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Surface slip variability on strike-slip faults
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Abstract

Slip in strike-slip earthquakes is spatially variable along a fault, but the degree to
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in surface slip distributions by comparing numerical landscape evolution models and
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recent ruptures on strike-slip faults measured by hand and with image correlation.
Surface slip distributions measured by hand from 63 strike-slip earthquakes have
average spatial variability (CVjip-spatial = standard deviation/mean) of 0.43-0.52, and
a total range of 0.14-1.14. Displacement measurements of offset geomorphic
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spatial variability of ~0.25-0.40 when measured by hand and no spatial variability
Number: DGE-1650115

when measured by image correlation. Slip distributions from seven recent ruptures
measured by image correlation have short-wavelength variability of 0.09-0.29, which
is considered inherent to how rupture propagates to the surface. Our results demon-
strate that variability innate to the rupture process and introduced by interpretation
both contribute substantially to the observed variability in slip distributions measured
by hand. Resolving the extent to which short-wavelength variability is inherent to
rupture propagation through near-surface material versus an artifact of interpretation
furthers understanding of the relationship between surface rupture and fault
mechanics and informs interpretation of slip distribution and slip-per-event in past
earthquakes.
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1 | INTRODUCTION

As a first approximation, co-seismic slip along a fault follows an
elliptical distribution (e.g. Okada, 1985), but in reality, surface slip in
strike-slip earthquakes is spatially variable on both short and long
wavelengths (Figure 1) (Barka, 1996; Berberian et al., 1984; Choi
et al., 2018; Clark, 1972; DuRoss et al., 2020; Fletcher et al., 2014;
Gold et al., 2013, 2015; Haeussler et al., 2004a; McGill &
Rubin, 1999; Quigley et al., 2012; Rockwell & Klinger, 2013; Rockwell
et al., 2002; Shirahama et al., 2016; Sieh et al., 1993; Treiman
et al., 2002). The cause of long-wavelength (>1 km) variability is often
related to fault structure and geometry, such as multiple fault strands
or fault step-overs (e.g. Manighetti et al., 2015b; Wesnousky, 2008),

but there are several potential causes of short-wavelength (<1 km)

variability, and it is not yet clear which are the main contributors.
Short-wavelength spatial variability in surface slip may be due to natu-
ral variation inherent to the rupture process (inherent variability),
introduced by incomplete or inaccurate measurement of tectonic slip
(introduced variability), or a combination of both (e.g. Gold
et al., 2013; McGill & Rubin, 1999; Rockwell et al., 2002). Quantifying
the amount and relative contributions of inherent and introduced vari-
ability will inform fault displacement hazard analysis (e.g. Petersen
et al., 2011) and interpretation of past earthquake ruptures.

Inherent spatial variability over short wavelengths may be caused
by multiple characteristics of the fault zone and rupture process. Rock
mechanics experiments give a theoretical upper limit on the elastic
strain limit in rocks of 0.5%, above which permanent deformation

(i.e. inelastic strain) occurs. This limit implies that slip variability
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FIGURE 1 Conceptual surface slip h k faul .
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greater than 0.5 m over a lateral span of 100 m should be due to
introduced sources; however, exceedance of the elastic strain limit
has been observed in many recent surface ruptures (Barnhart
et al., 2020b; Brooks et al., 2017; Cheng & Barnhart, 2021; Scott
et al., 2019). Permanent deformation is therefore common and may
be a large source of short-wavelength variability. Other potential
sources of inherent short-wavelength variability include fault rough-
ness (e.g. Bruhat et al., 2019; Milliner et al., 2015), rupture velocity
(e.g. Robinson et al., 2006), variable slip in past earthquakes (e.g. Emre
et al., 2020; McGill & Rubin, 1999), fault geometry (e.g. Bruhat
et al,, 2019; Milliner et al., 2016b), and the strength of near-surface
material (e.g. Ma & Andrews, 2010; Zinke et al., 2014). Distributed
deformation, which may be caused by a combination of these factors,
occurs to varying degrees in most surface ruptures and may also con-
tribute to measured slip variability.

Introduced spatial variability from interpretation and measure-
ment of geomorphic markers may contribute additional apparent slip
variability. Interpretation and measurement are distinct processes
with separate errors. Interpretation is the process of choosing an off-

set feature or region and reconstructing its pre-earthquake geometry,
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which involves identifying an offset, identifying the local fault strike,
and interpreting the surrounding geomorphology. Measurement is
quantifying the offset amount after the preferred and permissible
reconstructions have been identified. For modern and paleoseismic
earthquakes, offset geomorphic and anthropogenic markers are
commonly identified and measured by geologists in the field, on
high-resolution optical imagery, and/or on high-resolution digital
topography. For modern earthquakes, surface slip is also measured
from subpixel correlation of optical images or digital topography
acquired before and after an earthquake. Image correlation enables
characterizing surface deformation that may be difficult or impossible
to measure in the field, such as distributed deformation. For historical
earthquakes, however, measuring by hand is the only way to deter-
mine the surface slip distribution because there is no record of the
landscape prior to the earthquake. Observations of surface slip vari-
ability from modern earthquakes thus inform interpretation of surface
slip in older earthquakes.

Inherent and introduced variability both likely contribute to the
observed spatial variability in surface slip distributions, but their rela-

tive contributions remain unknown. The aims of this study are
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twofold. First, we explore the relationship between spatial variability
in slip and earthquake characteristics by compiling surface slip distri-
butions measured by hand from 63 recent, historical, and prehistoric
strike-slip earthquakes and analysing the relationship between slip
variability and tectonic characteristics. Second, we constrain the rela-
tive contributions of inherent and introduced sources of variability by
comparing slip distributions measured by hand and with image corre-
lation from recent ruptures and landscape evolution models. Together,
these datasets suggest that variability introduced by interpretation
and inherent to the rupture process may contribute equally to the
observed variability in surface slip distributions measured by hand,
and slip distributions of prior ruptures interpreted from geomorphol-

ogy underestimate total surface slip.

2 | DATA AND METHODS

21 | Slip distribution data compilation
We compiled and analysed surface slip distributions from 63 continen-
tal strike-slip earthquakes with offsets measured by hand (Figure 1c,
Table 1) and seven earthquakes with surface slip measured by image
correlation (Table 2; Gold et al., 2015, 2021; Milliner et al., 2016a;
Scott et al., 2019; Zinke et al., 2019). This dataset updates published
compilations (Baize et al., 2019; Lin et al., 2020; Wesnousky, 2008).
We compiled offset measurements from the original sources except
for six earthquakes for which we could not access the original data.
For these earthquakes, we used data from two of the three prior
compilations.

We compare spatial variability of surface slip distributions by cal-
culating a CVgjip-spatial Value from the coefficient of variation of all off-

set measurements along a fault or fault section:

o
CV4lip—spatial = — 1
slip—spatial i ( )

where ¢ is the standard deviation and x is the mean of the offset mea-
surements. We calculate CVgjip-spatial in three ways. For the first
method, we use the mean of all measurements greater than zero
(‘simple mean’). For the second method, we use the mean offset value
reported by the authors of the study (‘reported mean’). For the fault
sections where the authors do not report an average slip value (~15%
of datapoints; Table 1), we use the simple mean. For the third method,
we use the mean from an interpolated slip distribution based on the
observed offset measurements and sampled at regular intervals to
avoid spatial bias in locations of offset measurements (‘interpolated
mean’) (e.g. Wells & Coppersmith, 1994). This method could not be
applied to all datasets due to a lack of location data. The standard
deviation for the first two methods is the standard deviation of all
measurements, and for the third method it is the standard deviation
of the interpolated slip distribution. None of these methods for calcu-
lating mean slip filter out long-wavelength variability.

We use the CVjjip_spatial Values calculated from the reported-mean
method for the remainder of the analysis. We chose the reported-
mean method for three reasons, based on comparing fault sections
where we were able to calculate spatial variability with all three

methods (Figure 2). First, the reported mean offset may have less

spatial bias and be less impacted by long-wavelength variability than
the simple mean because most authors account for the distribution of
offset measurements in calculating mean slip (e.g. DuRoss et al., 2020).
Second, although mean slip is slightly higher for the reported-mean
method than for the simple and interpolated methods, and spatial vari-
ability is slightly lower, none of these datasets are significantly different
at the 95% confidence level (Figure 2a; t-test, p = 0.73 simple-interpo-
lated; 0.24 simple-reported; 0.10 interpolated-reported). The slight dif-
ferences in mean values from the three methods cause slight
differences in spatial variability, with the reported-mean method having
the lowest spatial variability because it has the largest mean (Figure 2b).
Third, the interpolated-mean method was not possible for all datasets.
In summary, since the mean values calculated from the different
methods are not significantly different at the 95% confidence level and
the reported mean should have less spatial bias than the simple mean,
we use the reported-mean method in reporting CVgjip-spatial Values.

We use lateral offset data mapped in the field or on LiDAR or
imagery for the most recent earthquake on each fault. For each fault
system, we calculate spatial variability based on all offset measure-
ments along the fault and for each fault section, as defined by the
authors of the study. We also note which slip distributions are subset
from a dataset that includes larger offset measurements that repre-
sent multiple earthquakes. We report statistics for the following
groups of slip distributions from single earthquakes (Figure 3): (a) all
slip distributions from one earthquake (‘all data’); (b) single fault sec-
tions (‘single section’); (c) multiple fault sections (‘multiple sections’);
(d) slip distributions interpreted from of a dataset that includes larger
offsets formed in multiple surface ruptures (‘subset’); and (e) slip dis-
tributions known to be from a recent surface rupture (‘not subset’). In
total, 63 earthquake surface ruptures are included (Table 1), with data
counted in either single or multiple sections and either subset or not
subset. For example, a slip distribution from a recent rupture with two
fault sections generates three datapoints: one for the entire fault, one
for section 1, and one for section 2. Spatial variability for the entire
fault is included in three groups: ‘all data’; ‘multiple sections’; and
‘not subset’. Spatial variability for section 1 is included in ‘all data’,

‘single section’, and ‘not subset’.

2.2 | Numerical landscape evolution model

To constrain the amount of spatial variability introduced by interpre-
tation (introduced variability), we measure offset distances recorded
in geomorphic markers in numerical landscape evolution models that
simulate a strike-slip fault with constant slip along the fault (Figure 4),
and calculate spatial variability [Equation (1)] using the coefficient of
variation of all offset measurements in each simulation (Figure 5). We
use the landscape evolution models published by Reitman et al. (2019b)
that simulate geomorphic evolution of a strike-slip fault zone with dis-
crete earthquakes on a single, linear strike-slip fault (Figure 4a), and
build on the results with further processing, analysis, and interpreta-
tion. Change in landscape elevation with time was modelled using a
Python program (Reitman et al., 2019a) written using Landlab
(Barnhart et al., 2020a; Hobley et al, 2017). The models were
designed as a simplified representation of a hypothetical strike-slip
landscape with a climate similar to that of southern California. Chan-

nels are approximately linear, with flow direction normal to the fault
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https://earthquake.usgs.gov/earthquakes/eventpage/ushis161/executive
https://en.wikipedia.org/wiki/1888_North_Canterbury_earthquake
https://en.wikipedia.org/wiki/1888_North_Canterbury_earthquake
https://en.wikipedia.org/wiki/1888_North_Canterbury_earthquake
https://en.wikipedia.org/wiki/1891_Mino%E2%80%93Owari_earthquake
https://en.wikipedia.org/wiki/1891_Mino%E2%80%93Owari_earthquake
https://en.wikipedia.org/wiki/1891_Mino%E2%80%93Owari_earthquake
https://en.wikipedia.org/wiki/1891_Mino%E2%80%93Owari_earthquake
https://en.wikipedia.org/wiki/1891_Mino%E2%80%93Owari_earthquake
https://en.wikipedia.org/wiki/1891_Mino%E2%80%93Owari_earthquake
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
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https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
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https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957865/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957859/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957859/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem16957859/executive
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https://earthquake.usgs.gov/earthquakes/eventpage/iscgem912687/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem912687/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem912687/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem912687/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem912687/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem912687/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem909273/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem909273/executive
https://earthquake.usgs.gov/earthquakes/eventpage/iscgem909273/executive
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TABLE 2 Surface slip distribution data measured from image correlation

Measurement density

(#/km)

Rupture length

(km)

Data froma Notes

Measured by

OFD

My,

CVCOI‘I’

Std
1.24

Mean

Fault

Year

Earthquake

image correlation, sum of all

Milliner

image

46%

4.0

7.3

60

0.40

all 237 272

1992

Landers

strands

et al. (2016b)

correlation

image correlation, sum of all

Milliner

image

9.8 39%

48 7.1

2.87 1.64 0.49

all 470

1999

Hector

et al. (2016b) strands

Gold et al. (2015)

correlation

Mine

far-field, image correlation

image

1.7 28%

200 7.7

829 273 0.33

Hoshab 330

2013

Balochistan

correlation

all RL > 0, includes many

Scott et al. (2019)

lidar, optical,

50%

7.8

34 7.0

2.39 1.66 0.70

Hinagu & 264

2016

Kumamoto

REITMAN ET AL.

outliers

insar

Fugawa

all measurements on Kekerengu

Zinke et al. (2019)

image

3.9 36%

135 7.8

947 237 0.24

2016 Kekerengu 53

Kaikoura

fault

correlation

Gold et al. (2021) image correlation, all strands

image

59%

3.6

18 6.4

044 034 0.78

2019 All 65

Ridgecrest

correlation

64

Gold et al. (2021) image correlation, all strands

image

35%

3.5

1.02 0.78 50 7.1

1.32

2019 All 177

Ridgecrest

correlation

7.1

@Full citations are in the reference list.

D =0.01 m?/year  and

K = 0.003 year~! were used for the hillslope mass transport (‘dif-

strike. Parameter values of
fusion’) coefficient and the water erodibility coefficient, respec-
tively. The parameters controlling incision and diffusion are
steady and uniform in each model run, and the fault is simulated
as one section of a longer fault to avoid the effects of fault tips.
Each model ran for 10 kyr and simulated 2-15 characteristic-slip
earthquakes with uniform slip along the fault. A background uplift
rate relative to base level of 0.001 m/year was used to maintain
a gradient across the model domain. See Duvall and Tucker (2015)
and Reitman et al. (2019b) for governing equations and a com-
plete model description.

Here, we test how apparent spatial variability in offset geomor-
phic markers is affected by fault zone width, length of the earth-
quake recurrence interval, temporal variability of the recurrence
interval, and cumulative slip relative to channel spacing by calculat-
ing the CVgjip-spatial [Equation (1)] of all offset measurements from
each model run. We also explore how landscape evolution after an
earthquake alters the geomorphology of the fault zone. We use the
offset distances reported by Reitman et al. (2019b) that were mea-
sured at the end of each model run with an automated method that
simulates manual interpretation and measurement. We also mea-
sure offset markers by hand immediately after each earthquake
from an example simulation with five earthquakes of 6 m slip, no
distributed deformation, and a 2000-year recurrence interval
(Figure 4b).

To compare the accuracy of manual feature interpretation ver-
sus automated image correlation, we measure offset distances and
track geomorphic change with image correlation. We show an
example simulation with five earthquakes of 6 m slip and measure
change in modelled topography before and after the first earth-
quake and in the 1000 years following that earthquake (Figures 6
and 7). Horizontal change is computed with MicMac (Rosu
et al, 2015) applied to the post-earthquake topography compared
to the pre-earthquake topography and a 9 x 9 pixel correlation win-
dow size. Vertical change is calculated by backslipping the post-
earthquake topography by the imposed slip amount (6 m) and sub-
tracting the pre-earthquake topography from the backslipped post-
earthquake topography. Lateral displacement across the fault is then
calculated in 10 m-wide swaths centred every metre along the fault
to get a slip distribution along the length of the fault. Linear regres-
sions fit to the data on either side of the fault and projected into
the fault zone constrain the magnitude of displacement (e.g. Gold
et al, 2015; Milliner et al., 2016a). The regressions are projected
10 m away from the fault to avoid the noise around the fault zone,
which is due to the window size of the correlation algorithm and
geomorphic change in the fault zone.

3 | RESULTS

Here we present observed variability from the compilation of slip dis-
tributions from recent and historical strike-slip earthquakes, then
divide the types of contributing variability into introduced and inher-
ent to quantify their relative contributions to total surface slip

variability.
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FIGURE 2 Comparison of (a) mean offset value and (b) spatial
variability calculated from the mean of all offset measurements
(simple), the mean offset value calculated from an interpolated slip
distribution sampled at regular intervals (interpolated), and the
average offset value reported by the authors (reported). The
distributions of mean slip are not significantly different at the 95%
confidence level (t-test, p values range from 0.100 to 0.728). Spatial
variability calculated from the reported mean is significantly different
from the simple or interpolated methods (95% confidence, t-test,

p = 0.002 and 0.028, respectively) [Color figure can be viewed at
wileyonlinelibrary.com]
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3.1 | Variability of recent surface ruptures

Surface slip distributions from recent and historical earthquakes have
a wide range of spatial variabilities. The average spatial variability of
137 slip distributions from 63 earthquakes is 0.47, with a total range of
0.14-1.14 and an interquartile range of 0.31-0.58 (Figure 3a). The large
range of CVgjp-spatial Values demonstrates that there is not a typical value
of spatial variability for strike-slip faults. The mean spatial variability for
single fault section datapoints is 0.43 (Figure 3b) and for multiple fault
section datapoints is 0.50 (Figure 3c). These datasets are statistically
indistinguishable at the 95% confidence level (t-test, p =0.45),
suggesting that author-defined fault sections may not provide meaning-
ful subdivisions. The mean spatial variability for subset datapoints is 0.29
(Figure 3d) and for non-subset datapoints is 0.52 (Figure 3e). These two
datasets are significantly different at the 95% confidence level (t-test,
p =~ 0.00). The significantly lower variability of subset datasets suggests
that interpreting a slip distribution for the most recent earthquake from
a dataset that includes larger offsets formed in multiple earthquakes
does not accurately represent slip in the last earthquake. These inter-
preted slip distributions underestimate maximum slip because the largest
offsets are interpreted to be formed in multiple prior earthquakes.

The values of spatial variability for non-subset slip distributions
reported here are slightly lower than those reported by Lin
et al. (2020), because we compute spatial variability using the mean
offset value reported by the authors of the study. The mean offset
values are not significantly different when calculated from the simple
and reported methods, but the reported mean is slightly higher, caus-
ing spatial variability to be slightly reduced (Figure 2).

To investigate if spatial variability correlates with rupture character-
istics, we compare spatial variability to earthquake magnitude, mean off-

set, rupture length, and maximum offset for each earthquake, as well as

G (b) (c) (d) (e) (f)
CVinp-spatiaI based
1.0r on reported mean
<
I
o}
E o8}
s
Z
3
s 061
>
8
®
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all single section multiple sections IS subset NOT subset model data
n: 137 n: 65 n: 72 n: 31 n: 106 n: 128
mean: 0.47 mean: 0.43 mean: 0.50 mean: 0.29 mean: 0.52 mean: 0.37

FIGURE 3 Spatial variability of offset measurements from 63 earthquakes calculated using the reported mean offset. The width of each
violin is scaled based on the number of datapoints. White circles are median values, and the inner thick bar shows the interquartile range: (a) all
data; (b, c) data from single (b) and multiple (c) fault sections, as defined by the authors of the study. (b) and (c) are statistically indistinguishable at
the 95% confidence level (t-test, p = 0.45). (d) Offset measurements subset from a dataset that includes multiple earthquakes. These slip
distributions have been interpreted from the larger dataset to represent the most recent rupture. (e) Offset measurements not subset from a
larger dataset. (d) and (e) are significantly different at the 95% confidence level (t-test, p ~ 0.00). (f) Offset measurements from landscape
evolution models of constant slip along the fault. The same data for the simple mean calculation are shown in Figure S1 [Color figure can be

viewed at wileyonlinelibrary.com]
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500 Z(m) FIGURE 4 Example numerical landscape
(a) rT20.0 evolution model output. This model was run for
a00{ 1 1 ' 17,5 10 kyr with one 6 m-slip earthquake every
1 150 2000 years. (a) Map-view topography at the end
’ of the model run. Offset distances of channels
= 125 and ridges were mapped and measured following
N 10.0 each earthquake, with data shown in (b). Slip
L5 distribution (thin black line) and smoothed slip
distribution (thick grey line) are shown for the
5.0 first earthquake with 6 m of slip. Data from
2.5 Reitman et al. (2019b) [Color figure can be
0.0 viewed at wileyonlinelibrary.com]
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the number of measurements and measurement density for each slip
distribution (Figure 8). For spatial variability calculated from the reported
mean, there is no apparent correlation with the number of measure-
ments (Figure 8a) or measurement density (Figure 8d). The lack of a
trend between the number and variability of measurements suggests
that measurement density does not affect the variability calculation.
There is a weak negative correlation between spatial variability and
earthquake magnitude (? = 0.31; Figure 8). This trend should be con-
sidered in context. Mean offset is in the denominator of the CVjip-spatial
equation [Equation (1)]. Earthquakes with larger average slip may seem
less variable because there is a minimum threshold on geologists’ ability
to precisely measure offset in the field and on digital gridded data that
depends on the expression of offset in the landscape and the pixel size
of the dataset (often 0.5-1.0 m). Smaller earthquakes are more likely to
have larger uncertainty relative to mean offset value, which may cause
larger spatial variability. The mean offset value usually correlates with
length,
(e.g. Wells & Coppersmith, 1994), which may explain the slight trend

rupture maximum offset, and earthquake magnitude
between these characteristics and lower spatial variability.

In summary, we find that no typical variability exists for slip distri-
butions from a single earthquake, and slip distributions derived from
larger datasets are less variable than those of recent ruptures. Though
larger earthquakes tend to be less variable, this may be a result of a
minimum threshold for accurate measurement. In the following two
sections, we interrogate the causes and relative contributions of the
introduced and inherent variability that comprise the total variability

in measured slip distributions.

3.2 | Sources of introduced variability

Introduced surface slip variability is caused by uncertainty in interpre-
tation and measurement. We estimate it in two ways: from modelled
offsets and from slip in recent earthquakes measured both by geolo-
gists and with image correlation. Apparent spatial variability of offsets
from all landscape evolution simulations averages 0.37, with an inter-
quartile range of 0.26-0.45 (Figures 3f and 5). Increased spatial vari-
ability correlates with wider fault zones (more distributed
deformation, Figures 5a and b), more elapsed time between the earth-
quake and measuring offset markers (Figures 5c¢ and d), and total slip
larger than the distance between channels (Figures 5e and f). The vari-
ability of the five populations of offsets measured after each earth-
quake in the example simulation ranges from 0.24 to 0.34, with a
mean value of 0.29 (Figure 4b). Since all modelled earthquakes have
constant slip along the fault, these variability values provide an esti-
mate of variability introduced by interpretation and measurement of
~25-40%.

Image correlation analysis of model output accurately records
the imposed lateral slip and supports the estimate of introduced vari-
ability. Within 1 year after the earthquake, horizontal image correla-
tion records the imposed 6 m of slip with no spatial variability
(Figures 6a and b), whereas the same offset population measured by
hand has a CVjip-spatial Of 0.24 (Figure 4b). The high spatial variability
of modelled slip when measured by hand compared to the lack of
spatial variability when measured with image correlation indicates

that interpretation of the fault zone landscape is a large contributor


http://wileyonlinelibrary.com

REITMAN ET AL.

FIGURE 5 Offset
measurements from landscape
evolution models. Spatial
variability was calculated from
offset channels measured at the
end of each model run for model
sets with varying (a, b) fault zone
width, (c, d) earthquake
recurrence interval, (e, f) channel
spacing relative to total slip, and
(g, h) temporal variability of the
earthquake recurrence interval.
Higher spatial variability of offset
measurements correlates with
wider fault zones, a longer time
between earthquake and offset
measurement, and total slip larger
than channel spacing. Data from
Reitman et al. (2019b) [Color
figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 6 Evolution of model topography 1, 100, and 1000 years after an earthquake with 6 m of right-lateral slip. (a) Image correlation
results show lateral displacement. Black lines show the location of profiles plotted in (c) and (d). (b) Surface slip distribution derived from image
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wileyonlinelibrary.com]
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FIGURE 7 Topographic evolution of an example numerical model after an earthquake. (a) Model topography 1, 100, and 1000 years after a
6 m-slip earthquake. (b) The topography in (a) backslipped by 6 m along the fault. (c) Vertical difference between the backslipped topography and
pre-earthquake topography. (d) Horizontal difference between the model topography and pre-earthquake topography [Color figure can be
viewed at wileyonlinelibrary.com]

to short-wavelength variability in slip distributions measured boxes in Figure 9), slip distributions measured by hand are
by hand. more variable by 0.10-0.40 (average 0.20) than when mea-
We obtain a second estimate of introduced variability by sured with image correlation (Figure 9). Although this dataset
comparing surface slip measured both by hand and with image is small, the range in spatial variability is consistent with esti-
correlation in recent ruptures (Figures 9 and 10a). These earth- mates of interpretation error from the landscape evolution
quakes demonstrate a range of short-wavelength variabilities models.
from 0.28 to 0.62 (average 0.42) when measured by hand and In summary, we find that slip distributions measured by hand are
0.09 to 0.29 (average 0.22) when measured with image corre- two times more variable, on average, than slip distributions measured
lation. In all cases, slip distributions derived from manual mea- with image correlation and that interpretation and measurement
surements are more variable than slip distributions from image introduce variability of ~25-40%, on average, though variability may
correlation. After filtering out long-wavelength variability (grey be higher or lower in each earthquake.
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FIGURE 8 Spatial variability of slip distributions from single earthquakes calculated using the reported mean offset as a function of:

(@) number of measurements; (b) mean offset; (c) earthquake magnitude; (d) measurement density; (e) rupture length; and (f) maximum offset.
Datapoints outlined in black indicate slip distributions interpreted to represent the most recent rupture from a dataset that includes larger offsets
from more than one earthquake. Length of the x-axis in (d) was clipped to better show clustered datapoints. The same data are shown for spatial
variability calculated using the simple mean offset in Figure S2 [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Comparison of slip distributions measured by hand and with image correlation for the (a, b) Landers, (c, d) Hector Mine, (e, f)
Balochistan, (g, h) Kaikoura, and (i, j) Ridgecrest M,, 7.1 earthquakes. The slip distributions measured by hand are more variable than those
measured with image correlation. CVyjip_spatial is shown for the clipped dataset to control for long-wavelength spatial variability. Original data
sources shown in each panel. Preferred offsets are shown as circles, with minimum and maximum in the shaded region. Uncertainty values in
(b) and (d) are smaller than the marker size for many datapoints. The blue line is a moving average from an interpolated dataset to avoid spatial
bias in measurement locations. Grey boxes show data that were clipped to filter out long-wavelength signal [Color figure can be viewed at
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3.3 | Sources of inherent variability

We estimate spatial variability inherent to the rupture process from
the seven slip distributions measured with image correlation. Inher-
ent surface slip variability may be caused by multiple fault zone and
rupture processes, and we consider the different sources together
as an integrated inherent variability. Image correlation analysis inte-
grates the total on-fault and distributed (or ‘off-fault’) deformation
signal, so we consider variability captured by image correlation slip
distributions as inherent to surface slip. We assume that additional
variability from noise in image correlation is small compared to the
magnitude of inherent slip variability, as suggested by the results of
applying image correlation to landscape evolution models (Figure 6).
Using image correlation on landscape evolution model topography
with a known amount of slip, we show that image correlation pro-
duces zero variability immediately following an earthquake if linear
regressions of profiles are projected across the fault to account for
the noise around the fault due to the window size of the correlation
algorithm (Figure 6a). This approach is standard practice in real
earthquakes (Gold et al, 2015; Milliner et al, 2015; Zinke
et al., 2014), suggesting that noise from image correlation is tiny

compared to the magnitude of inherent slip variability. In real

datasets, the magnitude of noise also depends on the pixel size of
the input images, the correlation window size, and processing deci-
sions made by each author. For the studies used in this analysis,
image correlation can resolve displacements of 10% or less of the
image pixel size (i.e. 10 cm for 1 m-resolution images) and profile
stacking is used to further smooth out noise and increase signal-to-
noise ratio (Gold et al., 2015, 2021; Milliner et al., 2015, 2016b;
Zinke et al., 2014). Synthetic tests also demonstrate that three dif-
ferent correlation algorithms can resolve displacement between
1/10th and 1/100th of the image pixel size with little noise, espe-
cially when pixels with low signal-to-noise ratio are masked out
(Leprince et al., 2007; Rosu et al., 2015). Therefore, noise in the
image correlation datasets is a small fraction of each offset mea-
surement and variability recorded with image correlation on real
faults mostly captures the variability inherent to the rupture
process.

Spatial variability for the slip distributions measured with image
correlation ranges from 0.24 to 0.78, with a mean of 0.53 (Table 2).
When long-wavelength variability (grey boxes in Figure 9) is filtered
out of the slip distributions to isolate short-wavelength variability,
CVqjip-spatial drops to 0.09-0.29, with a mean of 0.22 (Figure 9). The

strong positive correlation between spatial variability of slip
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FIGURE 10 Relationship between distributed deformation and
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CVjip-spatial Mmeasured by hand and with image correlation. (b) There is
a moderate positive correlation between distributed deformation and
spatial variability when measured by hand, and (c) a weaker positive
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when measured with image correlation [Color figure can be viewed at
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distributions measured by hand and with image correlation
(Figure 10a) also demonstrates that some earthquakes naturally have

more variable surface ruptures than others.

4 | DISCUSSION
4.1 | Variability from interpretation and
measurement

Interpretation error is the variability introduced by the process of
identifying offset features, correlating them across the fault, and
reconstructing the offset amount. Measurement error is the random
error introduced by measuring an offset marker. Gold et al. (2013)

found measurement error of +11% from single user repeat

measurements of offset features from the 2010 El Mayor Cucapah
earthquake. In this study we estimate interpretation and measurement
error at ~25-40% based on the numerical models and recent rup-
tures, though the exact amount of variability may depend on the sci-
entist doing the analysis and their experience level (Salisbury
et al., 2015; Scharer et al., 2014). Other studies have also quantified
interpretation error. McGill and Rubin (1999) found that offset
markers from the 1992 Landers earthquake measured by different
groups of researchers range in difference from 0.01 to 1.6 m, with an
average difference of 0.5 m. Scharer et al. (2014) report an offset
measurement range of 2.6 m for one offset channel measured by nine
different field parties. These prior studies support our finding, derived
from assessment of landscape evolution models, that interpretation
error can be very large and greatly exceeds measurement error.
Interpretation error is larger than measurement error because it
relies on correctly identifying characteristics of both the fault and
offset marker at each measurement location. The scientist must iden-
tify the fault location, fault strike, and fault zone width in the local
region of the offset feature, as well as infer the pre-earthquake mor-
phology of the offset marker, the angle of intersection with the fault,
and any post-earthquake geomorphic modification. High obliquity,
sinuosity, and width of the offset marker make it difficult to interpret
pre-earthquake morphology (Salisbury et al., 2015; Scharer
et al., 2014; Zielke et al., 2015). The complexity and width of the
fault zone also affects accuracy of the projection of the offset marker
into the fault zone (e.g. Zielke et al., 2015). Since measurement error
can be an order of magnitude lower than interpretation uncertainty
(Gold et al., 2013), and sizable differences in offset estimates are
more likely to result from improper interpretation than measurement,
we suggest that measurement error is accounted for within the
reported uncertainty bounds, rather than in addition to the interpre-
tation error. Interpretation error is thus the major source of intro-
duced variability, provoking the question: what causes large

interpretation errors?

4.2 | Variability from geomorphic change in the
fault zone

Perhaps the largest source of interpretation error is the geomorphic
expression of lateral slip in the fault zone. In the landscape evolution
model, apparent variability from interpretation error is high after a sin-
gle earthquake (24%, Figure 4b) and increases with more earthquakes
and increased time since an earthquake. Interpretation may become
more difficult as slip accumulates on a fault, because of geomorphic
evolution due to erosion and deposition in the interseismic period and
the expression of cumulative slip in fault zone geomorphology.
Progressive landscape evolution in the interseismic period may
increase interpretation error for historical earthquakes. For example,
reconstructing the original offset geometry for historical earthquakes
becomes more difficult as the preservation of the fault and offset
markers degrades due to erosion, deposition, and widening of the
geomorphic fault zone (Lienkaemper & Strum, 1989; Noriega
et al., 2006; Reitman et al., 2019b; Sharp et al., 1989). Image correla-
tion of numerical models illustrates landscape change after one earth-
quake (Figures 6 and 7). Horizontal difference results show increasing
noise in the fault zone 1, 100, and 1000 years after the earthquake
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(Figure 6a) and the corresponding increase in variability of the slip dis-
tribution (Figure 6éb) and noise in across-fault profiles (Figure 6c). Ver-
tical difference results also illustrate topographic change initiating in
the fault zone and channels within 100 years and permeating the
model landscape by 1000 years after the earthquake (Figures 6d and
7). In this model setup, the fault zone landscape has changed so much
by 1000 years after the earthquake that backslipping the model
topography results in a discrete break along the fault (Figures 7b and
c), an indication that the original lateral displacement has been
smoothed. At this time, the mean offset value slightly underestimates
imposed slip, but individual offset measurements both over- and
underestimate modelled slip (Figure 6b). The exact timescales of these
processes depend on the local climate and the near-surface material
in the fault zone, but the models demonstrate how reconstructing off-
set features provides a less accurate slip distribution for a historical
earthquake than for a modern one. The image correlation results high-
light landscape change after a single earthquake; interpretation error
likely increases when the next earthquake occurs, imprinting fresh
surface rupture on the degraded expression of the prior earthquake.

As slip accumulates in multiple earthquakes, new offset channels
are created, some offset channels grow longer, and some are erased.
These processes also make interpretation more difficult and can
increase spatial variability in offset measurements. Two processes can
erase or reset an offset channel: channel aliasing and channel avulsion.
Channel aliasing occurs when fault slip exceeds the distance between
channels and channel heads disconnect from their original tails and cap-
ture the tails of neighbouring channels. This process creates an aliasing
effect between the upstream and downstream portions of channels that
cross a strike-slip fault and has been observed in numerical models
(Duvall & Tucker, 2015; Reitman et al., 2019b) and in the Carrizo Plain
section of the San Andreas Fault (Noriega et al, 2006; Salisbury
et al, 2018). In the numerical models, spatial variability increased as
cumulative slip exceeded channel spacing (Figure 5e), because channel
aliasing may cause apparent left-lateral offsets in a right-lateral system
and offsets appearing smaller or larger than imposed slip.

Another process that erases the initial offset occurs when a
strike-slip earthquake changes the gradient in the long profile of an
offset channel. Lateral slip can flatten the gradient of the long profile
of an offset channel along the fault scarp, which then increases aggra-
dation and eventually may cause the channel to spill over (avulse) and
incise a new channel. This process resets the original offset distance
and provides a maximum offset amount recorded in a landscape
(Dascher-Cousineau et al., 2021; Sims, 1994). These examples illus-
trate how geomorphic processes can play a primary role in the devel-
opment and modification of channel offsets, illustrating the
intertwined influences of tectonics and climate in shaping a fault zone
landscape and highlighting the difficulties in interpreting strike-slip
geomorphology.

In summary, landscape evolution during the interseismic period,
channel avulsion, and channel aliasing all increase spatial variability of
offset marker measurements because they alter the original offset
features and impede interpretation. These issues are magnified as
time passes after an earthquake, underscoring the importance of mea-
suring offset features quickly and highlighting the difficulties in deter-
mining accurate slip distributions for historical earthquakes. How
these effects are compounded in multiple earthquakes remains to be
tested.

4.3 | Variability from distributed deformation

Some of the difference between hand-measured and image correla-
tion slip distributions from real earthquakes is caused by distributed
deformation, slip that is localized on a fault at depth but is distributed
up to a few hundred metres around the fault at the surface (some-
times referred to as off-fault deformation). Distributed deformation is
common in surface ruptures and is easily missed by near-fault hand
measurements. Estimates of distributed deformation for the earth-
quakes in Table 2 range from 28 to 59%, with an average of 42%, as
reported by the authors of each study. For these events, far-field slip
measured by image correlation usually exceeds near-field offset mea-
surements made by hand (Figure 9) and is always less variable
(Figure 10a), partly because near-field measurements made by hand
may not capture the entire deformation field (e.g. Gold et al., 2015;
Milliner et al., 2015). There is a moderate positive correlation
between spatial variability and distributed deformation for the slip
distributions measured by hand (Figure 10b). This correlation may
exist because it is more difficult to recognize and measure distrib-
uted deformation in the field than discrete, brittle failure that occurs
on a fault. McGill and Rubin (1999) proposed that short-wavelength
spatial variability in the 1992 Landers slip distribution was due to
incomplete expression of slip at the fault because of distributed
brittle shear, warping, or small block rotations. Similarly, variability
of offset measurements increased with wider fault zones in the
landscape evolution models (Figure 5a). The weaker positive correla-
tion between distributed deformation and slip distributions mea-
sured with image correlation (Figure 10c) suggests that missing
distributed deformation explains some, but not all, of the spatial var-
iability in slip distributions measured by hand.

Distributed deformation is inherent to the rupture process, but its
root cause and why it is spatially variable remain open questions.
Hypotheses for the cause of distributed deformation largely overlap
with the potential causes of inherent slip variability, for example:
strength of near-surface materials or inelastic strain. Both McGill and
Rubin (1999) and Milliner et al. (2015) found a weak inverse correlation
between the strength of near-surface material and the amount of dis-
tributed deformation for the 1992 Landers earthquake. Zinke et al. (2014)
also suggested that the strength of surficial material correlates with dis-
tributed deformation for the 2013 Balochistan earthquake, and Cheng
and Barnhart (2021) found no correlation between distributed deforma-
tion and inelastic strain in this rupture. Because distributed deformation
is likely an integral of multiple causes, fault maturity, fault strength, and
slip in prior earthquakes may also play a role. It also remains unknown if
the pattern of distributed deformation is constant or variable in succes-
sive earthquakes. Because distributed deformation is generally not pre-
served in the landscape long after an earthquake, there aren’t any data
to answer these questions, and slip distributions for historical earth-
quakes underestimate the total deformation field.

In summary, distributed deformation accounts for some of the
spatial variability in slip distributions measured by hand, and it is not
captured in the hand-measured, near-fault geomorphic record of lat-
eral displacement. These results suggest caution in interpreting offset
geomorphic markers from historical and paleoseismic earthquakes to
infer slip-per-event and slip distribution of prior earthquakes. Esti-
mates of slip distribution in prehistoric earthquakes derived primarily

from geomorphic features likely underestimate maximum slip because
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they miss distributed deformation and may attribute large offsets to

older earthquakes.

5 | CONCLUSION

Observed short-wavelength spatial variability in surface slip along
strike-slip faults is due to both interpretation error and inherent
variability, possibly in equal measure or dominated by introduced
variability. The relative contribution of the two sources likely varies
between different fault sections and earthquakes. Apparent spatial
variability introduced by interpretation of the landscape contributes
~25-40% variability for simple strike-slip faults simulated in
numerical landscape evolution models with constant slip along the
fault. Short-wavelength variability inherent to the rupture process
ranges from 9 to 29%, as constrained by seven recent surface rup-
tures measured with image correlation. Distributed deformation,
landscape evolution via erosion and deposition in the interseismic
period, and channel aliasing make interpretation of the landscape
more difficult and contribute to variability in slip distributions mea-
sured by hand. Though there is no typical value of spatial variabil-
ity, slip distributions derived from larger datasets that include
offsets from multiple earthquakes are significantly less variable than
slip distributions from recent ruptures. These results suggest that
inherent variability in slip distributions and the variability intro-
duced by human interpretation combine to yield estimates that
systematically underestimate maximum surface slip in historical

earthquakes.
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