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Abstract. We construct closed arboreal Lagrangian skeleta associated to
links of isolated plane curve singularities. This yields closed Lagrangian
skeleta for Weinstein pairs (C2, Λ) and Weinstein 4-manifolds W (Λ)
associated to max-tb Legendrian representatives of algebraic links
Λ ⊆ (S3, ξst). We provide computations of Legendrian and Weinstein
invariants, and discuss the contact topological nature of the Fomin–
Pylyavskyy–Shustin–Thurston cluster algebra associated to a singular-
ity. Finally, we present a conjectural ADE-classification for Lagrangian
fillings of certain Legendrian links and list some related problems.
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1. Introduction

The object of this note is to study a relation between the theory of isolated
plane curve singularities,1 as developed by Arnol’d and Gusein-Zade [8–10,61]
A’Campo [1–4] Milnor [76] and others, and arboreal Lagrangian skeleta of
Weinstein 4-manifolds. In particular, we construct closed Lagrangian skeleta
for the infinite class of Weinstein 4-manifolds obtained by attaching Weinstein
2-handles [28,108] to the link of f : C

2 −→ C, where f defines an isolated
plane curve singularity at the origin. These closed Lagrangian skeleta allow
for an explicit computation of the moduli of microlocal sheaves [60,80,98]
and also explain the symplectic topology origin of the Fomin–Pylyavskyy–
Shustin–Thurston cluster algebra [47] of an isolated singularity.

1.1. Main results

The advent of Lagrangian skeleta and sheaf invariants have underscored the
relevance of Legendrian knots in the study of symplectic 4-manifolds [21,

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
1The reader is referred to [54] for a beautiful and welcoming introduction to the subject.
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28,49,97,98]. The theory of arboreal singularities, as developed by Nadler
[78,79], provides a local-to-global method for the computation of categories
of microlocal sheaves [80]. These invariants, in turn, yield results in terms
of Fukaya categories [49,50]. The existence of arboreal Lagrangian skeleta
has been crystallized by L. Starkston [100] in the context of Weinstein 4-
manifolds, where this article takes place.

Given a Weinstein 4-manifold (W,λst), it is presently a challenge to
describe an associated arboreal Lagrangian skeleta L ⊆ W . In particular,
there is no general method for finding closed arboreal Lagrangian skeleta,2

or deciding whether these exist. This manuscript explores this question by
introducing a new type of closed arboreal Lagrangian skeleta for Legendrian
links Λf ⊆ (S3, ξst) which are maximal-tb Legendrian representatives of the
smooth link of an holomorphic germ f in (C2, 0). In practice, we restrict to
studying polynomials f : C

2 −→ C, f ∈ C[x, y], which define an isolated
singularity at the origin, and also suppose that a real morsification f̃t ∈
R[x, y] of f exists, t ∈ (0, 1]. This is an assumption, and we will always
take f ∈ R[x, y] as our germs. For simplicity of notation, we denote by f̃

a real morsification f̃t ∈ R[x, y] for some generic but fixed choice of the
deformation parameter t ∈ (0, 1]. The discussion in this note unravels thanks
to the following geometric fact.

Theorem 1.1. Let f ∈ C[x, y] define an isolated singularity at the origin,
Λf ⊆ (S3, ξst) be its associated Legendrian link and f̃ ∈ R[x, y] a real
morsification. Then, the Weinstein pair (C2,Λf ) admits the closed arboreal
Lagrangian skeleton

L(f̃) = Lf̃ ∪ T (ϑf̃ ),

obtained by attaching the Lagrangian D
2-thimbles T (ϑf̃ ) of f̃ to an embedded

exact Lagrangian surface Lf̃ ⊆ C
2, where Lf̃ ⊆ C

2 is (compactly supported)
smoothly isotopic to the Milnor fiber Mf ⊆ C

2 of f . �

The two objects Λf and L(f̃) in the statement of Theorem 1.1 require
an explanation, which will be given. We rigorously define the notion of a
Legendrian link Λf ⊆ (S3, ξst) associated to the germ f ∈ C[x, y] of an isolated
curve singularity in Sect. 2. Note that the smooth link of the singularity f ∈
C[x, y], as defined by Milnor [76], and canonically associated to f , is naturally
a transverse link Tf ⊆ (S3, ξst) [38,53,56]. The Legendrian link Λf ⊆ (S3, ξst)
will be a maximal-tb Legendrian approximation of Tf . The notation (C2,Λf )
refers to the Weinstein pair (C2,R(Λf )), where R(Λf ) ⊆ (S3, ξst) is a small
(Weinstein) annular ribbon for the Legendrian link Λf .

The Lagrangian skeleton L(f̃) is also defined in Sect. 2. Note that the
Milnor fibration of f ∈ C[x, y] is a symplectic fibration on (C2, ωst), whose
symplectic fibers bound the transverse link Tf ⊆ (S3, ξst). Nevertheless, the
Lagrangian skeleton L(f̃) is built from an exact Lagrangian surface Lf̃ and
the vanishing cycles ϑf̃ associated to a real morsification f̃ . The Lagrangian

2That is, a compact arboreal Lagrangian skeleta L ⊆ (W λ) such that ∂L = 0.
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surface Lf̃ is also introduced in Sect. 2. Intuitively, in the same manner
that Λf ⊆ (S3, ξst) is a Legendrian approximation of Tf ⊆ (S3, ξst), the
exact Lagrangian surfaces Lf̃ ⊆ (C2, dλst) are Lagrangian analogues of the
symplectic Milnor fiber Mf ⊆ (C2, dλst). Indeed, Lf̃ are smoothly indistin-
guishable from Mf , and they only become different geometric objects once
we incorporate the symplectic structure (C2, dλst). Theorem 1.1 is a rela-
tive statement, being about a Weinstein pair (C2,Λf ) and not just about a
Weinstein 4-manifold. Hence, it is useful in the absolute context, as follows.
Consider a Legendrian knot Λ ⊆ (S3, ξst) in the standard contact 3-sphere
and the Weinstein 4-manifold W (Λ) = D

4 ∪Λ T ∗
D

2 obtained by performing a
2-handle attachment along Λ, i.e. its Weinstein trace. A front projection for Λ
(almost) provides an arboreal skeleton for the Weinstein 4-manifold W (Λ), as
explained in [100]. Nevertheless, the computation of microlocal sheaf invari-
ants from this model is far from immediate, nor exhibits the cluster nature of
the moduli space of Lagrangian fillings. The symplectic topology of a Wein-
stein manifold is much more visible, and invariants more readily computed,
from a closed arboreal Lagrangian skeleton, i.e. an arboreal Lagrangian skele-
ton which is compact and without boundary. In particular, Theorem 1.1 pro-
vides such a closed Lagrangian skeleton associated to a real morsification:

Corollary 1.2. Let f ∈ C[x, y] define an isolated curve singularity at the ori-
gin, Λf ⊆ (S3, ξst) be its associated Legendrian link and f̃ ∈ R[x, y] a real
morsification. The four-dimensional Weinstein manifold

W (Λf ) = D
4 ∪Λf

(T ∗
D

2∪ π0(Λf ). . . ∪T ∗
D

2))

admits the closed arboreal Lagrangian skeleton

L(f̃) ∪∂ (D2∪ π0(Λf ). . . ∪D
2),

obtained by attaching the Lagrangian D
2-thimbles of f̃ to the compactified

surface Lf̃ := Lf̃ ∪∂ (D2∪ π0(∂Lf̃ )
. . . ∪D

2). �

Let us see how Theorem 1.1 and Corollary 1.2 can be applied for two
simple singularities, corresponding to the D5 and the E6 Dynkin diagrams.
As we will see, part of the strength of these results is the explicit nature of
the resulting Lagrangian skeleta and the direct bridge they establish between
the theory of singularities and symplectic topology.

Example 1.3. (i) First, consider the germ of the D5-singularity f(x, y) =
xy2 + x4, the Legendrian link associated to this singularity is depicted in
Fig. 1 (Left). The Weinstein 4-manifold W (Λf ) = D

4 ∪Λf
(T ∗

D
2 ∪ T ∗

D
2)

admits the closed arboreal Lagrangian skeleton depicted in Fig. 1 (Right).
This Lagrangian skeleton is associated to a real morsification f̃(x, y) = (x +
1)(4x3 − 3x + 2y2 − 1) of f(x, y), whose divide {(x, y) ∈ R

2 : (x + 1)(4x3 −
3x + 2y2 − 1) = 0} is depicted in Fig. 4. The D5-Dynkin diagram is readily
seen in the unoriented intersection quiver of the boundaries of the Lagrangian
2-disks added to the (smooth compactification) of the genus 2 Milnor fiber;
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Figure 1. The D5-Legendrian link Λf ⊆ (S3, ξst) (Left)
and a closed Lagrangian arboreal skeleton for the Wein-
stein 4-manifold W (Λf ) (Right), obtained by attaching 5
Lagrangian 2-disks to the cotangent bundle (T ∗Σ2, λst)

Figure 2. Closed Lagrangian arboreal skeleton associated
to the simple E6-singularity f(x, y) = x3 + y4, according to
Corollary 1.2

this unoriented intersection quiver for the vanishing cycles is also drawn in
Fig. 4 (Left).

(ii) Second, consider the germ of the singularity f(x, y) = x3 + y4, the
link of the singularity is the maximal-tb positive torus knot Λf

∼= Λ(3, 4) ⊆
(S3, ξst). The Weinstein 4-manifold W (Λf ) = D

4 ∪Λf
T ∗

D
2 admits the closed

arboreal Lagrangian skeleton depicted in Fig. 2. This Lagrangian skeleton is
associated to a real morsification f̃(x, y) = 4x3 −3x+8y4 −8y2 +1 of f(x, y);
the Lagrangian skeleton is built by attaching six Lagrangian 2-disks to the
Lagrangian zero section Σ3 of the cotangent bundle (T ∗Σ3, λst) of a genus
3 surface. These 2-disks are attached along the six curves in Fig. 2, whose
intersection quiver is (mutation equivalent to) the E6 Dynkin diagram; this
unoriented intersection quiver is also drawn in Fig. 4 (Right). See also Fig. 3
for an alternative closed Lagrangian arboreal skeleton, also associated to the
simple E6-singularity f(x, y) = x3 + y4. �

In the two cases of Example 1.3, the real morsifications can be explicitly
obtained using Chebyshev polynomials Tn(w), which are (uniquely) defined
by the functional equations Tn(cos(t)) = cos(nt), n ∈ N∪{0}. It can be shown
that Tn(x)+Tm(y) is a real morsification of the singularity f(x, y) = xn +ym

and thus, for example, the expression T3(x)+T4(y) = 4x3−3x+8y4−8y2+1 is
a real morsification of E6, as used above and depicted in Fig. 4. In general, we
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Figure 3. Another closed Lagrangian arboreal skeleton for
the simple E6-singularity f(x, y) = x3 + y4. This is a more
symmetric alternative to the closed Lagrangian skeleton in
Fig. 2

Figure 4. The two divides associated to the real morsifica-
tions that yield the Lagrangian skeleta in Figs. 1 and 2. The
implicit equations for the divides are written in terms of the
Chebyshev polynomials Tn(w), determined by the relations
Tn(cos(t)) = cos(nt). The (unoriented) quivers associated
to these two divides are depicted with orange vertices and
red edges. Note that the diagram obtained for E6 is not the
E6 Dynkin diagram; once the quiver is properly oriented, it
is mutation equivalent to an orientation of the E6 Dynkin
diagram

will see that the vanishing cycles of a real morsification can be oriented, and
then an oriented quiver can be associated to the skew-symmetric intersection
form.

From now onward, we abbreviate “closed arboreal Lagrangian skeleton”
to Cal-skeleton.3 Let (W,λ) be a Weinstein 4-manifold, e.g. described by a

3This seems appropriate, as D. Nadler (UC Berkeley) and L. Starkston (UC Davis), the

initial developers of arboreal Lagrangian skeleta, hold their positions in the University of

California.
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Figure 5. Cal-skeleton RP
2 ∪S1 D

2 associated to Λ(31) ⊆
(∂D

4, λst)

Legendrian handlebody, a Lefschetz fibration or analytic equations in C
n.

There are two basic nested questions: Does it admit a Cal-skeleton? If so,
how do you find one ? For instance, consider a max-tb Legendrian represen-
tative Λ ⊆ (∂D

4, λst) of any smooth knot, does W (Λ) admit a Cal-skeleton
? It might be that not all these Weinstein 4-manifolds W (Λ) admit such a
skeleton: it is certainly not the case if the Legendrian knot Λ were stabi-
lized, hence the max-tb hypothesis is necessary. In general, the lack of exact
Lagrangians in W (Λ) would provide an obstruction.

Remark 1.4. For simplicity, we focus on oriented exact Lagrangians. Non-
orientable Cal-skeleta should also be of interest. For instance, consider the
max-tb Legendrian left-handed trefoil knot Λ(31) ⊆ (∂D

4, λst). Figure 5
(Right) depicts a planar front for it. Then the Weinstein 4-manifold W (Λ(31))
admits a Cal-skeleton RP

2 ∪S1 D
2 given by attaching a Lagrangian 2-disk to

a Lagrangian RP
2, as shown in Fig. 5. Indeed, the Weinstein 4-manifold

given by Fig. 5 (Left), described by one Weinstein 1-handle and the (black)
Weinstein 2-handle passing through it twice, is Weinstein equivalent to the
standard cotangent bundle (T ∗

RP
2, λst, ϕst), see e.g. [58]. The zero section

RP
2 is chosen as its Lagrangian skeleton, and then a Lagrangian 2-disk—

core of a Weinstein 2-handle—is attached along the blue circle depicted in
the Weinstein handlebody diagram in Fig. 5 (Left). At this stage, we simplify
the diagram by handle-sliding the black Legendrian knot along the blue Leg-
endrian boundary of the Lagrangian 2-disk, and then cancel the Weinstein
1-handle with this latter (blue) Weinstein 2-handle; see [21]. This yields a
front for the max-tb Legendrian left-handed trefoil knot Λ(31) ⊆ (∂D

4, λst),
as required. �

Symplectic invariants of Weinstein 4-manifolds W include (partially)
wrapped Fukaya categories [12,101] and categories of microlocal sheaves
[80]. Microlocal sheaf invariants should be particularly computable if a Cal-
skeleton L ⊆ W is given, yet worked out examples are scarce in the litera-
ture. In Sect. 4, we use4 Theorem 1.1 to compute the moduli space of simple
microlocal sheaves on some of the Cal-skeleta L from Corollary 1.2.

Finally, Theorem 1.1 provides a context for the study of exact
Lagrangian fillings of Legendrian links Λf ⊆ (S3, ξst) associated to isolated

4The correspondence [84, Theorem 1.3] and T. Kálmán’s description [66] of augmentation
varieties Aug(Λ) are also useful tools in this context.
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plane curve singularities. Indeed, let

L(f̃) = Lf̃ ∪ ϑ(f̃)

be a Cal-skeleton for the Weinstein pair (C2,Λf ) for a real morsification
f̃ , as produced in Theorem 1.1. The exact Lagrangian filling Lf̃ may serve
as a starting exact Lagrangian filling for the Legendrian link Λf , and then
performing Lagrangian disk surgeries [96,109] along the Lagrangian thimbles
in ϑ is a method to construct additional5 exact Lagrangian fillings. In general,
this strategy might be potentially obstructed, as the Lagrangian disks might
acquire immersed boundaries when the Lagrangian surgeries are performed.
That said, since Lagrangian disks surgeries yield combinatorial mutations of
a quiver, Theorem 1.1 might hint towards a structural conjecture: we expect
as many exact Lagrangian fillings Λf as elements in the cluster mutation
class of the intersection quiver for the vanishing thimbles ϑ. It should be
noted that C. Viterbo’s work is abundant in useful and remarkable results,
but also bountiful in insightful questions and conjectures6: trying to follow
his steps, Sect. 5 concludes with a discussion on such conjectural matters.

2. Lagrangian skeleta for isolated singularities

In this section we introduce the necessary ingredients for Theorem 1.1 and
prove it. We refer the reader to [9,54,75] for the basics of plane curve singu-
larities and [37,38,53,85] for background on 3-dimensional contact topology.

2.1. The legendrian link of an isolated singularity

Let f ∈ C[x, y] be a bivariate complex polynomial which defines an isolated
complex singularity at the origin (x, y) = (0, 0) ∈ C

2. The link of the singu-
larity Tf ⊆ (S3, ξst) is the intersection

Tf = V (f) ∩ S
3
ε = {(x, y) ∈ C

2 : f(x, y) = 0} ∩ {(x, y) ∈ C
2 : |x|2 + |y|2 = ε},

where ε ∈ R
+ is small enough. The intersection is transverse for ε ∈ R

+

small enough [31,76], and thus Tf is a smooth link. The link Tf is in fact a
transverse link for the contact structure ξst = TS

3∩i(TS
3), as is the boundary

of the (Milnor) fiber Mf for the Milnor fibration [53,56]. Equivalently, it is
the transverse binding of the contact open book generated by

f

‖f‖ : S
3\Tf −→ S

1.

The link of a singularity was first introduced by Wirtinger and Brauner [19]
and masterfully studied by Milnor [76]. The book [31] comprehensively devel-
ops7 the smooth topology of link of singularities and their connection to
3-manifold topology. The contact topological nature of the associated open
book was developed by Giroux [56].

5Potentially not Hamiltonian isotopic.
6E.g. I recently attended a conference at IMPA where several talks discussed “the Viterbo
conjecture”. As it turned out, the conjectures the speakers discussed were all different, yet
all clearly impactful in their respective areas.
7See also W. Neumann’s article in Kähler’s volume [65].
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Let us suppose that the germ of our singularity is irreducible.8 From
a smooth perspective, the smooth isotopy class of Tf is that of an iterated
cable of the unknot [31]. Let Kl,m be the oriented (l,m)-cable of a smooth
link K ⊆ S

3, i.e. an embedded curve in the boundary ∂Op(K) of the solid
torus Op(K) in the homology class l · [λ] + m · [μ], with λ the longitude and
μ the meridian of Op(K). It is shown in [31, Chapter IV.7] that an iterated
cable K(l1,μ1),(l2,μ2),...,(lr,μr) ⊆ S

3 is the link of an isolated singularity if and
only if μi+1 > (liμi)li+1, for 1 ≤ i ≤ r − 1.

Remark 2.1. Given an isolated singularity f(x, y), there are algorithms for
determining the smooth type of Tf , i.e., the sequence of pairs {(l1, μ1), (l2, μ2),
. . . , (lr, μr)}. For instance, by applying the Newton–Puiseux algorithm to
f(x, y) we may write

y = a1x
m1
n1 + a2x

m2
n1n2 + a3x

m3
n1n2n3 + . . . , ai ∈ C

∗

at each branch, where the exponents m1/n1 < m2/(n1n2) < m3/(n1n2n3) <
· · · are increasing and gcd(mi, ni) = 1, for all i ∈ N. The pairs (ni,mi) ∈ N

2

are called the Puiseux pairs. For reference, the Newton pairs are then (pi, qi)
with pi = ni, q1 = m1 and qi = mi − mi−1ni for i ≥ 2, and the cabling
algebraic condition reads pi, qi > 0. The topological pairs (li, μi) are given by
li = pi = ni, μ1 = q1 and μi+1 = qi+1 + pipi+1μi for i ≥ 1, and the cabling
algebraic condition translates into li = pi > 0 and qi+1 = μi+1 − lili+1μi > 0,
as above. The algorithm and these relations are explained in [31, Appendix
to Chapter I]. �

In the finer context of contact topology, the transverse link Tf ⊆ (S3, ξst)
is an iterated cable with maximal self-linking number sl(Tf ) = sl, as it bounds
the symplectic Milnor fiber Mf ⊆ C

2 of f ∈ C[x, y], equiv. the symplectic
page of the contact open book [39,56]. By the transverse Bennequin bound
[14], this self-linking must be equal to the Euler characteristc −χ(Mf ). A fact
about the smooth isotopy class of links of singularities is their Legendrian
simplicity:

Proposition 2.2. Let f ∈ C[x, y] define an isolated singularity at the origin
and Tf ⊆ (S3, ξst) be its associated transverse link. There exists a unique
maximal Thurston–Bennequin Legendrian approximation Λf ⊆ (S3, ξst) of
the transverse link Tf .

Proof. The classification of Legendrian representatives of iterated cables of
positive torus knots is established in [71, Corollary 1.6], building on [40,41].
The sufficent numerical condition for Legendrian simplicity is μi+1/li+1 >
tb(Ki), where Ki is the ith iterated cable in K(l1,μ1),(l2,μ2),...,(lr,μr) ⊆ S

3. The
maximal Thurston-Bennequin equals tb(Ki) = Ai −Bi, where Ai, Bi ∈ N are
given by

Ai :=
i∑

α=1

pα

i∏

β=α+1

qβ

i∏

β=α

qβ , Bi :=
i∑

α=1

⎛

⎝pα

i∏

β=α+1

qβ

⎞

⎠+
i∏

α=1

qα, i ∈ N,

8For the general case, we refer the reader to [31] and their splice diagrams.
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as defined in [71, Equation (2)], and satisfy μili > Ai − Bi. In particular, an
algebraic link satisfies μi+1/li+1 > μili > Ai − Bi = tb(Ki), for all 1 ≤ i ≤
r − 1, and its max-tb representative is unique. �

Proposition 2.2 implies that there exists a unique Legendrian link Λf ⊆
(S3, ξst), up to contact isotopy, whose positive transverse push-off τ(Λf ), as
defined in [53, Section 3.5.3], is transverse isotopic to the transverse link Tf .
Note that two distinct Legendrian approximations of a transverse link [35,
Theorem 2.1] differ by Legendrian stabilizations, which necessarily decrease
the Thurston-Bennequin invariant.

Remark 2.3. Proposition 2.2 does not hold for K ⊆ (S3, ξst) an arbitrary
smooth link. For instance, the smooth isotopy classes of the mirrors 52, 61 of
the three-twist knot and the Stevedore knot admit two distinct maximal-tb
Legendrian representatives each [27, Section 4]. That said, the knots 52, 61

are not links of singularities, as their Alexander polynomials are not monic,
and thus they are not fibered knots [83]. �

Proposition 2.2 allows us to canonically define a Legendrian link asso-
ciated to an isolated singularity:

Definition 2.4. Let f be the germ of an isolated singularity at the origin.
A Legendrian link Λf ⊆ (S3, ξst) is associated to f if it is a maximal-tb
Legendrian link Λf ⊆ (S3, ξst) whose positive transverse push-off τ(Λf ) is
transversely isotopic to the link of the singularity Tf ⊆ (S3, ξst). �

Proposition 2.2 shows that the Legendrian isotopy class of a Legendrian
link Λf ⊆ (S3, ξst) associated to f is unique. Thus, we refer to Λf ⊆ (S3, ξst)
in Definition 2.4 as the Legendrian link associated to the germ f .

Example 2.5. (ADE Singularities) Let us consider the three ADE families of
simple isolated singularities [11, Chapter 2.5]. Their germs are given by

(An) f(x, y) = xn+1 + y2, (Dn) f(x, y) = xy2 + xn−1, n ∈ N,

(E6) f(x, y) = x3+y4, (E7) f(x, y)=x3+xy3, (E8) f(x, y) = x3 + y5.

The Legendrian link associated to the An-singularity is the positive
(2, n + 1)-torus link, with tb = n − 1. These links are associated to the
braid σn+1

1 , as depicted in Fig. 6 (Left). The Legendrian link associated to
the Dn-singularity is the link consisting of the link associated to the An−3-
singularity and the standard Legendrian unknot, linked as in Fig. 6 (Right).
This is the topological consequence of the factorization f(x, y) = x(y2+xn−2).
These Dn-links are associated to the (rainbow closure of the) positive braid
σn−2

1 σ2σ
2
1σ2, n ≥ 3. Each of the three components K1,K2,K3 of the D2-

link is a max-tb Legendrian unknot, with K1 ∪ K2 and K2 ∪ K3 forming
each a (max-tb) Hopf link and K1 ∪ K3 forming the 2-unlink. The D3-link is
Legendrian isotopic to the A3-link, i.e. a max-tb positive T (2, 4)-torus link.

The Legendrian links associated to the E6 and E8 singularities are the
maximal-tb positive (3, 4)-torus Legendrian link and the Legendrian (3, 5)-
torus link, as depicted in Fig. 7. The E7 is a maximal-tb Legendrian link
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Figure 6. The Legendrian link for the An-singularity is the
max-tb (2, n + 1)-torus link (Left). The Legendrian link for
the Dn-singularity is the link given by the union of a max-tb
(2, n − 2)-torus link and a standard Legendrian unknot, in
orange, linked as in the Legendrian front on the right (Right)
(colour figure online)

Figure 7. The Legendrian links for the E6, E7 and E8 sim-
ple singularities

consisting of a trefoil knot and a standard Legendrian unknot, linked as in the
center Legendrian front in Fig. 7. This is implied by the f(x, y) = x(x2 + y3)
factorization of the E7 singularity. The Legendrian links for E6, E7 and E8

can also be obtained as the closure of the three braids σn−3
1 σ2σ

3
1σ2, n = 6, 7, 8.

Figure 7 also depicts generators of the first homology group of the minimal
genus Seifert surface; these generate the first homology of each Milnor fiber,
and the E6, E7 and E8 Dynkin diagrams are readily exhibited from their
intersection pattern. �

The singularities f(x, y) = xa + yb, a ≥ 3, b ≥ 6, or (a, b) = (4, 4), (4, 5),
yield an infinite family of non-simple isolated singularities for which the asso-
ciated Legendrian is readily computed to be the maximal-tb positive (a, b)-
torus link, confer Remark 2.1. Two more instances are illustrated in the
following:

Example 2.6. (Two Iterated Cables) Consider the isolated curve singularity

g(x, y) = x7 − x6 + 4x5y + 2x3y2 − y4.

The Puiseux expansion yields the Newton solution y = x3/2(1 + x1/4) and
thus Λf ⊆ (S3, ξst) is the maximal-tb Legendrian representative of the (2, 13)-
cable of the trefoil knot. This Legendrian knot is depicted in Fig. 8 (Left).
The reader is invited to show that the Legendrian knot Λf ⊆ (S3, ξst) of the
singularity

h(x, y) = x9 − x10 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6,
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Figure 8. The Legendrian links Λg and Λh associated to
the singularity g(x, y) = x7 −x6 +4x5y +2x3y2 − y4, on the
left, and the singularity h(x, y) = x9 − x10 + 6x8y − 3x6y2 +
2x5y3 + 3x3y4 − y6, on the right

is the maximal-tb Legendrian representative of the (3, 19)-cable of the trefoil
knot [54], as depicted in Fig. 8 (Right). (For that, start by writing the relation
as y(x) = x3/2 + x5/3.) �

2.2. A’Campo’s divides and their conormal lifts

Let f ∈ C[x, y] define an isolated singularity at the origin, D
4
ε ⊆ C

2 be a
Milnor ball for this singularity [75, Corollary 4.5], ε ∈ R

+, R
2 = {(x, y) ∈

C
2 : �(x) = 0,�(y) = 0} ⊆ C

2 the real 2-plane, and D
2
ε = D

4
ε ∩ R

2 a real
Milnor 2-disk. First, we need the notion of a divide, called partage in [2], as
follows:

Definition 2.7. [2] Let D
2
ε ⊆ R

2 be the 2-disk of radius ε ∈ R
+. A divide is a

proper generic immersion γ : I −→ D
2 of a 1-manifold I into D

2. �
The image γ(I) ⊆ D

2
ε is also referred to as a divide, in a slight abuse

of notation. Definition 2.7 belongs to the realm of real differential topology.
A remarkable fact is that A’Campo explained how to associate a divide to
certain real morsifications of a singularity. For that, consider a real morsi-
fication f̃t(x, y), t ∈ [0, 1], such that, for t ∈ (0, 1], ft(x, y) has only A1-
singularities, its critical values are real and the level set f̃−1

t (0) ∩ D
4
ε, con-

tains all the saddle points of the restriction (f̃t)|D2
ε
. Then, the intersection

Df̃ := f̃−1(0) ∩ D
2
ε ⊆ R

2, where f̃ = f1, is a divide, and it is known as the
divide of the real morsification f̃t [3,9,63].

Let us denote by Df a divide Df̃ obtained from a real morsification f̃t of
f . A divide Df is also referred to as an A’Campo divide for the singularity f .
As in Definition 2.7, it is the image of a union of a smooth 1-manifold I under
an immersion i : I −→ R

2 [55,62,64], and it is a generic such immersion. In
this manuscript, we assume that the germs of singularities that we consider
admit such real morsifications. See [2,61] for the existence and details of real
morsifications, and see Fig. 4 for divides associated to real morsifications of
the simple singularities D5 and E6.

Let us now move towards contact topology. By considering a divide
Df ⊆ R

2 as a wavefront co-oriented in both conormal directions, its (biconor-
mal) Legendrian lift is a Legendrian link Λ0(Df ) in the (ideal) contact bound-
ary (∂(T ∗

R
2), λst|∂(T ∗R2)). In this case, (∂(T ∗

R
2), λst|∂(T ∗R2)) is considered
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with its Legendrian projection onto the zero section ∂(T ∗
R

2) −→ R
2, who

fibers are Legendrian 1-spheres S
1 ⊆ ∂(T ∗

R
2). See [8, Section 3.1] for fronts

and Legendrian fibrations and, e.g. [97, Section 2] and [53, Section 3.2].
The biconormal lift Λ0(Df ) ⊆ ∂(T ∗

R
2) of the immersed curve Df to

the (unit) boundary of the cotangent bundle T ∗
R

2 can be constructed using
the three local models:

(i) The biconormal lift near a smooth interior point P ∈ Df is defined as

{u = (q, uq) ∈ T ∗Op(P ) : ‖uq‖ = 1, TqDf ⊆ ker(uq) for q ∈ Df ∩ Op(P )},

for an arbitrary fixed choice of metric in R
2, and neighborhood Op(P ) ⊆

R
2. See the first row of Fig. 9.

(ii) The biconormal lift near an immersed point P ∈ Df is defined as the
(disjoint) union of the conormal lifts of each of its embedded branches
through P . See the second row of Fig. 9.

(iii) Finally, at the endpoint P ∈ Df , the biconormal lift is defined as the
closure in T ∗

P R
2 of one of the components of

T ∗
P R

2 \ {u ∈ T ∗
P R

2 : ‖uq‖ = 1, TP Df ⊆ ker(uq) for q ∈ Df ∩ Op(P )},

where the tangent line TP Df is defined as the (ambient) smooth limit
of the tangent lines Tqi

Df for a sequence {qi}i∈N of interior points qi ∈
Df convering to P ∈ Df . There are two such components, but our
arguments are independent of such a choice. See the third row of Fig. 9.

Remark 2.8. The restriction of the canonical projection π : ∂(T ∗
R

2) −→ R
2

is finite two-to-one onto the image of the interior points of I. The pre-image
of π at (the image of) endpoints contains an open interval of the Legendrian
circle fiber. For instance, the full conormal lift of a point p ∈ R

2 is Legendrian
isotopic to the zero section S

1 ⊆ (J1
S

1, ξst), as is the conormal lift of an
embedded closed segment. �

These local models define the Legendrian biconormal lift Λ0(Df ) ⊆
(∂(T ∗

R
2), ξst) of the divide of the Morsification f̃ . Let ι0 : S

1 −→ (S3, ξst)
be a Legendrian embedding in the isotopy class of the standard Legendrian
unknot. A small neighborhood Op(ι(S1)) is contactomorphic to the 1-jet
space (J1

S
1, ξst) ∼= (T ∗

S
1 × Rt, ker{λst − dt}), yielding a contact inclusion

ι : (J1
S

1, ξst) −→ (S3, ξst). Note that there exists a contactomorphism Ψ :
(∂(T ∗

R
2), ξst) −→ (J1

S
1, ξst), where the zero section in the 1-jet space bijects

to the Legendrian boundary of a Lagrangian cotangent fiber in T ∗
R

2. This
leads to the following:

Definition 2.9. Let Df ⊆ R
2 be the divide associated to a real morsification

of a germ f defining an isolated singularity. The biconormal lift Λ(Df ) ⊆
(S3, ξst) is the image ι(Ψ(Λ0(Df ))). That is, the biconormal lift Λ(Df ) ⊆
(S3, ξst) is the satellite of the biconormal lift Λ0(Df ) ⊆ (∂(T ∗

R
2), ξst) with

companion knot the standard Legendrian unknot in (S3, ξst). �

The central result in N. A’Campo’s articles [3,4] is that the Legendrian
link Λ(Df ) ⊆ S3 is smoothly isotopic to the transverse link Tf , see also [64].
The formulation above, in terms of the satellite to the Legendrian unknot,
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Figure 9. Local models for the divides Df , on the left col-
umn, and their corresponding biconormal lifts, on the right
column. Note that we have depicted the biconormal lift in its
non-generic form (matching Df at the boundary), at the left
of the right column, and also after a Legendrian front per-
turbation, at the right of the right column. The local model
of the crossing is depicted in gray so that the conormal direc-
tion (in blue) is visible (colour figure online)

is not necessarily explicit in the literature on divides and their Legendrian
lifts, but probably known to the experts, as it is effectively being used in
Hirasawa’s visualization [62, Figure 2]. See also the work of Kawamura [70,
Figure 2], Ishikawa and Gibson [55,63] and others [26,64]. The phrasing in
Definition 2.9 might help crystallize the contact topological characteristics of
each object.

Example 2.10. (i) The A1-singularity admits two real morsifications f̃1(x, y) =
x2 + y2 − 1 and f̃2(x, y) = x2 − y2, with corresponding divides

D1 = {(x, y) ∈ R
2 : x2 + y2 − 1 = 0}, D2 = {(x, y) ∈ R

2 : x2 − y2 = 0}.

The biconormal lift Λ0(D1) ⊆ (∂(T ∗
R

2), ξst) consists of two copies of
the Legendrian fibers of the fibration π : ∂(T ∗

R
2) −→ R

2. Each of these
two copies is satellited to the standard Legendrian unknot, forming a
maximal-tb Hopf link Λ(D1) ⊆ (S3, ξst). Indeed, the second Legendrian
fiber can be assumed to be the image of the first Legendrian fiber under
the Reeb flow. Hence, the Legendrian link Λ(D1) ⊆ (S3, ξst) must consist
of the standard Legendrian unknot union a small Reeb push-off. Sim-
ilarly, the biconormal lift Λ0(D2) ⊆ (∂(T ∗

R
2), ξst) equally consists of

two copies of the Legendrian fibers of the fibration π : ∂(T ∗
R

2) −→ R
2,
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Figure 10. A co-oriented divide D for the A2-singularity
f(x, y) = x3 + y2, as a front for its Legendrian link Λ(D) ⊆
(∂(T ∗

D
2), ξst). That is, the biconormal lift of D is Λ(D). Its

satellite along the standard unknot is the (unique) max-tb
Legendrian trefoil Λ(2, 3) ⊆ (R3, ξst)

and thus both Legendrian links Λ(D1),Λ(D2) are Legendrian isotopic
in (S3, ξst).

(ii) The A2-singularity f(x, y) = x3 + y2 admits the real morsification
f̃(x, y) = x2(x − 1) + y2, whose divide is D = {(x, y) ∈ R

2 :
x2(x − 1) + y2 = 0}. The divide D ⊆ R

2 with its co-orientations
is depicted in Fig. 10 (upper left). It depicts a wavefront homotopy,
which yields a Legendrian isotopy in (∂(T ∗

R
2), ξst), and an additional

move equivalence (as in [47, Definition 8.2]). In the first row, the first
move separates the two conormals pictorially and the second move is
a Reidemeister II, i.e. a safe (non-dangerous) self-tangency. The tran-
sition to the second row starts with a Reidemeister III move, which
is a front homotopy. The first move in the second row is undoing the
kink, also known as a U-turn—see [47, Figure 30]—and the second is a
planar isotopy. Finally, the third row starts by depicting the change of
front projections induced by the contactomorphism Ψ, and performs the
satellite to the standard Legendrian unknot. The resulting Legendrian
Λf ⊆ (S3, ξst) is the max-tb Legendrian trefoil knot Λ(2, 3) presented in
one of its common fronts for (R3, ξst). �
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Remark 2.11. In general, divides for An-singularities are depicted in [47, Fig-
ure 4]. We invite the reader to study the A5-singularity f(x, y) = x5+y2 with
its divide

D = {(x, y) ∈ R
2 : x2(x3 + x2 − x − 1) + y2 = 0}

and discover the corresponding Legendrian isotopy, as in Fig. 10. The isotopy
should end with the max-tb Legendrian link Λ(2, 5) ⊆ (S3, ξst), e.g. expressed
as the (rainbow) closure of the positive braid σ5

1 , equiv. the (−1)-framed
closure of σ7

1 . The general case n ∈ N is similar. �
Before we proceed with the proof of Theorem 1.1, we note the following

contact topological property for the Legendrian links Λ(Df̃ ) associated to
divides of real morsifications f̃ :

Proposition 2.12. Let f ∈ C[x, y] define an isolated singularity, Df ⊆ R
2

be the divide associated to a real morsification and Λ(Df ) ⊆ (S3, ξst) its
biconormal lift. Then Λ(Df ) admits an embedded exact Lagrangian filling
in (D4, λst). In particular, the Thurston-Bennequin invariant of Λ(Df ) is
maximal.

Proof. Consider the plabic graph associated to the divide Df as in [47, Defini-
tion 6.11] and note that the alternating strand diagram associated to a plabic
graph is Legendrian isotopic to Λ(Df ). Indeed, they only differ by U -turns,
at the boundary endpoints, and safe tangencies [47, Section 8] at the interior
crossings. Now, from a smooth perspective, we can consider the Goncharov-
Kenyon conjugate surface [59, Section 2.1] associated to this plabic graph,
which bounds its alternating strand diagram. Thus, this is a smooth embed-
ded surface in S

3 bounding Λ(Df ) ⊆ S
3 which can be pushed into an embed-

ded surface D
4, relative to the boundary. In short, the conjugate surface is

a smooth surface filling for Λ(Df ). This surface can be turned in an embed-
ded exact Lagrangian, as done in [98, Proposition 4.9], which proves the first
statement. The statement on the Thurston-Bennequin invariant follows from
[24, Theorem 1.4]. �

Figure 11 depicts a piece of such a Lagrangian filling near a crossing of
the divide. See [98, Section 4] and [47, Section 6] for further details on the con-
struction. Observe that the plabic graph associated to Df is not unique, e.g.
it is possible to perform a square move at each crossing. The Hamiltonian iso-
topy of the Lagrangian filling, relative to the boundary, does typically depend
on this choice and one should expect to build more than one Hamiltonian
isotopy class of Lagrangian fillings with the method of Proposition 2.12.9

2.3. Proof of Theorem 1.1

There is an interesting dissonance at this stage. The Legendrian link Λ(Df ) ⊆
S

3 in Definition 2.9 and the transverse link Tf ⊆ S
3 of the singularity are

smoothly isotopic, yet certainly not contact isotopic. Their relationship is
described by the following:

9Naively applied, this method seems to yield finitely many possible Hamiltonian isotopy

classes of Lagrangian fillings. Note that we have proven in [20] that most max-tb Legendrian
algebraic links admit infinitely many such classes.
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Figure 11. A local depiction of the (Lagrangian) conjugate
surface near a crossing of the divide (Right). The surface is
depicted in darker blue, and it bounds a front, in blue, for the
Legendrian link. The plabic graph associated to a crossing
(Left) is shown the center. Note that there are two choices
of (bi)coloring for the vertices, and the two surfaces differ
by a square move, i.e., a Lagrangian mutation; both such
choices yield embedded exact Lagrangian fillings (though not
necessarily in the same Hamiltonian isotopy class)

Proposition 2.13. Let f ∈ C[x, y] define an isolated singularity and Df ⊆ R
2

be the divide associated to a real morsification. The positive transverse push-
off τ(Λ(Df )) ⊆ (S3, ξst) of the Legendrian link Λ(Df ) is contact isotopic to
the transverse link Tf ⊆ (S3, ξst). In particular, Λ(Df ) ⊆ (S3, ξst) is Legen-
drian isotopic to the Legendrian link Λf ⊆ (S3, ξst) associated to the isolated
singularity of f ∈ C[x, y]. �
Proof. First, we note that Λ(Df ) is a maximal-tb Legendrian representative
by Proposition 2.12. Thus the latter part of statement follows from the former
and Proposition 2.2. Hence we now focus on the first part of the statement.
In A’Campo’s isotopy [3, Section 3] from the link associated to the divide
to the link of the singularity, the key step is the almost complexification of
the Morsification f̃ : R

2 −→ R. This replaces the R-valued function f̃ by an
expression of the form

f̃C : T ∗
R

2 −→ C, f̃C(x, u) := f̃(x) + idf̃(x)(u) − 1
2
χ(x)H(f(x))(u, u),

which is a C-valued function, where u = (u1, u2) ∈ R
2 are Cartesian coordi-

nates in the fiber. Here H(f(x)) is the Hessian of f , which is a quadratic form,
and χ(x) is a bump function with χ(x) ≡ 1 near double-points of the divide
Df ⊆ R

2 and χ(x) ≡ 0 away from them. The results in [3], see also [63,64],
imply that the transverse link of the singularity is isotopic to the intersec-
tion ∂ε(T ∗

R
2)∩ f̃−1

C
(0) ⊆ (∂ε(T ∗

R
2), ξst) of the ε-unit cotangent bundle with

the 0-fiber of f̃C, ε ∈ R
+ small enough.10 It thus suffices to compare this

transverse link to the Legendrian lift Λ(Df ) ⊆ (∂ε(T ∗
R

2), ξst), which we can
check in each of the two local models: near a smooth interior point of the
divide Df and near each of its double points. Note that the case of boundary

10This mimicks S. Donaldson’s construction of Lefschetz pencils, where the boundary of a

fiber is a transverse link at the boundary, see also E. Giroux’s construction of the contact

binding of an open book [56,57].
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points can be perturbed to that of smooth interior points, as in the second
row of the local models depicted in Fig. 9 or the first perturbation in Fig. 10.
We detail the computation in the first local model, the case of double points
follows similarly.

The contact structure (∂ε(T ∗
R

2), ξst) admits the contact form ξst =
ker{cos(θ)dx1 − sin(θ)dx2}, (x1, x2) ∈ R

2 and θ ∈ S
1 is a coordinate in the

fiber – this is the angular coordinate in the (u1, u2)-coordinates above. The
divide can be assumed to be cut locally by D = {(x1, x2) ∈ R

2 : x2 = 0} ⊆
R

2, as we can write f̃(x1, x2) = x2, and thus its bi-conormal Legendrian lift
is

Λ(D) = {(x1, x2, θ) ∈ R
2 × S

1 : x2 = 0, θ = ±π/2}.

Note that the tangent space T(x1,x2)Λ(D) of Λ(D) is spanned by ∂x1 , which
satisfies

〈∂x1〉 = ker{cos(θ)dx1 − sin(θ)dx2}, as cos(θ) = 0 at θ = ±π/2.

Since the model is away from a double point, f̃C(x, u) := x2 + i(0, 1) ·
(u1, u2)t = x2 + iu2 becomes the standard symplectic projection R

2 ×R
2 −→

R
2 onto the second (symplectic) factor. The zero set is thus x2 = 0 and

u2 = 0 and so the intersection with T ε
R

2 is

κ = {(x1, x2, θ) ∈ R
2 × S

1 : x2 = 0, θ = 0, π},

as the points with |u1|2 = ε are at θ-coordinates θ = 0, π. The tangent space
Tκ = 〈∂x1〉 is spanned by ∂x1 , which is transverse to the contact structure
along κ:

(cos(θ)dx1 − sin(θ)dx2)(∂x1) = ±1, at θ = 0, π.

It evaluates positive for θ = 0 and negative for θ = π, which corresponds
to each of the two branches in the biconormal lift. It is readily verified [53,
Section 3.1] that κ is the transverse push-off, positive and negative,11 of Λ(D),
e.g. observe that the annulus {(x1, x2, θ) ∈ R

2 × S
1 : x2 = 0, 0 ≤ θ ≤ π} is a

(Weinstein) ribbon for the Legendrian segment {(x1, x2, θ) ∈ R
2 × S

1 : x2 =
0, θ = π/2}. �

Proposition 2.13 implies that real morsifications f̃ yield models for the
Legendrian link Λf ⊆ (S3, ξst) of a singularity f ∈ C[x, y], as introduced in
Definition 2.4. That is, given an isolated plane curve singularity f ∈ C[x, y],
the Legendrian link Λf ⊆ (S3, ξst) is Legendrian isotopic to the Legendrian
lift Λ(Df̃ ) ⊆ (S3, ξst) of a divide Df̃ ⊆ R

2 of a real morsification, and thus
we now directly focus on studying the Legendrian links Λ(Df̃ ) ⊆ (S3, ξst).

Let us now prove Theorem 1.1. For that, we use N. A’Campo’s descrip-
tion [4] of the set of vanishing cycles associated to a divide of a real mor-
sification. For each double point pi ∈ D in the divide D := Df̃ , there is a
vanishing cycle ϑpi

. For each bounded region of R
2 \ D, which we label by

qj , there is a vanishing cycle ϑqj
. These vanishing cycles are also naturally

oriented by choosing the counter-clockwise orientation in the plane. First, we

11The orientation for the negative branch is reversed when considering the global link κ.
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Figure 12. (Left) Two front homotopies from the pieces
of a divide to a (generic) Legendrian front, in line with the
local models in Fig. 9. The vanishing cycle ϑp is drawn in
the Lagrangian base R

2. (Right) A perturbation of a divide
for the E7-singularity. The vanishing cycles ϑp coming from
the double points of the divide are drawn in yellow, and the
vanishing cycles ϑq coming from each of the three bounded
interior regions are drawn in red (colour figure online)

visualize those vanishing cycles by perturbing the divide D ⊆ R
2 using the

local models in Fig. 9, e.g., as depicted in Fig. 12.(i) and (ii). Let us denote
this perturbed cooriented front by D′ ⊆ R

2, and note that D′ only uses
one conormal direction at a given point. This perturbation is a front homo-
topy from Λ(Df̃ ) and thus produces a Legendrian isotopy of the associated
Legendrian links Λ(Df̃ ) ∼= Λf in (S3, ξst).

Once the perturbation has been performed, we can draw the curves
ϑpi

, ϑqj
as in Fig. 12. For instance, Fig. 12.(iii) depicts the case of the E7-

singularity with a particular choice of divide D and its perturbation D′, with
ϑpi

in yellow and ϑqj
in red. That is:

1. For each double point pi ∈ D, i.e. a crossing, the curve ϑpi
is a closed

simple curve through the four new double points in D′,
2. For each closed region, ϑqj

is a simple closed curve which (exactly)
passes through the double points at the perturbed boundary in D′ of
the region qj .
The algorithm in [4] constructs a model for the topological Milnor fiber

of f by using the real morsification f̃ , as follows. First, start with the conical
Lagrangian conormal L(D′) ⊆ (T ∗

R
2, λst) of the perturbed divide D′. This

Lagrangian conormal intersects the unit cotangent bundle of T ∗
R

2 at Λ(D′)
and thus, being conical, the information of L(D′) is equivalent to the infor-
mation of the Legendrian link Λ(D′) ⊆ (∂(T ∗

R
2), λst|∂(T ∗R2)) with its front

D′ ⊆ R
2. The intersection L(D′)∩ R

2 = D′ with the zero section R
2 ⊆ T ∗

R
2

is the divide D′. Second, consider the bounded regions in R
2 \ D′ which are

not enclosed by either of the curves of type ϑpi
, ϑqj

, described in (1) and
(2) above. These are the bounded regions in R

2 \ D′ which do not come
from a bounded square obtained by resolving a crossing (as in Fig. 9) nor
from a bounded region in R

2 \ D. Each of these regions is represented by an
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Figure 13. (Left) A Lagrangian model for the Milnor fiber
of E7 using the biconormal lift L(D)′ and some of the
bounded regions in the zero section R

2 ⊆ (T ∗
R

2, λst), filled
in blue. (Right) The Lagrangian skeleton L(D′)∪R

2 previous
to trimming the unbounded region (also depicted in yellow)
and the result of applying a holonomy homotopy, where the
unbounded region is trimmed to L(f̃) (colour figure online)

embedded (exact) Lagrangian 2-disk, as they are contained in the Lagrangian
zero section (T ∗

R
2, λst). The topological surface obtained as the union of the

Lagrangian conormal L(D′) with these Lagrangian 2-disks is a surface (with
corners) which, upon smoothing, lies in the same smooth isotopy class of the
Milnor fiber of f . This explains, following [4], that the union of the Lagrangian
L(D′) with certain bounded Lagrangian regions in R

2 \D′ is a model for the
topological Milnor fiber.

Remark 2.14. For instance, in the example depicted in Fig. 12 (right), there
are 10 such regions in R

2 \ D′ out of 17. We have depicted these regions
in blue in Fig. 13 (left). Note that there are four crossings in D and three
bounded regions in R

2 \D. The union of these 10 regions with L(D′) yields a
topological surface of genus 4 and 2 boundary components – those of the 2-
component link Λ(Df ). Its first Betti number indeed matches μ(E7) = 7. �

In addition to the above model for the Milnor fiber, the article [4] also
guarantees that the curves ϑpi

, ϑqj
are vanishing cycles for the real morsifi-

cation f̃ . At this stage, the key fact that we use from A’Campo’s algorithm
is that our choice of immersion of the divide D′ ⊆ R

2, given by the pertur-
bation, exhibits Lagrangian 2-disks D

2
pi

, D2
qj

⊆ R
2 such that ∂D

2
pi

= ϑpi
and

∂D
2
qj

= ϑqj
. The union of all these Lagrangian 2-disks D

2
pi

, D2
qj

constitutes
the set T (ϑf̃ ) of Lagrangian D

2-thimbles in the statement of Theorem 1.1.
For the curves ϑpi

, this follows from Fig. 12.(i), or Fig. 9, where the 2-
disk D

2
pi

is (a small extension of) the square given by the four double points in
D′ appearing in the perturbation of pi ∈ D. For ϑqj

, the 2-disk D
2
qj

is chosen
to be a small extension of the bounded region itself. These disks are (exact)
Lagrangian because R

2 ⊆ (T ∗
R

2, λst) is exact Lagrangian. The Liouville
vector field in (T ∗

R
2, λst) vanishes at R

2 and is tangent to L(D′). Hence, the
inverse flow of the Liouville field retracts the Weinstein pair (R4,Λ(D′)) to
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L(D′) union the zero section R
2. This shows that L(D′)∪R

2 is a Lagrangian
skeleton of the Weinstein pair (R4,Λ(D′)). Figure 13 depicts this skeleton in
its center, where the R

2 is included in its entirety.
Now, the Lagrangian skeleton has an open piece at the unbounded part

of R
2. To complete our argument, it suffices to homotope the Lagrangian

skeleton so that the unbounded part is trimmed to match the boundary B
of the unbounded piece of R

2 \D′. These skeletal modifications are explained
in detail in [100, Section 3]. In a nutshell, one applies the holonomy modi-
fications from [28, Section 12] to homotope the boundary at infinity of R

2

until it coincides with B, modifying the pseudo-gradient field accordingly
and producing a Weinstein homotopy. In conclusion, the union of the conical
Lagrangian L(D′), some bounded regions12 of R

2 \ D′, and the Lagrangian
2-disks D

2
pi

, D2
qj

⊆ R
2 forms a Lagrangian skeleton of the Weinstein pair

(R4,Λ(D′)), as required. �

Remark 2.15. The referee also suggested the following (equivalent) viewpoint
to smoothly construct the Milnor fiber, which can also be helpful. Consider
the bipartite vertices of the AΓ-diagram [47, Definition 3.1] associated to the
divide D: by definition, this is a black vertex at each crossing and a white
vertex for each bounded region. In the perturbed front diagram D′, each
black (resp. white) vertex yields a bounded region in the complement R

2 \D′

whose boundary has all the conormals pointing outwards (resp. inwards). In
the two types of curve in the proof above, the curves ϑpi

correspond to the
black vertices and the curves ϑqj

correspond to the white vertices. A bounded
region in the complement R

2 \ D′ whose boundary has all the conormals
pointing outwards (resp. inwards) is called a source (resp. a sink); a region
which is not a sink or a source is said to be mixed.

From this viewpoint, the smooth Milnor fiber for the morsification f̃
associated to D = Df̃ can be constructed by consider a 2-disk for each
bounded mixed region of R

2 \ D′ and attaching 1-handles connecting two
such 2-disks for each intersection point of the pair of corresponding mixed
regions.13 It should be possible to make this construction in the embed-
ded and exact Lagrangian context: the 2-disks coming from the bounded
mixed regions of R

2 \ D′ are (embedded exact) Lagrangians by virtue of
being contained in the zero section of the cotangent bundle (T ∗

R
2, λst), and

one would just need to argue that the 1-handle attachment can be made an
exact Lagrangian 1-handle attachment with boundaries as dictated by the
fronts (i.e., that adding the conical Lagrangian piece L(D′) is tantamount to
adding these Lagrangian 1-handles). �

2.4. Lagrangian skeleta

Arboreal Lagrangian skeleta L ⊆ (W,λ) for Weinstein 4-manifolds are defined
in [79,100]. Given a Weinstein manifold W = W (Λ), the arborealization

12Namely, the bounded regions in R2 \ D′ which do not come from a bounded square
obtained by resolving a crossing nor from a bounded region in R2 \D; i.e. the blue bounded

regions, as depicted in Fig. 13.
13Some of these 1-handles might be attached between a region and itself.
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procedure in [100] yields an arboreal Lagrangian skeleton L ⊆ (W,λ) with
∂L �= ∅. Intuitively, those Lagrangian skeleta are obtained by attaching
2-handles to D

2 along a (modification of a) front for Λ, and thus roughly
contain the same information as a front π(Λ) ⊆ R

2 for Λ. Let Λ ⊆ (S3, ξst)
be a Legendrian link and (W,λ) a Weinstein manifold.

Definition 2.16. A compact arboreal Lagrangian skeleton L ⊆ C
2 for a Wein-

stein pair (C2,Λ) is said to be closed if ∂L = Λ. A compact arboreal
Lagrangian skeleton L ⊆ W for a Weinstein manifold (W,λ) is said to be
closed if ∂L = ∅.

The Lagrangian skeleta in Theorem 1.1 and Corollary 1.2 are arboreal
and closed. For reference, we denote the two Cal-skeleta associated to a real
morsification f̃ of an isolated plane curve singularity f ∈ C[x, y] by

L(f̃) := Mf ∪ϑ(f̃)

|ϑ(f̃)|⋃

i=1

D
2, L(f̃) := Mf ∪ϑ(f̃)

|ϑ(f̃)|⋃

i=1

D
2.

The former L(f̃) is a Lagrangian skeleton for the Weinstein pair (C2,Λf ),
and the latter for the Weinstein 4-manifold W (Λf ). The notation Mf stands
for the surface obtained by capping each of the boundary components of the
Milnor fiber Mf with a 2-disk. The notation L(f) and L(f) will stand for
any Cal-skeleton obtained from a real morsification f̃ as in Theorem 1.1 and
Corollary 1.2. Similarly, we will denote by ϑ(f) a collection of vanishing cycles
ϑ(f̃) obtained from a real morsification f̃ , without necessarily specifying f̃ .

Remark 2.17. In the context of low-dimensional topology, the 2-complexes
underlying these Lagrangian skeleta are often referred to as Turaev’s shad-
ows, following [103, Chapter 8]. In particular, it is known how to compute the
signature of a (Weinstein) 4-manifold from any Cal-skeleton by using [103,
Chapter 9]. Similarly, the SU(2)-Reshetikhin-Turaev-Witten invariant of the
three-dimensional (contact) boundary can be computed with the state-sum
formula in [103, Chapter 10]. It would be interesting to explore if such com-
binatorial invariants can be enhanced to detect information on the contact
and symplectic structures. �

3. Augmentation stack and the cluster algebra of
Fomin–Pylyavskyy–Shustin–Thurston

In the article [47], the authors develop a connection between the topology
of an isolated singularity f and the theory of cluster algebras. In concrete
terms, they associate a cluster algebra A(f) to an isolated singularity. An
initial cluster seed for A(f) is given by a quiver Q(Df̃ ) coming from the
AΓ-diagrams of a divide Df̃ of a real morsification f̃ of f . Equivalently,
by [4,61], the quiver Q(Df̃ ) is the intersection quiver for a set of vanishing
cycles associated to a real morsification of f . The conjectural tenet in [47]
is that different choices of Morsifications lead to mutation equivalent quivers
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and, conversely, two quivers associated to two real morsifications of the same
complex topological singularity must be mutation equivalent.

There are two varieties associated to a cluster algebra, the X -cluster
variety and the A-cluster variety [44,59,95]. In the case of the cluster alge-
bra A(f) from [47], one can ask whether either of these varieties has a par-
ticularly geometric meaning. Our suggestion is that either of these cluster
varieties is the moduli space of exact Lagrangian fillings for the Legendrian
knot Λf ⊆ (R3, ξst), with the appropriate additional data (e.g. local systems).
Equivalently, they are the moduli space of (certain) objects of a Fukaya cat-
egory associated to the Weinstein pair (C2,Λf ); for instance, the partially
wrapped Fukaya category of C

2 stopped at Λf . In this sense, these cluster
varieties are mirror to the Weinstein pair (R4,Λf ).14 Focusing on the Leg-
endrian link Λf ⊆ (R3, ξst), let us then suggest an alternative route from
a plane curve singularity f ∈ C[x, y] to a cluster algebra A(f), following
Definition 2.4 and Proposition 2.2 and 2.13.

Starting with f ∈ C[x, y], consider the Legendrian,15 Λf ⊆ (R3, ξst),
where (R3, ξst) is identified as the complement of a point in (S3, ξst) and the
Legendrian DGA A (Λf ), as defined by Y. Chekanov in [25] and see [36]. Then
we define A(f) to be the coordinate ring of functions on the augmentation
variety A(Λf ) of the DGA A (Λf ). Technically, the DGA A (Λf ) allows for a
choice of base points, and the augmentation variety depends on that. Thus,
it is more accurate to define:

Definition 3.1. Let f ∈ C[x, y] define an isolated singularity, the augmen-
tation algebra A(f) associated to f is the ring of k-regular functions on
the moduli stack of objects ob(Aug+(Λf )) of the augmentation category
Aug+(Λf ). �

The Aug+(Λ) augmentation category of a Legendrian link Λ ⊆ (R3, ξst)
is introduced in [84]. An exact Lagrangian filling16 defines an object in the
category Aug+(Λ), and the morphisms between two such objects are given by
(a linearized version of) Lagrangian Floer homology. In fact, there is a sense in
which any object in Aug+(Λ) comes from a Lagrangian filling [88,89], possibly
immersed, and thus ob(Aug+(Λ)) is a natural candidate for a moduli space
of Lagrangian fillings. The algebra A(f) is known to be a cluster algebra
[51] in characteristic two. The lift to characteristic zero can be obtained by
combining [22] and [51].

By Proposition 2.2, A(f) is a well-defined invariant of the complex topo-
logical singularity. For these Legendrian links Λ = Λf , the Couture-Perron
algorithm [30] implies that there exist a Legendrian front π(Λf ) ⊆ R

2 given
by the (−1)-closure of a positive braid βΔ2, where Δ is the half-twist; equiv-
alently the front is the rainbow closure of the positive braid β [20]. Hence,

14The difference between X - and A-varieties should be the decorations we require for the
Lagrangian fillings.
15In the context of plabic graphs [47, Section 6] the zig-zag curves [59,91] also provide a
front for the Legendrian link Λf .
16Throughout the text, exact Lagrangian fillings are, if needed, implicitely endowed with
a C∗-local system.
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there is a set of non-negatively graded Reeb chords generating the DGA
A (Λf ) and ob(Aug+(Λf )) coincides with the set of k-valued augmentations
of A (Λf ) where exactly one base point per component has been chosen, k
a field. The articles [22,66] provide an explicit and computational model for
ob(Aug+(Λf )), and thus A(f), as follows.

First, suppose that Λ = Λf is a knot. Then, A(f) is the algebra of
regular functions of the affine variety

X(β) := {B(βΔ2) + diagi(β)(t, 1, . . . , 1) = 0} ⊆ C
|βΔ2|+1,

where B are the (i(β) × i(β))-matrices defined in [22, Section 3] and Com-
putation 3.2 below, i(β) is the number of strands of β,Δ, and |βΔ2| is the
number of crossings of βΔ2. In the case Λf is a link with l components, the
space ob(Aug+(Λf )) is a stack17, with isotropy groups of the form (C∗)k. If
the tenet [47, Conjecture 5.5] holds, the affine algebraic type of the augmenta-
tion stack ob(Aug+(Λf )) of a Legendrian link should recover the Legendrian
link Λf and the complex topological type of the singularity f . Here is how to
compute ob(Aug+(Λf )).

Computation 3.2. Let Λ = Λf be an algebraic knot, we can find a set of
equations for the affine variety ob(Aug+(Λf )), essentially using [67], see also
[22]. Consider a positive braid18 β◦ ∈ Br+n such that the (−1)-closure of β◦

is a front for Λ = Λ(β◦). For k ∈ [1, n − 1], define the following n × n matrix
Pk(z), with variable z ∈ C:

(Pk(z))ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 i = j and i �= k, k + 1
1 (i, j) = (k, k + 1) or (k + 1, k)
z i = j = k + 1
0 otherwise;

Namely, Pk(z) is the identity matrix except for the (2×2)-submatrix given by
rows and columns k and k + 1, where it is ( 0 1

1 z ). Suppose that the crossings
of β◦, left to right, are σk1 , . . . , σks

, s = |β◦| ∈ N, σi ∈ Br+n the Artin
generators. Then the augmentation stack ob(Aug+(Λf )) is cut out in C

s ×
C

∗ = Spec[z1, z2, . . . , zs, t, t
−1] by the n2 equations

diagn(t, 1, 1, . . . , 1) + Pk1(z1)Pk2(z2) · · · Pks
(zs) = 0. (3.1)

The matrix Pk1(z1)Pk2(z2) · · · Pks
(zs) is denoted by B(β◦). Equations 3.1

provide a computational mean to an explicit description of the affine varieties
ob(Aug+(Λf )) that yield the cluster algebra A(f). �

Example 3.3. Consider the plane curve singularity19 described by

f(x, y) = −12x10y2 − 4x9y2 − 2x7y4 + 6x6y4 − 4x3y6 + x14 − 2x13 + x12 + y8

=
(
2x3y2 − 4x5y + x7 − x6 − y4

) (
2x3y2 + 4x5y + x7 − x6 − y4

)

17Namely, it is isomorphic to a quotient of X(β) × (C∗)l by a non-free (C∗)l−1-action.
18Note that β◦ can be written in the form β◦ = βΔ2.
19We have chosen this example as a continuation of [30, Example 5.3] and [47, Figure 6].
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The Puiseux expansion yields y(x) = x3/2 + x7/4 and using the Couture-
Perron algorithm [30], or [47, Definition 11.3], a positive braid word associated
to this singularity is

β = (σ2σ1σ3σ2σ1σ3σ2σ1)σ3(σ1σ2σ3σ1σ2σ3σ1σ2)σ1σ3

The Legendrian Λf ⊆ (R3, ξ) is the rainbow closure of β, and the (−1)-
framed closure of β◦ = βΔ2. Note that Λf is a knot, and thus we will use one
base point t ∈ C

∗ in the computation of X(β) = ob(Aug+(Λf )). Following
Computation 3.2 above, we can write equations for affine variety X(β) as
a subset X(β) ⊆ C

31 × C
∗. We use coordinates (z1, z2, . . . , z31; t) ∈ C

31 ×
C

∗, (z1, z2, . . . , z19) corresponding to the 19 crossings of β and (z20, . . . , z31)
account for the 12 crossings of Δ2 ∈ Br+3 . There are a total of 16 equations,
the first two of which read as follows:

z11 + z9z12 + (z9 + (z11 + z9z12) z18) z20 + (z13 + z9z14 + (z11 + z9z12) z15) z21

+(z9z16 + (z11 + z9z12) z17 + (z13 + z9z14 + (z11 + z9z12) z15) z19 + 1) z23 = −t−1

z7 + z6z9 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z18 + (z8 + z6z13 + (z7 + z6z9)z14

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z15)z22 + (z6 + (z7 + z6z9)z16

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z17

+(z8 + z6z13 + (z7 + z6z9)z14 + (z8z10 + z6z11

+(z7 + z6z9)z12 + 1)z15)z19)z24 + (z8z10 + z6z11 + (z7 + z6z9)z12

+(z7 + z6z9 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z18)z20

+(z8 + z6z13 + (z7 + z6z9)z14

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z15)z21 + (z6 + (z7 + z6z9)z16

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z17

+(z8 + z6z13 + (z7 + z6z9)z14 + (z8z10 + z6z11

+(z7 + z6z9)z12 + 1)z15)z19)z23 + 1)z31 = 0

The remaining 14 equations are longer, but can be readily obtained. This
hopefully illustrates that the method is computationally immediate.20 �
Remark 3.4. (i) One may consider the moduli stack ob(Sh1

Λf
(R2)) of

sheaves with microlocal rank-1 along Λf , instead of ob(Aug+(Λf )). By
[84], there is an equivalence of categories Aug+(Λf ) ∼= Sh1

Λf
(R2). The

stack ob(Sh1
Λf

(R2)) is a X -cluster variety; the associated A-cluster vari-
ety in the cluster ensemble is the moduli of framed sheaves [95].21 In
short, the cluster algebra A(f) could have been defined in terms of
the moduli space of constructible sheaves microlocally supported in Λ,
instead of Floer theory.

(ii) The Aug+-category is Floer-theoretical in nature, e.g. its morphisms
are certain Floer homology groups. It would have also been natural to
consider the partially wrapped Fukaya category W (C2,Λf ), as defined
[50,101], or the infinitesimal Fukaya category Fuk(C2,Λ) [77,81]. These

20Even if the equations themselves, being rather long, may not be particularly enlightening.
21The cluster algebra structure for A(f) defined by [51] is obtained by pulling-back the
cluster algebra structure of the open Bott-Samelson cell associated to β. There should exist
a cluster algebra structure on A(f) defined strictly in Floer-theoretical terms.
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are Floer-theoretical Legendrian invariants associated to Λf , and thus
the singularity f ∈ C[x, y], which might be of interest on their own.

4. A few computations and remarks

Consider the derived dg-category ShΛ(M) of constructible sheaves in a
closed smooth manifold M microlocally supported at a Legendrian link
Λ ⊆ (∂(T ∗M), ξst), e.g. as introduced in [97, Section 1]. Equivalently, one
may consider a conical Lagrangian L ⊆ T ∗M instead of Λ ⊆ (∂(T ∗M), ξst);
in practice, the input data is a wavefront π(Λ) ⊆ M [8]. Let μ sh denote the
sheaf of microlocal sheaves defined22 in [80, Section 5]. There are two situa-
tions we consider, depending on whether the focus is on the Weinstein pair
(C2,Λf ) or on the Weinstein 4-manifold W (Λf ):

(i) Sheaf Invariants of the Weinstein pair (C2,Λf ).23 The category of
microlocal sheaves μ sh(L(f)) is an invariant of (C2,Λf ), as established
in [60,80,97].24 In this case, the global sections μ sh(L(f)) is a category
equivalent to the more familiar ShΛ(f)(R2). For simplicity, we focus on
the moduli stack S(f) ⊆ ob(ShΛ(f)(R2)) of sheaves whose microlocal
support is rank one, microlocally supported in the Legendrian link of
an isolated plane curve singularity f : C

2 −→ C. See [69, Section 7.5]
or [60, Section 1.10] for a detailed discussion on these sheaves. In our
case Λ = Λ(f), S(f) is an Artin stack of finite type [97, Prop. 5.20], and
typically is an algebraic variety or a G-quotient thereof, with G = (C∗)k

or GL(k, C). Note that μ sh(L(f)) is equivalent to the wrapped Fukaya
category of C

2 stopped at Λf [49].
(ii) Sheaf Invariants of the Weinstein 4-manifold W (Λf ). The category

μ sh(L(f)) of microlocal sheaves [80] on a Lagrangian skeleton L(f) ⊆
W (Λf ) is an invariant of W (Λf ), up to Weinstein homotopy [80]
and up to symplectomorphism [49]. This category is25 Shϑ(f)(Mf ),
or μloc(L(f)), in the notation of [96], i.e. the global sections of
the Kashiwara-Schapira sheaf of dg-categories [96, Prop. 3.5] on the
Lagrangian skeleton L(f). For simplicity, we focus on the moduli stack
θ(f) ⊆ μ sh(L(f)) of microlocal rank-1 sheaves as well. Note that
μ sh(L(f)) is equivalent to the wrapped Fukaya category of W (Λf ) by
[49].
The moduli stack S(f) in (i) is isomorphic to the stack of microlocal

rank-1 sheaves in ob(Shϑ(f)(Mf )). This is because the union of R
2 ⊆ T ∗

R
2

and the Lagrangian cone of Λ ⊆ (T+
R

2, ξst) is a Lagrangian skeleton
for the relative Weinstein pair (C2,Λ), so is L(f) by Theorem 1.1, and

22Thanks go to V. Shende for helpful discussions on sheaf invariants.
23Invariance up to Weinstein homotopy [28], and also symplectomorphism of Liouville
pairs.
24The category μ sh(L(f)) is likely not an invariant of the Weinstein 4-manifold W (Λf )

itself.
25Recall that we denote by ϑ(f) a collection of vanishing cycles ϑ(f̃) obtained from a real

morsification f̃ .
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Figure 14. A Cal-skeleta L(f2n+1) for the Weinstein 4-
manifolds W (Λ(A2n+1))

ob(Shϑ(f)(Mf )) is an invariant of the Weinstein pair (C2,Λ), independent
of the choice of Lagrangian skeleton. Thus, the difference between S(f) and
θ(f) is at the boundary, which for S(f) might give monodromy contributions
(and these become trivial on θ(f)). In other words, since L(f) is obtained
from L(f) by attaching 2-disks (to close the boundary of the Milnor fiber
Mf ), the category μ sh(L(f)) is a homotopy pull-back of μ sh(L(f)).

Remark 4.1. There are currently two methods for computing S(f): either by
direct means, as exemplified in [97], or by using the equivalence of categories
Aug+(Λ(f)) ∼= Sh1

Λf
(R2) from [84, Theorem 1.3], the latter being denoted by

C1(Λf ) in [84]. Thanks to the computational techniques available for augmen-
tation varieties, the moduli of objects ob(Aug+(Λ(f))) is readily computable
for (−1)-framed closures of positive braids as in Sect. 3 above, confer Com-
putation 3.2. Similarly θ(f) could be computed directly, or by means of the
isomorphism to the wrapped Fukaya category26 of W (Λf ). �

In this section, we take to opportunity to build on [80,96] and perform
an actual computation for a class of Cal-Skeleta coming from Theorem 1.1.

4.1. Cal-skeleta for An -singularities

Consider the An-singularity fn(x, y) = xn+1 + y2. The Legendrian Λ(An) ⊆
(R3, ξst) associated to the singularity is the max-tb Legendrian (2, n+1)-torus
link. By Theorem 1.1, a Lagrangian skeleton L(fn) for the Weinstein pair
(C2,Λf ) is obtained by attaching n 2-disks to a (3/2 − (−1)n/2)–punctured
�n−1

2 �–genus surface along an An-Dynkin chain of embedded curves. Simi-
larly, Corollary 1.2 implies that a Lagrangian skeleton L(fn) for the Weinstein
4-manifold Wn = W (Λ(An)) is given by attaching n 2-disks to a �n−1

2 �–genus
surface along an An-Dynkin chain, as depicted in orange in Fig. 15, see also
Fig. 14.

Let us compute θ(fn) for n ∈ N even, so that Λ(An) is a knot; the
n ∈ N odd case is similar. The key technical tool is the Disk Lemma [68,
Lemma 4.2.3]. The Disk Lemma explains, in precise terms, how to compute
the category of microlocal sheaves on a two-dimensional Lagrangian skeleton
S ∪γ D

2 in terms of the category for the corresponding Lagrangian skeleton
S, where D

2 is attached along an embedded smooth curve γ ⊆ S. In brief, the
Disk Lemma states that the microlocal sheaf category for S ∪γ D

2 has as its

26Should the reader be willing to use the surgery formula, this wrapped Fukaya category
may be presented as modules over the Legendrian DGA of Λf . (This is only informative

and not needed for the present purposes.)
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Figure 15. The Cal-skeleta L(f) for the Weinstein 4-
manifolds W (Λ(A2)) and W (Λ(A6)). The relative Cal-
skeleta L(f) for the corresponding Weinstein pairs
(C2,Λ(A2)) and (C2,Λ(A6)) are obtained by introducing one
puncture to the surfaces

objects pairs consisting of an object FS in the category for S and a (derived)
trivialization of the microlocal monodromy of FS along γ, i.e. a homotopy
from this microlocal monodromy to the identity.

The complement Mf \ ϑ(f) of the vanishing cycles is a 2-disk, and
the category of local systems is just C-mod. Thus, the moduli of simple
constructible sheaves on Mf microlocally supported on (the Legendrian lift
of) the vanishing cycles ϑ(f) consists of a vector space V = C and maps
x1, x2, . . . , xn ∈ End(V ), one associated to each vanishing cycle. This is
depicted in Fig. 15 for n = 2, 6, and note that n = |ϑ(f)|. Denote by
L(fn)0 ⊆ T ∗Mf the Lagrangian skeleton given by Mf union the conormal
lifts of ϑ(f). These maps are not necessarily invertible in μ sh(L(fn)0).

The skeleton L(fn) is obtained by attaching n Lagrangian 2-disks to
L(fn)0, i.e. L(fn) is the homotopy push-out of L(fn)0 and the disjoint union
of n 2-disks. In consequence, the category of microlocal sheaves on L(fn) is
given by the homotopy pull-back of the category of microlocal sheaves on
L(fn)0 and the category of microlocal sheaves on n disjoint 2-disks (which
are just copies of C-mod). Attaching a 2-disk along a vanishing Vi cycle in
ϑ(f), i ∈ [1, n], has the effect of trivializing the “monodromy” corresponding
map xi, by the Disk Lemman [68, Lemma 4.2.3] cited above; see [96, Section
4] and [68, Section 4.2] for the details. Here, the monodromy27 is given by
restricting a microlocal sheaf to (an arbitrarily small neighborhood of) Vi.
Note that in this restriction, we land into a 1-dimensional Lagrangian skeleton
given by a circle Vi

∼= S1 union conical segments coming from the adjacent
vanishing cycles. Let us call γi the composition of maps from cone(xi) to
itself obtained by going around Vi, each of the maps coming from traversing
a segment. Then, the trivialization is a homotopy to the identity, and it
translates into adding a map αi such that xiαi − 1 = γi.

Example 4.2. Consider the map x1 in Fig. 15 (Left), which is depicted trans-
versely to the vanishing cycle V1. The restriction of a microlocal sheaf to a

27We had written “monodromy” in quotations because it is not a priori necessarily
invertible.
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neighborhood of V1 gives a microlocal sheaf for the skeleton S
1 ∪ T ∗,+

p S
1 ⊆

T ∗
S

1, where T ∗,+
p S

1 is the positive half of the cotangent fiber at a point
p ∈ S

1. Such a microlocal sheaf is described by a (complex of) vector space(s)
and an endomorphism. In this case the vector space is V = C and this endo-
morphism is identified with γ1 = x2. Hence, trivializing along V1 adds a
map α1 ∈ End(C), which we can think of as a variable α1 ∈ C, such that
x1α1 + 1 = −x2. Similarly, trivializing along V2, with γ2 = −α1, adds a
variable α2 ∈ C such that 1 + x2α2 = −α1. Hence θ(f) is the affine variety

θ(f3) = {(x, y, z) ∈ C
3 : xyz + x − z − 1 = 0}.

This affine variety appears in the study of isomonodromic deformations of
the Painlevé I equation [105, Section 3.10], see also [18, Section 5]. �

The vanishing cycles V1, Vn have simpler monodromies γ1, γn, as they
only intersect one other vanishing cycle. Adding the 2-disks to the skeleton
L(fn)0 along V1, Vn yields a category of microlocal sheaves whose moduli
space of simple objects is described by that of L(fn)0 and the two equations
x1α1 + 1 = −x2 and xnαn + 1 = −αn−1. For each of the middle vanishing
cycles Vi, 2 ≤ i ≤ n − 1, we have the monodromy γi = αi−1xi+1. In con-
sequence, attaching the n 2-disks L(fn)0 along all the curves Vi, i ∈ [1, n],
leads to the moduli space

θ(f) ∼= {(xi, αi) ∈ (C2)n : x1α1 + 1 = −x2, xnαn + 1
= −αn−1, 1 + xjαj = αj−1xj+1, j ∈ [2, n − 1]}.

Remark 4.3. Consider (n + 3)-tuples of vectors (v1, . . . , vn+3) ∈ C
2, modulo

GL2(C), the equations for θ(f) above can be read directly by writing the
(n + 3)-tuple as
(

1
0

)
,

(
0
1

)
,

(−1
x1

)
,

(
α1

x2

)
,

(
α2

x3

)
,

(
α3

x4

)
,

(
α4

x5

)
, . . . ,

(
αn−1

xn

)
,

(
αn

−1

)
,

and imposing vi ∧ vi+1 = 1, where we have use the GL2(C) gauge group
to trivialize the first two vectors, and one component of the third and last
vectors. Boalch [18] names this moduli stack after Sibuya [99]. Note that [18,
Section 5] points out that some of these equations were initially discovered by
Euler [42]. In the context of open Bott–Samelson cells [95,98], these spaces
appear as the open positroid varieties {p ∈ Gr(2, n+3) : Pi,i+1(p) �= 0}, where
Pi,j is the Plücker coordinate given by the minor at the i and j columns, and
the index i is understood Z/(n + 3)-cyclically. �

Finally, we notice that the cohomology H∗(θ(f), C), or that of H∗(S(f), C),
can be an interesting invariant [97, Section 6]. For the case of An-singularities,
we can use the fact that these are actually cluster varieties of An-type in order
to compute their cohomology using [72, Section 6.2]. For n = 2m ∈ N even,
and removing any C

∗-factors coming from frozen variables, one obtains that
the Abelian graded cohomology group is isomorphic to Q[t]/tm+1, |t| = 2.
In general, the mixed Hodge structure for these moduli spaces can be non-
trivial, but for singularities of An-type, these cohomologies are of Hodge–Tate
type, and entirely concentrated in

⊕
k≥0 Hk,(k,k).
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Remark 4.4. It would be valuable to understand the relation between sheaf
invariants of a singularity f ∈ C[x, y], such as μ sh(L(f)) and μ sh(L(f)), and
classical invariants from singularity theory [3,9,10]. In particular, it could
be valuable to develop more systematic methods to compute μ sh(L(f)) and
μ sh(L(f)) both directly and from a divide. �

5. Structural conjectures on Lagrangian fillings

Let Λ ⊆ (S3, ξst) be a max-tb Legendrian link. The classification of embed-
ded exact Lagrangian fillings L ⊆ (D4, λst) with fixed boundary Λ, up to
Hamiltonian isotopy, is a central question. The only Legendrian Λ for which
a complete classification exists is the standard unknot [33]. In this case, the
standard Lagrangian flat disk is the unique filling: there is precisely one exact
Lagrangian filling, up to Hamiltonian isotopy.

The recent developments [20,22,23] show that such finiteness is actu-
ally rare: e.g. the max-tb torus links (n,m) admit infinitely many exact
Lagrangian filling, up to Hamiltonian isotopy, if n,m ≥ 4. It is proven in [20]
that Legendrian representatives of infinitely many types of either torus, satel-
lite or hyperbolic knots admit infinitely many Hamiltonian isotopy classes of
embedded exact Lagrangian fillings. This final section states and discusses
Conjectures 5.1 and 5.4, which might help towards our understanding of the
classification of exact Lagrangian fillings of Legendrian links.
Geometric strategy Given Λ ⊆ (S3, ξst), we would like to know whether it
admits finitely many Lagrangian fillings or not, and in the finite case provide
the exact count. Theorem 1.1 provides insight for the class of Legendrian
links Λ ⊆ (S3, ξst) that are algebraic links and, more generally, arise from
a divide. Indeed, Lagrangian fillings for Λ can be constructed by using the
Lagrangian skeleta for the Weinstein pair (C2,Λ) built in the statement. For
instance, the inclusion of the Lagrangian Milnor fiber Lf̃ ⊆ Lf̃ provides an
exact Lagrangian filling, and performing Lagrangian disk surgeries along the
Lagrangian 2-disks in Lf̃ \Lf̃ , which bound vanishing cycles, will potentially
yield new Lagrangian fillings. This strategy can be implemented in certain
cases but, in general, one must be able to find an embedded Lagrangian disk
in the new Lagrangian skeleton (with an embedded boundary curve), to per-
form the next Lagrangian disk surgery. Curves being immersed rather than
embedded28, might a priori represent a challenge.29 This geometric scheme
has the following algebraic incarnation.

Algebraic strategy Consider the intersection quiver Qϑ(f̃) of vanishing
cycles for a real morsification f̃ , Lagrangian disk surgeries induce mutations
of the quiver [96] and the (microlocal) monodromies of a local system serve
as cluster X -variables [23,98]. Thus, the cluster algebra A(Q(f)) associated

28Equivalently, the existence of curves with zero algebraic intersection but non-empty
geometric intersection.
29The vanishing cycles can be organized as a quiver Q, the additional data of a superpo-

tential (Q, W ) should be helpful in solving the disparity between immersed and embedded
curves in the Milnor fiber.
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to the quiver, as it appears in [47], governs possible exact Lagrangian fillings
for the Legendrian link Λ. That is, a Lagrangian filling L ⊆ (D4, λst) yields a
cluster chart for this algebra [51,98], and the Lagrangian skeleta from Theo-
rem 1.1 provide a geometric realization for the quiver in the form of an exact
Lagrangian filling with ambient Lagrangian disks ending on it.

The recent developments [20,51,96,98] and the existence of the
Lagrangian skeleta in Theorem 1.1 shyly hint towards the fact that, pos-
sibly, Lagrangian fillings are classified by the cluster algebra A(Q(f)). That
is, every cluster chart in A(Q(f)) is induced by precisely one exact Lagrangian
filling.30 It should be emphasized that this is not known for any Λ ⊆ (R3, ξst)
except the standard Legendrian unknot. It is possible that the case of the
Hopf link Λ(A1) can be solved by building on the techniques in [92], which
classifies exact Lagrangian tori near the Whitney sphere;31 this is currently
work in progress.

Having presented the available evidence, we state the following conjec-
tural guide:

Conjecture 5.1. (ADE Classification of Lagrangian Fillings) Let Λ ⊆ (R3, ξst)
be the Legendrian rainbow closure of a positive braid such that the mutable
part of its brick quiver is connected. Then one of the following possibilities
occur:

1. Λ is smoothly isotopic to the link of the An-singularity. Then Λ has
precisely 1

n+2

(
2n+2
n+1

)
exact Lagrangian fillings.

2. Λ is smoothly isotopic to the link of the Dn-singularity. Then Λ has
precisely 3n−2

n

(
2n−2
n−1

)
exact Lagrangian fillings.

3. Λ is smoothly isotopic to the link of the E6, E7 or the E8-singularities.
Then Λ has precisely 833, 4160, and 25080 exact Lagrangian fillings,
respectively.

4. Λ has infinitely many exact Lagrangian fillings.

The following comments are in order:
(i) In [45], Fomin and Zelevinsky classify cluster algebras of finite type. This

is an ADE-classification, parallel to the classification of simple singu-
larities [9], the Cartan–Killing classification of semisimple Lie algebras,
finite crystallographic root systems (via Dynkin diagrams) and the like.
Thus, Conjecture 5.1 first states that Λ will have finitely many exact
Lagrangian fillings, up to Hamiltonian isotopy, if and only if the associ-
ated quiver is ADE.

(ii) The case of Λ = Λf an algebraic link associated to a non-simple sin-
gularity f ∈ C[x, y] of a plane curve follows from [20], and the case of
a Legendrian Λ with a non-ADE underlying quiver has recently been
proven in [52]. These approaches are based on the following fact: if there
exists an embedded exact Lagrangian cobordism from Λ− to Λ+ and Λ−
admits infinitely many Lagrangian fillings, then so does Λ+. See [22,86]

30That is, two Lagrangian fillings inducing the same cluster chart in A(Q(f)) are Hamil-

tonian isotopic and every cluster chart is induced by at least one Lagrangian filling.
31See also [29], which appeared during the writing of this manuscript.
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and [20, Section 6]. This itself initiates the quest for finding the smallest
Legendrian link which admits infinitely many exact Lagrangian fillings.
At present, if we measure the size of a link Λ as π0(Λ)+2g(Λ), g(Λ) the
(minimal) genus of a (any) embedded Lagrangian filling, the smallest
known Legendrian link has g(Λ) = 1 and two components π0(Λ) = 2; it
is built in [22]. Intuitively, it is the geometric link corresponding to the
Ã2 cluster algebra.

(iii) According to (ii) above, the missing ingredient for Conjecture 5.1 is
showing that (1), (2) and (3) hold. For the An-case (1), it is known that
there are at least the stated Catalan number worth of exact Lagrangian
fillings, distinct up to Hamiltonian isotopy. This was originally proven
by Pan [87] and subsequently understood in [98,102] from the per-
spective of microlocal sheaf theory. It remains to show that any exact
Lagrangian filling of Λ(An) is Hamiltonian isotopic to one of those; the
first unsolved case is the Hopf link Λ(A1) having exactly two embed-
ded exact Lagrangian fillings.32 For the Λ(Dn),Λ(E6),Λ(E7) and Λ(E8)
cases in Conjecture 5.1, one needs to first find the corresponding num-
ber of distinct Lagrangian fillings, and then show these are all. The
construction part should be relatively accessible, in the spirit of either
[23,87,98], and it is reasonable to suspect that these many fillings can be
distinguished using either augmentations or microlocal monodromies.33

(iv) The numbers appearing in Conjecture 5.1. (i)–(iii) are the number
of cluster seeds for the corresponding cluster algebra. Precisely, con-
sider a root system of Cartan-Killing type Xn, e1, . . . , en its exponents
and h the Coxeter number. Then the numbers in Conjecture 5.1 are
N(Xn) =

∏n
i=1(ei + h + 1)(ei + 1)−1 for Xn = An,Dn, E6, E7, E8. It is

natural to strengthen Conjecture 5.1. (iv) to: 4. There exist a natural
bijection between Hamiltonian isotopy classes of exact Lagrangian fill-
ings of Λ and cluster seeds of the (natural) cluster A-structure on the
augmentation variety of Λ, decorated with one marked point per compo-
nent. (The bijection assigns to a Lagrangian filling L the set H1(L, C∗)
of C

∗-local systems on L, which is naturally a subset of the augmenta-
tion variety and a cluster chart.)

Note that Conjecture 5.1 has a natural analogue for W (Λ). Namely,
the Hamiltonian isotopy classes of closed exact Lagrangians in W (Λ) are
precisely given by the numerics above. This aligns with the spirit of the
nearby Lagrangian conjecture, now for surface skeleta: if we interpret W (Λ)
as “generalized cotangent bundle” T ∗

L, where L is a Cal-skeleton for Λ, then
the conjecture would be that any closed exact Lagrangian is Hamiltonian
isotopic to a Lagrangian which is either a subset of L or can be obtained
from it via (iterated) Lagrangian disk mutations.

32In particular, this would show that the two possible Polterovich surgeries [90] of a 2-
dimensional Lagrangian node are the only two exact Lagrangian cylinders near the node,
up to Hamiltonian isotopy.
33Showing these exhaust all fillings, up to Hamiltonian isotopy, is another matter, possibly
much more challenging.
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The brick graph of a positive braid is defined in [13,94], it can be
enhanced to a quiver, which we call the brick quiver, following the algorithm
in [95, Section 3.1] or [51, Section 4.2], which itself generalizes the wiring
diagram construction in [16,43].

Remark 5.2. The hypothesis of the mutable part of its brick quiver being
connected is necessary. We could otherwise add a meridian to any positive
braid, which would create a disconnected quiver; the resulting cluster algebra
would be a product with A1, which preserves being of finite type. It stands
to reason that adding a meridian to a Legendrian link Λ would yield a Leg-
endrian link Λ ∪ μ with exactly twice as many Lagrangian fillings. It is clear
that there are at least twice as many Lagrangian fillings for Λ ∪ μ, as there
are two distinct Lagrangian cobordisms from Λ to Λ ∪ μ. The simplest case
is Λ = Λ0 the standard Legendrian unknot and Λ∪μ ∼= Λ(A1) the Hopf link,
which should have 2 = 2 · 1 Lagrangian fillings, in accordance with Conjec-
ture 5.1. The next case would be Λ = Λ(A1), so that Λ(A1) ∪ μ ∼= Λ(D2), in
line with Λ(D2) conjecturally having 4 = 2 · 2 Lagrangian fillings. �

Note that the article [22] has provided the first examples of Legendrian
links Λ ⊆ (S3, ξst) which are not rainbow closures of positive braids and yet
they admit infinitely many Lagrangian fillings, up to Hamiltonian isotopy.
These Legendrian links have components which are stabilized, not max-tb,
and thus they cannot be rainbow closures of any positive braid. It would
be interesting to extend Conjecture 5.1 to a larger class of links, possibly
including (−1)-framed closures of certain positive braids, e.g., those with
Demazure product equal to a half-twist, as studied in [22].

Remark 5.3. To the author’s knowledge, [33,87], Theorem 1.1, and the recent
[20,22,23,51,52], constitute the current evidence towards Conjecture 5.1.
Hints towards Conjecture 5.1 might have appeared in the symplectic folk-
lore in one form or another: e.g. the advent of Symplectic Field Theory led
to the mantra of “pseudoholomorphic curves or nothing”34, the subsequent
arrival of microlocal sheaf theory to symplectic topology led to “sheaves or
nothing”. In the current zeitgeist, cluster algebras provide a new algebraic
invariant that one might hope to be complete.35 �

In the line of Remark 5.3, a natural strengthening of Conjecture 5.1,
under same the hypotheses, would be to speculate that there exists precisely
one Hamiltonian isotopy class of Lagrangian fillings per each cluster seed
in the augmentation variety associated to Λ ⊆ (R3, ξst). Given our current
understanding, this might as well be the case. The statement is correct for
the unknot and current work in progress indicates that it is correct for the
Hopf link.

34That is, if pseudoholomorphic invariants cannot distinguish two objects, they must be
equal.
35As with the previous two cases, there is no particularly hard evidence for “cluster algebras
or nothing”.
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Finally, an ADE-classification is often part of a larger classification,36 involv-
ing a few additional families. For instance, simple Lie algebras are classified by
connected Dynkin diagrams, which are An,Dn, E6, E7, E8, known as the sim-
ply laced Lie algebras, and Bn, Cn, F4 and G2. These latter cases, Bn, Cn, F4

and G2, are interesting on their own right. For instance, simple singularities
are classified according to An,Dn, E6, E7, E8, and Bn, Cn, F4 then arise in
the classification of simple boundary singularities [9, Chapter 17.4], as shown
in [10, Chapter 5.2]. (See also D. Bennequin’s [15, Section 8] and [7].) In
general, the tenet is that Bn, Cn, F4 and G2 arise when classifying the same
objects as in the ADE-classification with the additional data of a symmetry.37

This a perspective (and technique) called folding, ubiquitous in the study of
Bn, Cn, F4, G2, which is developed in [46, Section 2.4] for the case of cluster
algebras.

Let us consider a Legendrian Λ ⊆ (R3, ξst), a Lagrangian filling L ⊆
(R4, λst), ∂L = Λ, and a finite group G acting faithfully on (R4, λst) by exact
symplectomorphisms, inducing an action on the boundary piece (R3, ξst) by
contactomorphisms. For instance, s : R

4 −→ R
4, s(x, y, z, w) = (−x,−y, z, w)

is an involutive symplectomorphism which restricts to the contactomorphism
(x, y, z) �→ (−x,−y, z) on its boundary piece (R3, ker{dz − ydx}). Let us
define an exact Lagrangian G-filling of Λ to be an exact Lagrangian filling
L of Λ such that G(L) = L and G(Λ) = Λ setwise. Also, by definition, we
say Λ ⊆ (R3, ξst) admits a G-symmetry if there exists a faithful action of G
by contactomorphisms on (R3, ξst) such that G(Λ) = Λ setwise. Examples of
such symmetries can be readily drawn in the front projection, as shown in
Fig. 16 for Λ(A9),Λ(D8),Λ(E6) and Λ(D4). Following the tenet above, the
following classification might be plausible:

Conjecture 5.4. (BCFG Classification of Lagrangian Fillings) Let Λ(β) ⊆
(S3, ξst) the Legendrian rainbow closure of a positive braid β:

1. (Bn) If Λ(β) = Λ(A2n−1), the Z2-symmetry (x, z) −→ (−x, z) for the
front depicted in Fig. 16 lifts to a Z2-symmetry of Λ(A2n−1). Then
Λ(A2n−1) has precisely

(
2n
n

)
exact Lagrangian Z2-fillings.

2. (Cn) If Λ(β) = Λ(Dn+1), the Z2-symmetry (x, z) −→ (−x, z) for the
front depicted in Fig. 16 lifts to a Z2-symmetry of Λ(Dn+1). Then
Λ(Dn+1) has precisely

(
2n
n

)
exact Lagrangian Z2-fillings.

3. (F4) If Λ(β) = Λ(E6), the Z2-symmetry (x, z) −→ (−x, z) in the front
depicted in Fig. 16 lifts to a Z2-symmetry of Λ(E6). Then Λ(E6) has
precisely 105 exact Lagrangian Z2-fillings.

4. (G2) If Λ(β) = Λ(D4), the Z3-symmetry in the front depicted in Fig. 16
lifts to a Z3-symmetry of Λ(D4). Then Λ(D4) has precisely 8 exact
Lagrangian Z3-fillings.

36The larger classification is an ABCDEFG-classification, which admittedly does not roll
off the tongue.
37The study of boundary singularities can be understood as the study of singularities
taking into account a certain Z2-symmetry.
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Figure 16. Legendrian fronts for Λ(A2n−1),Λ(Dn+1),
Λ(E6),Λ(D4) with G-symmetries, G = Z2, Z3. The upper
row exhibits these symmetric fronts as divides of the asso-
ciated singularities, and the lower row depicts them in the
standard front projection (x, y, z) �→ (x, z) for a Darboux
chart (R3, ξst)

For the G2-case in Conjecture 5.4.(4), it might be helpful to notice that
the D4-singularity is topologically equivalent to f(x, y) = x3 + y3. The Z3-
symmetry cyclically interchanges the three linear branches of this singularity.
In particular, we can draw a front for the Legendrian Λ(D4) as the (3, 3)-torus
link, the rainbow closure of β = (σ1σ2)6.38

For the Bn-case in Conjecture 5.4.(1), the construction of
(
2n
n

)
distinct

Lagrangian Z2-fillings likely follows from adapting [87]. Indeed, in the Z2-
invariant front for Λ(A2n−1), as depicted in Fig. 16, there are n crossing to the
left, equivalently right, of the Z2-symmetry axis. We can construct a Z2-filling
of Λ(A2n−1) by opening those n crossings in any order, with the rule that we
simultaneously open the corresponding Z2-symmetric crossing.39 Should one
distinguish these Z2-fillings via their augmentations, as in [87], an appropri-
ate G-equivariant Floer theoretic invariant (e.g., G-equivariant DGA and its
augmentations) needs to be defined. The perspective of microlocal sheaves
[102] yields combinatorics closer to those of triangulations [45, Section 12.1],
modeling An-cluster algebras, and thus might provide a simpler route to dis-
tinguish these fillings. In either case, Conjecture 5.4 calls for a G-equivariant
theory of invariants for Legendrian submanifolds of contact manifolds.

5.1. Some questions

We finalize this section with a series of problems on Weinstein 4-manifolds
and their Lagrangian skeleta. To my knowledge, there are several unanswered

38The Z3-action should coincide with the loop Ξ1 ◦ (δ−1 ◦ Ξ1 ◦ δ) from [20, Section 2].
39The naive count of 312-pattern avoiding permutations from [32,87] would indicate that

there are 1
n

(2n
n

)
such Lagrangian Z2-fillings, instead of

(2n
n

)
. Thus, should Conjecture 5.4

hold, there must be an additional rule for Z2-fillings (not just those in [87, Lemma 3.10]),

possibly related to the fact that the crossing closest to the Z2-axis is different from the
rest.
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questions at this stage, including checkable characterizations of Weinstein 4-
manifolds of the form W (Λf ), where Λf is the Legendrian link of an isolated
plane curve singularity. Here are some interesting, yet hopefully reasonable,
problems:

Problem 1. Find a characterization of Legendrian links Λ ⊆ (S3, ξst) for
which (C2,Λ), or W (Λ), admits a Cal-skeleton. (Ideally, a verifiable char-
acterization.)

For instance, if Λ ⊆ (S3, ξst) is the rainbow closure of a positive braid,
then W (Λ) can be shown to admit a Cal-skeleton by methods similar to the
ones presented in this manuscript. In contrast, if Λ is a stabilized Legendrian
knot, then W (Λ) does not admit a Cal-skeleton.

Problem 2. Find necessary and sufficient conditions for a Lagrangian skeleton
L ⊆ (W,λ) to guarantee that the Stein manifold (W,λ) is an affine algebraic
manifold. Similarly, characterize Legendrian links Λ ⊆ (S3, ξst) such that
W (Λ) is an affine algebraic variety.

Note that the standard Legendrian unknot Λ0
∼= Λ(A0) ⊆ (S3, ξst) and

the max-tb Hopf link Λ(A1) ⊆ (S3, ξst) yield affine Weinstein manifolds, as
we have

W (Λ0) ∼= {(x, y, z) ∈ C
3 : x2 + y2 + z2 = 1},

W (Λ(A1)) ∼= {(x, y, z) ∈ C
3 : x3 + y2 + z2 = 1}.

By [21, Section 4.1], the trefoil Λ(A2) is also an example of such a Legendrian
link, as

W (Λ(A2)) ∼= {(x, y, z) ∈ C
3 : xyz + x + z + 1 = 0}.

Heuristic computations indicate that Λ(A3) and Λ(D4) also have this prop-
erty. See [73,74] for a source of necessary conditions, and [93] for (topological)
skeleta of affine hypersurfaces.

Problem 3. Find necessary and sufficient conditions for a Lagrangian skele-
ton40

L ⊆ (W,λ) to guarantee that the Stein manifold (W,λ) is flexible.41

(Again, a verifiable characterization.) Similarly, characterize Λ ⊆ (S3, ξst)
such that W (Λ) is flexible.

Note that affine manifolds W ⊆ C
N might be flexible [21, Theorem 1.1].

In particular, it could be fruitful to compare Lagrangian skeleta of Xm =
{(x, y, z) ∈ C

3 : xmy + z2 = 1} for m = 1 and m ≥ 2, e.g. the ones provided
in [93].

Problem 4. Suppose that a Weinstein 4-manifold W = W (Λ) is obtained
as a Lagrangian 2-handle attachment to (D4, ωst). Given a Cal-skeleton
L ⊆ (W,λ), devise an algorithm to find one such possible Legendrian
Λ ⊆ (∂D

4, ξst).

40Not closed in this case.
41See [28] for flexible Weinstein manifolds. In the 4-dimensional case above, we might just
define flexible as being of the form W = W (Λ) where Λ is a stabilized knot.
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(Note that such a Legendrian Λ might not be unique, i.e. it could be
possible that two non-isotopic Legendrian knots Λ1,Λ2 might have Weinstein
isomorphic traces W (Λ1) ∼= W (Λ2).)

Problem 5. Let L ⊆ (W,λ) be a closed exact Lagrangian surface. Study
whether there exists a Cal-skeleton L ⊆ (W,λ) such that L ⊆ L. In addition,
study whether there exists a Legendrian handlebody Λ ⊆ (#k

S
1 × S

2, ξst),
so that W = W (Λ), and L is obtained by capping a Lagrangian filling of a
Legendrian sublink of Λ.

See [106] for an interesting construction in the case of Bohr-Sommerfeld
Lagrangian submanifolds and see [34] for a general discussion on regular
Lagrangians. The nearby Lagrangian conjecture holds for W = T ∗

S
2, T ∗

T
2,

thus the answer is affirmative in these cases.

Problem 6. Characterize which cluster algebras A can arise as the ring of
functions of the augmentation stack of a Legendrian link Λ ⊆ (S3, ξ).

By using double-wiring diagrams [16], (generalized) double Bruhat cells
satisfy this property [95]. It is proven in [22,51] that the cluster algebras
A(D̃n) of affine Dn-type have this property. Heuristic computations indicate
that the affine types Ãp,q also verify this [22]. It might be reasonable to
conjecture that cluster algebras of surface type all have this property.

Here is a variation on this problem. Suppose that a cluster algebra
A arises, e.g., as an augmentation variety associated to a Legendrian link
Λ. An interesting problem might be to characterize those elements of the
cluster automorphism group of A which arise as Legendrian loops of Λ. In
certain cases, this is known to be the case for Grassmannian braid symmetries
[20,48], the square of the Donaldson–Thomas transformation [52] and the
Zamolodchikov operator [66].

In general, relating geometric properties of Lagrangian fillings to alge-
braic properties of cluster algebras should be fruitful. For instance, already
in Type A, it would be interesting to geometrically characterize those
Lagrangian fillings of the (2, n)-torus links that yield positive cluster seeds.
More ambitiously, it would seem useful to be able to access geometrically, e.g.
via holomorphic curve counts, the Z

t-tropical structure, or the R
+-positive

structure, of the cluster varieties associated to some Legendrian links.

Problem 7. Let a3(Λ) be the number of A3-arboreal singularities of a Cal-
skeleton L ⊆ (W,λ). Find the number a3(W ) := minL⊆W a3(L), where L ⊆
W runs amongst all possible Cal-skeleta. In particular, characterize Weinstein
4-manifolds (W,λ) with a3(W ) = 0.

Problem 8. Develop a combinatorial theory of symplectomorphisms in
Symp(W,dλ) in terms of Cal-skeleta L ⊆ (W,λ).

This is being developed in the case dim(W ) = 2 by using A’Campo’s
tête-à-tête twists [5, Section 3], see also [6, Section 5]. A (symplectic) mapping
class in Symp(W,dλ) is a composition of Dehn twists in this 2-dimensional
case. This is no longer the case in dim(W ) = 4, e.g., due to the existence of
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Biran-Giroux’s fibered Dehn twists, confer [104, Section 3] and [107, Section
2]. Note that π0(Symp(W )) might be infinite even if W contains no exact
Lagrangian 2-spheres [20].

Problem 9. Compare Cal-skeleta L1 ⊆ (W1, λ1), L2 ⊆ (W2, λ2) for exotic
Stein pairs W1,W2. That is, W1 is homeomorphic to W2, but not diffeomor-
phic. In particular, investigate skeletal corks: combinatorial modifications on
a Cal-skeleton that can produce exotic Stein pairs.

In [82], Naoe uses Bing’s house [17] to study some such corks.

Problem 10. Find a contact analogue of Turaev’s Shadow formula42 [103,
Chapter 10] for the contact 3-dimensional boundary in terms of the combi-
natorics of a Cal-skeleton L ⊆ (W,λ). That is, find a contact invariant43

of (∂W, λ|∂W ) which can be computed in terms of the combinatorics of
L ⊆ (W,λ).
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[55] Gibson, W., Ishikawa, M.: Links of oriented divides and fibrations in link
exteriors. Osaka J. Math. 39(3), 681–703 (2002)

[56] Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions
supérieures. In: Proceedings of the International Congress of Mathematicians,
Vol. II (Beijing, 2002), Beijing. Higher Ed. Press, pp. 405–414 (2002)

[57] Giroux, E.: Ideal Liouville domains—a cool gadget (2017). ArXiv e-prints:
1708.08855

[58] Gompf, R.E.: Handlebody construction of Stein surfaces. Ann. Math. (2)
148(2), 619–693 (1998)

[59] Goncharov, A.B.: Ideal webs, moduli spaces of local systems, and 3d Calabi-
Yau categories. In: Algebra, Geometry, and Physics in the 21st Century, Vol-
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