
1.  Introduction
Landscapes evolve in response to changes in their climatic and tectonic boundary conditions. River net-
works are usually considered to be the main agents that transmit the effects of such external forcing across 
landscapes. Due to their dominance in terms of area covered at the Earth's surface, most weathering and 
sediment production occurs on hillslopes. Geomorphologists sometimes assume that the erosion rate on 
hillslopes closely follows the pace imposed by channel downcutting at their feet (e.g., Ouimet et al., 2009). 
However, several studies have highlighted the potential for a more complex behavior of hillslopes, sug-
gesting that landscape response depends on the nature of the coupling between channels and hillslopes 
and on the intrinsic dynamics of hillslopes and their response timescales (e.g., Clubb et al., 2020; Langston 
et al., 2015; Romans et al., 2016; Watkins et al., 2018). The hypothesis that hillslope sediment flux depends 
linearly on topographic gradient, which underpins the diffusion theory of soil-mantled hillslope evolu-
tion, has provided a simple and robust framework for understanding their behavior (Culling, 1960; Gil-
bert, 1909). However, a growing body of evidence points to a nonlinear relationship between sediment flux 
and hillslope gradient (Andrews & Bucknam, 1987; Doane et al., 2018; Furbish & Roering, 2013; Roering 
et al., 1999; Tucker & Bradley, 2010), which complicates the hillslope response to external forcing and its 
relationship with the fluvial network. Forcing factors acting on landscapes can be classified into two broad 
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categories (Mudd, 2016). Climate acts directly as a Top-Down (TD) forcing, producing changes in surface 
runoff and vegetation cover, which modulate sediment transport efficiency along hillslopes. Bottom-Up 
(BU) forcing, resulting from changes in the baselevel fall rate at the toe of the hillslope, is associated with 
incision or aggradation in the channel, and can be controlled by any factor impacting the baselevel, such as 
climate, tectonics, eustatic variations, or auto-cyclic processes.

The response time of hillslopes has been intensively studied and characterized under these various types of 
forcing (Fernandes & Dietrich, 1997; Roering et al., 2001). It is less clear how this response time interacts 
with the time characteristics of the input forcing, in particular when dealing with periodic signals associat-
ed with climatic variability. Several recent studies focusing on the fluvial domain have highlighted the sen-
sitivity to periodic climatic fluctuations and the importance of their frequency content (Braun et al., 2015; 
Godard et al., 2013; Simpson & Castelltort, 2012). The response of the hillslope domain to such forcing has 
received less attention. Diffusive processes are usually considered to have a strong buffering effect on envi-
ronmental signals (e.g., Godard et al., 2013), but the signature of more complex hillslope behavior remains 
to be clearly characterized. From gently rolling hillslopes in low-relief landscapes to near-threshold slopes 
in actively uplifting areas, hillslopes can present a variety of morphologies, and understanding their impor-
tance for landscape evolution requires assessing which types of hillslopes, characterized by a given relief or 
erosion regime, are most sensitive to the different types of forcing factors.

Here, we study the response of hillslopes to periodic variations in climatic and tectonic (baselevel) bound-
ary conditions, with a specific focus on the implication of the nonlinear relationship between sediment 
flux and gradient. We summarize the existing framework used to formulate hillslope evolution, and its 
relationship with response time and topographic metrics. We then assess the controls of baselevel fall (here 
“uplift”) rate and transport coefficient on hillslope response. We specifically study the relationship between 
the forcing period and the response time of hillslopes, as set by length, uplift rate, and transport efficiency, 
and discuss the implications for landscape dynamics.

2.  Theoretical Background
We present here the theoretical formulation for hillslope erosion and sediment flux, and the modeling ap-
proaches used in this study. Mass conservation applied to 1D hillslope evolution can be expressed as,

,z q U
t x

 
 

 
� (1)

where E z is land surface elevation, t  time, E q sediment flux ( 2 1[ ]E L T  ), E   the rock-to-regolith density ratio, and E U 
the rate of rock uplift relative to baselevel at the foot of the hillslope ( 1[ ]E LT  ). Equation 1 can be combined 
with a Geomorphic Transport Law (GTL, Dietrich et al., 2003), describing sediment flux E q over a hillslope. 
A widely used transport law for soil-mantled hillslopes (Roering et al., 1999, 2007) expresses the flux E q as a 
nonlinear function of local slope gradient,

2
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where E K is a transport coefficient ( 2 1[ ]E L T  ) and cE S  a critical hillslope gradient ([ / ]L L ) (Roering et al., 1999). 
This expression applies only for | / |  z x Sc. The transport law (Equation  2) implies that the degree of 
nonlinearity in the relationship between gradient and sediment flux varies with the gradient itself. For our 
analysis, it is useful to quantify this degree of nonlinearity by separating the total flux into linear and non-
linear components. Doing so starts with the observation that in gently sloping parts of the landscape, such 
as areas close to the hilltops, the sediment flux is linearly related to topographic gradient as q K z xl    / . 
As shown by Roering et al. (2001), the total flux E q can be expressed as the sum of a linear lE q  and a nonlinear 
nlE q  component,
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Substituting Equation 2 into Equation 1 yields a landscape evolution model describing the evolution of 
hillslope profile topography ( , )E z x t  through space and time,
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We solve Equation 4 using the implicit method proposed by Perron  (2011). Starting from a steady-state 
topography we submit the hillslope to time variations in either E K or E U, parameterized with sinusoidal 
functions,

0 0
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0E K  and 0E U  are the average values of E K and E U, respectively, E a is a factor controlling the amplitude of the 
forcing, and E T  is the oscillation period. The reference parameter values used in our simulations are listed 
in Table S1.

Under steady conditions (  z t/ 0), Equation  4 can be integrated to yield the steady-state topographic 
profile (Roering et al., 2001),
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with E L as the hillslope length (horizontal distance from hilltop to channel). It is useful to define a reference 
erosion rate (Roering et al., 2007) as,

,
2

c
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This reference value provides a way to normalize steady-state erosion rate E E U  into its non-dimensional 
equivalent as,

* 2 .
c

L UE
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

� (8)

At steady state, and in the vicinity of hilltops, where topographic gradient is small ( z x Sc/  ), Equation 4 
simplifies to,

,HTKCU


 � (9)

where hilltop curvature HTE C  is the second derivative of topography. Combining Equations 8 and 9 yields 
a form of *E E  that can be calculated directly from topographic data without needing to know E K (Hurst 
et al., 2012; Roering et al., 2007),

* 2 .HT
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In order to assess the relative non-linear contribution to the sediment flux, Roering et al. (2001) introduced 
the ratio E  of the two components,
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Following Roering et al. (2001), and using Equation 6, we evaluate this 
ratio at the base of the hillslope,
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and we use their definition of an exponential equilibrium adjustment 
timescale for sediment flux or hillslope morphology calculated as,
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The parameters 0.405E A   and 1.74E B   were calibrated by Roering 
et al.  (2001) over a range of LE   values reflecting a wide range of envi-
ronmental conditions and using numerical models for hillslope evolution 
based on the same physical principles as the one we use here. Substitut-
ing Equation 8 into Equation 12 yields,

*21 11
2 2L E   � (14)

The non-dimensional framework for hillslope morphology analysis intro-
duced by Roering et al. (2007) provides a way to reduce erosion dynamics 
to non-dimensional erosion rates *E E  (Equation 8), which can be computed 
on the basis of measurable hillslope morphological characteristics (Equa-
tion 10), such as length and hilltop curvature (Grieve et al., 2016). Equa-
tion 14 describes the connection between *E E , which can be measured from 
topographic data, and the degree of nonlinearity of the sediment flux ( LE  ).  
In order to compare theoretical predictions of hillslope behavior with ac-
tual landscapes, we select case studies for which landscape denudation 
rates have been constrained with terrestrial cosmogenic nuclides, and 
where hillslope-scale morphological properties such as hilltop curvature 
HTE C  and hillslope length E L have been determined with methods similar to 

those proposed by Hurst et al. (2012) and Grieve et al. (2016) using high 
resolution topographic data (Figure 1 and Table S2). The topographic data enable calculation of *E E  for these 
sites (Equation 10), and the cosmogenic data constrain the value of the baselevel parameter E U. We also use 
the global compilations of hillslope transport coefficients by Richardson et al. (2019) and denudation rates by 
Codilean et al. (2018) to put the inferred hillslope behavior into a broader context.

3.  Results
3.1.  Controls on Response Time

Low values (<0.1) of the nonlinear transport ratio LE   (Equation 12) correspond to hillslopes in the linear 
regime (Figure 1), where response times are insensitive to changes in uplift rate and larger than 100 ka, 
for observed values of the transport coefficient (Richardson et al., 2019). Conversely, high LE   values (>1) 
are associated with dominant contributions of nonlinear fluxes, a situation where response times are con-
trolled by both transport coefficient and uplift rate and where response times are less than 100 ka, expect 

Figure 1.  Hillslope response timescale E   (solid contours) (Roering 
et al., 2001) as a function of transport coefficient E K and uplift rate E U.  
Dashed lines correspond to different values of the nonlinear transport 
ratio LE   (Roering et al., 2001). Kernel Density Estimates for transport 
coefficient (Richardson et al., 2019) and erosion rate (Codilean et al., 2018) 
compilations are also plotted in front of the corresponding axes. The light 
blue rectangle indicates the interquartile range from both data sets. Black-
bordered white square shows the reference E K and E U values, while small 
white circles indicate other pairs of values tested in Figure 3. Colored 
circles correspond to the case studies presented in the supplementary 
materials (Table S2). A1 and A2: Southeastern Australian Escarpment, 
lowlands and highlands, respectively (Godard et al., 2019). CR: Cascade 
ridge, Sierra Nevada, CA (Grieve et al., 2016; Hurst et al., 2012). GM: 
Gabilan Mesa, CA (Grieve et al., 2016; Roering et al., 2007). NC: Coweeta, 
southern Appalachians, NC (Grieve et al., 2016). OR: Oregon Coast Range, 
OR (Grieve et al., 2016; Roering et al., 2007). VA: Valensole Plateau, 
Provence, France (Godard et al., 2020).
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for cases with very low E K values. Intermediate LE   values (0.1–1) correspond to a transitional regime, with a 
drastic modification of the sensitivity of E   with respect to E U and E K. All investigated settings display 1LE   ,  
expect the Southeastern Australian Escarpment (A1 and A2), and thus their dynamics involve significant 
nonlinear contributions to the hillslope sediment flux, with response times ranging from 10 ka (OR and 
GM) to several 100s of ka.

Very low uplift rates (E 1 m/Ma) imply a near-linear response and 1E K   (Figure 2a), except for cases with 
very low transport coefficients. In this regime, the more efficient the sediment transport is to begin with, 
the faster a hillslope will react to perturbations, all else being equal. On the other hand, for high uplift 
rates (E 1,000 m/Ma) and dominantly nonlinear behavior, E   increases as 1BE K   over all the range of reported 
transport coefficient values (Richardson et al., 2019). This may seem counter-intuitive at first, but it reflects 
the fact that greater intrinsic transport efficiency also implies a less steep hillslope that is farther below its 
threshold gradient (in a sense, it gets less extra help from gravity). Intermediate E U values (1–100 m/Ma) are 
characterized by a non-monotonic evolution, with a maximum E   value at the transition between the linear 
and nonlinear regimes (Figure 2a).

There is significant overlap between the arid (AI 0.5E  ) and humid (AI E  0.5) subsets in the transport 
coefficient database of Richardson et al. (2019), with very close modal values (Figure 2a). But arid climates' 

E K distribution is skewed toward lower values, with some cases displaying E K an order of magnitude lower 
than the mode of the whole data set. In the nonlinear regime, for a given E U, decreasing E K by an order of 
magnitude will yield a similar change in the response time. Conversely, for a given E K, an order of magnitude 
change in E U triggers a nearly 100-fold change in the response time. Despite having their E K and E U spread over 

Figure 2.  (a) Evolution of response timescale E   (Roering et al., 2001) as a function of transport coefficient E K, for different values of uplift rate E U. Brown dashed 
line corresponds to purely linear diffusion ( 0LE    in Equation 13). Kernel Density Estimates for transport coefficients compiled by Richardson et al. (2019) 
are also plotted above the graph. Black dashed line is the whole data set, whereas red and blue lines correspond to Aridity Index (AI) lower or higher than 
0.5, respectively. Colored circles correspond to the case studies presented in the text and on Figure 1. Reported slope values correspond to the exponents of 
asymptotic power law relationships between E   and E K. (b) Evolution of hillslope response time E   as a function of non-dimensional erosion rate *E E  (Roering 
et al., 2007), for different constant transport coefficient E K (dashed brown lines) or uplift rates E U (solid brown lines) values. Dashed black line shows the 
evolution of the nonlinear transport ratio LE   (Roering et al., 2001) as a function of non-dimensional erosion rate *E E . Colored circles correspond to the case 
studies presented in Figure 1 and supplementary materials. Reported slope values correspond to the exponents of asymptotic power law relationships between 
either E   and *E E , or LE   and *E E .
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almost two orders of magnitude, most investigated case studies are close to the transition between the linear 
and nonlinear regimes corresponding to the local E   maximum, with the exception of OR, which presents the 
maximum LE   value in our data set and is clearly in the nonlinear regime.

We show here that *E E  and LE   are related through Equation 14, with two distinct regimes (Figure 2b). The 
first is a purely linear-diffusive regime, with 1LE   , * 1E E  , and *2

LE E  . The second is a nonlinear re-
gime, for 1LE    and * 1E E  . Here, the rate of increase in LE   with respect to *E E  is less rapid, with *

LE E  .  
For a given E K, response time is constant for low *E E  hillslopes, consistently with linear diffusion theory, and 
it decreases very rapidly with increasing *E E , as * BE E  , when moving into the nonlinear domain (dashed 
brown lines on Figure 2b). For a given baselevel fall (uplift) rate E U (solid brown lines on Figure 2b), the evo-
lution of E   is non-monotonic, as already observed on Figure 2a. In the linear diffusion regime, E   increases as 
*E E  and then *1 BE E   for hillslopes dominated by nonlinear sediment fluxes. Over the range of E U consid-

ered here, a local maximum appears at * 2E E  , coincident with the change in scaling between *E E  and LE  ,  
for LE   between 0.1 and 1.

We again observe that the investigated case studies are close to the transition zone between the two regimes, 
but mostly on the nonlinear side of that transition, with the exception of the Southeastern Australian Es-
carpment (A1 and A2). An increase in E U or a decrease in E K would tip them further in the nonlinear domain, 
with a drop in their response time E  . Conversely, a decrease in E U or an increase in E K would bring them closer 
to the transition, but with only a limited influence on E  .

3.2.  Response to Oscillatory Forcing

Here we analyze hillslope response to oscillating TD (E K oscillations) or BU (E U oscillations) forcing (Equa-
tion 5). We quantify the response gain E G, as the ratio between the normalized amplitudes of the output 
(sediment flux) and input (forcing) signals:

G
F F

a

ss
 /

,
2� (15)

where E F  is the peak-to-peak amplitude of the sediment flux response, ssE F  is the steady state flux, used for 
normalization of the output signal, and 2E a is the peak-to-peak amplitude factor of the input forcing (Equa-
tion 5 and Figures S1 and S2). Gain represents the strength of the response relative to that of forcing. A 
one-to-one relationship between forcing and response would correspond to 1E G  ; if 1E G   the response is 
damped, and if 1E G   it is amplified.

For BU (E U) fluctuations, we observe that gain is near zero at high frequencies and moves toward 1 at low 
frequencies, whereas the evolution is the opposite in the TD (E K) case (Figure 3).

Short-term fluctuations in E K instantaneously modulate the sediment flux without time for morphological 
adjustment of the hillslope. On the other hand, longer timescale variations in E K are slow enough to allow 
the hillslope to adjust its morphology and remain close to steady state, with a constant sediment flux match-
ing the constant uplift rate and a gain close to 0.

In the BU case, high-frequency oscillations in E U are too fast to be propagated upslope and remain a very lo-
cal effect at the base of the hillslope, which does not induce a global response. High-frequency E U oscillations 
therefore yield a gain close to 0. On the other hand, if the forcing period is longer than the hillslope response 
time, upslope propagation can trigger a global response in terms of sediment flux variation.

Overall, decreasing E K (Figure 3a, dotted curves) or increasing E U (Figure 3b, dashed curves) by a factor of 10 
with respect to the reference model moves the hillslope toward the nonlinear regime, with a strong decrease 
in the response time. For both types of forcing a decrease in E K (Figure 3a, dotted curves) leads to an earlier 
transition when increasing the forcing period due to the corresponding shorter response time (indicated by 
the dotted vertical lines on Figure 3).

Interestingly, increasing E K by a factor 10 (Figure 3a, dashed curves) does not substantially change the re-
sponse curves (for either type of forcing), which is consistent with the similar response times for the refer-
ence and 10E K   models (solid and dashed vertical lines respectively on Figure 3). The response time in the 
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10E K   model is actually slightly shorter than the reference case (Figures 1 and 2a), as the evolution of E   is 
non-monotonic, with a maximum in response time at the transition between the linear and nonlinear re-
gimes; the reference and 10E K   cases are located on both sides of this transition, and have relatively similar 
response times.

Changes in the background uplift rate (Figure 3b) are similarly shifting the response to the variations in the 
forcing period, consistently with the effect of E U on the response time of the hillslope (Figure 1). The ampli-
tude of this shift appears to be larger than what is induced by the variations in E K (Figure 3a).

We now consider response curves to TD forcing (time variations in E K) using reference values of E K from 
the observations compiled by Richardson et al. (2019) (Figure 4a). In order to further analyze the role of 
climatic context, we first use mean E K values for the whole data set, and then for arid (AI E  0.5) and humid 
subsets (solid lines on Figure 4a). Due to the considerable overlap between the distributions, the response 
curves are very similar. We also test the response for the lowest quartile 1E Q  of the arid subset (AI E  0.5) and 
the highest quartile 3E Q  of the humid subset (AI E  0.5). In this case, the two climatically contrasting settings 
yield distinct response curves, with gain differences up to 0.2 for a given forcing frequency.

We can also analyze the impact of changes in the climatic forcing frequency, such as the shift occurring at 
the Mid-Pleistocene Transition (MPT), when the dominant period of oscillations, as recorded by marine ox-
ygen isotopes, shifted from the orbital obliquity period (40 ka) to the eccentricity period (100 ka), at E 800 ka 
ago. In the case of TD forcing, such shift in frequency would induce a decrease in response gain. For high-E K 
or low-E U settings, where linear diffusion is prevalent, this decrease in gain is <0.1, but can be >0.2 for high-

E U or low-E K situations, when the hillslope behavior is dominated by nonlinear processes.

Finally, we calculate the response curves to TD forcing using the parameters compiled for the investigated 
case studies (Table S2 and Figure 4b). We observe the whole range of responses for this selection of sites, 
with areas such as the Southeastern Australian Escarpment (A1 and A2) showing high gain, with only a 
slight decrease over the full range of periods. On the other hand, in settings such as the Gabilan Mesa (GM) 

Figure 3.  Sensitivity of hillslope sediment flux to oscillation period for Top-Down (TD) (E K oscillations, blue) and Bottom-Up (BU) (E U oscillations, red) forcing. 
The response curves show the evolution of gain, defined as the ratio of the output to input signals normalized amplitudes (Equation 15), as a function of the 
input forcing period. Examples of corresponding time-series are presented on Figures S1 and S2. Thick solid lines correspond to reference values for both E U and 

E K (100 m/Ma and 0.01  2mE /a, respectively, Table S1). Dashed and doted lines corresponds to refE U  or refE K 10 or E 0.1, respectively. See Figure 1 for the location 
of the different combinations in the ( ;E U K) plane. Vertical lines (solid, dashed, and dotted) indicate the response times (E  ) for the corresponding hillslopes 
(Equation 13). (a) Long-term erosion rate is fixed to the reference value 100E U   m/Ma (but fluctuates around this value in the BU cases). Three values of E K are 
tested (reference, E 10, E 0.1), which in the TD cases (E K oscillations) correspond to the average value. (b) Long-term transport coefficient is fixed to the reference 
value 20.01mE K  /a (but fluctuates around this value in the TD cases). Three values of E U are tested (reference, E 10, E 0.1), which in the BU cases (E U oscillations) 
correspond to the average value.
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or the Oregon Coast Range (OR) gain decreases from E 0.9, down to E 0.2 when increasing the forcing period. 
When considering the MPT, the frequency shift alone would imply a decrease of E 0.2 for the response gain. 
Overall, the sensitivity of hillslope response to the frequency content of climatic fluctuations appears to be 
quite different among these different locations.

4.  Discussion and Conclusions
Our results illustrate a complex hillslope response to various types of forcing, which is controlled by the 
transition between linear and nonlinear regimes (Roering et al., 2001). The various combinations of trans-
port coefficient E K and relative uplift rate E U at the foot of the hillslope set its LE   value and have a complex 
influence on its dynamics (Figure 1). Parameters describing the morphology of the hillslope, such as nondi-
mensional erosion rate *E E  (Equation 8), can be expressed as functions of the U K/  ratio, such that changing 

E U and E K by the same factor does not impact steady state hillslope morphology. Conversely the hillslope 
response time E   (Equation 13) can not be expressed as a function of the U K/  ratio, which implies that a 
given hillslope morphology, as defined by *E E  value, can correspond to very different response times. These 
contrasts can reach almost one order of magnitude, depending on the individual E U and E K values, as illustrat-
ed by the differences in E   despite similar *E E  in the VA versus GM or CR versus NC case studies (Figure 2b).

For hillslopes eroding in the 10–100 m/Ma range, the mode of E K values from the Richardson et al. (2019) 
data set is almost coincident with the local maxima for E   (Figure 2a), implying that moderate climate-driven 
changes in E K will have only a modest impact on the value of E  . The trade-off between E U and E K in controlling 

LE   and *E E  values is reflected in the position of the local maximum in E  , which occurs at higher E K values 
when E U increases. In the nonlinear dominated domain, changing E U by an order of magnitude implies a 
nearly two order of magnitude change in E  , whereas a similar amplitude change in E K results only in less 
than an order of magnitude change in E   (Figure 2a). This importance of changes in E U on hillslope response 
is confirmed by the steep slope of the constant-E K curves from Figure 2b (dashed brown lines) for * 1E E  , as 
well as by the different impacts on the response curves of orders of magnitude changes in background E K 
and E U (Figure 3a vs. Figure 3b).

Figure 4.  (a) Response curves for Top-Down (TD) forcing (Figure 3), where the transport coefficient is set to the average values of Richardson et al. (2019)  
data set. Dark gray is for all data (E K 59.8  2cmE /a), whereas red and blue lines correspond to Aridity Index (AI) lower (E K 46.2  2cmE /a) or higher (E K 83.9  2cmE /a)  
than 0.5, respectively. Dashed red and blue lines correspond to first quartile for AI E  0.5 and third quartile for AI E  0.5, respectively. Reference uplift rate 
value is 100 mm/ka, and other parameters are from Table S1. Dashed and dotted gray lines correspond to reference uplift rate multiplied by factors 2 and 0.5, 
respectively. Yellow curve is the power spectrum density from Lisiecki and Raymo (2005) 18E  O stack (arbitrary units). Black arrow denotes the shift in dominant 
climatic oscillation period at the Mid-Pleistocene Transition (MPT, 40–100 ka). (b) Response curves for TD forcing with hillslopes parameters set to the cases 
studies used here (Table S2). References to labels and colors are the same as Figure 1.
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The filtering or transmitting behavior of hillslopes with respect to high frequency environmental perturba-
tions depends the values of E U and E K, as well as on the type of forcing, as TD and BU forcing are buffered at 
the opposite ends of the spectrum (Figure 3). For the usual range of E K values, hillslopes transmit TD forcing 
up to period of E 100 ka (gain E G close to 1), but with a significant lowering of this limit when increasing uplift 
rates (Figure 3b, blue dashed curve). As a consequence, the sediment flux from near-threshold hillslopes 
in high-uplift regions appears less likely to be directly modulated by climate over the 10–100 ka range of 
astronomical forcing frequencies. On the other hand, BU forcing are strongly filtered at short periods (E G 
close to 0) (Furbish & Fagherazzi, 2001). Climatic fluctuations can of course act simultaneously as TD and 
BU-types forcing. Simultaneous changes in vegetation, soil moisture, and runoff generation can potentially 
lead to complex (but spatially synchronous) modulation of E K in the frame of a TD-type forcing (e.g., Bovy 
et al.,  2016). The case of vegetation changes when shifting toward drier or wetter climates is known to 
trigger complex responses across landscapes. Such responses mean that E K is not necessarily a simple linear 
function of mean annual precipitation. For example, transport efficiency may actually increase when a 
dense and thick forest is replaced with shrubs or grass under a more arid climate (Pelletier, 2014; Pelletier 
et al., 2016; Sharma et al., 2021). Climate changes can also modulate river incision efficiency at the foot 
of the hillslope as a BU-type forcing, which acts locally and then propagates upslope with progressive ad-
justments. In our simulations, we have separated the two types of forcing in order to isolate their specific 
properties (Figure 3). In many settings, it is likely that climatic fluctuations might trigger both types of re-
sponses, acting simultaneously on the hillslope, with potential constructive or destructive interactions, de-
pending on the amount of phase offset between the two signals. However, orbitally controlled climatic forc-
ing operating in the 10–100 ka range is expected to have a limited expression on river profiles (Goren, 2016), 
which is an additional argument for a limited impact of astronomically tuned BU-type forcing on hillslopes.

The response curves for TD-type forcing (Figure 4) show a steep decline over the 10 ka to 1 Ma range, im-
plying that the 40 to 100 ka shift associated with the Mid-Pleistocene Transition (MPT) could have triggered 
a drop in gain up to 0.2 for arid and/or rapidly eroding (i.e., high *E E ) landscapes, whereas for wetter or more 
slowly eroding landscapes (i.e., low *E E ) the drop is limited to E 0.1. Overall, a frequency decrease such as 
the MPT resulted in a significant lowering of the sensitivity of hillslopes to climatically driven oscillations 
in transport coefficient. The pure frequency shifts considered here are likely to be superimposed on climat-
ically controlled increases or decreases in the long-term average transport coefficient value, resulting in a 
corresponding transient perturbation of the averaged sediment flux.

For TD forcing at glacial-interglacial frequencies, the expected gain ranges from about 0.4 to 0.9 (Figure 4a). 
To understand how this translates into variations in hillslope sediment supply, one needs estimates of 
the amplitude of climatically modulated variations in E K. An analysis of frost-driven creep by Anderson 
et al. (2013) presented an example in which variations in mean annual temperature similar to those associ-
ated with ice-age cycles produced variation in E K between 0.005 and 0.04  2mE /y. If one treated this as a sinu-
soidal variation around the mid-point, the corresponding amplitude would be about E 0.8 times the mean. 
Given the above range of gain values, this translates into an amplitude of sediment flux variation between 
0.3 and 0.7 times the temporal mean.

Conversely, given data on climatically controlled variations in hillslope sediment flux, one could also infer 
the corresponding variation in E K. For example, Hughes et al. (2009) documented a near-doubling increase 
in flux (0.0012–0.0022  2mE /y) in New Zealand associated with vegetation change across the Pleistocene-Hol-
ocene transition. If this were treated as sinusoidal oscillations about the midpoint, a flux variation am-
plitude of about E 0.3 times the mean with a gain range of 0.4–0.9 implies an amplitude of flux variation 
between about 33% and 74% of the mean flux. This kind of information is valuable for understanding and 
modeling whole-landscape response to cyclic climate forcing (e.g., Langston & Tucker, 2018).

Globally, our results illustrate a complex and frequency-dependent hillslope response to oscillating bound-
ary conditions. The linear/nonlinear transition implies the potential for complex non-monotonic evolution 
and a sensitivity to changes in periodicity over Milankovitch time scales, such as the 40 to 100 ka Mid-Pleis-
tocene Transition. As most sediment production occurs on hillslopes, global-scale analysis of the impact 
of climate fluctuations on landscapes should integrate the intrinsic hillslope responses to various types of 
forcing.
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Data Availability Statement
Data used in this study are available through Codilean et  al.  (2018), Godard et  al.  (2019,  2020), Grieve 
et al. (2016), Hurst et al. (2012), Richardson et al. (2019), and Roering et al. (2007).
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