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Interference and oscillation in Nambu quantum mechanics
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Nambu quantum mechanics, proposed in [Phys. Lett. B 536, 305 (2002)], is a deformation of canonical
quantum mechanics in which only the time-evolution of the “phases” of energy eigenstates is modified. We
discuss the effect this theory will have on oscillation phenomena, and place a bound on the deformation
parameters utilizing the data on the atmospheric neutrino mixing angle 6,3.
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I. INTRODUCTION

Quantum mechanics (QM) is one of the most important
and successful frameworks of modern physics. The lan-
guage of QM is essential for particle, nuclear, atomic,
condensed matter, and statistical physics as well as chem-
istry, and it has lead to the current “second quantum
revolution” in quantum information science and technology
[1]. Nevertheless, the full understanding of the foundations
and origins of QM is still an active area of intense discussion
and research [2—4]. It has been argued that canonical QM
should be replaced by a more fundamental or generalized
framework, either in the context of quantum gravity and
cosmology [5,6], or in the realm of quantum measurement
[7], or in the domain of macroscopic quantum systems [8].

A deeper understanding of canonical QM could be
obtained by comparing its predictions to those of its
possible generalizations, and confronting both with experi-
ment. It would allow us to probe the robustness of the
original tenet or axiom that was relaxed to generalize the
theory, thereby identify the theoretical bedrock on which
QM rests.

Various proposals for alternative or generalized QM
theories can be found in the literature [9-22]. In this paper,
we look at one such generalization, Nambu QM, which was
introduced in [23] by Minic and Tze, and one of its observable
consequences. The work was inspired by a profound and far-
reaching paper by Nambu [24], and thus its name.

The starting point of the Nambu QM approach is the
geometric formulation of QM [25] in which the time

fdminic @vt.edu
"takeuchi@vt.edu
fctze @me.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/104(5)/L051301(6)

L051301-1

evolution of pure quantum states is described as a “classical”
area preserving Hamiltonian flow within the state “phase”
space. For a single energy eigenstate, this is just the
evolution of its phase, the real and imaginary parts of which
constitute the “phase” space, with the Hamiltonian being
that of a harmonic oscillator. Nambu'’s idea in [24] was to

extend the classical equation of motion F = —{H, F},
where
0A OB
ABY =&, 27 1
(4.8} = ey o (n

is the Poisson bracket, to F = —{H,, H,, F}, where

0A OB OC
AB,C}=¢jj—7——, 2
{ } s 0q; 8%’ qy ( )

i.e., the Nambu bracket. In Poisson dynamics time evolu-
tion is generated by the one conserved quantity H, while
Nambu dynamics requires two: H; and H,, and the
generated flow is volume preserving. An application of
the Nambu equation is the asymmetric top in which the

evolution of its angular momentum L can be generated by
the Nambu bracket with the energy E and total angular
momentum L?/2 serving the roles of H, and H,. The
proposal of [23] was to enlarge the “phase” space of each
energy eigenstate from two dimensions to three, and
assume that the “classical motion” of the phase was
governed by Nambu asymmetric top dynamics instead of
that of a Poisson harmonic oscillator. Note that this
deformation of canonical QM is particularly attractive
since it is minimalistic: it only deforms the time-evolution
of the phase of energy eigenstates while everything else is
kept fixed. Furthermore, this deformation can be contin-
uously turned on and off by collapsing the three dimensions
of the phase space down to the original two.

In the following, we first review canonical QM in the
two-component real vector notation and the treatment of
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oscillations in that language. Then, we formulate Nambu
QM as the three-component real vector extension to
canonical QM and derive an explicit formula for oscilla-
tions in this context. This formula can be probed exper-
imentally, most promisingly in neutrino oscillations.

II. CANONICAL QM

Let |n) denote the nth eigenstate of the Hamiltonian A
with eigenvalue E, = hw,,:

Hin) = E,|n). (3)
A generic state |w()) can be expanded in terms of |n) as
Zln nly Zl//n )n). (4)

l//,,( )

where the coefficients y,(¢) evolve in time as

W, (1) = Nemn i), (5)

Here, we take N, to be real and positive, and 1z, is the
boundary time at which v, () is phaseless. The complex
valued y,(7) can also be expressed as a two-component
real vector as

(1) = |:Rel//n(t):| N [ cos w, (1 —1,)

Imuy,, (1) " =sinw,(t—1t,)

} (6)

The inner product between two states |y) and |¢) in this
two-component real vector notation is

(wlp) = and)n—an ba) + Z WX ). (7)

9(yw.¢) e(w.g)

Note that g(y, ¢) and (y, ¢) depend only on the magni-

tudes of, and the relative angles between the (7, (En) pairs.
They are invariant under 2D rotations. The absolute value
of the inner product squared is then

[(wle) > = g(w. ) + e(w. $)*. (8)

Now, consider two energy eigenstates |1) and |2) and
two flavor eigenstates |a) and |f) which are related by

{Iaq :[69 Sa”llq ()
1B) —sg colLI2)]
where sy = sin6), ¢y = cos . In vector notation, we have

Ay = SpNy,

pr= Caﬁo’ (10)

) = Cohy,

where 7, represents a phaseless state:

e 1] o

Let [w(0)) = |a), that is

w1(0) = a, = cyiiy, W2(0) = @y = sgiiy. (12)

At a later time, these will have evolved into

—

Wy (t) = coniy (1), w(t) = s (1), (13)

where

7 (1) = { “ } iy (1) = [ @ ] (14)

=S Yy

with s; = sinw;t and c¢; = cosw;t. To find the survival
probability P(a — a) of flavor a, and the transition
probability P(a — f) to flavor S, we need (a|y(f)) and
(Ply(1)). The symmetric and antisymmetric parts of these
inner products are

glaw (1)) = ay -y, (1) + dy - Yo (1) = cjep + 55,
ela (1)) = & x i) (1) + & x a(t) = —cBs, — s3sa.
9(Bw(1)) = By i (8) + Ba - (1) = —sgcqcy + Spcqca,
e(By (1) = By X i (1) + Ba X (1) = spcqs) — S4cos:.
(15)
and the survival and transition probabilities will be
P(a — a) = [(aly())? = gla.w(1))* + e(a. w(1))?
=1-Pla—-p),
Pla— B) =|{Blw(n)? = g(B.w(1)* + e(B.w(1))?
= sin’26 sin’ [M} : (16)
Making the relativistic replacement
Wit — ( —k L) natural units (El-l‘ _ piL), (17)

and assuming that the energies of the two states are
common, E; = E, = E > m;, we have

m2

Et—p,L)~E(t—L ’L 18
(Et - pil) R E(1= 1) + 2 (18)
leading to the identification
om?
() — @) 1;2 L=A,. (19)

L051301-2



INTERFERENCE AND OSCILLATION IN NAMBU QUANTUM ...

PHYS. REV. D 104, L051301 (2021)

This gives us the familiar neutrino oscillation formula

A
Pla— ) = sin229sin2¥. (20)

III. NAMBU QM

The deformation of canonical QM which is detailed in
Ref. [23], i.e., Nambu QM, can be summarized as follows.
Extend the two-component real vector y,, introduced above

to a three-component real vector ¥,,:
T (21)

In the two-component case, the components evolved as
Eq. (6). For the three-component extension, it is assumed
that

ceen(Q, (1 —t,). k)
W, (1) = N, | —kcgsn(Q, (1 —1,),k) |, (22)
—s:dn(Q, (1 —1,), k)

where cn(u, k), sn(u, k), and dn(u, k) are Jacobi’s ellip-
tical functions [26], and s =siné, c¢; =cos¢, and

k = /1 + k*tan?£. The period of cn(u, k) and sn(u, k)
in u is 4K, where K = K(k) is the complete elliptical
integral of the first kind [27], and Q, = (2K/7)®,. The
two parameters k and £ are the deformation parameters, and
when they are both set to zero, the time evolution of the first

two components of \f’n reduce to that of the two compo-

nents of i, while the third component of ‘f’n vanishes. In
principle, we can make the deformation parameters k and &
depend on n, but for the sake of simplicity, we keep them
common to all 7.

Note that the time evolution as§umed in Eq. (22) is that
of the angular momentum vector L of a free asymmetric top
in its corotating frame [28]. Though the equations that
govern this motion are nonlinear (or more precisely
multilinear), the presence of the two conserved quantities
of energy E and angular momentum L? renders the motion

solvable, norm-preserving, and periodic. L evolves along
the intersection of the sphere L? = constant and the
ellipsoid E = constant. Due to the norm preserving nature
of Eq. (22), this time evolution is unitary. However, the
time evolution operator cannot be expressed as a matrix as
in canonical QM (except when k = 0) due to the evolution
being non-linear. In essence, the “phase” of the state
evolves periodically on S? instead of on S'.

The symmetric and antisymmetric parts of the inner
product between two states are extended to

g¥. @)= (¥, ®,).

EW.0) =) (¥, x®,). (23)

n

where the dot and cross products are now defined in three
dimensions. The square of the absolute value of (¥|®) is
extended to

(PID)? = g(P. @)* +E(¥. @) - E(V. @), (24)

which is invariant under 3D rotations of the phase space.

As demonstrated in [23], this definition of the inner
product is equivalent to that in quaternionic QM [10] in
which the coefficients are restricted to purely imaginary
quaternions, the three parts of which are given by the three
components of the phase vector, and

(P|®) = g(¥, @) —ie; (P, @) — jer (¥, @)
— ke (P, @). (25)

This correspondence guarantees the mathematical consis-
tency and unitarity of the resulting theory.

Equation (24) allows us to make predictions based on
Nambu QM. Since the deformation is in the time-evolution
of the phase of each energy eigenstate, we can expect
deviations from canonical QM to occur in phenomena that
involve the evolution of interference terms.

Consequently, let us look at oscillation in Nambu QM.
We consider flavor eigenstates |a) and |$) to be super-
positions of energy eigenstates |1) and |2) as in Eq. (9). The
three-component vector notation of |&) and |f) are formally
the same as Eq. (10), except with 7 replaced by the three
component object

fip=1 0 |. (26)

This corresponds to a “zero phase” state. To clarify that we

are working in the three-component formalism, we will

replace the label @ with A, and § with B in the following.
Let [#(0)) = |A), that is

- -

¥, (0) = cyiiy, ¥,(0) = sgriy. (27)

At a later time ¢, these will evolve to

—

V(1) = ety (1), Wo(1) = spiia(1),  (28)

where
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c,:cni
—KCgSn; |, (29)
—Sédni

with sn; = sn(Q;z, k), cn; = en(Q;t, k), dn; = dn(Q,t, k).
The symmetric parts of (A|¥(¢)) and (B|¥(¢)) are

g(A.P(1) = A, -, (1) + Ay - Py (1)
= cp(czen; + szdny) + s5(czeny + s2dny),
=By - ¥, (1) + By - (1)

= —sgco(czen; + szdny)

9(B,¥(1))

=+ S,gCg(C%CHz + Sédn2>, (30)

while the antisymmetric parts are

P(A—A) =g(A.¥(1) +

+E(A,¥(1)) -
P(A = B) = g(B.W(1))* + &(B.¥(1)) -

1 — {ci(snysny + cnyeny) + s3(k?snysny + dnydny) }

Ay x Wy ( +A2x‘P2()

—K'SgC'gSl'll —K'Sé:Cé: Sny
—|—sé SéCf(dnz—an) s

—KCZsn,

S}:Cé: dn] —Cnl
—KC§Sn]
1)+ By x By(1)

—KSzCg SN

1 l

= —sycp | Szcs(dny —cny)
—KcEsn,
—KSzCe SNy

+59cp | Sece(dny—cny) | (31)
—KCZsn,

From these expressions, we find the survival and transition
probabilities to be

EAY(1) =1-
£(B,¥(1))

P(A - B),

For the ease of comparison with Eq. (20), we expand the
Jacobi functions in powers of k> [29-31]:

k2 K2
sn(Qt, k) = (1 + 1_6> sin(wt) +1—6$in(3wt) 4o

K2 K2
cn(Qt, k) = <1 - —6> cos(wt) + 1—6005(3a)t) +oey

k? k?
dn(Q1, k) = <1 - Z) + Zcos(2mt) 4o, (33)

from which we find to order k2

2
sn; sn, 4+ cnycny = cos Ay, — ZCOS 15 8inA,,

A
k*sn; sn, +dn; dn, = 1 — k%(1 + cos Z;,) sm2¥, (34)

where A, = (w; — w,)tand X1, = (| + m,)t. Averaging
over time makes the cos X, terms vanish. Therefore,

k2 A
P(A - B) = <c§ + 52 5) sin? 26 sinz%. (35)

Note that 0 < k* < 1. Thus, the effect of the Nambu
deformation is an overall suppression factor compared to

5 (32)

the undeformed canonical case, Eq. (20). This is the main
result of this paper.

IV. DISCUSSION

In this paper, we consider Nambu QM, a deformation of
canonical QM in which the phase space of energy eigen-
states is enlarged from 2D to 3D, and the phase dynamics is
deformed from that of a harmonic oscillator to that of an
asymmetric top. This deformation maintains the Born rule,
1.e., the conservation of norm, which is embedded in the
classical dynamics of the phase. The invariance of physical
predictions on 2D rotations of the phase space is modified
to that under 3D rotations, a feature responsible for the
projectivity of the state space. (Note that we cannot
associate a phase shift with a constant shift of Qf in
Eq. (22).) This invariance can, in principle, be gauged in the
field theoretic version of Nambu QM, but since the
symmetry is SO(3), it could lead to non-Abelian features
though only the phase of a single field will be gauged. The
§? geometry of the phase space, as opposed to the canonical
S', also suggests that the path integral of Nambu QM is not
the usual integral of e’.

We investigate the effect of the Nambu QM deformation
on oscillation phenomena and obtain Eq. (35), which can
be compared directly to neutrino oscillation. Application to
meson oscillations would require further considerations of
meson decay and CP violation [32,33]. Given that the
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sin” 20 term cannot increase beyond one, the suppression
factor cannot always be absorbed into 6. For instance, the
current bound on the atmospheric mixing angle gives
sin? 20,3 > 0.973, 0.963, 0.952 respectively at 1, 2, and
3¢ for normal ordering [34]. This indicates

k2
s§<1—2><0.027(1a), 0.037(26), 0.048(35), (36)

though the value of 8,5 itself is not yet precisely known.
Future improvements in the determination of 6,3 at IceCube
[35], JUNO [36], and DUNE [37] could improve upon
this bound.

Note that oscillation is but one possible phenomenon that
could be affected by Nambu QM. There may be many
others involving interference and the resulting correlations
given that the phase vectors are assumed to move in a very
particular way on S. For instance, Refs. [38,39] consider
an experiment which probes the difference between canoni-
cal and quaternionic QM, which may also be sensitive to
the Nambu QM deformation. Such experiments could shed
new light on various issues in quantum foundations and in
entanglement, and call for a thorough investigation.

Apart from these phenomenological considerations, we
would like to highlight the fact that the original paper of
Nambu [24] has inspired very many works on the math-
ematical and foundational nature of the Nambu bracket,
Eq. (2), and its related structures [40—42], and on the
quantization of those structures and their relevance in string
theory (see [43—54] and references therein). More recently,

such a structure was discovered [55-58] in the context of a
new formulation of nonperturbative string theory and
quantum gravity based on quantum spacetime [59-66].
We also note that analogies with the asymmetric top are
ubiquitous in various classical and quantum physical
systems [28]. This has particularly been the case in
phenomenological particle physics. What we have uncov-
ered here in Nambu QM relates closely to, and formally
extends in a new direction the top like Hamiltonians used in
dynamical models of neutrino oscillations [67,68]. They
belong to the family of integrable quantum spin Gaudin
models of wider applications in condensed matter physics.
The time oscillatory features we have deduced in this letter
along with the above mentioned connection further sug-
gests the construction and phenomenological testing of a
family of dynamical, integrable SO(3) Nambu top models
of, say, neutrinos oscillations with, not a trigonometric but a
novel Jacobian elliptic time evolutions with two periods—
presumably with one period being much, much smaller
than the other. They would add a new prediction for
neutrino oscillations in our quest to see theoretically and
experimentally beyond the Standard Model.

ACKNOWLEDGMENTS

We thank P. Huber and R. Pestes for helpful discussions.
D.M. and T.T. are supported in part by the DOE (Grant
No. DE-SC0020262). D. M. is also supported by the Julian
Schwinger Foundation, and T.T. by the NSF (Grant
No. PHY-1413031).

[1] I. H. Deutsch, PRX Quantum 1, 020101 (2020).
[2] J. Bell, Speakable and Unspeakable in Quantum Mechanics
(Cambridge University Press, Cambridge, England, 2004).
[3] Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quan-
tum Theory for the Perplexed (Wiley-VCH, New York,
2005).
[4] G. 't Hooft, arXiv:1405.1548.
[5] R. Penrose, Found. Phys. 44, 557 (2014).
[6] M. Gell-Mann and J. B. Hartle, Phys. Rev. A 89, 052125
(2014).
[7] S. Weinberg, Phys. Rev. A 93, 032124 (2016).
[8] A. Leggett, Prog. Theor. Phys. Suppl. 170, 100 (2007).
[9] E.C. G. Stueckelberg, Helv. Phys. Acta 33, 727 (1960),
https://www.e-periodica.ch/cntmng ?pid=hpa-001%3A1960
9%3A33%3A%3A1097.
[10] S.L. Adler, Quaternionic Quantum Mechanics and Quan-
tum Fields (Oxford University Press, Oxford, UK, 1995).
[11] M. Gunaydin, C. Piron, and H. Ruegg, Commun. Math.
Phys. 61, 69 (1978).
[12] S. Okubo, Introduction to Octonion and Other Non-
Associative Algebras in Physics, Montroll Memorial

Lecture Series in Mathematical Physics (Cambridge Uni-
versity Press, Cambridge, England, 2011).

[13] F. Gursey and C. H. Tze, On the Role of Division, Jordan
and Related Algebras in Particle Physics (World Scientific,
Singapore, 1996).

[14] L.N. Chang, Z. Lewis, D. Minic, and T. Takeuchi, Mod.
Phys. Lett. B 27, 1350064 (2013).

[15] L. N. Chang, Z. Lewis, D. Minic, and T. Takeuchi, J. Phys.
A 46, 065304 (2013).

[16] L.N. Chang, Z. Lewis, D. Minic, and T. Takeuchi, J. Phys.
A 46, 485306 (2013).

[17] T. Takeuchi, L.N. Chang, Z. Lewis, and D. Minic, AIP
Conf. Proc. 1508, 502 (2012).

[18] L.N. Chang, Z. Lewis, D. Minic, and T. Takeuchi, Int. J.
Mod. Phys. A 29, 1430006 (2014).

[19] L. N. Chang, Z. Lewis, D. Minic, and T. Takeuchi, J. Phys.
A 47, 405304 (2014).

[20] L. N. Chang, D. Minic, and T. Takeuchi, J. Phys. Conf. Ser.
1275, 012036 (2019).

[21] S. Weinberg, Phys. Rev. Lett. 62, 485 (1989).

[22] S. Weinberg, Ann. Phys. (N.Y.) 194, 336 (1989).

L051301-5


https://doi.org/10.1103/PRXQuantum.1.020101
https://arXiv.org/abs/1405.1548
https://doi.org/10.1007/s10701-013-9770-0
https://doi.org/10.1103/PhysRevA.89.052125
https://doi.org/10.1103/PhysRevA.89.052125
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1143/PTPS.170.100
https://www.e-periodica.ch/cntmng?pid=hpa-001%3A1960%3A33%3A%3A1097
https://www.e-periodica.ch/cntmng?pid=hpa-001%3A1960%3A33%3A%3A1097
https://www.e-periodica.ch/cntmng?pid=hpa-001%3A1960%3A33%3A%3A1097
https://www.e-periodica.ch/cntmng?pid=hpa-001%3A1960%3A33%3A%3A1097
https://doi.org/10.1007/BF01609468
https://doi.org/10.1007/BF01609468
https://doi.org/10.1142/S0217984913500644
https://doi.org/10.1142/S0217984913500644
https://doi.org/10.1088/1751-8113/46/6/065304
https://doi.org/10.1088/1751-8113/46/6/065304
https://doi.org/10.1088/1751-8113/46/48/485306
https://doi.org/10.1088/1751-8113/46/48/485306
https://doi.org/10.1063/1.4773173
https://doi.org/10.1063/1.4773173
https://doi.org/10.1142/S0217751X14300063
https://doi.org/10.1142/S0217751X14300063
https://doi.org/10.1088/1751-8113/47/40/405304
https://doi.org/10.1088/1751-8113/47/40/405304
https://doi.org/10.1088/1742-6596/1275/1/012036
https://doi.org/10.1088/1742-6596/1275/1/012036
https://doi.org/10.1103/PhysRevLett.62.485
https://doi.org/10.1016/0003-4916(89)90276-5

MINIC, TAKEUCHI, and TZE

PHYS. REV. D 104, L051301 (2021)

[23] D. Minic and C. H. Tze, Phys. Lett. B 536, 305 (2002).

[24] Y. Nambu, Phys. Rev. D 7, 2405 (1973).

[25] T. Kibble, Commun. Math. Phys. 65, 189 (1979).

[26] Mathematica encodes sn(u, k), cn(u, k), and dn(u, k) re-
spectively as JacobiSN [u,m], JacobiCN [u, m], and
JacobiDN [u, m] with m = k2.

[27] Mathematica encodes K(k) as EllipticK[m] with
m = k.

[28] T. Opatrny, L. Richterek, and M. Opatrny, Sci. Rep. 8, 1984
(2018).

[29] I. D. Gradshteyn and 1. M. Ryzhik, Table of Integrals,
Series, and Products, corrected and enlarged ed., edited
by A. Jeffery (Academic Press, New York, 2014).

[30] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical
Tables (Martino publishing, Mansfield Centre, CT, 2014).

[31] E. T. Whittaker and G.N. Watson, A Course of Modern
Analysis, 3rd ed. (Dover Publications, New York, 2020).

[32] U. Nierste, in Proceedings of the Helmholz International
School “Heavy Quark Physics” (HPQOS), edited by A. Ali
and M. Ivanov (DESY, Hamburg, Germany, 2009), pp. 1-37
[arXiv:0904.1869].

[33] B. Kayser, AIP Conf. Proc. 1441, 464 (2012).

[34] P. de Salas, D. Forero, S. Gariazzo, P. Martinez-Miravé, O.
Mena, C. Ternes, M. Tértola, and J. Valle, J. High Energy
Phys. 02 (2021) 071.

[35] A. Terliuk (IceCube Collaboration), Proc. Sci., NOW2018
(2019) 007.

[36] W.-1. Guo (JUNO Collaboration), J. Phys. Conf. Ser. 888,
012205 (2017).

[37] A. Higuera (DUNE Collaboration), Proc. Sci., EPS-
HEP2017 (2018) 115.

[38] A. Peres, Phys. Rev. Lett. 42, 683 (1979).

[39] S. Gstir, E. Chan, T. Eichelkraut, A. Szameit, R. Keil, and G.
Weihs, arXiv:2104.11577.

[40] L. Takhtajan, Commun. Math. Phys. 160, 295 (1994).

[41] G. Dito, M. Flato, D. Sternheimer, and L. Takhtajan,
Commun. Math. Phys. 183, 1 (1997).

[42] G. Dito and M. Flato, Lett. Math. Phys. 39, 107 (1997).

[43] E. Bergshoeff, E. Sezgin, Y. Tanii, and P. Townsend, Ann.
Phys. (N.Y.) 199, 340 (1990).

[44] H. Awata and D. Minic, J. High Energy Phys. 04 (1998) 006.

[45] H. Awata, M. Li, D. Minic, and T. Yoneya, J. High Energy
Phys. 02 (2001) 013.

[46] K. Fujikawa and K. Okuyama, Phys. Lett. B 411, 261
(1997).

[47] L. Smolin, Phys. Rev. D 57, 6216 (1998).

[48] T.L. Curtright and C. K. Zachos, Phys. Rev. D 68, 085001
(2003).

[49] T.L. Curtright and C.K. Zachos, New J. Phys. 4, 83
(2002).

[50] T.L. Curtright and C. K. Zachos, AIP Conf. Proc. 672, 165
(2003).

[51] J. A. Bagger and N. Lambert, Phys. Rev. D 77, 065008
(2008).

[52] A. Gustavsson, Nucl. Phys. B811, 66 (2009).

[53] C.-S. Chu, P-M. Ho, Y. Matsuo, and S. Shiba, J. High
Energy Phys. 08 (2008) 076.

[54] P-M. Ho and Y. Matsuo, Prog. Theor. Exp. Phys. 2016,
06A104 (2016).

[55] L. Freidel, R. G. Leigh, and D. Minic, Int. J. Mod. Phys. A
34, 1941004 (2019).

[56] D. Minic, in 10th Mathematical Physics Meeting: School
and Conference on Modern Mathematical Physics (2020),
pp- 183-218 [arXiv:2003.00318].

[57] P. Berglund, T. Hiibsch, and D. Mini¢, Phys. Lett. B 798,
134950 (2019).

[58] P. Berglund, T. Hiibsch, and D. Minic, Lett. High Energy
Phys. 2021, 186 (2021).

[59] L. Freidel, R. G. Leigh, and D. Minic, Phys. Lett. B 730,
302 (2014).

[60] L. Freidel, R. G. Leigh, and D. Minic, Int. J. Mod. Phys. D
23, 1442006 (2014).

[61] L. Freidel, R. G. Leigh, and D. Minic, J. High Energy Phys.
06 (2015) 006.

[62] L. Freidel, R. G. Leigh, and D. Minic, Phys. Rev. D 94,
104052 (2016).

[63] L. Freidel, R. G. Leigh, and D. Minic, J. Phys. Conf. Ser.
804, 012032 (2017).

[64] L. Freidel, R. G. Leigh, and D. Minic, J. High Energy Phys.
09 (2017) 060.

[65] L. Freidel, R. G. Leigh, and D. Minic, Phys. Rev. D 96,
066003 (2017).

[66] L. Freidel, J. Kowalski-Glikman, R. G. Leigh, and D. Minic,
Phys. Rev. D 99, 066011 (2019).

[67] G.G. Raffelt, Phys. Rev. D 83, 105022 (2011).

[68] Y. Pehlivan, A.B. Balantekin, T. Kajino, and T. Yoshida,
Phys. Rev. D 84, 065008 (2011).

L051301-6


https://doi.org/10.1016/S0370-2693(02)01865-8
https://doi.org/10.1103/PhysRevD.7.2405
https://doi.org/10.1007/BF01225149
https://doi.org/10.1038/s41598-018-20486-y
https://doi.org/10.1038/s41598-018-20486-y
https://arXiv.org/abs/0904.1869
https://doi.org/10.1063/1.3700586
https://doi.org/10.1007/JHEP02(2021)071
https://doi.org/10.1007/JHEP02(2021)071
https://doi.org/10.22323/1.337.0007
https://doi.org/10.22323/1.337.0007
https://doi.org/10.1088/1742-6596/888/1/012205
https://doi.org/10.1088/1742-6596/888/1/012205
https://doi.org/10.22323/1.314.0115
https://doi.org/10.22323/1.314.0115
https://doi.org/10.1103/PhysRevLett.42.683
https://arXiv.org/abs/2104.11577
https://doi.org/10.1007/BF02103278
https://doi.org/10.1007/BF02509794
https://doi.org/10.1023/A:1007309124218
https://doi.org/10.1016/0003-4916(90)90381-W
https://doi.org/10.1016/0003-4916(90)90381-W
https://doi.org/10.1088/1126-6708/1998/04/006
https://doi.org/10.1088/1126-6708/2001/02/013
https://doi.org/10.1088/1126-6708/2001/02/013
https://doi.org/10.1016/S0370-2693(97)01027-7
https://doi.org/10.1016/S0370-2693(97)01027-7
https://doi.org/10.1103/PhysRevD.57.6216
https://doi.org/10.1103/PhysRevD.68.085001
https://doi.org/10.1103/PhysRevD.68.085001
https://doi.org/10.1088/1367-2630/4/1/383
https://doi.org/10.1088/1367-2630/4/1/383
https://doi.org/10.1063/1.1594404
https://doi.org/10.1063/1.1594404
https://doi.org/10.1103/PhysRevD.77.065008
https://doi.org/10.1103/PhysRevD.77.065008
https://doi.org/10.1016/j.nuclphysb.2008.11.014
https://doi.org/10.1088/1126-6708/2008/08/076
https://doi.org/10.1088/1126-6708/2008/08/076
https://doi.org/10.1093/ptep/ptw075
https://doi.org/10.1093/ptep/ptw075
https://doi.org/10.1142/S0217751X19410045
https://doi.org/10.1142/S0217751X19410045
https://arXiv.org/abs/2003.00318
https://doi.org/10.1016/j.physletb.2019.134950
https://doi.org/10.1016/j.physletb.2019.134950
https://doi.org/10.31526/lhep.2021.186
https://doi.org/10.31526/lhep.2021.186
https://doi.org/10.1016/j.physletb.2014.01.067
https://doi.org/10.1016/j.physletb.2014.01.067
https://doi.org/10.1142/S0218271814420061
https://doi.org/10.1142/S0218271814420061
https://doi.org/10.1007/JHEP06(2015)006
https://doi.org/10.1007/JHEP06(2015)006
https://doi.org/10.1103/PhysRevD.94.104052
https://doi.org/10.1103/PhysRevD.94.104052
https://doi.org/10.1088/1742-6596/804/1/012032
https://doi.org/10.1088/1742-6596/804/1/012032
https://doi.org/10.1007/JHEP09(2017)060
https://doi.org/10.1007/JHEP09(2017)060
https://doi.org/10.1103/PhysRevD.96.066003
https://doi.org/10.1103/PhysRevD.96.066003
https://doi.org/10.1103/PhysRevD.99.066011
https://doi.org/10.1103/PhysRevD.83.105022
https://doi.org/10.1103/PhysRevD.84.065008

