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Infinitely many Lagrangian fillings

By ROGER CAsSALS and HONGHAO GAO

Abstract

We prove that all maximal-tb positive Legendrian torus links (n,m) in
the standard contact 3-sphere, except for (2,m), (3,3),(3,4) and (3,5), ad-
mit infinitely many Lagrangian fillings in the standard symplectic 4-ball.
This is proven by constructing infinite order Lagrangian concordances that
induce faithful actions of the modular group PSL(2,Z) and the mapping
class group My 4 into the coordinate rings of algebraic varieties associated
to Legendrian links. In particular, our results imply that there exist La-
grangian concordance monoids with subgroups of exponential-growth, and
yield Stein surfaces homotopic to a 2-sphere with infinitely many distinct
exact Lagrangian surfaces of higher-genus. We also show that there exist
infinitely many satellite and hyperbolic knots with Legendrian representa-
tives admitting infinitely many exact Lagrangian fillings.

1. Introduction

We show that essentially all maximal-tb positive Legendrian torus links in
the standard contact 3-sphere remarkably admit infinitely many non-Hamil-
tonian isotopic exact Lagrangian fillings in the standard symplectic 4-ball.
Heretofore, the existence of Legendrian links with infinitely many exact La-
grangian fillings remained open.

In fact, the faithful PSL(2,Z) representation in our Theorem 1.1 allows us
to obtain several consequences. We present new results for Lagrangian concor-
dance monoids, including the first known example of a Lagrangian concordance
of infinite order, the existence of an exponential-growth subgroup in the fun-
damental group of the space of Legendrian links isotopic to A(3,6), and the
existence of Weinstein 4-manifolds homotopic to the 2-sphere with infinitely
many non-Hamiltonian isotopic exact Lagrangian surfaces of higher-genus in
the same smooth isotopy class. In addition, we construct infinitely many in-
stances of both satellite and hyperbolic knots in the 3-sphere with Legendrian
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representatives with infinitely many exact Lagrangian fillings in the standard
symplectic 4-ball.

1.1. Context. Legendrian knots in contact 3-manifolds are instrumental
to study the contact geometry of 3-manifolds [6], [22], [23], [24], [26], [27], [36].
The classification of Legendrian knots and their Lagrangian fillings has been
one of the central areas of research in low-dimensional contact topology [19],
[20], [41], [53], [55], [56], [57]. The only Legendrian knot for which there exists
a complete non-empty classification of Lagrangian fillings is the Legendrian
unknot [21].

The works [20], [53], [64] succeeded in constructing a Catalan number
worth of Lagrangian fillings for the maximal-tb positive Legendrian (2, n)-torus
links. It is also known that all positive braids admit at least one Lagrangian
filling [43]; see also [20], [41]. A crucial question that remained open is the
existence of Legendrian links with infinitely many exact Lagrangian fillings.
This article affirmatively resolves this question.

In fact, we shall geometrically construct Lagrangian concordances that
themselves produce infinitely many Lagrangian fillings, which is a significantly
stronger statement than the existence of infinitely many Lagrangian fillings.
The constructions are explicit and can be readily drawn in the front projection.
The construction implies that these exact Lagrangian surfaces are all smoothly
isotopic. We will distinguish these Lagrangian fillings by studying their action
on part of the coordinate ring of the moduli of framed constructible sheaves
M(A) [38], [44], [65] for certain Legendrian links A C (S3,&5). The techniques
we use for our results illustrate the strength of applying methods from the
microlocal theory of sheaves [44], [65] and the theory of cluster algebras [29],
[31], [34] to 3-dimensional contact and symplectic topology.

1.2. Main results. Let A(n,m) C (S3, &) be the maximal-tb positive Leg-
endrian (n,m)-torus link, (n,m) € N x N, as depicted in Figure 1. Positive
Legendrian torus knots are Legendrian simple positive braids [25], and thus
are uniquely determined by their Thurston-Bennequin invariants and their ro-
tation numbers. These Legendrian links can be obtained by considering the

N

Figure 1. The Legendrian torus links A(3,6) (left) and A(4,4)
(right).
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positive braids 8 = (o102 -...-0,_1)™ ™ in (J1S!, &) and satelliting the zero
section St C (J1SY, &) to the standard Legendrian unknot A(1,1) C (53, &).
Let L£(n,m) be the space of Legendrian links isotopic to the maximal-tb Leg-
endrian torus link A(n,m) C (S3, &), with base point an arbitrary but fixed
maximal-tb Legendrian representative.

Let M(A(n,m)) be the moduli space of framed sheaves associated to the
Legendrian link A(n,m), as we shall introduce in Section 3. This M(A(n,m))
is an algebraic variety [64], and in our case it will be a quasi-projective sub-
variety of the projective Grassmannian Gr(n,n + m). Since M(A(n,m)) is a
Legendrian isotopy invariant [38], [64], [65], it defines a monodromy represen-
tation

L7 (L(n,m)) — Aut(M(A(n,m)))
into the space of algebraic automorphisms of the algebraic variety M(A(n, m)).
In turn, by pull-back, we obtain a representation

I : m(L(n,m)) — Aut(C[M(A(n,m))])

into the automorphisms of the coordinate ring C[M(A(n, m))] of M(A(n, m)).
In particular, a set of based loops Ci,...,C, : S* — L(n,m), r € N, gives
rise to a monodromy representation

I ([C4],...,[Cr]) — Aut(C[M(A(n,m))])

of the subgroup ([C4],...,[C;]) < m(L(n,m)) generated by the homotopy
classes of the based maps C1,...,C, : S' — L(n,m). The first result we
present is

THEOREM 1.1. Let L£(3,6) be the space of Legendrian links isotopic to
the maximal-tb Legendrian torus link A(3,6) C (S°,&). Then there exist two
based loops A, B : S* — L£(3,6), and a regular function A € C[M(A(3,6))]

such that the monodromy representation
I : ([A],[B]) — Aut(CIM(A(3, 6))])
restricts to a faithful modular representation
[l : PSL(2,Z) — Aut(O(A))
along the orbit O(A) of the function A.

In Theorem 1.1, we choose the base point for the space £(3,6) to be the
Legendrian link in (R3 &) whose front projection is depicted in Figure 1,
under an arbitrary but fixed choice of Darboux chart (R3, &) C (93, &4¢). In
the statement of Theorem 1.1, ([A],[B]) C m1(£(3,6)) denotes the subgroup
generated by the homotopy classes [A], [B] € m1(£(3,6)), with concatenation
of based loops as its group operation. The modular group PSL(2,7Z) shall
appear geometrically as the free product Zs * Zs, with the factor Zs generated
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by the restriction of [A] and the factor Zg generated by the restriction of
[B], and Aut(C[M(A(3,6))]) denotes the group of (cluster) automorphisms
of C[M(A(3,6))]. Theorem 1.1 is remarkable in that PSL(2,Z) is an infinite
group and thus provides the first result of its kind in the study of 3-dimensional
Legendrian links.

Remark 1.2. The reason for the choice of the Legendrian torus link A(3,6)

is that it is the geometric source of the extended root system Eél’l). Indeed, it
can be understood as the maximal-tb Legendrian approximation of the trans-
verse link of the unimodal Jy¢ singularity [2]. The proof of Theorem 1.1 shall

clarify how the Eél’l) algebraic structure arises from A(3,6).
We show that the Legendrian torus link A(4,4) also exhibits a noteworthy
Symmetry:

THEOREM 1.3. Let £(4,4) be the space of Legendrian links isotopic to the
mazimal-tb Legendrian torus link A(4,4) C (S3,&s). Then there exist three
based loops =; : S' — L(4,4), 1 < i < 3, and a subset F C C[M(A(4,4))]
such that the monodromy representation

I ([E1], [B2], [E3]) — Aut(CIM(A(4,4))])
restricts to a faithful representation
P*|(9(F) : Moy — Aut(O(F))
of the mapping class group Moy 4 along the orbit O(F).

The mapping class group Mo 4 of the four-punctured 2-sphere contains a
subgroup isomorphic to PSL(2,7Z) with finite index and it is thus infinite. In
Theorem 1.3, the base point for the space £(4,4) is chosen to be the Legendrian
link in (R3, &) with front projection as depicted in Figure 1, also under an
arbitrary but fixed choice of Darboux chart (R3, &) C (52, &st). The subgroup
([E1], [E2], [E3]) € m1(L(4,4)) has loop concatenation as its group operation.

Remark 1.4. The two groups PSL(2,Z) and M 4 featured in Theorems 1.1
and 1.3 are akin to each other in that there are two group isomorphisms
PSL(2,Z) = B3/Z(B3) and My4 = Bj/Z(Bj), where Bs denotes the braid
group in 3-strands, Bj denotes the spherical braid group in 4-strands, and
Z(B3) and Z(Bj§) denote their respective centers.

Let us now state implications of Theorems 1.1 and 1.3, all of which are
new results in low-dimensional contact and symplectic topology.

1.3. Lagrangian fillings. Consider the subset
H:={(n,m) e NxN:n<m,3<n,6<m}uU{(4,4),(4,5),(55)} CNxN.

The first consequence of Theorems 1.1 and 1.3 is
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COROLLARY 1.5. The Legendrian torus link A(n,m) C (S3, &), (n,m)
€H admits infinitely many exact Lagrangian fillings in the standard symplectic

4-ball (D*, wgt).

For each A(n,m), these infinitely many exact Lagrangian fillings are
smoothly isotopic and not Hamiltonian isotopic. Note that both Theorems 1.1
and 1.3 are needed in order to cover all A(n,m) for (n,m) € H. That said,
Theorem 1.1 suffices in order to conclude Corollary 1.5 for (n,m) € (H \
{(4,4),(4,5),(5,5)}), and thus Theorem 1.3 is included to achieve Corollary 1.5
for (n,m) = (4,4),(4,5) and (5,5). It should be noted that the article [64]
succeeded in constructing finitely many Lagrangian fillings of the maximal-tb
Legendrian (n, m)-torus link, as many as maximal pairwise weakly separated n-
element subsets [50], [58] of [1, n+m], a finite number that is bounded above by
nm+1. Corollary 1.5 implies that these finitely many exact Lagrangian fillings
do not exhaust all possible, actually infinitely many, exact Lagrangian fillings.

Every knot K C 83 is either a torus knot, a satellite knot or a hyperbolic
knot, as proven in [66, Th. 2.3] by W.P. Thurston. Let us consider a Legendrian
representative Ax C (93,&:) of the smooth type K C S3 and denote by
I(Ak) € NU {oco} the number of orientable exact Lagrangian fillings L C
(D*, wg) of the Legendrian knot Ax C (S3, &), up to a Hamiltonian isotopy.
Consider the smooth invariant

U(K) = sup{l(AK) : Ax C (5%, &)
is a Legendrian representative of K} € NU {oo}

for a smooth knot K C S3. To our knowledge, there is no hitherto known in-
stance of a non-trivial knot K C S? for which [(K) is known and non-vanishing.
In addition, there are non-trivial knots K C S for which the invariant I(K)
vanishes. For instance, [(m(819)) = 0 is known to vanish since the Kauffman
upper bound is not sharp [35], [54]. We shall now use Theorem 1.1 to show
that [(K) is actually infinite for infinitely many knots within each of the three
Thurston classes:

COROLLARY 1.6. The equality [(K) = oo holds for infinitely many torus
knots, infinitely many satellite knots and infinitely many hyperbolic knots K C
S3 in the 3-sphere.

The satellite knots in Corollary 1.6 can be chosen to be cable knots, and
the hyperbolic knots we will exhibit are also well-beloved [7], [37]. For instance,
we will show that [(K) = oo already for K = k(43), one of the simplest
hyperbolic non-2-bridge knots [11].

1.4. Lagrangian concordances. Now, let L.(n,m) be the monoid of exact
Lagrangian concordances, up to Hamiltonian isotopy, for the Legendrian link
A(n,m) C (S3,£&). Theorems 1.1 and 1.3 readily imply



212 ROGER CASALS and HONGHAO GAO

COROLLARY 1.7. There exist subgroups I' C 1.(3,6) and I" C 1L(4,4) such
that the group PSL(2,7Z) is a factor of ' and My 4 is a factor of T'.

By definition, the groups I' and I'” in Corollary 1.7 are the subgroups gen-
erated by the exact Lagrangian concordances obtained by graphing the Legen-
drian loops in Theorems 1.1 and 1.3. Corollary 1.7 emphasizes the relevance
of Lagrangian concordances in the study of Legendrian knots. In particular,
the existence of Lagrangian concordances of infinite order is a new result that
itself provides a genuinely useful perspective for the study of Lagrangian fill-
ings. Indeed, there is no a priori reason for the infinite Lagrangian fillings
in Corollary 1.5 to be describable in terms of a finite number of Lagrangian
concordances. The present results show that this is the case. Similarly,

COROLLARY 1.8. There exists a subgroup I' C m1(L(3,6)) such that the
group PSL(2,Z) is a factor of T'. Also there exists a subgroup I" C m1(L(4,4))
such that the groupMy 4 is a factor of T'.

Corollaries 1.7 and 1.8 are the first instances in contact topology of infinite
order elements in the concordance monoid L(A), and the fundamental group
71 (L(A)), for a Legendrian A C (S3,&s). Both PSL(2,Z) and M4 contain
free groups of any countable rank as subgroups, and thus many infinite order
elements exist in 7 (£(3,6)) and 71 (£(4,4)). In fact, I' and I” are exponential-
growth subgroups of m1(£(3,6)) and m1(L£(4,4)).

Remark 1.9. Corollary 1.8 stands in contrast with A. Hatcher’s work [40,
Th. 1] in the smooth category. Indeed, the fundamental group m1(#(y, ) of
the space #(;, ) of smooth knots in S3 isotopic to the (n, m)-torus knot is the
finite Abelian group Zs.

1.5. Stein surfaces. Finally, let M (n,m) be the Stein surface obtained by
attaching a Weinstein 2-handle [17], [69] to (D*, \s) along each of the com-
ponents of the Legendrian link A(n,m) C (S3,&). For ged(n,m) = 1, the
Weinstein 4-manifold M (n,m) is homotopy equivalent to the 2-sphere. Theo-
rems 1.1 and 1.3 imply the existence of infinitely many Lagrangian surfaces in
the following Stein surfaces:

COROLLARY 1.10. Let (n,m) € H and ged(n,m) = 1. Let M(n,m)
be the Weinstein 4-manifold obtained by attaching a Weinstein 2-handle to
(D*, wgt) along A(n,m). Then M (n,m) contains infinitely many smoothly iso-
topic closed exact Lagrangian surfaces of genus %(n —1)(m — 1) that are not
Hamiltonian isotopic.

To our knowledge, Corollary 1.10 presents the first known Stein surfaces
homotopic to the 2-sphere with infinitely many non-Hamiltonian isotopic exact
Lagrangian surfaces of higher genus in the same smooth isotopy class.
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Infinitely many distinct Lagrangian 2-spheres were known to exist in
Ap-Milnor fibres [61, Th. 5.10], £ > 3, and infinitely many exact Lagrangian
tori were known to exist in certain Stein surfaces by using either of the articles
[45], [63], [67], [68]. (These infinite families of genus 0 and 1 are presently not
known to come from infinitely many Lagrangian fillings of a Legendrian link,
nor are the ambient Weinstein 4-manifolds homotopic to the 2-sphere.)

In Corollary 1.10, the 1-dimensional intersection form of the Weinstein
4-manifold M (n,m) is positive definite and equals (nm — n —m — 1), since
tb(A(n,m)) = nm —n — m. In consequence, M(n,m) does not admit any
Lagrangian surface of genus strictly less than %(n —1)(m—1). Thus, the genus
in Corollary 1.10 is sharp.

Remark 1.11. The Lagrangian 2-spheres in [61] differ by a composition of
symplectic Dehn twists [3], [60]. This is not the case for the exact Lagrangian
higher-genus surfaces in Corollary 1.10 since, by the paragraph above, the
Weinstein 4-manifolds M (n,m), (n,m) € H, do not contain embedded La-
grangian 2-spheres.

Organization. The article is organized as follows. Section 2 geometrically
constructs the loops in Theorems 1.1 and 1.3. Section 3 provides the neces-
sary aspects from the theory of Legendrian invariants constructed through the
study of microlocal sheaves. Sections 4 and 5 prove Theorems 1.1 and 1.3,
respectively, and Section 6 proves the corollaries stated in the introduction.

Acknowledgements. R.C. is grateful to J.B. Etnyre and L. Ng for use-
ful conversations, and to I. Smith for helpful comments on Corollary 1.10.
J. B. Etnyre asked us an interesting question on our first manuscript, now
answered in Corollary 1.6. We also thank A. Keating, J. Sabloff, L. Starkston
and U. Varolgiineg for their interest on this project and a number of useful
comments and suggestions. Finally, both authors are indebted to E. Zaslow
for many valuable discussions on microlocal Legendrian invariants, and to
C. Fraser for helpful conversations on cluster modular groups. We also thank
the referee for their thorough comments and suggestions. R. Casals is sup-
ported by the NSF CAREER grant DMS-1942363 and a Sloan Research Fellow-
ship of the Alfred P. Sloan Foundation.

2. The geometric construction

In this section we construct the Legendrian loops in Theorems 1.1 and 1.3
associated to the Legendrian links A(3,6) and A(4, 8). This construction is one
of the central geometric contributions of the article. This section also serves
to set up the elements of contact geometry that we shall need [23], [36].

The Legendrian loops 1, 62, 21, Z5 and Z3 that we construct can be equiv-
alently considered as exact Lagrangian concordances in the symplectization
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(83 x R(t), d(e'ag)) with no critical points with respect to the projection onto
the R-factor [17], [36]. These Lagrangian concordances are obtained by graph-
ing concatenations of the Legendrian isotopies described in Section 2.2.

2.1. The standard contact 3-space. The Legendrian links A C (53,&) in
this article will be considered inside the standard contact 3-space (R?, &),
considered as a standard Darboux chart within the contact 3-sphere (S3, &)
2, [4].

In discussing Lagrangian fillings, the inclusion A C (R3, &) will be com-
posed with the inclusion (R3, &) € (S3,&s) given by the one-point compact-
ification. In this identification, the Lagrangian fillings of a Legendrian link
A C (R3,&:) will be exact Lagrangian surfaces in (D*, \g;) considered up to
Hamiltonian isotopy.

The constructions in this article give rise to contact geometric objects in
(R3, &), including Legendrian links and contact isotopies. Nevertheless, it
is enlightening to focus on a small neighborhood of the standard Legendrian
unknot Ay, € (R3, &) that is contactomorphic to (J1S?, &), and work in the
solid torus (J1S! &). Thus, in this article, Legendrian links A C (J'S1, &)
and compactly supported contact isotopies in {¢; }4c[,1) € Cont(J 11 &) shall
implicitly be understood as Legendrian links A C (R3, &) and contact isotopies
{ot}hieio,1) € Cont(R?, &) by satelliting the zero section S C (J1ST, &) to
Aun c (Rga‘fst)-

2.2. Legendrian loops. By definition, a Legendrian loop in (J1S!, &) is a
Legendrian isotopy {A¢}sep0,1) € (J1SY &) such that Ag = Ay. Let (0,pg,2) €
St x R? be global coordinates in J1S* and & = ker (dz — pydf). The descrip-
tion of our Legendrian loops shall use the front projection

(J1SY &) — ST X R, (6,pg, 2) — (8, 2),

which is indeed a valid front as the fibers are Legendrians. By definition,
the Legendrian A(%) C (R3, &) associated to a positive Legendrian braid
B C (JIS, &) is the image of 2 under the operation of satelliting the zero
section S1 C (J1S1, &) along the standard Legendrian unknot.

Let k € N. A geometric positive braid & C (J'S1, &), which is a Leg-
endrian link, can be encoded algebraically by a positive expression (3, i.e., a
positive braid word, of an element [3] € By, of the k-stranded braid group

By :=(01,...,04-1|0i0i410; = 04410041, 0;0; = 0;0;
for j#i+1,1<d,j<k—1),

where o; are the standard Artin generators. The choice of representation (3,
i.e., braid word, for the element [3] € By is not unique, as one might use the
word relations in By to obtain different representations f;, 82 such that [51] =
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[32] in By. Given a positive braid word 3, we denote by %(8) C (J1S!, &)
the Legendrian link associated to 3, and we denote by A(B) C (R3, &) the
Legendrian link A(Z(5)).

Notice that the geometric braid % C (J'S!, &) has a front in S x R.
Thus, we fix a basepoint fy € S' and require that a braid word f representing
2 has the form

!
=1loi, 1<ij<k-1,
j=1
where o0;, is the first crossing in the front diagram of Z on the right of the
vertical line {fp} x R C S x R and the crossings are read from left to right.
In this article, we shall construct Legendrian loops by performing Legen-
drian isotopies that primarily consist of Reidemeister moves in the front. In
particular, the three central operations that we use are
(i) Reidemeister III moves. In terms of the given braid word presentation
B = B(B), the Reidemeister III move consists in applying the relation
0i0i+10; = 0i+10;0;+1. We shall refer to a Legendrian isotopy that imple-
ments the substitution

0i0i4+10; V> 0410041

as an ascending Reidemeister III move, and denote it by R3%. Similarly,
we refer to a Legendrian isotopy that implements the substitution

0i+10i0i41 ——> 00410}

as a descending Reidemeister I1I move and denote it by R3¢%. Thus, either
R3 Reidemeister move is understood as a Legendrian isotopy.
(ii) Cyclic permutation. Consider a braid () represented by

l
B=1]oi, 1<i;<k—1.
j=1

By definition, a cyclic shift ¢ is a Legendrian isotopy {9 };c[o,1] that brings

the geometric braid Z(5) to ¥1(#(5)) such that the braid word ;(3)
for the latter is

!
i) = []oi, |oir, 1<ij<k-1
j=2
Note that this braid word for v;(8) is read with respect to the fixed
basepoint #y. Explicitly, this Legendrian isotopy can be geometrically
visualized by rotating Z(/3) to the left by an appropriate angle while
keeping the zero section fixed.
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Since we study Legendrian braids in (J1S!, &), instead of (J1[0,1], &),
two braid words 87 = B2 that differ by a cyclic permutation yield Leg-
endrian isotopic A(f1) and A(B2). Hence, the operations above produce
Legendrian isotopies.

(iii) Commutation. The third move ~ is just implementing the commutation
relation in the braid group By. It is described as follows:

p—1 l p—1 l
H Oi; OipTipi1 H Oi; ’ H Oi; Oipy10ip H Oi; )
Jj=1 J=p+2 J=1 Jj=p+2

with indices 1 <14; <k—1,1 <p <l—-1and 4,41 # ip=1. This move can
be realized by a compactly supported Legendrian isotopy in (J'St, &),
which we also refer to as ~, which is the greek letter for ¢, standing for
commutation.

Ezample 2.1. Consider the braid word 8 = (109 - ... 0,_1)™", which
geometrically represents the Legendrian torus link A(n,m) = A(B) C (R3, &).
Then the composition of the cyclic shift § exactly (n — 1)-times yields a Leg-
endrian loop 6”1 for A(n,m). This is the Legendrian loop studied in [42],
where it is shown to be a non-trivial Legendrian loop. We shall provide our
own alternative proof of this non-triviality.

2.3. The Xq-loop for A(3,6). In this subsection we define a Legendrian
loop ¥; for the maximal-tb Legendrian links A(3,3s) C (R3,&y), s € N, rep-
resented by the positive braid %(3), with braid word 8 = (c102)*¢t1)| in the
front domain S' x R. The loop ¥ is defined as the composition of Legendrian
isotopies induced by the following sequence of moves:

)3(s+1) +1

1)
(o109 = (o10901090109) T & (090102010901)°

Réd (0'10'20'10'10'20'1)(5+l) Réa (0'10'20'10'20'10'2)(s+1) = (0'10'2)3(S+1).

In the above sequence, the underlined letters indicate changes in the braid
word. In words, the first isotopy is a cyclic shift moving o1 to the end of the
braid by shifting left past {fp} x R C S x R. The second isotopy consists of
(35 + 3) simultaneous and commuting Reidemeister R3% moves, whereas the
third isotopy consists of (3s + 3) simultaneous and commuting Reidemeister
R3% moves. The composition of these isotopies yields the initial braid word
(0102)35+Y) | and thus it generates a Legendrian loop.

Definition 2.2. Consider A(3,3s) C (R3,&t). The Legendrian isotopy
Y1 is the Legendrian loop of A(3,3s) induced by the sequence of Legendrian
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isotopies

3s+20,

)3(s+1) o1

[
(0’10’2 %0'2(0'10'2)

R3¢ R3%
~ ((010201)(010201)) ) = ((010201)(020102)) Y,
once the zero section S1 C (J Lgt &) is satellited to the standard unknot.

Definition 2.2 yields Legendrian loops for A(3,3s) for any s € N. In this
article it shall suffice to focus on the case s = 2. It might be relevant to notice
that in Section 4 we shall prove that the loop ¥; is non-trivial as a Legendrian
loop and it is different from the cyclic loop in Example 2.1. In fact, the ¥;-loop
and the cyclic shift  for the braid 3 = (0102)? will suffice in order to construct
the representation in Theorem 1.1.

Remark 2.3. The Legendrian loop 33 is geometrically constructed in order
to algebraically act as the first Artin generator for a braid group action of Bj

into C[M(A(3,6))].

2.4. The Z;-loop for A(4,4). Let us now define a Legendrian loop Z; for
the maximal-tb Legendrian links A(4,4s) C (R3,&), s € N, represented by
the 4-stranded positive braid #(8), with braid word 8 = (o10903)*(+D).

The Legendrian loop =1 is described by the cyclic shift

)4(s+1)

)
(2.1) (010203)4(5+1) ~ 0203(010203)48+301 = (020301

followed by the following sequence of moves:

I 1
(020301090301020301090301) 5TV = (090103020301 090301090301) Y
R3d s

v +1
~ (0'20'10'20'30'20'10'20'30'10'20'30'1)( )
R3¢ 1 .
~ (010201030201020301020301)(s+1) (\Ilg ) until here)
s+1)

v
s+1) ~ (0'10'20'30'10'2(710'20’3010’20’103)(

{=

(010203010201020301020301)(

=

3% R3%
1 1
~ (010203010201020302010203)(S+) ~ (010203010201030203010203)(s+)

(0‘10‘20‘30‘1020‘30‘1020’30‘1020‘3)(8+1) = (010203)4(S+1) (\1152) until here).

{=

In each of the above rows, the underlined letters represent those braid
generators, equivalently crossings of the front, which have been affected at
each step when performing the indicated Legendrian isotopy, consisting either
of a Reidemeister R3 move or a cyclic shift §. Note that the sequence above
ends with the braid word (010203)4(5“), and thus yields a Legendrian loop
when preconcatenated with the Legendrian isotopy in equation 2.1.
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Definition 2.4. Consider A(4,4s) C (R3,&). The Legendrian isotopy =i
is the Legendrian loop of A(4,4s) given by concatenating the two sequences
above and satelliting the zero section S C (J1S1, &) to the standard unknot.

We now proceed with the construction of the second Legendrian loop =Zo,
also associated to the Legendrian links A(4, 4s). In conjunction with =3, to be
described momentarily, and the Legendrian loop Z; above, =1, =3, =23 will be
the geometric ingredient for Theorem 1.3.

Remark 2.5. The Legendrian loops =1, 22, 23 are geometrically constructed
to algebraically produce an action of the braid group By into C[M(A(4,4))].
Intuitively, =1, 29, Z3 act respectively as the three Artin generators for By.

2.5. The Eg-loop for A(4,4). Let us now construct the Legendrian loop
Zy for the maximal-tb Legendrian links A(4,4s) C (R3, &), s € N. We shall

describe it using the same notation as in Section 2.4 above. The Legendrian
loop Zj starts with the braid word (o10203)***+D | and it is described by the
following sequence of Legendrian isotopies:

s+1 l s+1
(0'10'20'30'10'20'30'10'20'30'10'20'3)( ) ~ (0'10'20'10'30'20'30'10'20'30'10'20'3)( )

R3¢

§
1 1
~ (020102030203010203010203)(S+ ) & ( s+1)

01020302030102030102032)(

l s+1
~ (010203020103020301020302)( )

oy
&
QU

Q

(0'10203020102030201020302)(S+1) (\Ilgl) until here)

=y
&
U

s+1)

Q

(010903010201030201020303)

=
w
Q

+1
(010203010901030901030203) 5D

%

M

T +1 (2
X (010903010203010203010903) 5+ (0}

)

until here).

In each row, the underlined letters represent those crossings that have
been affected when performing the indicated Legendrian isotopy, consisting
either of a Reidemeister R3 move, a cyclic shift § or a commutation . In the

above description of =2, we denote by \Ilgl) the Legendrian isotopy consisting

(2)
t

the Legendrian isotopy consisting of the moves performed in the last four

of the moves performed in the first six equivalences, and we denote by ¥

equivalences. The decomposition into the two pieces \1'51) and \1152) will be

used in Section 5. Note that these \1'51) and \IJEQ) pieces for the Legendrian
loop =5 are different from the \Ifgl) and \If§2) pieces for the Legendrian loop =
in Section 2.4 above; this repeated notation for the pieces is acceptable because
we will only be using these pieces to study Z; or Z5 one loop at a time, and thus

the notation will be clear by context. Finally, note that the sequence starts
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and ends with the braid word (o10203)*¢*1) | and thus it defines a Legendrian
loop for A(4,4s) according to the fronts represented by each braid word.

Definition 2.6. Consider A(4,4s) C (R3,&:). The Legendrian isotopy Za
is the Legendrian loop of A(4,4s) given by the sequence of Legendrian iso-
topies above once the zero section S' C (J1S1, &) is satellited to the standard

unknot.

2.6. The Zs-loop. We now construct the third Legendrian loop Z3 for
A(4,4s) C (R3,&), s € N. The Legendrian loop =3 starts with the braid word
(010203)4(5“), and it is described by the following sequence of Legendrian
isotopies:

s+1) 2 s+1
(010203010203010203010203)( )N(010201030203010203010203)( )

Rg‘l (s+1)
~ (090109030203010203010203)

R3* 1 .
~ (020103020303010203010203)(SH) (\IJE ) until here)

»

.
D~ (0203010201030302030102073

7 1
~ (020301020303010203010203)(S+ ) )(S+ )

=

30,
~ +1
=~ (0'20'30'20‘10‘2030’30'2030’10'20‘3)(S )

a

oy
&

(0'30'2030'10'20'3030’20’3(710’20’3)(8+1) (\IJEQ) until here).

Q

R34

+1) B3 +1
(030201030903030203010203) 5TV X (030001090302030203010903) 5TV

Q=2

! (s+1)

=
1)

s+1 ,.:Y_,
(030102010302030203010203)( ) & (030102030102030203010203)

%

d
+1) 3 +1
(0‘30‘1020'30'1020'30'20'1030'20'3)(S ) ~ (030'10'2030'10'20'30'20'10'2030'2)(5 )

Q=

34 Y
~ s+1) L s+1
~ (0'30'10'20'30'10'20'30'10'20'10'30'2)( ) ~ (0'30'10'20'30'10'20'30'10'20'30'10'2)( )

=

(0102030102030102030102@)(SH) = (010203)4(S+1) (\PgS) until here).

Qe

Note again that the two pieces \Ifgl), \II§2) for this Legendrian loop =3 differ
from the \I'El) and \I’£2) pieces for the Legendrian loops Z1,Zs in Sections 2.4
and 2.5 above.

Definition 2.7. Consider A(4,4s) C (R3, &), the Legendrian isotopy =3
is the Legendrian loop of A(4,4s) given by concatenating the sequence of
Legendrian isotopies above once the zero section S* C (J1S1, &) is satellited
to the standard unknot.

The loops ¥1,6%, 21,29 and =3 are the needed geometric ingredients in
our proof of Theorems 1.1 and 1.3. The Legendrian loops 3, 62 will give rise
to the modular action, and Z1,Z52,=23 to the faithful representation of My 4.
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From a contact topology viewpoint, it is quite outstanding that the infinitely
many Lagrangian fillings in Corollary 1.5 can arise in this direct and explicit
manner. Let us now move to the algebraic invariants that we shall use in order
to build the representations of the modular group PSL(2,7Z) and the mapping
class group Mo 4.

Remark 2.8. The reader is invited to discover the analogue of =;, 1 <i <3,
for the positive braid g = (o102 - .. .- Un_l)”(5+1). These are Legendrian loops
for the n-component Legendrian links A(n, ns). We shall nevertheless not need
these loops in the present article, and thus we do not presently discuss them.

3. Microlocal Legendrian invariants

In this section we introduce the algebraic invariants that we use in order
to construct the representations in Theorems 1.1 and 1.3. These are Legen-
drian invariants arising from microlocal analysis and the study of constructible
sheaves on stratified spaces, as introduced by M. Kashiwara and P. Schapira
in the works [38], [44]. The articles [64], [65] have recently been developing
these Legendrian invariants. The present manuscript highlights a remarkable
application of these invariants to the study of Lagrangian fillings.

Let A C (R3 &) be a Legendrian link. Identify the standard contact
3-space with the positive hemisphere bundle (7°%F(R?), &) of the real 2-plane.
Let Shy (R?,C) be the derived dg-category of constructible sheaves of C-vector
spaces on R? with singular support intersecting 7°°R? within the Legendrian A.
Suppose that rot(A) = 0, and consider the microlocal monodromy functor
pmon : Shy (R% C) — Loc(A) to the category of local systems of complexes
of C-vector spaces [65, §5.1]. This allows us to consider the following moduli
of objects:

MC(A) :={ZF* ¢ ShA(R2,C) : tk(pmon(.#*)) =1,
pmon(Z#*) concentrated in degree 0}.

It is shown in [38], [65] that the category Shy (R?, C) and, in particular, M°(A),
is a Legendrian invariant of A. In the present article, we restrict to Legendrian
links A C (R3, &) that arise as A(3) for a positive braid 3. For this class of
Legendrian links, rot(A(3)) = 0, and there exists a binary Maslov potential.
Indeed, the braid piece carries the zero Maslov potential, and satelliting to the
standard Legendrian unknot — with its standard front — increases the Maslov
potential by exactly one.

3.1. The Broué-Deligne-Michel description. In order to directly compute
with the moduli spaces M°(A(S)) and construct the representations in The-
orems 1.1 and 1.3, we require a more explicit description of the moduli space
MPC(A(S)). This description is available due to the work [65], which proves
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that M°(A(f)) is isomorphic to a classical moduli BS(3), modulo the gauge
action, associated to a braid 8 by Broué-Michel [10] and Deligne [18].

Let G = GL(C), and let B C G be the Borel subgroup of upper triangular
matrices. The quotient G/B is the flag variety, whose points parametrize
complete flags V* of vector subspaces of CF. The Bruhat decomposition

G/B= | | BuB/B
weWw

implies that the relative position of a pair of flags (V}*,Vy) is determined by
an element s € Sy = Weyl(G) of the Weyl group, in this case a permutation in
the symmetric group. Consider the Artin generators o; € By, 1 <i <k —1,
and denote by &; the image of g; under the projection B — Si from the
braid group to the A;_i-Coxeter group Si. Given a flag V'*® and a permutation
s € Sk, let S5(V*) be the set of flags in relative s-position with respect to V.

Definition 3.1. Let 8 be a positive braid word

1(5)
B=]]oi,, 1<ij<k-1,
Jj=1

and consider the subset

BS(B) = {(Vi*,.... Vity) € (G/B) D) - Vs y € S5, (Vim),
1<m<I1(B)}C(G/B)"P),

where the index 1 < m < () is understood cyclically modulo I(5); i.e., the
condition for m = [(8) reads V;* € Sgil(m (Vi{))- By definition, BS(j) is said
to be the open Bott-Samelson variety associated to .

For each (3, the group G acts on the open Bott-Samelson variety BS(f3) di-
agonally on the left, given that the flag variety G/B is given by the B-action on
the right. The article [65, §6] identifies M°(A(B)) with the quotient G\BS(J).
It is a consequence of this identification that our moduli space M°(A(f3)) can
be described as follows.

Choose a set of points {0o,01,...,0;3)} € S1 such that the vertical lines
{0} xR, 0 < m < I(B) do not intersect the front 3 C S* x R at a crossing
and there exists a unique crossing of # between {0,,} x R and {0,,11} X R,
0 < i < (B). Then M°(A(S)) is the moduli space given by associating a
complete flag V3 along each vertical line {6,,} x R such that V§ = Vlzﬁ)
and two flags V5 and V5, differ only and exactly in their 4,,,1-dimensional
subspaces for all 1 < m < [(8), modulo the gauge group action of GLg(C).
This description in terms of BS(/3) will be used in Sections 4 and 5.



222 ROGER CASALS and HONGHAO GAO

3.2. Moduli of framed sheaves. In the proof of Theorems 1.1 and 1.3 we
shall need a framed enhancement M(A(S), ) of the Bott-Samelson varieties
MPC(A(B)). In precise terms, the points of M(A(B),7) are given by the I(5)-
tuples of flags [(V*,.. .,V}zﬁ))] € M°(A(B)) equipped with trivializations 7
for the stalks at a specified set of points. In this case, we choose the set of
points such that the set contains exactly one point for each region where the
constructible sheaf has a 1-dimensional stalk. Given that they are in bijection,
we will interchangeably speak of these points or the open strata in the front
diagram that contain them. These open strata shall also be referred to as
regions. Hence, in the language of Bott-Samelson varieties, the trivialization
T consists of a series of isomorphisms

vil>c, 1<m<Ip).

In our context, the moduli spaces of framed sheaves M(A(f), T) are algebraic
varieties [65]. It should be emphasized that the moduli space M(A(S),T)
depends on the choice of trivialization 7. In our choice above, M(A(fB),7)
shall depend on the choice of braid word 8. Indeed, the length of the tuple
is precisely (). Nevertheless, the article [64] shows that a Legendrian iso-
topy generates an equivalence of moduli space M(A(f), ) of framed sheaves,
with the trivialization, and its region, being pushed forward under the isotopy.
Thus, in studying the action of a Legendrian loop on M(A(f), ) we identify
the moduli spaces of framed sheaves along the Legendrian isotopy and compare
the action at the canonically identified endpoints of the Legendrian loop.

Explicitly, let {W;}c[o,1) be a Legendrian loop based at the identity, i.e.,
U, = Id. By [64, §2], there is a canonical isomorphism between the moduli
spaces M(A,7) and M(PUy(A), (Uy).7) for all t € [0,1]. By virtue of being
a Legendrian loop, ¥; = Id, and thus we obtain an algebraic automorphism
U e Aut(M(A, 7)) of the moduli space M(A, 7). This automorphism is to
be understood as the monodromy of the Legendrian loop {W},c(oq], in line
with T. Kélman’s [42, §3] monodromy invariant. The automorphism ¥ €
Aut(M(A, 7)) in turn induces an automorphism ¥* € Aut(C[M(A, 7)]) in the
coordinate ring of regular functions on M(A, 7).

In Theorems 1.1 and 1.3 the focus will be on two moduli spaces M(A(S), T)
for the two braid words 8 = (0102)? and 8 = (010203)® and a chosen trivial-
ization 7.

3.3. Ingredients on SLz-webs. The argument for the faithfulness in the
statement of Theorem 1.1, as presented in Section 4, requires the study of
the coordinate ring C[Gr(3,9)]. We need regular functions beyond the Pliicker
coordinates in C[Gr(3,9)] because the pull-back of some of the Pliicker coordi-
nates under the (action on certain moduli spaces induced by our) Legendrian
loops are no longer Pliicker coordinates. Thus, in this subsection we provide
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the ingredients that we use to study C[Gr(3,9)]. They were developed in [47]
originally, and we will use the notation and perspective established in [30].
Consider a closed disk D with m marked points on the boundary. By
definition, a tensor diagram in D for SL3 is a finite bipartite graph drawn in
D with a bipartition of its vertex set into black and white color sets such that

- the boundary marked points of D are black vertices of the graph, and they
are the only vertices of the graph at the boundary;
- the vertices that are not marked points, in the interior, are trivalent.

The case of interest in this manuscript is m = 9 marked points at the boundary.

: Y v \{UJ ”TYUS‘ ! \(vj
Vg Vg, vy, Uy,

Figure 2. The diagrams on each of the left-hand sides of the
equalities are called Ag-spiders in [47, §4]. The diagrams on the
right-hand sides follow the notational convention of [30], white
vertices are sources and black vertices are sinks. The white
tripod represents det(v;v;vg), v, vj, vy € V = C3, which is the
SLs-invariant tensor given by a fixed volume form V&3 — C,
and the black tripod represents its dual.

Let V = C2 be a vector space endowed with a volume form. Suppose
we assign a vector v € V to each black vertex and a covector v* € V* to
each white vertex. Two basic SLs-invariant tensors associated to V are the
volume form V®3 — C and the dual form (V*)®3 — C. For the purposes
of this manuscript, they are diagrammatically encoded by a white tripod and
a black tripod, respectively, as depicted in Figure 2. This follows the notation
of [30], with white and black vertices, but note that these diagrammatics were
previously studied in [47] for rank 2 algebras; in particular, SL3 is associated
to the A>-Dynkin diagram, and these tensor diagrams were called As-spiders
by G. Kuperberg. The canonical pairing V ® V* — C is diagrammatically
given by an edge between a black and white vertex; i.e., an edge can also be
considered as the identity in V if we identified V & V*.

Now, suppose that vectors vi,...,v,, € V are assigned to the m marked
points at the boundary of D, one vector per marked point. Then, a tensor
diagram can be used to define a C-scalar by repeated contraction using the
basic SLs-invariant tensors. For instance, Figure 3 gives two examples of tensor
diagrams and their associated functions for m = 9; see [30] and [34, §9] for
more details.
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Figure 3. Two examples of SLs-webs for the Grassmannian

Gr(3,9). As invariant functions, and as elements of the co-
ordinate ring C[Gr(3,9)], these tensor diagrams represent the
functions det(vovgvyg) det(vsvgvy) det(vgvguy), for the diagram
on the left, and det(vg X v1, vy X v3,v4 X v5) det(vgvrvg) for the
diagram on the right.

Finally, a point in the (affine cone of the) Grassmannian Gr(3,9) will be
represented by an ordered tuple of nine vectors in V', modulo the appropriate
action. In this manner, a tensor diagram gives rise to a regular function in the
coordinate ring C[Gr(3,9)]. For instance, Figure 3 (left) represents the product
P34 P57 Pg1 € C[Gr(3,9)], where Pjj, = v; Avj Ay is a Pliicker coordinate.
See Section 4.2 for further examples.

Remark 3.2. We conclude with a piece of terminology. A planar tensor
diagram is often called a web in the literature. This is the reason that this
diagrammatic calculus is referred to as web combinatorics; we refer to the webs
associated planar tensor diagrams for SLz as SL3-webs, as in [34]. Following
[47], a web is non-elliptic if it contains no 2-cycles based at a boundary vertex
and if all of its faces formed by interior vertices are bounded by at least six
sides. G. Kuperberg showed in [47] that (non-elliptic) webs can be used to
construct bases for many rings of SLz-invariants.

In the next two sections we prove Theorems 1.1 and 1.3. These two proofs
are independent of each other. The reader is nevertheless encouraged to read
the proof of Theorem 1.1 first, as it also sets the main techniques and notation
for the proof of Theorem 1.3.

4. The PSL(2,Z) representation for A(3,6)

Let us prove Theorem 1.1. For that, we shall compute the action of
the two Legendrian loops 1,42 constructed in Section 2 into the coordinate
ring C[M(A(B), 7)] of the framed Bott-Samelson variety M(A(f),7), where
the braid is fixed to be 8 = (0102)° and the trivialization 7 is given at
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the 1-dimensional stalks depicted as dots Figure 4, where the braid g for
the Legendrian link A(3,6) is also depicted.! These monodromy invariants
%, (62)* € Aut(C[IM(A(B),7)]) will be shown to be non-trivial and generate
an action of an infinite group on the coordinate ring CIM(A(S), 7)].

Figure 4. The identification of M(A(3,6)) with the positroid
cell in Gr(3,9).

4.1. The monodromy effect within Gr(3,9). The first step of the argument
is to identify the moduli M(A(B), ) with the positroid stratum II, C Gr(3,9)
in the projective Grassmannian Gr(3,9), where r is the cyclic rank matrix asso-
ciated to the positive braid (o102)°. The canonical embedding of M(A(B),7)
into Gr(3,9), with image II,, is obtained as follows [64, §3.2]. Given a point
(V2. ..., V%) € M(A(B), 7), the 9-tuple of vectors

(Ulva7 v ,Ug) € (‘/1(1)7 ‘/3(1)’ 5(1)7 sty 1(71)))
modulo the GLg(C)-action, defines a point in Gr(3,9), where the choice of
vectors is given by the framing. These vectors (v1,ve,...,v9) are depicted in

Figure 4. The advantage of this algebraic embedding M(A(B),7) — Gr(3,9)
is that it allows us to use elements in the homogeneous coordinate ring of
Gr(3,9) restricted to M(A(3),7) in order to study the effect of the mon-
odromies Y%, (6%)* € Aut(C[M(A(B),7)]). We shall henceforth denote the
framed moduli space by M(A(S)), where the trivialization 7 is implicitly cho-
sen to be as above.

Remark 4.1. Consider three vector spaces U, W,V of dimensions dim(U) =1,
dim(W) = 2 and dim(V) = 3. A framed constructible sheaf # € M(A(B),7)
has stalks isomorphic to U, W and V as depicted in Figure 4. The 9-tuple
of vectors described above can also be obtained by parallel transport of the
stalk of .7 € M(A(B)) in the U-region to the V-region along the dashed paths
depicted in Figure 4. Note that it does not matter whether a dashed arrow
passes a crossing from its left or its right.

!Colored version of figures can be seen in the on-line version of the journal.
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Let us now analyze the action of the Legendrian loops 3 and 62 on the
coordinate ring of M(A(/3)) by studying their action on the 9-tuples of vectors
(v1,v2,...,v9). For that, we must identify the explicit effect of each of the
Legendrian isotopies constituting ¥; and 6. These consist of cyclic shifts and
Reidemeister III moves.

The effect of the Legendrian isotopy 62 described in Section 2.2(ii) above
is precisely the cyclic shift on the 9-tuple of vectors:

52(1)1,1)2, v ,’Ug) = ('1)9,7)2,. . .,1)1).

The effect of Reidemeister III moves is more interesting. Indeed, the
Reidemeister R3? introduces a U-region and thus contributes to a vector uy,
whereas the Reidemeister R3%, conversely, reduces the number of U-regions by
exactly one, thus making a vector disappear. Figure 5 depicts the case where
the 3-tuple (v1,v2,v3), in the region given by the braid 01090102, becomes the
4-tuple (v1,v9,u1,v3) for the braid o1010207.

V N

Figure 5. The effect of a Reidemeister R3% move on M(A(3)).

In terms of the 5-tuple of flags (V*,..., V), associated to the braid
01090103, as described in Section 3, the vectors are v; = Vl(l), Vg = ‘/2(1) = 1/23(1)
and vy = V4(1) = ‘/5(1). Performing the descending Reidemeister III in Figure 5

yields the new vector w1, whose direction is uniquely defined by V1(2) ﬂV5(2), and
the normalization is given by the framing. The following proposition describes
the algebraic effect of ¥y:

PROPOSITION 4.2. The Legendrian loop 1 induces the morphism
(v1,v2,v3; 04, Vs, V6; U7, Vg, Vg) > (V2, U1, U3; Us, Uz, Vg; Us, U3, V9),
where uy,us and ug are given by the intersections
ui € (v1,v2) N (v3,vq), ug € (vg,v5) N {vg,v7), ug € (v7,v8) N (vg, V1),

and the three normalizing conditions v1vy = Vou1, V4U5 = VsUg and V7Ug = UgU3
mVAV.
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Figure 6 depicts instances of the conclusion of Proposition 4.2 in terms
of G. Kuperberg’s SLs-web combinatorics [47, §4]; see Section 3.3 above. The
reader is also referred to [30], [46] for the basics of planar tensor diagrams and
SL3-webs, which we shall use in Section 4.2. In particular, Figure 6 displays
the pull-backs (31)* P47, (31)* Pasg and (X1)* Psgg of three Pliicker coordinates
P, € C[Gr(3,9)], 1 <i < j< k<9, where Pj, = v; Avj Avg. In particular,
PrOpOSitiOH 4.2 implies (21)*]3147 = P258 and (21)*P369 == P369.

Figure 6. The webs associated to (31)*Pi47, on the left,
(X1)* Pass, in the center, and (X1)* P3g9, on the right, according
to Proposition 4.2. In the web for (31)* P2sg we have depicted

uy in green, ug in red and us in blue.

We shall provide the proof of Proposition 4.2 momentarily. However, let
us first conclude the proof of Theorem 1.1 assuming Proposition 4.2.

4.2. The faithful PSL(2,Z)-action. For that, we study the monodromy ac-
tion of the subgroup I' = {[¥1], [§?]) C m1(L(3,6)) generated by the homotopy
classes of the two Legendrian loops 1,42 into the set of 9-tuples of vectors
in C3. In order to show that this action is indeed non-trivial, we choose a
function A € C[Gr(3,9)] and ensure that the pull-backs of this function are
distinct. For our braid 8 = (0102)?, let us choose the Pliicker coordinate
A = Py in C[Gr(3,9)], given by Pia7(v1,...,v9) = v1 A vg A vy. The alge-
braic claim that needs to be proven is that the monodromy of 1,2 induces
a faithful PSL(2,Z)-action on the orbit O(Pi47).

First, let A = 52 and B = Zl o) (52. We have that A*(P147) = P258,
(A2)*(Pr47) = P39 and (A%)*(Piy7) = Py1 = Pry7, and thus A generates a
Zs-action on the orbit O(Pi47). In general, the action of A and B cannot
be exclusively written in terms of Pliicker coordinates. In order to study our
monodromy action we shall be using SL3-webs; see Section 3.3 above and ref-
erences therein. In terms of SLs-webs, the diagrams associated to the Pliicker
coordinates P47 and A*(Pj47) = Posg are depicted in Figure 7.

The monodromy of the Legendrian loop B generates a Zs-action on the
orbit O(Pl47). Indeed, the square B? = %1 0 §2 o0 ¥; 0 §2 pulls back P47 as
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Figure 7. The webs associated to the Pliicker coordinates P47,
on the left, and P»sg, on the right. In general, % acts by clock-
wise rotation on webs.

follows:
(B*)*(Prar) = (6%)" 0 (21)* 0 (6%)" 0 X} (Puar) = (6°)" 0 (31)* 0 (6%)*(Pass)
= (6%)* o (31)*(Psg9) = (6°)*(Ps69) = Prar,

where we have used (X1)*(Psg9) = Psgg, as implied by Proposition 4.2. Thus,
A* generates a Zs-action and B* generates a Zsg-action. Since the modular
group PSL(2,7Z) = Zs x Zs is a free product, it suffices to show that A and B
generate a faithful action with no relations in the subgroup ([A], [B]). Following
[34, §10], we will prove this by using the Ping-Pong Lemma [39, §II.B|:

LEMMA 4.3 ([39, 51]). Let I' be a group acting on a set X, let I'1,I'y be
two subgroups of I'; and let G be the subgroup of I' generated by I'y and T's.
Suppose that |T'1| > 3 and || > 2.

Assume that there exist two non-empty subsets X1, Xo in X, with Xo not
ncluded in X1, such that

Y(X2) C X1 Vyel,y#1

Y(X1) € Xy VyeTy,vy#1.
Then G is isomorphic to the free product I'1 % I's.

We apply Lemma 4.3 for T' = 71(£(3,6)), G = ([A],[B]), I'1 = ([4]) and
I'y = ([B]), which indeed satisfy |I';| > 3 and |I's] > 2. The action of G in
X is given by the induced monodromy, as described in Section 3. Consider
X = O(P147) to be the orbit of Pi47. Let us now define the Ping-Pong sets X
and X5. This shall be done in terms of their web diagrams, as follows:

Definition 4.4. The set X1 C O(P147) is the set of all (non-elliptic) webs
in C[Gr(3,9)] that do not contain any of the pieces in Figure 8. That is, a web
is in X \ X if it contains at least one of the pieces in Figure 8.

Similarly, the set Xo C O(Py47) is the set of all (non-elliptic) webs in
C[Gr(3,9)] that do not contain any of the pieces in Figure 9.
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Figure 8. The webs in the set X; do mot contain any of these
six pieces.

Figure 9. The webs in the set X2 do not contain any of these

six pieces.

It suffices to prove that X;, Xo in Definition 4.4 are Ping-Pong sets for
the monodromy action. It is useful to remind ourselves that the pull-back
A* = (62)* acts by clockwise rotation by 27/9-radians on the web diagram.

First, let us prove the inclusion A(X3) C Xj. Suppose that we have a
web Wy € X5. We need to argue that A(W3) contains none of the six patterns
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displayed in Figure 8. Suppose A(W3) contained any of these six. Then the
clockwise rotation by 47 /9-radians of the diagram A(W3) will contain a spike at
one of the boundary vertices 2, 5 or 8, and thus not be in X5. This rotation by
47 /9-radians of the diagram A(W>) represents A2(A(W3)) = Wy since A3 = id
in O(P147), which contradicts Wy € Xo. This shows A(X2) C X;.

Second, let us prove the inclusion B(X7) C X5. Consider a web W7 € X;.
We need to argue that B(W7) contains none of the six patterns displayed in
Figure 9. Suppose B(Wi) contained any of the three patterns displayed in
the first row of Figure 9, i.e., a spike at either one of the boundary vertices
2, 5 or 8. By Proposition 4.2, the web X7 (B(W7)) contains one of the three
patterns in the first row of Figure 8 rotated counter-clockwise by an angle of
27 /9-radians. In consequence, the 27/9-clockwise rotation

(6%)* o S1(B(W1)) = B(B(Wh)) = W1 € X3

of 5 (B(W7)) does not belong to X1, which contradicts Wi € X;. Thus B(W})
does not contain any of the three patterns displayed in the first row of Figure 9.

Now, suppose that B(W7) contained any of the three patterns displayed
in the second row of Figure 9. Proposition 4.2 implies that the web X3 (B(W7))
contains a counter-clockwise rotated copy, by an angle of 27/9-radians, of one
of the three patterns in the second row of Figure 8. Thus, the 27 /9-clockwise
rotation (62)* o X%(B(W1)) does not belong to X. This is a contradiction with

(6%)" 0 21(B(Wh)) = B(B(W1)) = Wi & Xi.

Hence B(W7) cannot contain any of the three patterns displayed in the second
row of Figure 9. This shows B(X;) C Xs, as desired. In conclusion, X;
and X9 are Ping-Pong sets and Lemma 4.3 implies that G = ([A],[B]) is
isomorphic to PSL(2,Z), and thus the restriction of the monodromy action
to this subgroup is a faithful PSL(2,Z)-representation along the orbit X =
O(Py47). This concludes the proof of Theorem 1.1 once Proposition 4.2 has
been proven.

4.3. Proof of Proposition 4.2. Let us consider the braid word 8 = (o102)?
and consider the braid word given by the piece 8y = (c102)3, such that 8 = 3
is a concatenation of 8y three times. We refer to the piece §y as a window for the
braid 3, such that 8 consists of three windows. The Legendrian loop X1 consists
of a cyclic permutation and a sequence of braid equivalences given by the
Reidemeister I1I moves. The braid equivalence can be performed equivariantly
over each of the three windows, and hence the morphism induced from ¥ is
periodic with respect to this prescribed window decomposition once the shift
is applied. It thus suffices to work with one window to describe the morphism.
Figure 10 depicts the window before a cyclic shift, bounded by the vertical
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grey boundaries, and after a cyclic shift, which is bounded by the vertical blue
boundaries.

V= V1V2V3 = V9U3V4 = VU3V4V5

V102

B

V45

a

V102 U304 V45
CRY

U1 >< ;2\021“ s v3 V4 >< U5
N
AT\
V102 V304 \ V45
vy >< \\2u1 U1v3 U3 vs
~—
U1

(%) v
Figure 10. First window [y of the Legendrian braid 5 = (o0102)

associated to the Legendrian link A(3,6). There are total of
three windows.

9

Consider the union of the first window with its cyclic shift, as depicted
in Figure 10. A framed sheaf restricted to this union is determined by vectors
{v1,v2,v3,v4,v5}, which are placed at the regions bounded by the first and
second strands. In the diagrams in Figure 10 the (stalk of the) sheaf is spec-
ified in each open region given by the stratification of the front diagram, by
associating the vector space spanned by the vectors written in the region. The
volume form in each region is given by the ordered wedge product of vectors
in that region.
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Now we focus on the grey window. Its boundary underlines the two com-
plete flags

0 C (v1) C (v1,v9) CV, 0C (vg) C (vg,v5) C V.

Each flag is shared by two nearby windows. To reduce this replication, one
can break the symmetry by choosing one flag for each window. Without loss
of generality, we choose the flag on the left boundary of each window. In
particular, the sheaf restricted to the grey window is reduced to the data of
three vectors {vy,ve,v3} in V.

Note that even though the subspaces (v4) and (v4, v5) cannot be computed
from {v1, vy, v3}, they are uniquely determined by the next window, and the
sheaf is still well defined over the grey window. We now perform the descending
Reidemeister move III depicted in the middle of Figure 10. This R3? move
creates a region and a new vector u1, as we described in the discussion preceding
Proposition 4.2. From the front, the microlocal support condition for our
constructible sheaf implies that

<’01,1)2> = <v2,u1>, <’U3,’U4> = <U1,U2>.

Hence u; lies in both (v, v2) and (vs, v4). Moreover, the crossing condition at
the crossing depicted in red in Figure 10 yields that the complex

0 — (u1) — (v1,v2) ® (v3,04) — V =0
is a short exact sequence of C-vector spaces. Therefore
(u1) = (v1,v2) N (v3,v4),
and uq is the unique vector such that
V1V = VoUq.

This establishes the description of u; in the statement of Proposition 10.
Let us now shift to the blue window. The constructible sheaf restricted to
this window is determined by {v2, u1,vs,v4}. The fourth vector vy disappears
upon performing the ascending Reidemeister III move, as depicted in the bot-
tom of Figure 10. After this R3% move, the sheaf is uniquely determined by
{va,u1,v3}. The morphism induced by ¥y thus starts with

(v1,v2,v3) = (v2,u1,v3),

where u; € (v1,v2) N (v3,v4) and vive = wvaug, and it continues to remove
v4. These two moves are preceded by the cyclic shift, and their composition
yields the expression in the first, and thus any, window in the statement of
Proposition 4.2, as required.
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4.4. Comments on the proof. This concludes the proof of Theorem 1.1.
Before proceeding with Theorem 1.3, the following comments might be clar-
ifying. The geometric loops 1,62 are studied in the above proof of Theo-
rem 1.1 by analyzing their action on the ring of functions CIM(A(f),7)] of
the framed moduli space M(A(S), 7). It should be equally possible to deduce
Theorem 1.1 by studying their monodromy invariants in the ring of regular
functions CIM(A(B))] of the moduli spaces of sheaves, with no frame 7 cho-
sen, with the corresponding (C*)?-equivariant condition added. Indeed, the
positroid embedding of M(A(f), 7) inside the Grassmannian Gr(3,9) yields an
embedding of the moduli of sheaves M(A(8)) into the quotient Gr(3,9)/(C*)?
of the Grassmannian Gr(3,9) by the diagonal subgroup of GLg(C) acting on
the right, i.e., by column C*-rescaling.

It is our aesthetic opinion that working directly in the unquotiented Grass-
mannian Gr(3,9) yields a clearer understanding of the geometry, thus our
choice of using the moduli space of framed sheaves. In terms of cluster alge-
bras, the quotient Gr(3,9)/(C*)” has no frozen cluster variables, whereas the
Grassmannian Gr(3,9) [31], [59] has the cyclically consecutive Pliicker coordi-
nates as frozen cluster variables.

Remark 4.5. The articles [34], [62] respectively use the affine cone on the
projective Grassmannian Gr(3,9) [34, §3] and the decorated Grassmannian
9r(3,9) [62, §2.1]. These can be equivalently considered [62, Lemma 2.6]
and correspond to matrices Matsg up to the left action of SL3(C), rather
than GL3(C), which would yield the projective Grassmannian Gr(3,9). In
terms of the moduli space of framed sheaves M(A(B),7) used in our proof
of Theorem 1.1, we should require the additional data of a trivialization of
the microlocal monodromy along A(f) itself [65, §5.1]. By context, it seems
appropriate to refer to this space as the moduli space of decorated sheaves.
The line of argument above should also work by using the decorated positroid
embedding of the space of decorated sheaves into the decorated Grassmannian.

Let us now move forward with Theorem 1.3. Note that Theorem 1.1 on
its own allows us to conclude Corollaries 1.5 and 1.10 in the cases (n,m) €
H\ {(4,4),(4,5),(5,5)}, and Corollaries 1.7 and 1.8 for A(3,6). In order to
cover the Legendrian links A(4,4), A(4,5) and A(5,5), and for completeness,
we now include the proof of Theorem 1.3, which is in line with that of Theo-
rem 1.1 above.

5. The M4 representation for A(4,4)

In this section we prove Theorem 1.3. The argument reproduces the strat-
egy for Theorem 1.1 above. In this case, the braid is 3 = (010203)® and the
moduli space M(A(f)) is identified with a positroid cell II, gy C Gr(4,8) by
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the same procedure. The action of the Legendrian loops =1, 2o, Z3 is described
by the following three crucial propositions:

PropPOSITION 5.1. The Legendrian loop Z1 induces the morphism
(v1, va, V3, V45 V5, V6, U7, V8) > (V2, U1, V3, Va3 V6, U2, V7, Vs),
where uy,us are given by the intersections
uy € (v1,v2) N (v3,v4,05), U2 € (v5,v6) N (v7,08,01),
and the normalizing conditions vive = vouy and vsvg = vgug in V AV.
PRroOPOSITION 5.2. The Legendrian loop Zo induces the morphism
(v1,va, V3, V45 V5, V6, U7, V8) > (U1, V3, U1, Va3 V5, VU7, U2, Vs),
where uy,ue are given by the intersections
u1 € (v2,v3) N (v4,v5,v6), U2 € (vg,vr) N (vs,v1,v2),
and the normalizing conditions vovs = vsuy and vgvy = vrug in VAV,
PROPOSITION 5.3. The Legendrian loop =3 induces a morphism
(v1,v2, V3, V45 V5, V6, V7, U8) —> (U1, V2, V4, U1; Vs, V6, Vs, Uz),
where uy,us are given by the intersections
uy € (v3,v4) N (v5,06,v7), U2 € (v7,v8) N (V1,V2,v3),
and the normalizing conditions v3vy = vau1 and vyvg = vgug in V AV.
Propositions 5.1, 5.2 and 5.3 are proven at the end of this section. The
action of the group I'y = (E;,Z9,E3) in the set of 8-tuples of vectors, repre-
senting a point in Gr(4,8), yields via pull-back an action on a subset of the
homogeneous coordinate ring C[Gr(4, 8)]. For the braid A(4,4), it does not
suffice to study the I's-orbit of a Pliicker coordinate, as we directly did for
Theorem 1.1, but rather a set of Pliicker coordinates. In this proof for Theo-
rem 1.3, we directly refer to known algebraic arguments whose nature is on par
with Section 4.2, as follows. Indeed, [34, Lemma 10.8] proves that the group
(21, Z2, 23) generated by the monodromies of the three Legendrian loops gen-
erates a faithful action of PSL(2,Z) = Zs * Z3 on the (cluster) automorphism

group of the coordinate ring C[Gr(4,8)]. This is achieved by studying the orbit
of the Pliicker set,

P = {P1378, Pazag, Paser, Pasts, P3as7, Pasar, Pasrs, Psers, Paaet},

which is a cluster seed for a triangulation of the annulus with four bound-
ary marked points. By [28, Prop. 2.7], the mapping class group of the four-
punctured sphere My 4 is isomorphic to the semidirect product PSL(2,Z) x
(Zy x Z3). The article [34, Th. 9.14] also shows that this faithful action
of PSL(2,Z) extends to the mapping class group My 4 as required. This is
achieved explicitly by studying the four cosets of PSL(2,Z) into My 4. In the
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algebraic argument, the set ' can be chosen to be the union of four sets, as
follows. The first set S is the union of a finite number of cluster charts [34,
§10.2] containing the set & of Pliicker coordinates above, and the remain-
ing three sets are the coset translates Z3(5), Z3=2(5), and Z32221(S). Here
=3, 2329 and Z3=9=1 are each a right coset representative for each of the three
non-trivial cosets of the inclusion of PSL(2,7Z) into My 4 above.

The crucial ingredient for the proof of Theorem 1.3 above is the statement
that the Legendrian loops we constructed in Section 2 indeed induce an action
of the (spherical) braid group By. This is precisely the content of Proposi-
tions 5.1, 5.2 and 5.3, which describe the algebraic effect of the Legendrian
loops =1, =9 and =Z3. Let us now prove these three propositions.

5.1. Proof of Proposition 5.1. We consider the braid words 8 = (10203)8
and By = (010203)*. Following the notation in the proof of Proposition 4.2
above, each (§j is a window and § = BS is the concatenation of two windows.
Similar to the proof of Proposition 4.2, it suffices to compute the induced
morphism in a window.

Consider the union of the first window and its one-term cyclic shift, de-
picted in the top diagram of Figure 11. The window before the shift has grey
boundaries. We choose to include the sheaf data on the left boundary in this
window and leave the sheaf data on the right boundary to the next window.
With this choice, a framed constructible sheaf in the grey window is determined
by four vectors {vy, vy, v3,v4} in V.

Now we study the morphism induced by the Legendrian loop Z;. The
sequence of braid moves can be carried out as the concatenation of two Leg-
endrian isotopies \Il§2) o \Ifgl). These two Legendrian isotopies \Ifl(tl) and \IJ,E2),
t € [0,1], are defined in Section 2. In Figure 11, \Ifl(tl) corresponds to the Legen-
) is depicted
from the middle diagram to the bottom diagram. After performing the Legen-
drian isotopy \Ifgl), t € [0,1], the diagram introduces a new vector u;. From the
diagram, we see that (vi,ve) = (ve,u1) and (uy,vs,vs) = (v3,v4,v5). Hence
uy € {(v1,v2) N (v3,v4,v5). To argue that the intersection is a 1-dimensional
subspace, we should discard the case that (vi,vs) C (v3,v4,v5). Inside the
middle figure, the condition at the red crossing yields a short exact sequence
of complex vector spaces:

drian isotopy from the top diagram to the middle diagram, and \Il§2

0 — (u1,v3) = (v1,v2,v3) @ (v3,v4,05) — V — 0.

If (v1,v2) is contained in (vs, v4, v5), so is (v1,ve,v3). Then it is impossible to
map the direct sum onto V', which is a contradiction. Therefore

(u1) = (v1,v2) N (v3,v4,v5),
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vV
V20V3V4 V3V4V5 V4U506 U5V U7
203 U3V4 V45 U5V6
V3 V4 Vs x Ve
(1) Vv
\Ijt

V1203 VU1V3 U5V U7

Ul 7}2 U5 UG

Vs x Ve

U1V304 V304
V2u1

V1 x A U1U3/1}3

N
2
vf? V. fomn

V1V203 VU1V3 U5V U7

V1U2 U5V6
V1 x A Ve

Figure 11. First window [y of the Legendrian braid g =
(010203)8 associated to the Legendrian loop =; for the Leg-
endrian link A(4,4). There are a total of two windows.

and the vector u; can be uniquely determined by
V1UV2 = VU1.

At this stage, there are five vectors {vg,u1,v3,v4,v5} inside the (blue)
shifted window. There is a redundancy that is removed via the Legendrian
isotopy \I’£2). The bottom diagram in Figure 11 specifies how to determine

the constructible sheaf using the four vectors {ve,u1,vs,v4}. In the end, the
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only regions including vs are connected to the right blue boundary, which is
determined by the next window. Iterating this procedure in each window, we
obtain that the morphism determined by Z; is indeed that of the statement of
Proposition 5.1.

5.2. Proof of Proposition 5.2. Let us consider the Legendrian isotopy \Ilgl),

as defined in Section 2. This is the first of two pieces that constitute the
Legendrian loop =5. This Legendrian isotopy ‘Ilgl) is depicted from the top
to the middle in Figure 12; we have labeled two of the regions in the middle
picture, each being assigned a 2-dimensional vector space, denoted W7 and
Wy. Note that Wi = (ve,vs), since this region already exists in the front
at the top row of Figure 12. The second vector space Ws is given by the
intersection (vy, v3,v4) N (vg, v5, v6), following the condition at the red crossing
in the middle picture. This determines the algebraic effect of the Legendrian
isotopy \IIEI).

Let us continue with the second Legendrian isotopy \1152). This Legendrian
isotopy creates a new region with a vector u;, as depicted in Figure 12. The
vector spaces W7 and W can then be described by using the vector u;. Indeed,
we have Wi = (vs,u1) and Wy = (u1,v4). An argument in line with that of
the proof of Proposition 5.1 concludes that u; € (ve, v3) N (v4,v5,v6), and it is
uniquely determined by vevs = v3uy, as required. This concludes the desired
transformation for the first window. The transformations for the remaining

windows are concluded similarly.

5.3. Proof of Proposition 5.3. The argument is identical to that in Propo-
sitions 5.1 and 5.2, and thus we only provide the core steps. In particular, we
have depicted the Legendrian loop Z3 in Figure 13 as well as its effect in three
different pieces =3 = \1153) o \IIP o \Ifgl), as recorded in Section 2. In short, the
core information in studying the effect of Z3 can be described as follows:

- After \Ilgt), the subspaces are uniquely determined as indicated in the figure.
The vector space spanned by vy disappears but the vector v, can be recovered
from the new data. Namely, it is determined by the intersection of (v, wv2)
and (vg, v3,v4), both of which are stalks of some regions in the front diagram,
and the volume form in either one of these vector spaces.

- After \Ilgt), the subspaces are also uniquely determined as indicated. The
data of v9 remains in the diagram implicitly.

- The Legendrian isotopy \Ilgt) pulls down two strands in Figure 13 that are
colored in red. The red strand on the left recovers the vector v9. The red
strand on the right introduces a new vector ui, which satisfies vgvy = vquq
and u1v5v5 = v5VeV7. By a similar argument with that for Z; and Zo, we
see that u; € (vs,v4) N (vs,v6,v7) and that vsvy = vaug.
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V
V2U3V4 U3V4V5 V4V5V6 U5V6U7
U2U3 U3V4 V405 U506

U506 VU7

U5V VU7

Figure 12. Window for the Legendrian loop =2 on A(4,4) with
the needed information for the proof of Proposition 5.2.

In conclusion, the morphism sends the first window from the 4-tuple
(v1,v2,v3,v4) to the 4-tuple (vy, vy, v4,u1) as required. The second window
is concluded in a similar manner.

6. Corollaries and applications

In this section we prove Corollaries 1.5,1.6, 1.7, 1.8 and 1.10.

First, Corollary 1.7 follows by observing that a trivial concordance in the
Lagrangian concordance monoid L(3,6), and L(4,4), would induce a trivial
map on M(A(3,6)), and M(A(4,4)) respectively. Theorems 1.1 and 1.3 imply
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|4
V10203 VU304 V304 U5 V4U506 UsV6U7
V2U3 V34 V4V5 U506

U3 V4 U5 >< V6

V1U2V3 V3V4V5 V4V5V6 V5VeUT

V4V5V6 V50607

V2U3V4 V3V4V5

Figure 13. Windows for the Legendrian loop =3 on A(4,4) con-
taining the required information for the proof of Proposition 5.3.
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that the loops X1, 62, for A(3,6) and =1, Zs, =3, for A(4,4), induce Legendrian
loops that act non-trivially on M(A(3,6)), and M(A(4,4)) respectively. Hence
the concordances induced by graphing these Legendrian loops are themselves
non-trivial. The same argument concludes Corollary 1.8.

Let us now address Corollaries 1.5 and 1.10, which shall follow from Theo-
rems 1.1 and 1.3, with the addition of the upcoming Proposition 6.1. For that,
let us consider the two-sided closure, i.e. the rainbow closure, of the braid word
B =(o1-09...-0,—1)™ as depicted in the upper leftmost diagram in Figure 14.
Let us denote the Legendrian associated to this front A(S). Corollary 1.5 is
proven with the following geometric construction:

PROPOSITION 6.1. Let A(n,m) = A(S3) be the Legendrian torus link given
by the braid
5:(01-...-0'n_1)m
There exists a decomposable Lagrangian cobordism from A(n,m) to A(n,m+1)
whose Lagrangian handles have isotropic spheres away from the region with the

B-braiding. Similarly, there exists a decomposable Lagrangian cobordism from
A(n,m) to A(n+ 1,m).

~ hl

Figure 14. Exact Lagrangian Cobordism from g to fojos.

Proof. For any given o;, 1 < i < n—1, it suffices to construct a decompos-
able Lagrangian cobordism with concave end A(f) and convex end A(fo;). For
that, we first perform an upwards Reidemeister I move on the right lower strand
for the i-th rightmost cusp. Then, the left cusp created in this Reidemeister 1
move can be isotoped, without introducing crossings in the front, to the same
level as the rightmost cusp for the (i + 1)-th strand. This is depicted in the
second and fifth diagrams of Figure 14 in the cases of o1 and o3. Once these
two cusps are aligned, we perform a reverse pinched-move [8], [53] allowing
this pair of opposite cusps to become two parallel strands. This corresponds
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to a Lagrangian 1-handle attachment hi, and it is depicted in the second to
third, and fifth to sixth diagrams in Figure 14. The decomposable Lagrangian
cobordisms just described can be independently and repeatedly performed for
different o;, 1 < ¢ < n — 1. In particular, by applying this cobordism for the
Artin generators o1, 09 through o,_1, we obtain a decomposable Lagrangian
cobordism from A(S) to A(B(o102- ... 0p—1)), which implies the statement in
the proposition when applied to the braid 8 = (o1 ...  0p—1)™

The decomposable Lagrangian cobordism from A(n,m) to A(n + 1,m) is
built similarly. First, the Legendrian link whose front is the rainbow closure of a
k-stranded positive braid word 8 € By, is Legendrian isotopic to the Legendrian
link whose front is the rainbow closure of a (k+1)-stranded positive braid word
Boy € Bgyq. This is proven by performing a Legendrian Reidemeister I move,
which introduces the og-crossing, and it is depicted in Figure 15. Thus the
front given by the rainbow closure of (o7 ... 0,-1)™ is front homotopic to the
rainbow closure of (o1 ... 0,_1)" ' (01-... 0,_104); these both give the
Legendrian A(n,m), the latter front using a (n+ 1)-stranded braid. Second, it
now suffices to add (m—1) new positive crossings oy, to (o1-...-0,—105,)™, which
again can each be inserted via an index-1 decomposable (exact) Lagrangian
cobordism. Note that it is possible to insert any positive crossing in the middle
of a braid word f (not just at its rightmost end) with such a Lagrangian
cobordism. Indeed, one may apply a cyclic shift 6%, for some k € N, so that
the location where the new crossing is to be inserted is to the right of §%(3),
then apply the exact Lagrangian cobordism from Figure 14, and compose with
the inverse of the Legendrian isotopy ¢*. Inserting these (m — 1) positive

crossings o, allows us to arrive at (o1 - ... 0,_10,)™ from (o1 -...-0p_1)™ -
(01+...-0p—10y). This yields the required decomposable Lagrangian cobordism
from A(n,m) to A(n + 1,m). O

n+1
n —

:H 8

1 —

Figure 15. Legendrian isotopy from § € B, to S0, € Bp+1.

Note that Proposition 6.1 holds for any pair (n,m) € N x N, with no
constraint n < m nor (n,m) € H.

6.1. Proof of Corollary 1.5. Let us first prove that A(3,6) has infinitely
many Lagrangian fillings. Fix an exact Lagrangian filling L C (R* w) for
A(3,6) obtained via a pinching sequence from the front diagram on the left
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of Figure 1. Smoothly, this must be a thrice punctured genus-3 surface.
By [64, Prop. 2.15], this exact Lagrangian filling yields an open inclusion
Loc(L) € M(A(3,6)), where Loc(L) denotes the space of framed local sys-
tems in L. Now, given a Legendrian loop ¥ € I' = ([A],[B]) in the group
generated by the Legendrian loops A, B (or equivalently Xy, d2), we consider
the Lagrangian filling Ly obtained by applying the Legendrian loop ¢ to the
Legendrian A(3,6) and then performing the fixed pinching sequence for the La-
grangian filling fixed above. Choose an infinite sequence of distinct elements
(9)ien € PSL(2,Z). Since ¥; are distinguished by their action on the infinite
cluster charts of Gr(3,9), the inclusions Loc(Ly,) € M(A(3,6)) yield infinitely
many distinct cluster charts. In consequence, the Lagrangian fillings Ly, are
not Hamiltonian isotopic [64, Prop. 6.1]. The same argument holds for the
Legendrian link A(4, 4) once we use the representation in Theorem 1.3 and the
mapping class group Mo 4.

Let A(n,m) be given with (n,m) € H different from (4,4), (4,5), (5,5).
The construction in the proof of Proposition 6.1 yields a decomposable La-
grangian cobordism from A(3,6) to A(n,m). This exact Lagrangian cobor-
dism yields an injective map between the equivalence classes of objects of the
associated Aug, categories, i.e., distinct augmentations up to isomorphism (in-
cluding DGA homotopy) for A(3,6) yield, upon composing with the DGA map
induced by this Lagrangian cobordism, distinct augmentations for A(n, m). In-
jectivity in the case of knots is proven in [52, Th. 1.5] . The case of links is
analogous, and it is detailed in [12]; see also Remark 6.2 below. Since there are
infinitely many Lagrangian fillings for A(3,6) distinguished by their sheaves,
the correspondence between augmentations and sheaves [49, Th. 1.3] implies
that these Lagrangian fillings are distinguished by their augmentations on their
Chekanov-Eliashberg algebra [16]. Thus, the infinitely many Lagrangian fill-
ings of A(3,6) concatenated with the Lagrangian cobordism in Proposition 6.1
induce non-isomorphic augmentations for A(n,m). In consequence, the in-
finitely many Lagrangian fillings of A(3,6) yield infinitely many Lagrangian
fillings of A(n,m). For the remaining case of (n,m) = (4,5), (5,5), we apply
Proposition 6.1 to obtain a cobordism from A(4,4) to A(4,5) or A(5,5) and
proceed identically.

Remark 6.2. Let A_, Ay be two Legendrian links such that there exists
a decomposable exact Lagrangian cobordism from A_ to Ay. In these hy-
potheses, the argument for Corollary 1.5 above uses the following fact: if A_
is a Legendrian link that admits infinitely many Lagrangian fillings that are
distinguished by augmentations (resp. by sheaves)? — e.g., they yield different

2For example, they induce different sheaves in the analogous category Ci (A=), in the
notation of [49].
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objects in the Aug, category — then A, is a Legendrian link that also admits
infinitely many Lagrangian fillings that are distinguished by augmentations
(resp. by sheaves).

As mentioned, in the case of augmentations and both A_, A, knots, this
fact is known to hold for an arbitrary exact Lagrangian cobordism, not neces-
sarily decomposable, by [52, Th. 1.5]. Nevertheless, a much simpler argument
exists if one assumes that the exact Lagrangian cobordism is decomposable,
as it is in our case. Then [14, Prop. 7.5] shows that this fact is true, now also
including the general case where both A_, Ay are allowed to be links, which
suffices for our purposes.

The cluster modular groups of the remaining Grassmannians Gr(n, m+n),
with the pair (n,m) € (N x N) \ H, are known to be finite [5], [34]. Thus, for
these remaining Legendrian links A(n,m), (n,m) € (NxN)\#, our arguments
will only yield a representation of a finite group. In particular, we are almost
certain that our results are sharp, i.e., we conjecture that the Legendrian
torus links A(n,m) have finitely many Lagrangian fillings if (n,m) ¢ H. In
fact, we believe that the Legendrian torus links A(2,n) must have exactly
%‘Fl (2:) Lagrangian fillings, A(3, 3) should have exactly 50 Lagrangian fillings,
and A(3,4) and A(3,5) will have exactly 883 and 25080 Lagrangian fillings

respectively.

Remark 6.3. The numbers 50, 883 and 25080 are the number of cluster
seeds for the finite type cluster algebras of types Dy, Eg and Eg, respectively.
See [33, Prop. 3.8], [32, Th. 1.13], and [13, §5]. Note that these numbers are
strictly greater than the number of corresponding maximal pairwise weakly
separated collections, and thus each correspondingly greater than the num-
ber of embedded exact Lagrangian fillings constructed in [64, Prop. 6.2]. For
instance, [64] builds 34 exact Lagrangian fillings for Dy (resp. 259 for FEj),
namely, those corresponding to maximal pairwise weakly separated collections
with k =3 and n+ k =6 (resp. k =3 and n + k = 7). Yet, the remaining 16
(resp. 574) clusters of Gr(3,6) (resp. Gr(3,7)) are also inhabited by embedded
exact Lagrangian fillings; see [13] and references therein.

6.2. Proof of Corollary 1.6. Let A C (S3, &) be any Legendrian link with
an exact Lagrangian cobordism A(3,6) < A, or A(4,4) < A. The argument for
Corollary 1.5 implies that A itself will have infinitely many exact Lagrangian
fillings. This readily implies Corollary 1.6. Indeed, by [9, Th. 1.1] the twisted
torus knots Ky qrs = T(p,q,r,s) with 1 < r < p < ¢ and 18 < s are
hyperbolic knots. Let Ag,,,, be the maximal-tb Legendrian representative
obtained from the positive braid associated to the T-knot 7'(3,7,2,s), with
54 < s and s even, as described in [7, §1]. Then there exists an exact La-
grangian cobordism A(3,6) <X Ak, ., ,, and hence A, ., is a hyperbolic knot
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that admits infinitely many exact Lagrangian fillings. The same argument ap-
plies to the twisted torus links T'(p, ¢, kq, s), p,q, k, s € N, which are proven to
be (q,p + k%gs)-cables of the torus knot T'(k, ks + 1) in [48].

The argument above can be applied in a more ad hoc manner to show that
certain knots have Legendrian representatives with infinitely many fillings. For
instance, the hyperbolic knot K = k(43), which is one of the simplest hyper-
bolic knots (with four ideal tetrahedra in its complement [11]), is the twisted
torus knot 7°(3,8,2,1). Given that there exists an exact Lagrangian cobor-
dism A(3,8) <X Af,4,,, and A(3,8) admits infinitely many exact Lagrangian
fillings, we have that the Legendrian knot A, ,, which is smoothly k(43),
also admits infinitely many exact Lagrangian fillings.

6.3. Proof of Corollary 1.10. Consider an infinite collection of the ex-
act Lagrangian fillings {L;};en constructed in Corollary 1.5, and denote by
L; € M(n,m) the exact Lagrangian surfaces obtained by capping L; with the
unique defining 2-handle of M(n,m), i € N. By the equivalences between
sheaves and augmentations [49, Th. 1.3], these Lagrangian fillings {L; };en are
distinguished by the augmentations they induce in the Chekanov-Eliashberg
differential graded algebra A, ,, of A(n,m). The wrapped Fukaya categories
of the Weinstein manifolds M (n, m) are generated by their respective unique
cocore C' of their defining 2-handle [1], [15], i.e., the wrapped Fukaya category
is identified with the category of dg-modules over End(C,C) = A,, ,,,. Hence,
the Lagrangian surfaces L;, whose wrapped Floer complex W F(C, L;) has a
unique generator, yield distinct 1-dimensional A,, ,-modules. Thus {L;}ien
represent distinct objects in the wrapped Fukaya category and {L;};en are an
infinite collection of pairwise non-Hamiltonian isotopic exact Lagrangians.
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