hardware may choose to
implement different LZ-family algorithms.

As a result, which compression algorithm the storage
hardware implements can influence how we should apply
specific techniques for improving page data compressibility.
By clustering each column data together, row-to-column con-
version may improve the repeated byte-string redundancy.
Since storage hardware compress each 4KB sector individually
and one database page is typically 8KB or 16KB, row-
to-column conversion may also improve the entropy redun-
dancy if different columns have largely different byte content
statistics. The second step (i.e., column data transformation)
should be realized differently when we use different LZ-family
compression algorithms. For the purpose of illustration, let us
consider the following two examples that use 1z4 and zlib to
represent LZ-only and LZ+EC algorithms:

1) Let d denote a 1-byte constant (e.g., OxFF or 0x00).
Given a randomly generated data block, we set a certain
percentage of bytes at random locations to the constant
value d. Fig. 4 shows the measured data compression
ratio under LZ-only and LZ+EC algorithms when varying
the constant-byte percentage from 10% to 60%. Let I,
and l¢omp denote the size of the original and compressed
blocks, we define compression ratio as o = lyyg / leomp =
1. As the constant-byte percentage increases, the byte



symbol with the constant value will have a larger entropy
than the other byte symbols. This can benefit LZ+E(C
compression more than LZ-only compression, as showt
in Fig. 4, because of the explicit use of entropy coding
in LZ+EC compression.
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Fig. 4. Measured compression ratio under different constant-byte percentagc
in randomly generated data blocks.

2) We fill each data block with [Dy,R;|, where D; rep-
resents an s-byte vector [d,d,---,d]| (d represents a 1-
byte constant) and R represents an s-byte random vector.
Hence, within the data block, 50% have the same constant
value d, and the other 50% have random values. Almost
all the repeated byte-strings are the s-byte vector Dj.
Fig. 5 shows the measured compression ratio when we
vary the repeated vector length s from 2 to 24. By
increasing the value of s, we increase the repeated byte-
string redundancy. The results show that higher repeated
byte-string redundancy benefit LZ-only algorithm more
than LZ+EC algorithms.
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Fig. 5. Measured compression ratio under different repeated vector length s
in data blocks with 50% random content.

The above results suggest that, when storage hardware
implements different type of LZ-family algorithms, the column
data transformation may favor different strategies, which will
be further discussed in the remainder of this subsection.

1) LZ-only Compression: When storage hardware imple-
ments an LZ-only algorithm, the column data transformation
should mainly focus on improving the repeated byte-string
redundancy. In particular, we should transform the column data
in order to create longer repeated byte-strings. The obvious
option is to design the column data transformation following
a shuffling-centric approach. As illustrated in Fig. 6, its basic
idea can be described as follows: Given a byte sequence
[d.d,ri,r2,d,d,r3,14,d,d,rs,rg,- -], where d represents a 1-
byte constant, each r; is a random byte, and the 2-byte string
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Fig. 6. Illustration of applying byte-wise shuffling to improve the repeated
byte-string redundancy.

d’s together, we can increase the length of the repeated byte-
string, e.g., from repeated 2-byte string to repeated 6-byte
string as illustrated in Fig. 6. This will lead to a better LZ-only
compression ratio. For its practical implementation, we should
use the AVX2 shuffle instructions (e.g., _mm_shuffle_epi8 that
can realize user-defined byte-wise shuffling on 128-bit data).
Accordingly, we have the following two data transformation

strategies:

o Register-level data transposition: If the data column has
a strong byte-position content locality (i.e., consecutive
data elements more likely have the same value at certain
byte positions), we can utilize the AVX2 shuffle instruc-
tions to create longer repeated byte-strings. Suppose each
data element contains b bytes, and one register can hold
up to k data elements. Let d; denote the i-th data element,
and d, ; denote its k-th byte. Using the AVX2 shuffle in-
structions, we transpose each group of k consecutive data
elements [dy,dy,--- ,di] into [t],t2,- - ,1p], Where each f;
consists of k same-position bytes [d; i, d;, - ,dk]. By
clustering all the k same-position bytes together within
each group of k data elements, such register-level data
transposition could create longer repeated byte-strings in
the case of strong byte-position content locality.

e Column-level data transposition: The above register-
level data transposition creates longer repeated byte-string
within each register (up to 256-bit). If the data column has
a very strong byte-position content locality, one could ex-
pand the data transposition to the column level in order to
further increase the compressibility. Given a column that
consists of total m data elements [d},d>,- -+ ,dy] (where
m is larger or much larger than k), we can transpose the
entire data column into [t1,,--- ], where each vector
t; consists of m same-position bytes [d;,d;, - ,dp,i]-
Compared with the register-level transposition, it could
potentially create much longer repeated byte-strings.

2) LZ+EC Compression: For storage hardware that uses
LZ+EC compression algorithm such as zlib, we should cohe-
sively consider both entropy redundancy and repeated byte-
string redundancy. To improve the repeated byte-string redun-
dancy, we can apply the same strategies discussed above (i.e.,
register-level or column-level data transposition). As shown
earlier, compared with increasing the repeated byte-string re-



dundancy, increasing the entropy redundancy tends to be more
beneficial to LZ+EC compression. To increase the entropy
redundancy, the key is to increase the occurrence frequency
of one or few byte values. For data columns with strong
byte-position content locality, we can apply byte-wise XOR
to generate more bytes with the content of zero, leading to
a higher entropy redundancy. Meanwhile, modern CPUs can
easily support highly parallel XOR operations.

To improve the data compressibility, we may integrate the
byte-wise XOR with register-level data transposition (or the
column-level data transposition). Suppose we can load k data
elements [d},d,,- -+ ,d;] from one data column into a register.
We first carry out byte-wise XOR across all the k data elements
to generate a new vector [d{,d;,---,d;], where d{ =d; and
d; 1 = di®di1. Given strong byte-position content locality,
the new vector may contain a large number of zeros, leading to
a higher entropy redundancy. Then we apply the register-level
data transposition to further improve the data compressibility
by increasing the repeated byte-string redundancy.

IV. EVALUATION

Using MySQL as a test vehicle, we performed experiments
to evaluate the proposed design solutions. We use a 2U server
with 32-core 3.3GHz Xeon CPU and 64GB DRAM. We ran all
the experiments on one 3.2TB SSD with built-in transparent
compression, which was recently launched to the market by
ScaleFlux [23]. This SSD carries out hardware-based per-4KB
zlib compression on the IO path. Operating with PCle Gen3 x4
interface, this SSD can achieve 3.2GB/s sequential throughput,
and 650K (520K) random 4KB read (write) IOPS (IO per
second) over 100% LBA span, which are similar or higher
than leading-edge commodity NVMe SSDs.

A. Low-level Evaluation

We first carried out experiments to evaluate the effectiveness
of each individual approach on improving the page data
compressibility and the corresponding latency overhead. Based
on MySQL 8.0, we implemented a MySQL/InnoDB page
generator that can generate 16KB pages for any arbitrary
table schema and data content characteristics. Each 16KB page
contains all the InnoDB page metadata including page header,
trailer, and row headers. For the purpose of comparison, we
considered the following six different scenarios:(1) Conven-
tional: We use the conventional practice as the baseline, where
all the 16KB pages keep the same row-based format; (2) R2C-
only: We only implement the row-column conversion for each
16KB page; (3) R2C-RLT: After converting each page from
row-based to column-based, we further carry out register-level
data transposition; (4) R2C-CLT: After converting each page
from row-based to column-based, we further carry out column-
level data transposition; (5) R2C-XOR: After converting each
page from row-based to column-based, we further carry out
register-level byte-wise XOR (i.e., byte-wise XOR across
adjacent column data elements that can fit into one 128-bit
register); (6) R2ZC-XOR-RLT: After converting each page from

row-based to column-based, we further carry out register-level
byte-wise XOR and register-level data transposition.

1) Page Conversion Latency: We first studied the page
content conversion latency overhead. The row-column con-
version mainly involves memory copy. Hence, the latency of
row-column conversion strongly depends on the size of each
data item. Regarding column data transformation, its latency
depends on the specific transformation processing. Fig 7 shows
the measured page conversion latency when each row contains
32 2-byte small integers, 32 4-byte integers, or 32 8-byte big
integers. Following the convention in MySQL/InnoDB, we fill
each 16KB page up to %—full and leave the rest % as all-zero.
We measured the latency of both forward conversion from in-
memory format to on-storage format and reverse conversion
from on-storage format to in-memory format. The results show
that the forward and reverse page conversions always have
almost the same latency. This is because the row-column
conversion and all the column data transformations have very
symmetric operations. This is in sharp contrast to all the
classical compression/encoding techniques that tend to have
very asymmetric operations.

As shown in Fig 7, the latency of row-column conversion
(i.e., R2C-only) strongly relies on the data item size, e.g., the
latency reduces from 16.7us in the case of small integers
to 6.6us in the case of big integers. All the XOR and data
transposition operations utilize the SIMD instructions. The
results show that the latency of column data transformation
is largely independent from the data item size. Byte-wise
XOR incurs less latency than data transposition. On top
of the row-column conversion, the byte-wise XOR incurs
about 3us additional latency, while the register-level data
transposition incurs about 5us additional latency. Compared
with register-level data transposition (R2C-RTL), column-level
data transposition (R2C-CTL) involves extra memory copy
operations in order to spread each transposed 128-bit content
across the entire column. The extra memory copy operations
incur relatively longer latency. As a result, on top of the row-
column conversion, column-level transposition incurs about
15us additional latency. By concatenating byte-wise XOR and
register-level data transposition, R2ZC-XOR-RTL incurs about
8us additional latency on top of the row-column conversion.

Let 7, denote the latency of database page IO in current
practice, and 7., denote the extra latency induced by the
page content conversion in support of the dual page format.
Hence, the impact of dual page format on the overall database
performance depends on the 7., Vs. Tj, comparison. Under
very low SSD IO queue depth (e.g., 1 or 2), the value of 7,
is roughly equal to the NAND flash memory access latency
that is around 100us. As the SSD IO queue depth increases
under heavier 1O stress, the value of 7;, can be multiple times
longer than the NAND flash memory access latency. Based on
the above results, we can draw the conclusion that 7., tends
to be significantly less than T;,.

2) Page Data Compressibility: We further studied the page
data compressibility, where 1z4 and zlib are used to represent
LZ-only and LZ+EC compression. When generating each
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16KB InnoDB page, we fill the page up to %-full and leave
the rest % as all-zero. To better understand the impact of
different data types, we studied the data compressibility of
the following two categories of pages, each of which contains

one data type.

A. Integer pages: Each row contains 32 4-byte unsigned
integers. For the i-th column, we generate a random integer 7;,
based on which we randomly generate all the unsigned integers
independently in the i-th column within the +10% of r; (i.e.,
within the range of [0.9-r;,1.1-r]). To cover different byte-
position content locality, we considered two cases: (i) the mag-
nitude of each r; falls between 216 and 224 referred to as large-
integer page, and (ii) the magnitude of each r; falls between
28 and 29, referred to as small-integer page. Fig 8(a) and
(b) show the measured compression ratio of large-integer and
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Fig. 8. Measured compression ratio of (a) large-integer pages, and (b) small-
integer pages.

small-integer pages, where Con. denotes the baseline conven-
tional practice without using the dual page format. The results
reveal the following observations: (1) Row-column conversion
itself cannot improve the data compressibility at all for integer
pages. Due to the randomness in the data generation, clustering
the same-column integers together does not bring additional
data content redundancy. (2) The comparison between register-
level data transposition (R2C-RLT) and byte-wise XOR (R2C-
XOR) varies when different compression algorithm is used.

0 R2C-only R2C-RLT R2C-CLT R2C-XOR R2C

0
R2C-only R2C-RLT R2C-CLT R2C-XOR R2C
-XOR-RLT () -XOR-RLT

Measured 16KB InnoDB page conversion latency when each row contains 32 (a) 2-byte small integers, (b) 4-byte integers, and (c) 8-byte big integers.

R2C-RLT achieves better compression ratio under 1z4, while
R2C-XOR achieves better compression ratio under zlib. This
well matches to the discussion on 1z4 vs. zlib comparison in
Section III. (3) Column-level data transposition (R2C-CLT)
can always achieve the best compression ratio, followed by
the concatenation of register-level data transposition and byte-
wise XOR (R2C-XOR-RLT). This is because column-level
data transposition can most improve the repeated byte-string
redundancy. (4) Small-integer pages can benefit more from
the column data transformation, because of the stronger byte-
position content locality in small-integer columns.

B. String pages: Since string data typically do not have strong
byte-position content locality, we only applied row-column
conversion without any further transformation. We studied the
compression ratio of three different types of string pages: (1)
fixed-length string page: Each row contains 32 fixed-length
16-byte strings. (2) variable-length string page: Each row
contains 32 strings, where the length of each string is chosen
randomly between 8-byte and 24-byte. (3) mixed-length string
page: Each row contains 16 fixed-length 16-byte strings and
16 variable-length strings, where the length of each variable-
length string is chosen randomly between 8-byte and 24-byte.
We use the Silesia corpus [10] to generate each string column
as follows: First we randomly pick one file from four corpus
files (i.e., dickens, samba, osdb, and webster), and then ran-
domly choose one contiguous segment from the file to fill the
string column. Fig. 9 shows the measured compression ratio
of the three different types of string pages. Since string data
tend to have relatively high entropy redundancy, zlib achieves
significantly higher compression ratio than 1z4, especially in
the context of column-based string pages. Compared with
the conventional row-based page format, column-based page
format can improve the compression ratio by up to 35% (zlib)
and 27% (1z4). Results also show that variable-length string
pages have worse compression ratio than fixed-length string
pages, which is mainly due to the impact of row headers.

B. System-level Evaluation

To evaluate the impact on relational database TPS/latency
performance, we modified the InnoDB IO process (by adding
only about 600 lines of code) so that it can handle the
page conversion on the page read and write path. All the
modifications are confined in the IO process, being invisible
to other modules in MySQL. We ran three Sysbench OLTP
workloads (including write-only, read-only and read-write) on
a 160GB database. Instead of using the default Sysbench table
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Fig. 9. Measured compression ratio of three different types of string pages.

schema with only 4 fields, we used a table schema consisting
of 32 unsigned integer fields and one 32-byte string field. All
the integer columns are generated using the same method for
generating the small-integer pages in Section IV-A2, and the
content of the string column is loaded from the file webster in
the Silesia corpus. In all the experiments, InnoDB buffer pool
is 10GB and InnoDB operates with direct-io, and we kept all
the other configurations as their default settings.

For the purpose of comparison, we evaluated the MySQL
TPS and average latency performance for all the six scenarios
considered in Section IV-A, including conventional as the
baseline, R2C-only that implements row-column conversion
only, R2C-RLT that implements additional register-level trans-
formation, R2C-CLT that implements additional column-level
transformation, R2C-XOR that implements additional XOR,
and R2C-XOR-RLT that combines XOR and register-level
transformation. For each Sysbench workload, we repeated the
experiment with three different number of client threads (i.e.,
8, 16, and 32) in order to cover a wide range of workload
stress. Fig. 10 shows the measured MySQL TPS and average
latency under all the different scenarios and Sysbench OLTP
benchmarks. Each data point was obtained by running MySQL
about 1 hour. Results show that the proposed approach only
slightly degrades the MySQL TPS/latency performance, and
the performance impact is almost independent from the client
thread number. Under the write-only workload, compared with
the baseline, R2C-only, R2C-RLT and R2C-XOR-RLT degrade
the TPS by 5.2%, 8.1%, and 9.9%, respectively, and increase
the average latency by 5.5%, 7.6%, and 10.8%, respectively.
Under the read-only workload, R2C-only, R2C-RLT and R2C-
XOR-RLT degrade the TPS by 1.5%, 3.4%, and 3.7%, re-
spectively, and increase the average latency by 1.3%, 3.4%,
and 3.9%, respectively. The results suggest that the proposed
design affects read-intensive workloads more slightly than
write-intensive workloads. This can be explained as follows:
Since the database size is much larger than the InnoDB buffer
pool size, MySQL serves each write query by issuing both
page fetching and page flushing requests. As a result, the
InnoDB 10 process will carry out more page conversion
operations on the per query basis. In comparison, MySQL
serves each read query by only issuing page fetching requests,
hence the InnoDB IO process will carry out relatively less
amount of page conversion operations. As demonstrated above
in Section IV-Al, storage-to-memory and memory-to-storage

page conversions have almost the same latency. Therefore,
the proposed approach causes relatively larger performance
degradation to write-intensive workloads.

The impact of different column data transformation strate-
gies on TPS and latency well matches to their operational
latency as shown above in Section IV-Al. With the longest
operational latency, R2C-CLT corresponds to the largest TPS
performance impact, i.e., TPS degradation of 11.2%, 3.9%,
and 8.9% under write-only, read-only, and read-write work-
loads, respectively. In comparison, R2C-XOR corresponds to
the smallest TPS performance impact, i.e., TPS degradation
of 7.0%, 3.3%, and 5.8% under write-only, read-only, and
read-write workloads, respectively. Moreover, the results show
that, under the write-only workload, MySQL TPS and latency
are roughly proportional to the number of client threads. In
contrast, under the read-only workload, the TPS with 16 client
threads is closer to that with 32 client clients, while the latency
with 16 client threads is almost the same as that with 8
client threads. This is mainly because, under read-intensive
workloads, 16 client threads can generate enough read 10
requests to almost fully exploit the parallelism among all
the NAND flash memory dies inside the SSD. As a result,
further increasing the number of client threads from 16 to
32 cannot proportionally improve the TPS, and meanwhile
will cause a deeper 10 queue depth, leading to a longer read
latency. Moreover, we also collected the CPU usage during all
the experiments, and the results show negligible CPU usage
difference among all the different scenarios.

As mentioned above, we ran all the experiments on a
commercial 3.2TB SSD with built-in transparent compression.
This SSD internally implements per-4KB zlib compression,
and can report the average compression ratio of all the data
being stored on the drive. Fig. 11 shows the compression
ratio reported by the drive when generating the same 160GB
database under all the six different scenarios. For the purpose
of comparison, Fig. 11 also includes the compression ratio
achieved by MySQL’s own 1z4/zlib-based page compression,
denoted as LZ4 and ZLIB, respectively. Under the baseline
scenario (i.e., all the on-storage pages use the conventional
row-based format), the SSD with built-in transparent compres-
sion can achieve a compression ratio of 2.08. Compared with
the baseline, R2C-only, R2C-RLT, R2C-CLT, R2C-XOR and
R2C-XOR-RLT can improve the compression ratio by 20.6%,
30.5%, 44.9%, 37.5%, and 40.8%, respectively. Although the
database mainly contains integers, compared with integer-page
compression ratio shown in Fig. 8, the database compression
ratios shown in Fig. 11 are noticeably higher and meanwhile
the difference between the baseline and other scenarios is
relatively smaller. This is mainly because not all the pages
are filled up to %—full in the 160GB MySQL database. The
less full one page is, the better the page can be compressed.

Finally, as shown in Fig. 11, MySQL’s own 1z4/zlib-based
page compression achieves worse compression ratio than the
SSD with built-in transparent compression. This can be ex-
plained as: When using its own page compression, MySQL
stores each compressed 16KB page by using the hole punching
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Fig. 11. Comparison of database compression ratio under the six different
scenarios and MySQL’s own 1z4/zlib-based page compression.

of the underlying filesystem. As a result, each compressed
page has to be 4KB-aligned on the storage device. For exam-
ple, if MySQL’s own page compression can compress a 16KB
page to 9KB, the compressed page has to occupy 12KB space
on the storage device. This leads to significant storage space
under-utilization. However, the SSD with built-in transparent
compression can tightly place all the compressed 4KB blocks
together on the NAND flash memory storage media. Hence,
although MySQL’s own page compression compresses each
16KB entirely, it still cannot match the compression ratio
achieved by the SSD with built-in transparent compression.

V. RELATED WORK

Database research community has long studied the bene-
fit and trade-off of applying compression to database (e.g.,
see [2], [16], [24], [8], [4]). A variety of compression tech-
niques [11], [25], [6], [19] were developed based upon the
principles of entropy coding [14], [26] and LZ-search [27],
[28]. Few other compression algorithms (e.g., vector quanti-
zation [18]) have also been considered over the years. Early
prior work primarily focused on relational database with
row-based page format, and has led to the integration of
compression schemes at the record/page (and even table)
level in commercial relational database (e.g., DB2 [15] and
Oracle [20]) and open-source relational database such as
MySQL and MariaDB. By implementing an emulator for SSD
with built-in transparent compression, Zuck et al. [31] studied
the options of integrating transparent compression into SSD,
and demonstrated its potential of reducing storage cost for
relational database without sacrificing TPS performance.

VI. CONCLUSIONS

This paper presents a dual in-memory vs. on-storage page
format design framework for relational database to take full
advantage of modern storage hardware with built-in transpar-
ent compression. The key is to convert on-storage pages from
conventional row-based format to more compressible column-
based format. We complement row-column conversion with
column data transformation to further improve the on-storage
page compressibility. We present a set of light-weight data
transformation schemes, and analyze how the compression al-
gorithm being implemented by storage hardware could impact
the effectiveness of different data transformation schemes. We
modified the latest MySQL 8.0 to support the proposed dual
page format, and experimental results on a commercial SSD
with built-in transparent compression show that the proposed
design approach can significantly improve the data compres-
sion ratio at almost negligible OLTP performance degradation.
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