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Abstract

Reliable probability estimation is of crucial impor-
tance in many real-world applications where there
is inherent (aleatoric) uncertainty. Probability-
estimation models are trained on observed out-
comes (e.g. whether it has rained or not, or
whether a patient has died or not), because the
ground-truth probabilities of the events of inter-
est are typically unknown. The problem is there-
fore analogous to binary classification, with the
difference that the objective is to estimate prob-
abilities rather than predicting the specific out-
come. This work investigates probability estima-
tion from high-dimensional data using deep neural
networks. There exist several methods to improve
the probabilities generated by these models but
they mostly focus on model (epistemic) uncer-
tainty. For problems with inherent uncertainty, it
is challenging to evaluate performance without
access to ground-truth probabilities. To address
this, we build a synthetic dataset to study and com-
pare different computable metrics. We evaluate
existing methods on the synthetic data as well as
on three real-world probability estimation tasks,
all of which involve inherent uncertainty: precipi-
tation forecasting from radar images, predicting
cancer patient survival from histopathology im-
ages, and predicting car crashes from dashcam
videos. We also give a theoretical analysis of a
model for high-dimensional probability estima-
tion which reproduces several of the phenomena
evinced in our experiments. Finally, we propose a
new method for probability estimation using neu-
ral networks, which modifies the training process
to promote output probabilities that are consis-
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tent with empirical probabilities computed from
the data. The method outperforms existing ap-
proaches on most metrics on the simulated as
well as real-world data.!

1 Introduction

We consider the problem of building models that answer
questions such as: Will it rain? Will a patient survive? Will
a car collide with another vehicle? Due to the inherently-
uncertain nature of these real-world phenomena, this re-
quires performing probability estimation, i.e. evaluating the
likelihood of each possible outcome for the phenomenon of
interest. Models for probability prediction must be trained
on observed outcomes (e.g. whether it rained, a patient died,
or a collision occurred), because the ground-truth probabil-
ities are unknown. The problem is therefore analogous to
binary classification, with the important difference that the
objective is to estimate probabilities rather than predicting
specific outcomes. In probability estimation, two identical
inputs (e.g. histopathology images from cancer patients) can
potentially result in two different outcomes (death vs. sur-
vival). In contrast, in classification the class label is usually
completely determined by the data (a picture either shows a
cat or it does not).

The goal of this work is to investigate probability estimation
from high-dimensional data using deep neural networks.
Probability estimation is a fundamental problem in machine
learning (Murphy, 2013). Deep networks trained for clas-
sification often generate probabilities, which quantify the
uncertainty of the estimate (i.e. how likely the network is
to classify correctly). This quantification has been observed
to be inaccurate, and several methods have been developed
to improve it (Platt, 1999; Guo et al., 2017; Szegedy et al.,
2016; Zhang et al., 2020; Thulasidasan et al., 2020; Mukhoti
et al., 2020; Thagaard et al., 2020), including Bayesian neu-
ral networks (Gal & Ghahramani, 2016; Wang et al., 2016;
Shekhovtsov & Flach, 2019; Postels et al., 2019). However,
these works restrict their attention almost exclusively to
classification in datasets (e.g. CIFAR-10/100 (Krizhevsky,

!Code available at https://jackzhu727.github.io/
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Figure 1. The probability-estimation problem. In probability
estimation, we assume that each observed outcome y; (e.g. death
or survival in cancer patients) in the training set is randomly gen-
erated from a latent unobserved probability p; associated to the
corresponding data «; (e.g. histopathology images). Training
(left): Only x; and y; can be used for training, because p; is not
observed. Inference (right): Given new data @, the trained net-
work f produces a probability estimate p € [0, 1].

2009), or ImageNet (Deng et al., 2009)) where the label
itself is not uncertain: it quantifies the confidence of the
model in its own prediction, not the probability of an event of
interest. In the literature, this is known as epistemic (model)
uncertainty (Hiillermeier & Waegeman, 2021; Tagasovska &
Lopez-Paz, 2019). We focus on aleatoric uncertainty, stem-
ming from inherent uncertainty in the problem under study.
To formalize this distinction, we propose and rigorously ana-
lyze a simple high-dimensional model with uncertain labels,
and show that even in this simple model, classification-based
methods fail to yield good probability estimates.

Probability estimation from high-dimensional data is a prob-
lem of critical importance in medical prognostics (Wulczyn
et al., 2020), weather prediction (Agrawal et al., 2019), and
autonomous driving (Kim et al., 2019). In order to advance
deep-learning methodology for probability estimation it is
crucial to build appropriate benchmark datasets. Here we
build a synthetic dataset and gather three real-world datasets,
which we use to systematically evaluate existing methodol-
ogy. In addition, we propose a novel approach for probabil-
ity estimation, which outperforms current state-of-the-art
methods. Our contributions are the following:

* We give a theoretical analysis of the probability estima-
tion problem for a high-dimensional logistic model, and
establish that predictors trained by minimizing the cross
entropy loss overfit the observed outcomes and fail to
yield calibrated outcomes. However, we show that the
predictions are well calibrated during the initial stages of
training.

* We introduce a new synthetic dataset for probability esti-
mation where a population of people may have a certain
disease associated with age. The task is to estimate the
probability that they contract the disease from an image
of their face. The data are generated using the UTKFaces
dataset (Zhang et al., 2017b), which contains age infor-
mation. The dataset contains multiple versions of the syn-
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Figure 2. Calibration is not enough. Uncolored/colored markers
denote y = 0/1 outcomes, respectively. Blue/red stand for two
classes with different associated ground-truth probabilities (1/4 and
3/4 respectively). (a) The model f retrieves the true probabilities,
which requires discriminating between inputs with low and high
probability. (b) The model f has no discriminative power, it just
assigns the same probability to all outputs. However, the model is
perfectly calibrated because out of all outcomes assigned 0.5 by
the model, the fraction that are equal to 1 is 50%.

thetic labels, which are generated according to different
distributions designed to mimic real-world probability-
prediction datasets. The dataset serves two objectives.
First, it allows us to evaluate existing methodology. Sec-
ond, it enables us to evaluate different metrics in a con-
trolled scenario where we have access to ground-truth
probabilities.

* We have used publicly available data to build probability-
estimation benchmark datasets for three real-world appli-
cations: (1) precipitation forecasting from radar images,
(2) prediction of cancer-patient survival from histopathol-
ogy images, and (3) prediction of vehicle collisions from
dashcam videos. We use these datasets to systematically
evaluate existing approaches, which have been previously
tested mainly on classification datasets.

* We propose Calibrated Probability Estimation (CaPE),
a novel technique which modifies the training process
so that output probabilities are consistent with empirical
probabilities computed from the data. CaPE outperforms
existing approaches on most metrics on synthetic and
real-world data.

2 Problem Formulation

The goal of probability estimation is to evaluate the like-
lihood of a certain event of interest, based on observed
data. The available training data consist of n examples x;,
1 < i < n, each associated with a corresponding outcome
y;. In our applications of interest, the input data are high
dimensional: each x; corresponds to an image or a video.
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The corresponding label y; is either O or 1 depending on
whether or not the event in question occurred. For exam-
ple, in the cancer-survival application x; is a histopathology
image of a patient, and y; equals 1 if the patient survived
for 5 years after x; was collected. The data have inherent
uncertainty: y;, the patient’s survival, does not depend de-
terministically on the histopathology image (due e.g. to
comorbidities and other health factors). Instead, we assume
that y; equals 1 with a certain probability p; associated with
x;, as illustrated in Figure 1, because the input data provides
key information about the patient’s survival chances.

At inference, a probability-estimation model aims to gener-
ate an estimate p of the underlying probability p, associated
with a new input data point « (e.g. the probability of survival
for over 5 years for new patients based on their histopathol-
ogy data). To summarize, this is not just a classification
problem, because it involves aleatoric uncertainty. Instead,
the goal is to predict the probability of the outcome, which
is critical in choosing a course of treatment for the patient.

3 Evaluation Metrics

Probability estimation shares similar target labels and net-
work outputs with binary classification. However, classifi-
cation accuracy is not an appropriate metric for evaluating
probability-estimation models due to the inherent uncer-
tainty of the outcomes. This is illustrated by the example in
Figure 2a where a perfect probability estimate would result
in a classification accuracy of just 75%.”

Metrics when ground-truth probabilities are available.
For synthetic datasets, we have access to the ground truth
probability labels and can use them to evaluate performance.
Two reasonable metrics are the mean squared error or ¢
distance MSE,,, and the Kullback—Leibler divergence KL,
between the estimated and ground-truth probabilities:

N
MSE, = — S (5: — ps)?
p_NZ(p’L pl)7

i=1

N ~ ~
1 ; 1-p;

= 35 (s (2) 0y (122
i=1 K3 K2

N is the number of data points, and p;, p; are the ground-
truth and predicted probabilities, respectively.

Calibration metrics. Ground-truth probabilities are not
available for real-world data. In order to evaluate the prob-

2A perfect model (in terms of probability estimation), assigns
0.25 to the blue class and 0.75 to the red class. To maximize clas-
sification accuracy, we predict 1 when the model outputs 0.75 (red
examples) and 0 when it outputs 0.25 (blue examples). However,
25% of red examples have an outcome of 0, and 25% of blue
examples have an outcome of 1. As a result, the model would only
have 75% accuracy.

abilities estimated by a model, we need to compare them
to the observed probabilities. To this end, we aggregate the
examples for which the model output equals a certain value
(e.g. 0.5), and verify what fraction of them have outcomes
equal to 1. If the fraction is close to the model output, then
the model is said to be well calibrated.

Definition 3.1. A model f is well calibrated if
P(y=1]f(z) € I(q) =g,

where y is the observed outcome, f(x) is the probability
predicted by model f for input &, and I(g) is a small interval
around q.

Vo<g<1l (1)

Model calibration can be evaluated using the expected
calibration error (ECE) (Guo et al., 2017) (note however
that the definition in (Guo et al., 2017) is specific to clas-
sification). Given a probability-estimation model f and
a dataset of input data x; and associated outcomes y;,
1 < 4 < N, we partition the examples into B bins,
I, 15, -, Ip, according to the probabilities assigned to
the examples by the model. Let Q1,..., @p_1 the B-
quantiles of the set {f(x1),..., f(xn)}, we have I, :=
[Qb—1,Qp) N {f(x:)} Y, (setting Qo = 0). For each bin,
we compute the mean empirical and predicted probabilities,

ﬁ oo @

i€Index (Ip)

1
= > [f=@), 3)
i€Index (1)
where Index([,) = {i | f(x;) € I }.
The pairs (¢, péfn)p) can be plotted as a reliability diagram,
shown in the second row of Figure 4 and in Figure 6. ECE
is then defined as

1 B
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Other metrics for calibration include the maximum calibra-
tion error (MCE) defined as

P, — ¢

)

MCE = max
= B

yeeny

and the Kolmogorov-Smirnov error (KS-error) (Gupta et al.,
2021), a metric based on the cumulative distribution func-
tion, which is described in more detail in Appendix D.

Brier score. Crucially, a model without any discriminative
power can be perfectly calibrated (see Figure 2). The Brier
score is a metric designed to evaluate both calibration and
discriminative power. It is the mean squared error between
the predicted probability and the observed outcomes:

N
. 1 . 9
Brier = N ;(pi —yi)°. )
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Figure 3. Evaluating evaluation metrics. We use synthetic data to compare different metrics to the gold-standard MSE,, that uses
ground-truth probabilities. Brier score is highly correlated with MSE,, in contrast to the classification metric AUC and the calibration
metrics ECE, MCE and KS-Error. The graphs show the results of the proposed method CaPE, as well as the baselines described in
Section 7.3 on the Linear scenario (see Section 7.1). Results on other scenarios and a similar comparison with KL,, are reported in

Appendix F.

This score can be decomposed into two terms associated
with calibration and discrimination, as shown in Appendix E.
Using the synthetic data in Section 7.1, where the ground-
truth probabilities are known, we show that Brier score is
indeed a reliable proxy for the gold-standard MSE metric
based on ground-truth probabilities MSE,, in contrast to
calibration metrics such as ECE, MCE or KS-error, and
to classification metrics such as AUC (see Figure 3 and
Appendix F).

4 Early Learning and Memorization

Prediction models based on deep learning are typically
trained by minimizing the cross entropy between the model
output and the training labels (Goodfellow et al., 2016).
This cost function is a proper scoring rule, meaning that it
evaluates probability estimates in a consistent manner and is
therefore guaranteed to be well calibrated in an infinite-data
regime (Buja et al., 2005), as illustrated by Figure 4 (first
column).

Unfortunately, in practice, prediction models are trained
on finite data. This is crucial in the case of deep neural
networks, which are highly overparametrized and therefore
prone to overfitting (Goodfellow et al., 2016). For classifica-
tion, deep neural networks have been shown to be capable
of fitting arbitrary random labels (Zhang et al., 2017a). In
probability estimation, we observe that neural networks in-
deed eventually overfit and memorize the observed outcomes
completely. Moreover, the estimated probabilities collapse
to 0 or 1 (Figure 4, second column), a phenomenon that has
also been reported in classification (Mukhoti et al., 2020).
However, calibration is preserved during the first stages of
training (Figure 4, third column). This is reminiscent of the
early-learning phenomenon observed for classification from
partially corrupted labels (Yao et al., 2020; Xia et al., 2020),
where neural networks learn from the correct labels before
eventually overfitting the false ones (Liu et al., 2020).

Though early learning and memorization are typically ob-
served when training prediction models based on deep neu-
ral networks, we argue that these observations represent a
much more general phenomenon, intrinsic to the problem of
probability estimation with finite data when the dimension
is large. To substantiate this claim, we propose a simple
analytical model, where data samples x; € R? are drawn
from a high dimensional normal distribution z; ~ N'(0, I).
The probability of each data point is determined by a gen-
eralized linear model p;(0) = (1 + e‘<97‘”i>)71, with true
parameter *. For k > 1 we denote by p* the predictor
obtained by running k% iterations of gradient descent on the
cross-entropy loss with step size 1. We prove the following.

Theorem 4.1 (Informal). There exists k* € (0, +00) such
that the following holds: if p and n are sufficiently large, the
mean squared error of p* decreases monotonically during
the first k = O(1/n) iterations of gradient descent, but if
B> k¥, then as k — oo, p* collapses to a predictor that
only predicts probabilities 0 and 1.

A precise statement and proof can be found in Appendix A.
Theorem 4.1 identifies a sharp threshold (x*) at which the
memorization phenomenon occurs and separates early learn-
ing stage and memorization. It indicates that even simple
generalized linear models exhibit the early learning and
memorization phenomena: in high dimensions, predictors
obtained by cross-entropy minimization eventually mem-
orize the data. This is likely to plague any overparamter-
ized model, including neural networks. However, this phe-
nomenon does not occur if gradient descent is stopped early.
This is illustrated in Figures 8 and 7 in Appendix B, which
demonstrate that empirically the linear model has this quali-
tative behavior. These observations motivate our proposed
methodology.
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Figure 4. Miscalibration due to overfitting and how to avoid it. The top row shows the histogram of predicted probabilities for the
synthetic Discrete scenario (see Section 7.1). Ideally each histogram should be concentrated around the corresponding value of p. The
bottom row shows results for the Linear scenario. The horizontal and vertical coordinate of each blue point represent the predicted (p;)
and true (p;) probabilities of a test example respectively. We also show a reliability diagram of binned mean predicted and empirical
probabilities in black (see Section 3). The dashed line indicates perfect calibration. When trained on infinite data obtained by resampling
outcome labels at each epoch according to ground-truth probabilities, models minimizing cross-entropy are well calibrated (first column).
However, when trained on fixed observed outcomes, the model eventually overfits and the probabilities collapse to either O or 1 (second
column). This is mitigated via early stopping (i.e. selecting the model based on validation cross-entropy loss), which yields relatively
good calibration (third column). The proposed Calibration Probability Estimation (CaPE) method exploits this to further improve the
model while ensuring that the output remains well calibrated. Appendix C.3 shows plots for all synthetic data scenarios.

5 Calibrated Probability Estimation (CaPE)

We propose to exploit the training dynamics of cross-entropy
minimization through a method that we name Calibrated
Probability Estimation (CaPE). Our starting point is a model
obtained via early stopping using validation data on the
cross-entropy loss. CaPE is designed to further improve the
discrimination ability of the model, while ensuring that it
remains well calibrated. This is achieved by alternatively
minimizing the following two loss functions:

Discrimination loss: Cross entropy between the model
output and the observed binary outcomes,

N

=D [ilog(f(2:)) + (1 — i) log(1 — f(z))]

i=1

Lp =

Calibration loss: Cross entropy between the output prob-
ability of the model and the empirical probability of the
outcomes conditioned on the model output:

N

‘CC = - Z [pémp log(f(ml)) + (1 - pémp) log(l - f(ml))] )

i=1

where pl, is an estimate of the conditional probability
Ply = 1|f(x) € I(f(=x;))] and I(f(x;)) is a small interval

centered at f(x;). As explained in Section 3 if f(x;) is
close to this value, then the model is well calibrated. We
consider two approaches for estimating pémp. (1) CaPE (bin)
where we divide the training set into bins, select the bin b;
containing f(z;) and set pi,, = pgﬁ{g in equation 2. (2)
CaPE (kernel) where pémp is estimated through a moving
average with a kernel function (see Appendix G for more
details). Both methods are efficiently computed by sorting
the predictions p;. The calibration loss requires a reasonable
estimation of the empirical probabilities péfgp, which can
be obtained from the model after early learning. Therefore
using the calibration loss from the beginning is counter-
productive, as demonstrated in Section M. We note that a
variant of CaPE can be implemented using a weighted sum
of the calibration and discrimination loss.

CaPE is summarized in Algorithm 1. Figures 4 and 5 show
that incorporating the calibration-loss minimization step in-
deed preserves calibration as training proceeds (this is not
necessarily expected because CaPE minimizes a calibration
loss on the training data), and prevents the model from
overfitting the observed outputs. This is beneficial also for
the discriminative ability of the model, because it enables
it to further reduce the cross-entropy loss without overfit-
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ting, as shown in Figure 5. The experiments with synthetic
and real-world data reported in Section 7 suggest that this
approach results in accurate probability estimates across a
variety of realistic scenarios.

6 Related Work

Neural networks trained for classification often generate a
probability associated with their prediction which quanti-
fies its uncertainty. These estimates have been found to be
inaccurate in certain situations (Mukhoti et al., 2020; Guo
et al., 2017; Zhao & Ermon, 2021) (although a recent study
suggests that transformer-based models tend to be well cali-
brated in vision-based classification tasks (Minderer et al.,
2021)). Calibration methods to mitigate this issue broadly
fall into three categories depending on whether they: (1)
postprocess the outputs of a trained model, (2) combine
multiple model outputs, or (3) modify the training process.

Post-processing methods transform the output probabilities
in order to improve calibration on held-out data (Zadrozny &
Elkan, 2001; Gupta et al., 2021; Kull et al., 2017; 2019). For
example, Platt scaling (Platt, 1999) fits a logistic function
that minimizes the negative log-likelihood loss. Tempera-
ture scaling (Guo et al., 2017) does the same with a temper-
ature parameter augmenting the softmax function. Another
approach trains a recalibration model on the outputs of an
uncalibrated model (Kuleshov et al., 2018). In contrast to
these methods, CaPE enforces calibration during training,
which has the advantage of enabling further improvements
in the discriminative abilities of the model.

Ensembling methods combine multiple models to improve
generalization. Mix-n-Match (Zhang et al., 2020) uses a
single model, and ensembles predictions using multiple
temperature scaling transformations. Other methods (Lak-
shminarayanan et al., 2017; Maddox et al., 2019) ensem-
ble multiple models obtained using different initializations.
These approaches are compatible with the proposed method
CaPE; how to combine them effectively is an interesting
future research direction.

Modified training methods can be divided into two groups.
The first group smooths the target 0/1 labels in order to pre-
vent output estimates from collapsing to 0/1 (Mukhoti et al.,
2020; Szegedy et al., 2016; Zhang et al., 2018; Thulasidasan
et al., 2020). The second group, attaches additional calibra-
tion penalties to a cross entropy loss (Kumar et al., 2018;
Pereyra et al., 2017; Liang et al., 2020). CaPE is most sim-
ilar in spirit to the latter methods, although its data-driven
calibration loss is different to the penalties used in these
techniques.

Datasets for evaluation The methods discussed in this
section were developed for calibration in classification,
and tested on datasets such as CIFAR-10/100 (Krizhevsky,

2009), SVHN (Netzer et al., 2011), and ImageNet (Deng
et al., 2009) where the relationship between labels and input
data is completely deterministic. Here, we evaluate these
methods on synthetic and real-world probability-estimation
problems with inherent uncertainty.

7 Experiments

7.1 Synthetic Dataset: Face-based Risk Prediction

To benchmark probability-estimation methods, we build a
synthetic dataset based on UTKFace (Zhang et al., 2017b),
containing face images and associated ages. We use the age
of the ¢th person z; to assign them a risk of contracting a dis-
ease p; = 1(z;) for a fixed function ¢ : Z>¢ — [0, 1]. Then
we simulate whether the person actually contracts the ill-
ness (label y; = 1) or not (y; = 0) with probability p;. The
probability-estimation task is to estimate the ground-truth
probability p; from the face image x; using a model that
only has access to the images and the binary observations
during training. This requires learning to discriminate age
and map it to the corresponding risk. We design 1) to create
five scenarios, inspired by real-world data (see Appendix I):

* Linear: Equally-spaced, inspired by weather forecasting:
¥(z) = 2/100

» Sigmoid: Concentrated near two extremes:
Y(z) = 0(25(2/100 — 0.29))

» Skewed: Clustered close to zero, inspired by vehicle-
collision detection: 9 (z) = z/250

* Centered: Clustered in the center, inspired by cancer-
survival prediction: ¥ (z) = z/300 + 0.35

* Discrete: Discretized: ¥(2z) = 0.2[1 520y + L{z>40) +
Ti.s60y + Lzss0y] +0.1

In addition, we report an experiment with simulated proba-
bilistic labels on CIFAR-10 in Appendix J.

7.2 Real-World Datasets

We use three open-source, real-world datasets to benchmark
probability-estimation approaches (see Appendix K for fur-
ther details on the datasets and experiments).

Survival of Cancer Patients. Histopathology aims to iden-
tify tumor cells, cancer subtypes, and the stage and level of
differentiation of cancer. Hematoxylin and Eosin (H&E)-
stained slides are the most common type of histopathol-
ogy data used for clinical decision making. In particular,
they can be used for survival prediction (Wulczyn et al.,
2020), which is critical in evaluating the prognosis of pa-
tients. Treatments assigned to patients after diagnosis are
not personalized and their impact on cancer trajectory is
complex, so the survival status of a patient is not determin-
istic. In this work, we use the H&E slides of non-small
cell lung cancers from The Cancer Genome Atlas Program
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Figure 5. Calibrated Probability Estimation prevents overfitting. Comparison between the learning curves of cross-entropy (CE)
minimization and the proposed calibrated probability estimation (CaPE), smoothed with a 5-epoch moving average. After an early-
learning stage where both training and validation losses decrease, CE minimization overfits (first and second graph), with disastrous
consequences in terms of probability estimation (third and fourth graph). In contrast, CaPE prevents overfitting, continuing to improve the

model while maintaining calibration (see Figure 4).

Algorithm 1 Pseudocode for CaPE

Require: f > early stopped model
Require: m > freq. of training with L¢
Require: {x;,y;} > training set
Require: K (p,q) == exp [~ (p —q)* /o®] > Gaussian kernel
for t = 1 to num_epochs do
ift mod m = 0 then
Update pimp, Vi, with BIN or KERNEL

N
=1

L+ Lo > compute discrimination loss
else
L+ Lp > compute calibration loss
end if
end for

function BIN(B) > B-number of bins
I, Ip « partitions by quantile of {p;}}_,
Find b such that p; € I,
Index (1) < {j]p; € In}
pémp <~ ﬁ Yi
i€Index (Ip,)
end function

> get indices in bin b
> empirical mean of bin b

function KERNEL(r, K) > r-window size; K -kernel
Ny (i) < r-nearest neighbor of p; (output probability space)
Z <+ Y. K (D) > normalization factor
D €Ny (3)
pémp — Z K(ﬁhﬁ])y]/z
D5 €Ny (i)
end function

> kernel smooth

(TCGA)? to estimate the the 5-year survival probability of
cancer patients. The outcome distribution is similar to the
Centered scenario in Section 7.1.

Weather Forecasting. The atmosphere is governed by
nonlinear dynamics, hence weather forecast models pos-
sess inherent uncertainties (Richardson, 2007). Nowcasting,
weather prediction in the near future, is of great operational
significance, especially with increasing number of extreme
inclement weather conditions (Agrawal et al., 2019; Ravuri
etal., 2021). We use the German Weather service dataset®,
which contains quality-controlled rainfall-depth composites
from 17 operational Doppler radars. We use 30 minutes of
precipitation data to predict if the mean precipitation over
the area covered will increase or decrease one hour after
the most recent measurement. Three precipitation maps
from the past 30 minutes serve as an input. The outcome

*https://www.cancer.gov/tcga
*nttps://opendata.dwd.de/weather/radar/

distribution is similar to the Linear scenario in Section 7.1.

Collision Prediction. Vehicle collision is one of the leading
causes of death in the world. Reliable collision prediction
systems are therefore instrumental in saving human lives.
These systems predict potential collisions from dashcam
cameras. Collisions are influenced by many unknown fac-
tors, and hence are not deterministic. Following (Kim et al.,
2019), we use 0.3 seconds of real dashcam videos from
YouTubeCrash dataset as input, and predict the probabil-
ity of a collision in the next 2 seconds. The data are very
imbalanced as the number of collisions is very low, so the
outcome distribution is similar to the Skewed scenario in
Section 7.1.

7.3 Baselines

We apply existing calibration methods developed for clas-
sification to probability estimation (as well as cross-
entropy minimization with early-stopping): (1) Three post-


https://www.cancer.gov/tcga
https://opendata.dwd.de/weather/radar/
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Table 1: Results on synthetic data. All numbers are downscaled by 1072, Appendix C.1 shows a table with confidence
intervals obtained via bootstrapping. * is a model trained via cross-entropy minimization from data obtained by continuous
label resampling. No baseline outperforms the proposed method CaPE in any of the scenarios, and CaPE outperforms all the
individual baseline models in most scenarios, in both metrics, except for the skewed case, where the difference is statistically

insignificant.

Methods Linear Sigmoid Centered Skewed Discrete

(x10-%) MSE, KL, MSE, KL, MSE, KL, MSE, KL, MSE, KL,
CE + resampled labels*  1.144 04 2.814.11 | 5.344.50 14.824.51 | 4.21415 42145 | 421415 42145 | 421405 4.2145
CEearly—stup 4.21i_15 10-94i.36 6.16i_17 17-16i.48 0.48i_01 0.98i,03 0.40i_01 1-79:t.06 2»24i.08 5.27i,17
Temperature 2.73+ 11 6.754+ .25 6.164 17 17.094 43 0.484+ .01 0.984 .03 0.404+ 02 1.764 06 2.214 08 5.154 18
Platt Scaling 2.484 09 6.074 22 5.784+ 19 16.154 47 0.414+ 01 0.834+ 03 0.39+ .01 1.724 06 2.06+ 08 4.834 17
Dirichlet Cal. 3.56+.13 9.084+ 29 8.644 26 25.184 58 0.46+ 01 0.944 o3 0.474 02 2.31+ 07 2.744+ 10 6.53+ .22
Focal Loss 4.13i‘11 10‘52:&.28 6‘86:&‘21 19‘46;&,50 0.48i,01 0.97:&‘03 1.28:&‘03 1.63i.66 2.92i,(]g 6‘77:&‘21
Mix-n-match 2.704+ .11 6.724 .24 6.124 17 17.084 46 0.48+ .01 0.984 o3 0.404 01 1.754+ 05 2.214 .08 5.144 18
Entropy Reg. 2.584 09 6.654 21 7.024 17 21.164 42 0.454+ 01 0.924 o3 1.184+ 03 10.74+ 65 2.844 08 6.624 19
MMCE Reg. 2.244 o8 5.684 20 5.354+ .18 15.06+ 49 0.444 01 0.90+ 03 0.544 02 2.444 o8 2.094 .08 4.924 13
Deep Ensemble 1.904+ .07 4.55+.18 5.864 200 16.461 g0 0.444 01 0.894 03 0.554 02 2.58+ 07 1.97+ 08 4.614 17
CaPE (bin) 1.78+ 07 4.35+.16 5.174 20 14.274 49 0.38+ .01 0.781 03 0.404 02 1.73+ 06 1.814 05 4.281 18
CaPE (kernel) 1741 o7 430117 | 516420 14.34% 40 | 0.401.01 0.814 03 | 0.391.01 1.69%.06 | 1.841.0s 4.354 17
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Figure 6. Reliability diagrams for real-world data. Reliability diagrams of binned mean predicted and empirical probabilities (see
Section 3). The dashed line indicates perfect calibration. The results are computed on test data for cross-entropy minimization with early
stopping, the proposed method (CaPE) and the best baseline for each dataset. CaPE produces better calibrated outputs. Appendix C.3

shows additional reliability diagrams.

processing methods: Temperature Scaling (Guo et al.,
2017), Platt Scaling (Platt, 1999), and Dirichlet Calibra-
tion (Kull et al., 2019) applied to the best CE model, (2)
Two Ensemble Methods: Mix-n-Match (Zhang et al., 2020)
applied to best CE model, and Deep Ensemble (Lakshmi-
narayanan et al., 2017) with 5 networks, and (3) Three
Modified Training methods: Focal loss (Mukhoti et al.,
2020), entropy-maximizing loss (Pereyra et al., 2017), and
MMCE regularization (Kumar et al., 2018). Appendix H
provides a detailed description. For our experiments on
synthetic data, we also compare against a model trained
on a large amount of data by repeatedly sampling new
outcomes from the ground-truth probabilities at each epoch.
This provides a best-case reference for each scenario. We re-
fer to Appendix H, for a detailed discussion of the baselines
and hyperparameter optimization.

8 Results and Discussion

Table 1 shows that calibration methods developed for classi-
fication can be effective for probability estimation. However,
the performance of some methods is not consistent across
all scenarios. For instance, regularization with negative en-
tropy, which penalizes very high/low confidence, performs
worse than CE when the ground-truth probability is close to
0 or 1. In contrast, methods that do not make strong assump-
tions tend to generalize better to multiple scenarios (e.g.
Platt scaling consistently beats CE). The proposed method
CaPE outperforms other techniques in most scenarios, and
even matches the performance of the best-case baseline with
resampled labels for the Sigmoid scenario. Finally, we ob-
serve that the Skewed scenario is very challenging: most
methods barely improve the CE baseline.

Table 2 compares the baseline methods and CaPE on the
three real-world datasets. We present AUC, ECE for 15
equally-sized bins, and Brier score, as complementary met-
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Table 2: Results on cancer-survival prediction, weather forecasting, and collision prediction. All numbers are downscaled
by 10~2. Tables with all the metrics described in Section 3 are provided in Appendix C.2. The proposed method CaPE
outperforms existing techniques in terms of Brier score, the metric that best captures probability-estimation accuracy.

Method Cancer Survival Weather forecasting Collision Prediction
(x107?)  AUC  ECE  Brier | AUC  ECE  Brier | AUC  ECE  Brier
CE early-stop 58.88 1225 2396 | 77.64 1091 20.57 | 85.68 4.36 8.59
Temperature 58.88 1207 2373 77.64 8.66  20.21 85.68 4.56 8.51
Platt Scaling 5891 10.28 2333 | 77.65 6.97 19.53 | 85.76 3.04 8.23
Dirichlet Cal. 49.89 13.83  24.08 | 77.51 1429  21.89 | 83.36 5.78 8.78
Mix-n-match 58.88 12.16  23.67 | 77.64 8.65 20.21 85.68 4.40 8.52
Focal Loss 55.02 12.15 2331 | 76.18 832  20.27 | 8221 9.07 9.82
Entropy Reg. 56.29 11.73 23.62 79.01 10.53 19.77 83.15 14.54 11.10
MMCE Reg. 48.45 11.84 2373 | 76.69 8.46  20.12 | 85.18 2.94 8.48
Deep Ensemble 52.46 9.99 2347 | 79.86 7.41 18.82 | 85.27 3.15 8.55
CaPE (bin) 6144 1231 2320 | 78.99 5.16  18.37 | 85.70 3.16 8.18
CaPE (kernel) 61.22 948  23.18 | 79.00 5.08 1839 | 85.95 3.22 8.13

rics since the underlying ground-truth probabilities are unob-
served. As discussed in Section 3, Brier score is the metric
that best captures the quality of probability estimates. CaPE
has the lowest Brier score in all three datasets, while also
achieving lower ECE values and higher AUC values than
most other methods. This demonstrates that enforcing better
probability estimation during training also yields a more
discriminative model. The reliability diagrams in Figure 6
depict the probability estimates produced by CE, CaPE and
the best baseline method on the three datasets, demonstrat-
ing that CaPE produces outputs that are better calibrated on
real data.

Figure 6 also shows that each real-world dataset closely
aligns with a particular synthetic scenario: cancer survival
with Centered; weather forecasting with Linear; collision
prediction with Skewed. This supports the significance of
our synthetic benchmark dataset, and provides insights in
the differences among baseline models. For example, model
averaging with deep ensemble performs well on weather
forecasting but has higher Brier scores than Platt scaling on
the other two datasets (see Appendix L for further analysis
based on pathological stages). Accordingly, deep ensem-
ble also underperforms in the synthetic scenarios where
ground-truth probabilities are clustered closely (Sigmoid,
Centered), but is effective for Linear. Finally, as in the syn-
thetic Skewed scenario, all methods had similar performance
on the collision prediction task. This highlights the impor-
tance of considering different scenarios when evaluating
methodology for probability estimation.

9 Conclusion

In this work we evaluate existing approaches to improve
the output probabilities of neural networks on probability-
estimation problems. To this end, we introduce a new syn-
thetic benchmark dataset designed to reproduce several re-
alistic scenarios, and also gather three real-world datasets
relevant to medicine, climatology, and self-driving cars. In

addition, we provide theoretical analysis showing that early
learning and memorization are fundamental phenomena in
high-dimensional probability estimation. Motivated by this,
we propose a novel approach that outperforms existing ap-
proaches on our simulated and real-world benchmarks. An
important application for probability estimation is in the con-
text of survival analysis, which can be recast as estimation
of conditional probabilities (Lee et al., 2018; Shamout et al.,
2020; Goldstein et al., 2021). Another interesting research
direction is to consider problems with several possible un-
certain outcomes (analogous to multiclass classification).
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A Analytical Model

In this appendix, we propose a simple analytical model that helps to demonstrate the early learning and memorization
phenomena in probability estimation. Consider the following standard logistic regression problem: we are given i.i.d. data
{(yi, ®;)}i<n where y; € {+1, —1} are labels® and z; ~ N(0, I,,) are standard Gaussian covariate vectors. Given z; = =,
the label y; is distributed according to

P(yi = 1|xi = .’1}) = O'(<9;,SC>), (6)

where o(z) = (1 + e~*)~! is the sigmoid function and 8}, € R” is the ground-truth parameter with Euclidean norm
6] =~ > 0. Throughout, we assume that we are working in the high dimensional regime: the ratio 2 — « € (0, +00)
as n — oo. For convenience, we denote Ny an integer such that £ < 2x for Vn > Nj. In Section B of the appendix, we
provide a numerical example to illustrate this theoretical model.

Given a fresh sample z € RP, we predict the probability of the associated label being one via o((0, z)) for some 6 € R?,
and we train the estimator 8 through gradient descent to minimize the cross-entropy:

1ty 1y
:Z{ =vi(0, ;) + log (e2<9 m1>+e—§(9,mi>)} ®)
Oitl =0k —nVL.(6!,), k=0,1,.. ©)

where we choose constant step size 7 < d, for some prefixed 6 > 0, to be determined later. For the initialization, we draw
02,n uniformly from the sphere of radius p.

Define the mean squared error
MSETh"(k) = }E[(O’«Of] ny >) - U(<0;a Z>))2], (10)

where z ~ N(0, I,,) is a fresh Gaussian vector, independent of the data. Note that the expectation is taken with respect to all
sources of randomness (including the randomness of data and initialization).

We present two main theorems that summarize our results. The first theorem states that for sufficiently large n and p, the
mean squared error decreases during the initial iterates of gradient descent. This phenomenon justifies the name “early
learning”: during early stages of training, the predictions obtained by the iterates of gradient descent improve.

Theorem A.1. For any n > N*, the function k — MSE, ,,(k) decreases for k € [0, TT*) where the constants N* =
N*(n,7,v) depends onn,~,~vo and T* = T*(k,~,70,0) > 0 depends on &,~, o, and é.

The second theorem, however, states that when the dimension is sufficiently large (with respect to the number of samples),
the predictor eventually overfits, and converges to a predictor that outputs only the probabilities 0 and 1.

Theorem A.2. Let p(z) = Jim a((@k

s 2)). Then there exists a k* = k*(7), such that when n — +o00 and £ — r > r*,

we have
P({p(z) € {0,1} fora.e. z € R’}) — 1
We begin with the proof of Theorem A.2.

Proof of Theorem A.2. Define the event
Sp = {3w € RP such that for Vi < n : y;(w,x;) > 0}.

>For mathematical convenience, in this appendix we work with labels in {41} rather than {0, 1}.
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For some large C; > 0 to be determined later, define the event

Gy ={IXlly < Ca(Vn+vp)},

where X = (x1,...,x,) € RP*" is the covariate matrix and || X||, denotes the maximum singular value of X. Pick

2
O < xwe

We claim that S,, N G,, C E,, = {p(z) € {0,1} for a.e. z € RP}. Indeed, assume that S,, and G, happen. Then the step
size 7 satisfies
2 2n

<< < .
CE(Wr+1)% | x|3

On the event S,,, the data points are separable, and Soudry et al. (2018, Theorem 3) implies that as £ — oo,

where MM ¢ RP denotes the max-margin separator. Thus for any z € R? with (z, ™M) > 0 (resp. < 0), we have
(2,05 ) = +00 (resp. —o0), and thus p(z) = klim o((0k ., 2z)) = 1 (resp. = 0). Since {z € R? : (z,6MM) = 0} has
: . :

Lebesgue measure 0, we have shown that S, N G,, C E,.

It remains to show that S,, and G,, hold with probability tending to one. Candes & Sur (2018, Theorem 1) show that
there exists a finite threshold x*, such that when £ — s > x*, it holds that P(S,,) — 1. Moreover, by standard
results from random matrix theory [see e.g. (Vershynin, 2018), Theorem 4.4.5], there exists some constant C; such that
P(G,,) > 1 —2e~™ — 1. Therefore, we can conclude that

P(E,) > P(S, N Gy) — 1.

O

In the remainder of the appendix, we prove Theorem A.1. Consider the following gradient flow, which is the analogue of
gradient descent in the 7 — O limit.

dé? .
d—; =-VL,(6.), Vt>0. (11)

Set ég = é?m and define the corresponding mean square error
MSE, (1) = E[(0((8},, 2)) — 0 ({6}, 2)))*]. (12)

We will first show that the mean squared error decreases along the trajectory of gradient flow, and then establish that this
result extends to the iterates of gradient descent. We denote MSE/, (¢) as the derivative of MSE,, at time ¢ > 0.
Lemma A.3. (a) lim MSE/,(0) < 0.
n—oo
(b) There exists some positive constants N1(v,70), T1(7, v0) and C1(~, v0), such that for any n > Ny and t < T}, it holds
that
MSE, (t) < —C4.

Proof. (a) For convenience, we write equation (11) in matrix form

et 1 R
—n = ZX(y —o(XT6!
& ( o(X"6,)),
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where X = (@1,...,x,) € RPX", g = (B 92t)T € R7 and 0(X7T0!) = (0((1,0%)), ..., 0((x, 0)))T € R™
We first calculate the derivative of the mean square prediction error:

MSE, (1) = & | (7({64,2)) — o((0;,2))) o' (8, ) (. z>]

=E | (a((85,2)) — o((85,2))) o' ({6}, 2)

(W'~ o(X76) X

=B | (o007, 2)) — o005, 2))) o' (0}, 2))

SI= 3

(c(X70;) — U(XTé;))TXTz] ,

where in the first line we used dominated convergence theorem, and in the last line we used E[y’|X] = o(X7'65).

Thus,
MSE;,(0) = jLZE (0065, 2)) = 0((8;.2))) o' (65, 2)) (0((6;.2)) — 0 (0%, @) (i 2)]
= E[(o((6%,2)) = 0((6},2))) o' (65, 2)) (0((6, 1)) — o((65,21))) (@1,2)]

where 9, z, and @ are mutually independent. Let u(b) := E[o’(Z,)], where the scalar Z, ~ N (0, b2). Conditioned on
(z,02), the pair ((x1, z), (69, 1)) is multivariate Gaussian with covariance (6, z). By the Gaussian integration by parts
formula,

E[U(<é70w :131>)<:IZ1, z>|z> ég} = E[UI(<97017 331>)|Z, é?LKé?w Z> = /1'('70)<0Agv Z>'
Similarly,

Elo((8;, 1)) (w1, 2)|2, 00 = 1(7)(6;, 2).
So

MSE;, (0) = E | (o((65,. 2)) — o((6;.2)) ) o' (62, )) (1(3)(6. ) — u(10)(63.2) ) |

Since 09 ~ Unif(SP~!(vy)) , we have (9, 8*) — 0 in probability as p — oo. Thus, the pair ({82, z), (65, 2)) A (Zo, Z),

n»p n’
where Zy and Z are independent centered Gaussian random variables with variance g and -y, respectively.

We hence compute

lim MSE/, (0) = E[(0(Z0) — 0(2))0"(Z0) (1(1)Z — u(10) Zo)]

p—o0
1

= =7’ u(y)* (o) — 1(10)E[(0(Zo) — 3)0'(Z0)Z0),

where in the last inequality we used Gaussian integration by parts and E[o(Z)] = 1. Since z(b) > 0 for all b > 0 and
(o(x) — 3)o’(z)z > 0 forall z € R, we conclude that lim MSE],(0) < 0.
n—oo

(b) We first show that the second derivative of MSE,, is uniformly bounded. Write f(z) = (o(z) — ((05, 2)))?. Since
0,0’ and ¢’ are all bounded, we have

" ) 7 ét dé; 2 E / ét dzéfz
IMSE(8)] = [E | /(8L 2))( 72, 2)2 | +E | (6L, 2)( =2, 2)
et 26!

< n n

<o (e]ih.or] o2 |8
a0t |I? d20t

< n n

GBI , TR e E
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where in the first equality, we use dominated convergence to interchange differentiation and expectation, and in the second
inequality we used the fact that z ~ A/ (0, I,,) is independent of the data.

By a simple calculation,
et

do;, < 2vB X,
dt , ’

2 n

3
_ 2/BIXIS
< 2P

< =Xl |y = o(xT6Y)

1
n

da2e:,
dt2

)

1 .
- HngXDtXTX(y’ —o(X70))

2

where D; = Diag(o’ (0!, 2,))), is a diagonal matrix with || D;||, < 1. By standard random matrix results [see e.g.
(Vershynin, 2018), Theorem 4.4.5],

E[|X]l3] < C(vp+Vn)?, E[|X]3] < C(vp+ V)™,

Whence, for any t > 0 and n > N,

T e

n

where L = C4(k% + 1) is a constant that only depends on &.
Let 7 = 7(7,70) = lim MSE; (0), and let Ny = Ny(v,7) > Nj satisfy MSE;,(0) < 7 for any n > Nj. By Claim (a),
n—0o0

7 < 0. Then for any ¢t < T (7,70) = w,

MSE/, (t) = MSE/,(0) + (MSE/, (t) — MSE/,(0)) <

h
&+

It <

o
1

O

Lemma A.1 essentially shows that within a small constant time window, MSE/, is negative, and thus the mean square error
of gradient flow decreases. The next lemma shows that the mean square error of gradient flow is a good approximation of
the mean square error of gradient descent. Before stating the next lemma, we extend gradient descent (9) to a piecewise
linear function, i.e.

Nt

e, .,

dt
where |t| := max{kn : kn < t,k € N}. In particular, 07;’;1 =6
Lemma A4. (a) For anyt > 0 andn > Ny,

s

= -VL,(01), vt>o0, (13)
k

nn

Slip”é?s%n - éTS?,” < CQ(K:v t, 57 70)”t

s<t

with probability 1 — 2e™", where Cy(k, t,,70) > 0 is a constant that depends on k,t,0 and .
(b) Foranyt > 0 and n > Ny,
sup |MSE, (kn) — MSE, (k)| < 4C5(k,t,0,v0)nt + 8¢~ ".
k<t/n

Proof. (a) We first bound sup||0~;;’n — 65
s<t

Compute
g <
de "™z — || dt
2
1

LX(y' 0(0)) + - X(0(0) ~ o(X76}))

n

) A
< 221X | 1X1l2 16012
n n

2

)
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where we used [|o(z) — o(y)||, < [[& — y||, for any @,y € RP. By Gronwall’s inequality,

Ix113 A 2 X
<e Xﬂt( g + 221Xl ”%). (14)
2 2 n
Next, compute
<L o)
==X (o(XT0L)) — o(X"65)
n 2
2
n ,
2
< 1 X115 é;n_éz Hz HBM
n .
X3 X -
n : 2 2
Since 6, — 655 = (s — ls)iX(y — o(XT65)), we can bound
G glol|| < 2VPIXI |, nIX]3 1650
nn ~ “nn 9 = n
219Ls!
< 2PN | oIXI 0 | nIXIE g gy
n n '

Combining the above inequalities, we get
d
< —
dt

2
< IX15,
n

isup Ot -6

dt s<t

0, 03|,

2

6, —o

n,n

2 2 14lt 2
LI (277\/13|le|2 L IXEIO e | nIX1E s gy

2 n n n " 2)
< 1X15 <WXM
o n ’I’L s<t

Together with inequality (14), by Gronwall’s inequality we eventually have

6:,—0;

_|_
277 n2

(mxng ||X|2||0“J||>
n2 ’

3 1x113
R 2tf||XHQe " e(H);H%J“(;HanH%)t
n? n3 ’

sup
s<t

5)

I
2./ |IX|I2 x|
: <t ﬂ% M+7ﬂ o e
’ n

ésnfofl 9 =

Again, by a standard random matrix result [see e.g. (Vershynin, 2018), Theorem 4.4.5], it holds that || X ||, < C(\/p + v/n),
with probability 1 — 2e~". Plug this bound into inequality (15), we get for any n > Ny,

sup é;n -6

s<t

9 S ntCQ(K/7ta67 fYO)’ (16)

with probability 1 — 2e=", where Ca(k, t,8,70) = C(t + 70 + 1)(k¢ + 1)eCE+DE D1 for some C > 0.
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(b) Define the event A,, = {sup
s<t

~S AS
an,n -0y

< ntCy(k,t, 9, 70)}. Since |o], 0’| < 1, we have for any n > Np,
2

sup [MSE,,(kn) — MSE,, (k)| < sup 4E[|o ({6}, 2)) = o((0),,, 2))]]

K<t/ k<t/n e
— sup 4E[lo((647, 2)) — o((8%,, 2))[1a,] + 8¢~
k<t/n
< sup 4E H é,’z" — éf]n ]lAn} + 8"
k<t/n sz
<4E | sup ‘é,’i" - és n ‘ La,|+87"
k<t/n Tz
=A4E | sup ‘GAS" — ég"n ‘ L1a,|+8 "
k<t/n Tz

< 4C5(k,t,8,v0)tn + 8™ ™

We are now ready to prove Theorem A.1.

Proof of Theorem A.1. Pick a small Ty(k,8,7) > 0 that satisfy Ca(k,T5,8,70)T> < <99 This is possi-
ble since Cy(k,t,0,79) is bounded as ¢ — 0. Let N7 and 7) be as in Lemma A.3, and let T*(v,70,k,d) =
min{7T} (v, 7o), T2(k, d,70) }. For any k < TT -1,

MSE, ,,(k + 1) — MSE,, (k) = (MSE,,((k + 1)n) — MSE,,(kn)) + (MSE,, »,(k + 1) — MSE,,((k + 1)n))
+ (MSE, (k) — MSE, ((k)n))
< (MSE, ((k +1)n) —MSE, (k1)) +2 sup |MSE,(mn)—MSE, ,(m)|

m<T*/n
By Lemma A.3.(b) and the mean value theorem, for any n > N,
MSE,((k + 1)n) — MSE, (kn) < —C1(v,70)7-
By Lemma A .4.(b), it holds that for any n > N,
itr}p/ IMSE,,(mn) — MSE,, ,(m)| < 4C(k,T*,0,7)T*n + 8"
m<T*/n

S 01(7770)77 + 86771’

8
Let Na(n,,70) satisfy 8€:N2 < w, and let N*(n,7,v0) = max{N1(v,70), Na(n,7,70), }- We therefore have
foranyn > N* and k < TT -1,

C1(7,7)

MSE; (k + 1) = MSEy (k) < —C1(7,70)n + == " 16eN

__Glvyon _
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Figure 7. Reliability curves for a linear model (Appendix B). The horizontal and vertical coordinate of each blue point represent the
predicted (p;) and true (p;) probabilities of a test example respectively. We also show a reliability diagram of binned mean predicted
and empirical probabilities in black (see Section 3). The dashed diagonal line indicates perfect calibration. The model is initialized
randomly (first column) and initially improves the estimation, with the reliability curve trending towards the diagonal line (second column).
However, because the dataset is finite, it eventually overfits, and the predicted probabilities collapse to 0 or 1 (third column). When labels
are resampled to generate large amount of data, the estimates converge to the ground-truth probability labels (right column).

B Early Learning and Memorization in a Linear Model

We provide a numerical example that illustrates the theoretical results of Section 4, and demonstrates the similarities between
the behavior of linear and deep-learning models in high dimensions.

We train a logistic regression model in an overparametrized regime (£ = 1). To generate the features, we draw {x; 1500 @, €
R°% i i.d. Gaussian random variables, z; ~ N (0, I500). The ground-truth unobserved probability labels p; are generated
according to equation 6. i.e. p; = o ({(6*,x;)) . The true parameter * = (1,0, ...,0) is fixed to equal the first standard
basis vector, and o(x) = (1 + %)~ ! is the sigmoid function.

The 0-1 labels {y;}>2) are drawn from Bernoulli distribution with probability p;, ; ~ Bern(p; ).

We use stochastic gradient descent (to fit a logistic regression model with parameter & € R?° on the simulated data

{(z;,:)}2%, using a cross-entropy loss function. We compare the model trained on two datasets: (a) finite (x, y) pairs,
and (b) a large amount of data set, generated by repeatedly resampling new outcomes y; from the ground-truth probabilities
p; at every iteration.

Figure 7 shows that the linear model trained with cross entropy begins by improving the estimate of the true probabilities
(at the early-learning stage), but eventually memorizes the 0-1 labels (the overfitting stage). Figure 8 illustrates that the
MSE,, of cross entropy training increases when the model starts memorizing the 0-1 labels, as predicted by the results of
Appendix A.

C Additional Results

We present here supplementary results to the ones presented in Section 8.

C.1 Face-based Risk Prediction

Full evaluation with confidence intervals derived using 1000 bootstraps for the five simulated scenarios are examined: Linear
(Table.3); Sigmoid (Table.4); Centered (Table.5); Skewed (Table.6); Discrete (Table.7). Note that all numbers are upscaled
by 10~2 in the tables.
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Figure 8. Validation loss for training a linear model (Appendix B). Training with finite data (green line) decreases MSE,, initially but
eventually overfits to the 0-1 labels. Training with resampled labels (red line) avoids overfitting and results in accurate estimation of the

true probabilities.

Table 3: Performance on Face-based Risk Prediction. Linear scenario. All numbers are downscaled by 10~2.

Linear ECE MCE KS Brier MSE,, KL,
CE + label resampling  4.144+0.81 12.07£3.29 2.24+0.88 18.974+0.33 1.144+0.04 2.82+0.11
CE early-stop 12.324+0.83 21.79+1.97 12.164+0.83 21.824+0.51 4.21£0.15 10.94+0.36
Temperature 5.7£0.74 13.82£2.71 2.36+0.74 20.47+0.37 2.73£0.11 6.75£0.25
Platt Scaling 4.2940.77 10.94£2.55 1.3£045 20.1840.36 2.484+0.09 6.074+0.22
Dirichlet Cal. 7.38£1.12 22.58+7.24 3.784+0.46 21.32+£0.33 3.56£0.13 9.08+0.29
Focal Loss 5.344+0.68 13.31£2.67 3.56+0.85 21.99+0.28 4.13+0.11 10.524+0.28
Mix-n-match 5.46+0.84 1294251 1924044 20.43+£0.35 2.7£0.11 6.724+0.24
Entropy Reg. 5.74£0.74 13.52+1.67 4.94+09 20.42+03 2.58+0.09 6.65+0.21
MMCE Reg. 4.89+0.74 12.57£2.27 1.9240.46 20.04+0.38 2.24+0.08 5.68+0.2
Deep Ensemble 4.26+0.72 11.33£2.38 1.95+0.61 19.884+0.32 1.94+0.07 4.55+0.18
CaPE (bin) 4.58+0.75 11.85+2.49 1.71+£0.51 19.68+£0.36 1.78+0.07 4.35+0.16
CaPE (kernel) 4.62+0.62 12254231 1.65+0.38 19.71+0.34 1.74£0.07 4.3+0.17

C.2 Supplementary Metrics on Real-world Dataset

We present here additional metrics on the real world data: Cancer Survival (Table 8); Climate Forecasting (Table 9);

Collision Prediction (Table 10).
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Table 4: Performance on Face-based Risk Prediction. Sigmoid scenario. All numbers are downscaled by 102,

Sigmoid ECE MCE KS Brier MSE, KL,

CE + label resampling  6.4£0.71 20.63£3.44 2.74+0.45 16.28+£0.44 5.34+0.2 14.82+0.51
CE early-stop 6.19£0.75 17.04£3.68 5.86+0.8 16.68+£0.42 6.16£0.17 17.16£0.48
Temperature 5.57£0.71 15.3243.09 5.02+0.83 16.58+0.34 6.13+0.17 17.0940.43
Platt Scaling 3.45+0.68 10.32£2.79 134043 16.33£0.34 5.78£0.19 16.15+0.47
Dirichlet Cal. 14.5£1.15 25.68£3.02 4.67+£0.32 19.21£0.43 8.64£0.26 25.18+0.58
Focal Loss 4.65£0.7 11.84+2.78 2.66+0.77 16.96+0.34 6.86+0.21 19.46+0.5
Mix-n-match 5.65+0.76 15.32£3.41 5.09£0.94 16.6+£0.36 6.12+0.17 17.08+0.46
Entropy Reg. 9.51£0.79 18.774£2.38 7.26£0.78 17.17£0.31 7.02£0.17 21.16%+0.42
MMCE Reg. 4.67£0.76 13.63£2.59 2.54+0.53 15.940.51 5.35£0.18 15.06+0.49
Deep Ensemble 5.17£0.74 16.124£3.11 2.04£0.44 16.39+0.45 5.86+0.22 16.46+0.6
CaPE (bin) 3.78+0.6 11.96£2.59 2.22+0.7 15.84+0.43 5.17+0.2 14.27£0.49
CaPE (kernel) 39+£0.75 11.73£2.79 2.05+£0.54 15.85+0.41 5.16£0.2 14.34+£0.49

Table 5: Performance on Face-based Risk Prediction. Centered scenario. All numbers are downscaled by 10~2.

Centered ECE MCE KS Brier MSE, KL,

CE + label resampling  4.29+0.74 12.38+2.92 2.68+£0.8 24.2240.13 0.2£0.01 0.4140.01
CE early-stop 5.76+0.84 15.324+3.07 4.194+1.02 24.684+0.08 0.484+0.01 0.984+0.03
Temperature 6.09+0.82 15.834+291 4.744+0.96 24.744+0.06 0.484+0.01 0.984+0.03
Platt Scaling 4.574+0.76 11.85+2.5 2.79£0.85 24.624+0.08 0.41+0.01 0.83+0.03
Dirichlet Cal. 4.844+1.15 13.13+7.61 2.16£0.86 24.74+0.1 0.46+0.01 0.9440.03
Mix-n-match 6.05+0.83 15.714+2.92 4.68+0.98 24.74+0.06 0.48+0.01 0.98+0.02
Focal Loss 5.094+0.83 13.442.87 3.444+1.02 24.840.05 0.484+0.01 0.9740.03
Entropy Reg. 5.02+0.86 12.694+3.42 3.274+0.96 24.744+0.06 0.454+0.01 0.9240.03
MMCE Reg. 5.56+0.86 13.5942.65 2.71+£0.93 24.740.08 0.444+0.01 0.9+0.03
Deep Ensemble 4.844+0.78 12.39+2.52 2.64+0.71 24.694+0.07 0.44+0.01 0.89+0.03
CaPE (bin) 473+0.82 11.81+2.54 2.07+0.6 24.564+0.11 0.384+0.01 0.78+0.03
CaPE (kernel) 5.41+0.87 12.714+2.5 2.394+0.78 24.594+0.11 0.44+0.01 0.814+0.03

C.3 Additional Reliability Diagram

Figure 9 shows additional reliability curves on the real world data, supplementing the ones illustrated in Figure 6. Figure 10
shows reliability curves for the different synthetic data scenarios.

D Kolmogorov-Smirnov Error
We derive the KS-error, mentioned in Section 3.

For a calibrated estimator
Py=1[f(z) € I(g)) =¢, Y0<g<1,

for some small interval I(g) around g.

Hence
Py =1,f(x) € I(q)) =P(f(z) € I(q)) ¢, VO<qg< 1.
Similarly to the Kolmogorov-Smirnov (KS) test for distribution functions, we can recast this property in integral form
o) = [Pl=1.1@) € H@)da 6a(0) = [ B(f(@) € 1(0)) ada

0 0
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Table 6: Performance on Face-based Risk Prediction. Skewed scenario. All numbers are downscaled by 102,

Skewed ECE MCE KS Brier MSE, KL,

CE + label resampling  2.7£0.46 7.64+2.14 1.05£0.39 11.0+0.51 0.22+0.01 0.9240.03
CE early-stop 3.07+£0.57 7.88+1.88 1.28+0.41 11.18+£0.5 0.44+0.01 1.794+0.06
Temperature 3.14+0.49 7.92+1.84 1.12+0.33 11.22+0.47 0.4+0.02 1.76£0.06
Platt Scaling 2.994£0.53 7.73+1.59 1.07£0.37 11.1+£0.54 0.394+0.01 1.72+0.06
Dirichlet Cal. 3.04+£0.73 7.81£2.43 0.97+0.3 11.224£0.42 0.47£0.02 2.314+0.07
Focal Loss 8.29+0.67 14.93£1.43 6.16+£0.67 12.01£0.41 1.28+0.03 1.63+0.66
Mix-n-match 2.99+0.53 7.78+1.78 1.08+£0.32 11.18£0.49 0.4£0.01 1.7540.05
Entropy Reg. 7.67+£0.57 14.43+15 5.240.71 11.94+0.45 1.18+0.03 10.74+0.65
MMCE Reg. 3.68+£0.59 10.94£2.76 1.47+031 11.14£0.44 0.54+0.02 2.4440.08
Deep Ensemble 2.87£0.5 7.21£1.63 1.36+0.44 11.28£0.5 0.55+0.02 2.58+0.07
CaPE (bin) 3.29+£0.5 8.18+1.51 1.17+0.34 11.07+£0.47 0.4+0.02 1.73+0.06
CaPE (kernel) 3.16£0.5 8.14£1.58 1.094+0.33 11.17+0.53 0.39+0.01 1.69+0.06

Table 7: Performance on Face-based Risk Prediction. Discrete scenario. All numbers are downscaled by 1072,

Discrete ECE MCE KS Brier MSE, KL,

CE + label resampling  4.23+0.74 11.16+2.5 1.454+0.49 20.384+0.35 1.52£0.05 3.63+0.12
CE early-stop 6.7+0.86 18.62+3.52 2.61£0.53 21.914+0.36 2.24+0.08 5.2740.17
Temperature 6.12+0.87 16.824+3.56 3.374+0.86 21.764+0.35 2.214+0.08 5.154+0.18
Platt Scaling 47+£0.72 11.69+2.44 1.67+0.51 21.4440.32 2.064+0.08 4.834+0.17
Dirichlet Cal. 7.13+0.86 22.674+5.08 3.184+0.68 22.1+0.34 2.74+0.1 6.534+0.22
Focal Loss 5.7+0.75 13.68+2.32 4.62+091 21.774+0.28 2.92+0.09 6.77+£0.21
Mix-n-match 6.27+0.76 16.83+2.95 3.47+093 21.77+£0.33 2.21+0.08 5.14+0.18
Entropy Reg. 6.69+0.87 15.3842.43 6.03+1.13 21.79+£0.31 2.844+0.08 6.62+0.19
MMCE Reg. 3.964+0.7 10.4+2.4 1.51+£0.47 21.124+0.35 2.09+0.08 4.92+0.18
Deep Ensemble 4.76+0.74 11.494+2.23 2.04+0.61 21.174+0.31 1.974+0.08 4.61+0.17
CaPE (bin) 5.414+0.74 14.4543.15 2.24+0.59 21.33+£0.36 1.81+0.08 4.28+0.18

CaPE (kernel) 496£0.8 12.97£2.63 2.184+0.58 21.214+0.42 1.84+0.08 4.35£0.17
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Figure 9. Reliability diagrams of all the baselines on the real-world datasets. We train all baseline methods on each of the datasets and
plot the empirical probability(y-axis) against predicted probability(x-axis). The axis labels are removed to ease visualization (they are the
same as in Figure 6).
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Figure 10. Reliability diagrams for different synthetic data scenarios. We can see that CaPE outperforms early stopping, prevents
overfitting, and achieves a performance on par with training on large amount of resampled data.
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Table 8: Baselines with full metrics for cancer survival. All numbers are downscaled by 1072,

Methods  (x1072) AUC ECE MCE NLL Brier KS

CE Early-stop 58.88 1225 2535 6792 2396 644
Temperature 58.88 12.07 24.65 67.11 2373 692
Platt Scaling 5891 10.28 27.69 66.11 2333 491
Dirichlet Cal. 49.89 13.83 3552 67.57 24.08 6.00
Mix-n-match 58.88 12.16 24.52 66.89 23.67 7.18
Focal loss 55.02 1215 2634 6592 2331 6.38
Entropy Reg. 5629 11.73 30.81 6649 23.62 6.83
MMCE Reg. 48.45 11.84 3736 66.83 2373 3.64
Deep Ensemble 5226 999 2830 6622 2347 5.02
CaPE (bin) 61.44 1231 2527 6575 2320 2.59
CaPE (kernel) 6122 948 3240 6570 2318 3.70

Table 9: Baselines with full metrics for weather prediction. All numbers are downscaled by 1072,

Methods ~ (x1072) AUC ECE MCE NLL Brier KS

CE Early-stop 77.64 1091 2550 59.97 20.57 11.03
Temperature 77.64  8.66 2356 5877 2021 741
Platt Scaling 77.65 697 1647 5738 19.53 3.26
Dirichlet Cal. 77.51 1429 30.09 62.83 21.89 521
Mix-n-match 77.64  8.65 23.58 58.77 2021 7.39
Focal Loss 76.18 832 2125 59.01 20.27 4.45
Entropy Reg 79.01 10.53 20.72 57.83 19.77 5.00
MMCE Reg 76.69 846 19.73 59.25 20.12 731
Deep Ensemble 7986 741 1824 5528 18.82 757
CaPE (bin) 78.99 516 1509 79.00 1837 234
CaPE (kernel) 79.00 5.08 13.28 5432 1839 234

Table 10: Baselines with full metrics for collision prediction. All numbers are downscaled by 10~2.

Methods (x1072) AUC ECE MCE NLL Brier KS

CE Early-stop 85.68 436 19.87 31.67 859 1.54
Temperature 85.68 456 16.79 3036 852 29

Platt Scaling 85.76  3.04 1239 2942 823 1.52
Dirichlet Cal. 8336 578 18.13 3090 877 1.60
Mix-n-match 85.68 440 1741 3025 852 2.60
Focal Loss 82.21 9.07 19.85 3441 9.82 8.72
Entropy Reg 83.15 1454 21.27 3874 11.10 13.44
MMCE Reg. 85.18 294 895 3065 848 244
Deep Ensemble 8527 3.15 16.53 3020 854 2.01

CaPE (bin) 85.70  3.16 12.21 30.61 8.18 2.13

CaPE (kernel) 8595 322 1332 3044 813 210

We can evaluate ¢1, ¢ from a finite sample (x;,y;),i = 1...n,
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The KS error is defined as
KS = max |¢1(0) — ¢2(0)]-

¢1, @2 can be efficiently computed by sorting the data points with respect to their confidence scores f(x;). The KS error
has the advantage of being independent of binning configurations, unlike ECE and MCE.

E Brier Score Decomposition

We present here a decomposition of the Brier score into two components, discussed in Section 3.

The Brier score can be interpreted as a sum of two terms, calibration and refinement. Assume the network can output one of
K distinct possible predictions, i.e., p € {¢1,. .., (K }-

Denote Sk, the set of all inputs with output ¢, and g the empirical probability over Si, i.e.,

. _ 1
Sp=Ax|f(®) = 4r}, |Skl=rk, @ = o > v

x; €Sy

Then we can write
N

K K
A , 1 o, 1 ) )
Brier = N ;(Pi — ) = ~ kz_:lnk(% —qr)” + i ;nka(l — qk)s

The first term on the RHS, calibration, is similar to MSE,,, with the empirical probabilities g, substituting for the true labels.
The second term, refinement, is an estimate of the confidence in determining g, It is related to the area under curve (AUC),
which measures to the achievable accuracy of the network as a classifier. The term is smaller as the prediction classes g, tend
towards O or 1. Thus, this term penalizes empirically calibrated predictors, with low discriminative power, as in Figure 2.

F Metric Comparison

Figure 11 shows the correlation between different calibration and accuracy metrics, and two gold-standard metric that
use ground truth probabilities: MSE,, and KL-divergence. The correlations are computed using all five scenarios in our
Face-based Risk Prediction synthetic dataset.

G Estimation of Empirical Probability in CaPE

We describe in further detail the two ways to estimate the conditional probability IP (y = 1|f(x) € I(g)), introduced in
Section 5.

We wish to estimate the conditional probability of an output y given a network prediction f(x), P (y = 1|f(x) € 1(q)) We
can approximate the probability by averaging over points p € I(q),

1

Py =1f(2) € 1) ~ 7o > Py=1|f(x)=p). (17)
4 pel(q)
An empirical estimate of P (y = 1|f(x) € I(g)) would be
1
P(y=1|f(x) € I(q)) =~ [index(1(q))] f(mgl(q) Yis (18)
where Index (1) = {i|f(=;) € I(¢)}.
Alternatively, we can use kernel estimation:
_ . _ . (»—q)°
P(y=1]f(z) € (q) = - > P(y=1|f(x) =p) exp | (19)
pEI(q)
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where Z = Zp c1(q) €XP (— (2 ;3 )* ) is the normalization factor. An empirical estimate of the conditional probability would

then be

(y =1lf(z) € I(q)) = - > wiexp | (20)
f(@:)€l(q)
Based on these two approximation methods, we can design an algorithm to estimate pémp.

Bin We divide our data into B bins of equal size. @Qi,...,Qp are the data B-quantiles. We wish to estimate
P(y=1|f(z) € [Qv-1,Qu]), b = 1,...,B,Q¢ = 0. Denote I;, := [Qp—_1,Qs] N {f(x:)}}¥,, set of all predictions
in [Qp—1,Qs), and Index (1) = {i|f(x;) € Ip}. We have,

Ply=1f=) € Qi) ~plh=— S u

|I | i€Index (1)
b

We assign péf;)p to all data points 7 in the b-th quantile

pémp = péfn)p Vi € Index([b)

Kernel In this case we use kernel estimation:

b= > kenn(ir) K (6 F) vk @1
o > kenn(ir) K (6 F)

NN(4, ) defines r data points whose predictions are nearest to p; = f(«;). K (4, ) is the Gaussian kernel

K(i,§) = exp (—(p_p)> ,

o2
with hyperparameter o.

H Calibration Baselines

This section provides a review of the baseline methods, discussed in Section 7.

Post-processing  Postprocessing consists of finding a function f : [0,1] — [0, 1], that transforms the model outputs
p; — f(p;) to improve their calibration.

* In Platt scaling (Platt, 1999) the model predictions are used as inputs to a logistic regression model optimized using a
validation set,

fipi) = o (W"pi +b) (22)

where W € R% b € R and o is the sigmoid function.

» Temperature scaling (Guo et al., 2017) is a single-parameter variant of Platt Scaling where we change a temperature
parameter in the logistic function.

 Beta/Dirichlet calibration (Dir-ODIR) (Kull et al., 2017; 2019) assumes that the probabilities can be parametrized by a
Beta/Dirichlet distribution i.e.

fj ~ Beta(al¥), g19)) (23)

Assuming the prior to be p(y = j) = 7;,m; € [0,1], we have P(y|f;) o 7, f;, and then a7, 319) are estimated by
maximizing the posterior.

Ensembling These calibration methods simultaneously train several neural networks, varying parameters in the training
process. The final output is a function of all the different outputs.
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* Mix-n-Match (Zhang et al., 2020) improves calibration by ensembling parametric and non-parametric calibrators.
Denote the temperature scaling function with ¢g(g;, 7). Then Mix-n-Match ensembles different temperatures

[i(Bi) = wig;(Ds, T) + wag;(Pi, 0) + wag;(pi, 00). (24

After ensembling the parametric temperature scaling, Mix-n-Match applies non-parametric isotonic regression.
* Deep ensemble (Lakshminarayanan et al., 2017) trains M copies of the neural network with different initializations.
The final estimate is the average of all single model outputs

M

1
p(yi | zi) = i ZP&_,» (Yi | z4). (25)
j

Modified training These calibration methods train the neural networks from end to end, modifying the training process to
improve calibration.

» Confidence penalty (Pereyra et al., 2017) penalizes low entropy output distributions (confidence penalty),
L(0) = — Z log po(yilzi) — BH (pe(yilzi)) (26)

 Focal loss (Mukhoti et al., 2020) maximizes entropy while minimizing the KL divergence between the predicted and
the target distributions. It also regularizes the weights of the model to avoid overfitting,

L(0) == (1 - po(yila:)?logps(yilz:), B ER. 27)

7

¢ Kernel MMCE (Kumar et al., 2018) is a reproducing kernel Hilbert space (RKHS) kernel based measure of calibration
that is efficiently trainable, alongside the negative likelihood loss. Given data samples D = {(c;,r;)};~,. where
Ci = X{gi=y:} and 7; = P(c; = 1]g;), MMCE is computed on samples D as follows,

Mmce? (p) = Y2 LTl )R ) (28)

4]

where k(r;, r;) is a kernel function. MMCE is optimized together with the cross entropy loss as a regularization term
weighted by a scaling parameter A € R

£(6) =~ Y logpo(yilai) + 8 (MMCE*(D)) . (29)

Hyperparameter tuning for baseline methods Most postprocessing methods do not involve hyperparameters, and are
optimized based on a validation set. The modified training methods all use a single hyperparameter to control the strength of
regularization. We tune the hyperparameter, using a validation set. Figure 13 shows that MMCE is robust to the choice of
hyperparameter. Focal loss and entropy regularization result in inferior performance to that of MMCE for all hyperparameter
choices.

I Synthetic data experiments
We use a ResNet-18 backbone architecture for all our experiments with synthetic data.

The synthetic data is split into training, validation, and test sets with 16641, 4738, and 2329 samples, respectively. The
training and validation sets contain only images x; and 0-1 labels y; for training and tuning the model. In order to evaluate
the performance of the model for probability estimation, the held-out test set contains the ground truth probabilities p;, in
addition to x; and y;. Note that we do not use the ground-truth probability labels p; values during training or inference - we
only use them to compare the performance of different models.

Ground Truth Probability Generation The ground truth probability associated with example 4 is simulated by p; = 1(z;)
where z; is age of the person.
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Table 11: Results of on CIFAR 10 with simulated probabilistic labels. CaPE outperforms a CE early stopped model.

Name | CE early stop | CaPE (bin) | CaPE (kd)

MSE,, | 0.0297 0.0252 0.0247
KL, 0.4051 0.2468 0.2598

Label distribution After determining the probability p; using ¢(z), the label y; is sampled from a Bernoulli distribution
parametrized by p;, so that it takes the value 1 with probability p;. The distributions of y; under five different scenarios are
illustrated in Fig.15.

J Additional Synthetic-Data Experiments on CIFAR-10

We simulated probabilistic labels for CIFAR-10 to perform additional experiments. Each of the ten classes of CIFAR-10
was assigned a different ground-truth probability. To this end we assigned an integer ¢ between 0 and 9 to each class and set
the corresponding probability equal to ¢/10. The training and validation sets were built by assigning each image z; to a
binary label y; sampled from the corresponding class probability p;. Note that we do not use the ground-truth probability
labels during training or inference - we only use them to evaluate the performance on the test set.

Table 11 shows the results on the test set. We again observe that CaPE outperforms the cross-entropy baseline based on
early stopping.

K Additional Details on Real-World Data and Experiments

We present here supplementary information for the real-world datasets used in our experiments.

Cancer Survival Histopathological features are useful in identification of tumor cells, cancer subtypes, and the stage
and level of differentiation of the cancer. Hematoxylin and Eosin (H&E)-stained slides are the most common type of
histopathology data and the basis for decision making in the clinics. With these properties, H&E are used for mortality
prediction of cancer (Wulczyn et al., 2020). In this experiment, we use the H&E slides of non-small cell lung cancers
from The Cancer Genome Atlas Program (TCGA)® to predict the 5-year survival. The dataset has 1512 whole slide images
from 1009 patients, and 352 of them died in 5-years. We split the samples by patients and source institutions into training,
validation, and test set, which has 1203, 151, and 158 samples respectively.

The whole slide images contain numerous pixels, so we cropped the slides into tiles at 10x magnification with 1/4 overlapping,
resized them to 299 x 299 with bicubic interpolation, and filtered out the tiles with more than 85% area covered by the
background. The representations of each tile are trained with self-supervised momentum contrastive learning (MoCo) (Chen
et al., 2020), and the slide-level prediction is obtained from a multiple-instance learning network (Ilse et al., 2018) trained
with the binary label of survival in 5 years.

Weather Forecasting We use the German Weather service dataset’, which contains quality-controlled rainfall-depth
composites from 17 operational Doppler radars. Three precipitation maps from the past 30 minutes serve as an input. The
training labels are the 0/1 events indicating whether the mean precipitation increases (1) or not (0).

The German Weather service (DWD - Deutshce Wetter Dienst) dataset https://opendata.dwd.de/weather/
radar/ contains quality-controlled rainfall-depth composites from 17 operational DWD Doppler radars. It has a spatial
extent of 900x900 km, and covers the entirety of Germany. Data exists since 2006, with a spatial and temporal resolution of
1x1 km and 5 minutes, respectively. The dataset has been used to train RainNet, a pricipitation nowcasting model (Ayzel,
2020).

The network architecture is ResNet18, with 3 input channels and 2 output channels. The input to the network are 3
precipitation maps which cover a fixed area of 300kmx300 km in the center of the grid (300x 300 pixels), set 10 minutes
apart. The training, validation and test datasets consist of 20000, 6000 and 3000 samples, respectively, all separated

*https://www.cancer.gov/tcga
7https ://opendata.dwd.de/weather/radar/
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temporally, over the span of 15 years.

Collision Prediction Vehicle collision is one of the leading causes of death in the world. Reliable collision prediction
systems which can warn drivers about potential collisions can save a significant number of lives. A standard way to
design such a system is to train a convolutional model for identifying if a particular vehicle in the dash-cam video feed
might collide with the car in next few seconds. More formally, at time ¢ = T the system tries to predict if any car in the
video might collide with our given car in time ¢ € [T, T + Tlook-anead|- Each labelled training sample consists of features
X = (X790, XT=20 XT=9)and abinary label Y € {0, 1} denoting if an accident will occurin ¢ € [T, T+ Tiook-ahead)-
Each X* is a tensor with 4 channels where the first 3 channels corresponds to an RGB image of the dashcam view at time
t = t, and the fourth channel consists of a mask with a bounding box on a particular vehicle of interest. In this work, we
use YouTubeCrash dataset (Kim et al., 2019) to train and test our model, which uses 6 = 0.15,Tjook-head = 189 = 1.8s, and
d = 3. Following (Kim et al., 2019) we used a VGG-16 network architecture.

The dataset contains 122 accident scenes, and 2096 non-accident scenes, which after feature extraction gives us 2096
positive samples, and 11486 negative samples (the dataset is severely imbalanced, and similar to the Skewed situation in
Section 7.1). We further split the dataset into train (6453 samples for label 0, and 1023 samples for label 1), validation (2348
samples for label 0, and 545 samples for label 1), and test (2685 samples for label 0, and 528 samples for label 1) sets. The
samples in train, validation and test sets are generated from disjoint scenes/dashcam videos.

L. Analysis of Cancer Survival Results

For cancer survival prediction, we visualize the estimated probabilities on the test set in different pathological stages in
Figure 16. In general, patients in earlier stages should have higher probabilities of survival. Deep ensemble produces
similar probability estimates for all stages (i.e the model is less discriminative). Cross-entropy minimization (CE) is more
discriminative, but has very wide confidence intervals. CaPE is more discriminative than deep ensemble, while having
narrower confidence intervals than CE.

M Calibrating from the Beginning

CaPE exploits a calibration-based cost function to improve its probability estimates without overfitting. The empirical
probabilities in this loss are computed from the model itself. Consequently, applying this strategy from the beginning
of training can be counterproductive, because the model predictions are essentially random. This is demonstrated in the
following table, which compares CaPE with a model trained using the calibration loss from the beginning (in the same way
as CaPE, alternating with cross-entropy minimization).

Table 12: Comparison between CaPE and a model that uses the calibration loss from the beginning (in the same way as
CaPE, alternating with cross-entropy minimization) on synthetic data. All numbers are downscaled by 102,

Methods Linear Sigmoid Centered Skewed Discrete

(x107%) MSE, KL, | MSE, KL, | MSE, KL, | MSE, KL, | MSE, KL,
Bin (start) 259 681 | 807 2210 | 048 098 | 051 237 | 274 636
Kernel (start) 223 568 | 7.60 21.15| 054 1.10 | 0.68 284 | 240 5.63

Bin (CaPE) 1.83 446 | 529 1459 | 038 0.78 | 040 1.72 | 1.83 4.31
Kernel (CaPE) 1.81 4.41 | 522 1447 | 040 0.81 039 1.70 1.85 436

N Correspondence of Real-World Datasets and the Scenarios of the Simulated Dataset

Figure 17 illustrates the similarity between the empirical probability curves of different real-world datasets and the different
scenarios of our synthetic dataset. For the cancer survival dataset, the empirical probabilities are clustered in the center
(0.4-0.6) similar to the Centered scenario. For the weather forecasting dataset, the probabilities are uniformly distributed
across 0.1-0.8 similar to the Linear scenario. For the collision prediction dataset, the majority of the data points are clustered
in the lower probability region which makes it similar to the Skewed scenario.
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Figure 16. Estimated probability of survival grouped by pathological stages. The plot shows median, samples between 25th to 75th
percentile in the box, samples between Oth and 100th percentile on the line, and the outliers as dots. Deep ensemble produces similar
probability estimates for patients across all the stages; CE is more discriminative but has a very large variance; CaPE achieves a trade-off
between the two baselines.
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Figure 17. Comparison of reliability diagrams for real-world data with different scenarios of simulated data. For the cancer survival
dataset, the empirical probabilities are clustered in around (0.4-0.6), similar to the Centered scenario. For the weather forecasting dataset,
the probabilities are uniformly distributed across 0.1-0.8, similar to the Linear scenario. For the collision prediction dataset, the majority
of the output probabilities are clustered in the lower probability region, similar to the Skewed scenario.



