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Abstract

Working memory is a cognitive function involving the storage and manipulation of latent
information over brief intervals of time, thus making it crucial for context-dependent compu-
tation. Here, we use a top-down modeling approach to examine network-level mechanisms
of working memory, an enigmatic issue and central topic of study in neuroscience. We opti-
mize thousands of recurrent rate-based neural networks on a working memory task and
then perform dynamical systems analysis on the ensuing optimized networks, wherein we
find that four distinct dynamical mechanisms can emerge. In particular, we show the preva-
lence of a mechanism in which memories are encoded along slow stable manifolds in the
network state space, leading to a phasic neuronal activation profile during memory periods.
In contrast to mechanisms in which memories are directly encoded at stable attractors,
these networks naturally forget stimuli over time. Despite this seeming functional disadvan-
tage, they are more efficient in terms of how they leverage their attractor landscape and par-
adoxically, are considerably more robust to noise. Our results provide new hypotheses
regarding how working memory function may be encoded within the dynamics of neural
circuits.

Author summary

The ability to remember information for brief periods of time before using it is a key
human ability. For example, retaining a phone number for a few moments prior to enter-
ing it into a keypad. Such ability, known as working memory, enables many more com-
plex functions such as planning and reasoning. In this paper, we use theory and
computational modeling approaches to try and better understand how circuits and net-
works in the brain might be achieving working memory. Specifically, we construct hypo-
thetical network models to perform a task that embodies essential aspects of working
memory. We then dissect our model to reveal how its components—simulated neural
units—interact with each other to represent and maintain information. It turns out that
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some models can achieve memory by maintaining a fixed representation over time, i.e.,
the units remain ‘still’ during memory. However, other models fluctuate their activity dur-
ing memory in a particular way that is seemingly quite efficient and less susceptible to dis-
traction. In total, our computational study provides new theory for how this form of
memory might be implemented in brain networks.

This is a PLOS Computational Biology Methods paper.

Introduction

Working memory (WM) is a temporary store that allows for active manipulation of informa-
tion in the absence of external stimuli [1]. Critical cognitive functions such as reasoning, plan-
ning and problem solving rely on working memory and thus its mechanistic basis is a key
question in brain and cognitive science. Presumably, memory retention relies on an invariant
latent neural representation of past stimuli [2], but the precise nature of these representations
and the dynamical mechanisms by which they are created in neural circuits remain enigmatic.
Experimental and theoretical characterizations of working memory typically center on a delay
period that occurs after stimulus presentation and before onset of a behavioral response or
action [3-6]. Characterizations of neural activity during delay periods dichotomize into two
broad categories: (i) persistent, tonic activity and (ii) time varying, phasic activity. In the for-
mer, neurons are tuned to relevant features of a stimulus and produce elevated and relatively
constant activity throughout the delay [7-9]. In the latter, neuronal activity fluctuates, ramping
up and down during delay periods [5, 10, 11]. Tonic and phasic paradigms have been observed
in working memory tasks in vivo [10, 11] and in computational models [12, 13]. However, the
mechanisms underlying these descriptions and the reasons why one may manifest over the
other in certain circumstances is far from clear.

Understanding the network mechanism of working memory often revolves around the role
of self-sustaining attractors, including discrete fixed points [14], which correspond to neuronal
activity patterns that are maintained indefinitely in the absence of exogenous stimuli or pertur-
bation. Tonic delay activity is thought to coincide with such attractors [14-16], thus allowing
for stable maintenance of memory representations for potentially arbitrary lengths of time.

On the other hand, in the phasic hypothesis memory representations do not coincide with
self-sustaining attractors. Instead, high-dimensional neuronal activity fluctuations may project
onto a lower-dimensional latent space upon which an invariant representation is held during
delay intervals [17, 18]. For example, if the activity of a neuron gradually drops, the activity of
another neuron increases to compensate for that drop. Thus, during delay, neural activity may
traverse a low-dimensional manifold corresponding to this invariant representation [13, 19].

Disambiguating the above mechanisms requires deriving an understanding of the genera-
tive processes that give rise to time-varying, task-evoked neural activity. Ideally, we would be
able to analytically characterize these mechanisms in a dynamical systems framework that
could reveal the details of the attractor landscape embedded within neuronal networks.

However, ascertaining dynamical systems models of biological networks is not straightfor-
ward, especially at a level of scale commensurate with networks thought to be relevant to
WM, such as prefrontal cortex [20, 21]. In this regard, artificial recurrent neural networks
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(RNNs) can form an interesting and potentially useful surrogate from which to derive mech-
anistic hypotheses. Such networks can be optimized in a top-down fashion to engage high-
level cognitive tasks that include WM requirements [22-26]. Then, the emergent dynamics
of the synthesized model can be analyzed and used to make arguments for or against different
mechanisms, based on the predictive validity of the model outputs relative to actual brain
activity.

In this spirit, recent works have tried to reconcile the aforementioned hypotheses regarding
persistent vs. transient delay activity in the context of WM [27-30]. Orhan and colleagues [30]
optimized RNNs to perform several short-term memory tasks and they observed that both
tonic and phasic delay activity could arise, depending on specific task details and optimiza-
tion/learning parameters. Similarly, Nachstedt and colleagues [27] showed that the existence
of both mechanisms simultaneously can mediate reliable task performance in the face of
uncertain stimulus timing. However, it remains unclear what factors sway RNNs to manifest
one mechanism over another and, related, whether they carry different functional advantages.

With regards to the last point, the ability of optimized RNNs to predict actual brain activity
may depend crucially on certain restrictions regarding the optimization method that is used,
e.g., by encouraging solutions that manifest connection motifs that are more biologically real-
istic [13, 31]. Thus, using RNNs to build potentially explanatory hypotheses regarding neural
circuit mechanisms likely requires careful consideration of the numerical optimization strat-
egy used, including hyperparameters and initialization schemes, as well as prior constraints on
network architecture [25, 32]. Expanding on this idea, in this work, we pursue the top-down
RNN approach to study potential mechanisms underlying WM function, training thousands
of networks to perform an analytically tractable sequential, memory-dependent pattern match-
ing task. To train our network, we modify the First-Order Reduced and Controlled Error
(FORCE) [33] method by using a temporally restricted error kernel to confine error regression
to occur only during brief intervals within each trial. The proposed framework blends trial-
based reinforcement learning with first-order regression, thus obviating the need for a contin-
ual external supervisory error-signal.

Our premise is that this revised optimization framework, by leaving long epochs uncon-
strained, may allow for a wider range of possible emergent dynamics. Indeed, by optimizing
RNNs across different hyperparameters and initialization schemes within this framework, we
identify a diversity of network mechanisms, each achieving the desired function, but varying
in their key dynamical properties. We find that networks can embed predominantly asymptot-
ically stable fixed points, stable limit cycle attractors, or a combination thereof. Most interest-
ingly, we show here that there are two distinct mechanisms by which stable fixed points can be
used to serve memory encoding, one leading to tonic activation and the other leading to phasic
activation. We show that the latter, while unable to sustain memories over arbitrary lengths of
time (i.e., wherein the model “forgets’) nonetheless constitutes a more efficient and robust
mechanism by which memories can be encoded.

Results

Working memory can be encoded via distinct dynamical mechanisms
associated with tonic and phasic neural activation

We enacted a trial-based WM task involving sequential pattern matching (SPM) that exhibits
working memory requirements (Fig 1a). In our design, high-dimensional stimuli are encoded
as bivariate random processes, such that the network is required to temporally integrate each
stimulus and then store a latent representation of said stimulus for later processing. We opti-
mized RNNs to perform this task by using a modified FORCE method [33] that included a
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Fig 1. Optimizing RNN using modified FORCE to perform a sequential pattern matching (SPM) task. a, A single trial of a SPM task, wherein low-
dimensional random process representations of handwritten digit stimuli are followed by short delay intervals. The network is optimized to generate
the correct ‘summation’ output during a prescribed response interval. b, Schematic diagram of RNN architecture and low-rank structure added to
initial connectivity J. After the network receives input trials sequentially via input weights, it encodes the memory representation z,(t) and generates the
task outputs z,(f). We use a rank 2 structure for encoding memory and a rank 1 structure for generating response. ¢, Tonic and phasic activity for two
different networks. Activity patterns (normalized) of neurons are sorted by the time of their peak value.

https://doi.org/10.1371/journal.pcbi.1009366.9001

temporally restricted error kernel. Here, regression occurs at two phases during each trial:

(i) during memory/delay periods, wherein we promote the formation of an invariant latent lin-
ear projection from neural units nominally associated with maintenance of a memory repre-
sentation; and (ii) at the conclusion of each trial, wherein we promote a linearly decoded
output response signal (Fig 1a and 1b). All other temporal epochs are unconstrained, thus
obviating the need to generate an error signal continuously throughout trials, which may
overly constrain the dynamics [34] (see also Methods for additional details and S1 Fig).

We found that optimized networks could produce both tonic and phasic activity patterns
during delay periods, as exemplified for two different networks of 1000 neurons in Fig lc. In
order to study the dynamical mechanisms underlying these overt patterns we first used a
numerical criteria on neuronal activity at the end of the delay period, T. Specifically, we
arrested trials at T,; and forward simulated the networks autonomously to ascertain whether
the activity was sustained at a fixed point (see Methods). We identified four distinct dynamical
mechanisms that could mediate working memory. In the case of tonic activation, network
activity would indeed remain persistent, i.e., x(f), the state vector of neuronal activity, would
remain near x(T,) with ||x|| ~ 0, indicative of a fixed point attractor (Fig 2a). We refer to this
mechanism as direct fixed point encoding (DFP). In the case of phasic patterns, x(f) in the for-
ward simulation would deviate from x(T,;). In some cases, the network would always settle at a
different fixed point from the memory representation (Fig 2b, termed indirect fixed point
encoding, IFP), independent of the stimulus or network initial condition. In other cases the
network would always asymptotically approach a stable limit cycle attractor (Fig 2c, limit cycle
encoding, LC). In a fourth case (not depicted), the network could asymptotically approach
either a disparate fixed point or a limit cycle and exhibit either tonic or phasic activity, depend-
ing on the stimulus realization (termed mixed encoding, see S3 Fig). In total, we optimized
1524 network models, of which 703 were identified of the direct fixed point (DFP) mechanism,
534 were of the indirect fixed point (IFP) mechanism, 182 were of the limit cycle (LC) mecha-
nism, and 105 were of the mixed (Mix) mechanism. Given their dominance in the emergent
solutions, our subsequent attention will be on understanding the workings of the DFP and IFP
mechanisms, though we will later also untangle the factors that cause each mechanism to arise
over the others.
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Fig 2. Forward simulation of network after delay to identify distinct dynamical mechanisms underlying WM. a, Direct Fixed Point encoding (DFP),
where the network uses fixed points to encode memory representations of each stimulus. b, Indirect Fixed Point encoding (IFP), where the network
asymptotically settles at a fixed point but this fixed point does not correspond to a memory representation. ¢, Limit Cycle (LC), where the network
asymptotically approached a stable limit cycle attractor. For all plots, colors in the spectrum of blue show different realizations of first stimulus while colors
in the spectrum of red show different realization of second stimulus.

https://doi.org/10.1371/journal.pcbi.1009366.g002

Indirect encoding efficiently uses the network attractor landscape

The above findings suggests that key invariant structures in the network attractor landscape—
stable fixed points and attractive limit cycles—determine whether and how delay activity takes
on a tonic or phasic characteristic. To delve further into these mechanisms, we attempted to
analyze how networks in each of the four categories leverage their respective attractor land-
scapes during the task.

We began by linearizing the dynamics at the origin and using mean-field results [35] to
establish lower bounds on the number of fixed point attractors manifest in the network
attractor landscape. Fig 3a and 3b show how our four mechanistic categories break down
along three key properties of spectra of the ensuing Jacobian matrix, where distinctions are
readily observed. Most notably, the landscapes associated with direct fixed point encoding
involve a greater number of fixed point attractors relative to indirect encoding. In support of
this point, Fig 3c illustrates representative low-dimensional projections of network activity in
each of the four mechanisms with stable fixed points overlaid (here, we restrict attention to the
positive quadrant, see also Discussion). In DFP encoding (Fig 3c), the sequential stimuli move
the trajectory between different fixed points (associated with memory representations), culmi-
nating in an output that is itself associated with a different fixed point (i.e., here a total of four
fixed points are used in the service of the task). In contrast, the landscape for IFP encoding
(Fig 3c) involves a single fixed point that does not encode memories, nor does it encode the
nominal output (though, it is approached asymptotically if networks are forward simulated
autonomously after trial cessation). Thus, IFP encoding is able to maintain invariant represen-
tations during the relevant memory periods without relying directly on the presence of multi-
ple fixed point attractors (see also S3 Fig).
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Fig 3. Attractor landscape for optimized networks. a, Eigenvalue spectrum ., (for an exemplar DFP network). The gray circle shows the

radius of the theoretical eigenvalue spectrum of the initial connectivity matrix J. After optimization, a set of outliers emerges in the
eigenvalue spectrum. Here, the initial connectivity matrix is the Jacobian at the origin (shifted by —I). b, Categorization of four distinct
mechanisms along key properties of the network Jacobian evaluated at the origin. Ay is the eigenvalue with the largest real part in the
eigenvalue distribution of the Jacobian matrix. An eigenvalue is an outlier if it is outside the radius of the circle depicting the theoretical
boundary of the eigenvalue spectrum of J. ¢, Attractor landscape and trajectory of exemplar task trials. Three-dimensional neural
trajectories are obtained via applying Principle Component Analysis (PCA) to 1000-dimensional neural activity from networks of each
dynamical mechanism. In DFP, the network creates 4 stable fixed points to solve the SPM task. For the displayed trajectory, the network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1009366 September 15, 2021

6/20


https://doi.org/10.1371/journal.pcbi.1009366

PLOS COMPUTATIONAL BIOLOGY

Slow manifolds within network dynamics encode working memory efficiently and robustly

uses two fixed points (shown in yellow) to directly encode the memory and trial output (the inset shows the area inside the circle). In IFP,
the memory representation and trial output are encoded along the slow manifold of the single fixed point in the state space. In LC, the
trajectories approach a stable limit cycle. For the mixed mechanism, both a stable fixed point and limit cycle are observed.

https://doi.org/10.1371/journal.pcbi.1009366.9003

Indirect encoding uses slow manifolds to sustain memory representations

Following from the above, IFP encoding appears to use the geometry of the stable manifolds of
the single fixed point to maintain memory representations. Fig 4a illustrates the spectrum of
the linearized dynamics about the fixed point in the previous IFP example encoding model,
where we see many eigenvalues near the imaginary axis, indicating the presence of slow, stable
manifolds along which activity flows in a relatively invariant fashion. These manifolds provide
the opportunity for a low-dimensional latent representation of memory to be maintained,
despite phasic activity (along the manifold) [8, 36, 37]. Indeed, because we encourage linearly
mapped latent representations via our optimization method (see Methods), we know these
manifolds have a planar geometry in the firing rate activity variables. In contrast, Fig 4b illus-
trates the spectra resulting from linearization about two memory fixed points in a DFP model.
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Fig 4. Eigenvalue spectrum at task fixed points and connectivity characterization. a, Eigenvalue spectrum of Jacobian matrix at the single non-zero
stable fixed point of IFP (shown in Fig 2b). b, Eigenvalue spectra of the Jacobian matrix computed at memory fixed points of DFP, wherein the network
uses two fixed points to encode memory representations associated with stimulus 1 and stimulus 2. (shown in Fig 2a). ¢, Saturation ratio (the ratio of
neurons with activity in saturated range of activation function during memory interval (averaged over all trials)) for all networks simulated (across all
four mechanisms). Standard error of the mean is depicted. d, Distribution of connectivity matrix entries (i.e., weights) before and after training for DFP
(the top panel) and IFP (the bottom panel). J and J denote connectivity matrix before and after training, respectively. e, Average pre-synaptic
(incoming connections) strength sorted by peak activation of neurons (as in Fig 1c) for DFP and IFP, respectively. f, Comparison of mean and variance
of elements of task connectivity matrix based on temporal distance of neurons. For IFP (the bottom panel) temporally adjacent neurons are more
tightly coupled and a peak can be observed. (The inset shows this peak and 7, j denote neurons indices.).

https://doi.org/10.1371/journal.pcbi.1009366.9004
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Here we note that eigenvalues are relatively offset from the imaginary axis, indicating rapid
convergence to the fixed point. This conclusion is supported in Fig 4c, which shows the relative
proportion of delay periods in which neurons are in the saturated (nonlinear) vs. linear range
of the activation function, i.e. tanh(.), for each model we trained. The much larger proportion
of saturated neurons in DFP encoding indicates that the mass of eigenvalues for these models
is relatively contracted and offset from the imaginary axis (see Methods and Eq (10)) and thus
associated with fast decay to the fixed points [37].

To further understand the circuit-level details mediating the DFP and IFP mechanisms,
we characterized the connectivity between neurons. We first noted that DFP encoding
leads to an overall much greater distribution of connectivity weights between neurons rela-
tive to IFP (Fig 4d). Next, we sorted neurons according to their peak activation (as in Fig
1c) and examined their average pre-synaptic activity throughout the course of trials. We
found that neurons in DFP encoding exhibited highly structured synaptic tuning to differ-
ent stimuli and memory periods, in contrast to IFP encoding (Fig 4¢). Finally, we examined
the bidirectional synaptic weight between ‘adjacent’ neurons (ones with temporally sequen-
tial maximal activation). Here, DFP exhibits no systematic connectivity structure, while IFP
shows that neurons with similar peak activation times are more tightly coupled (Fig 4f).
This latter point suggests that traversal along the slow manifolds is mediated by an internal
sequential, ‘daisy chain’ type of structure embedded within the trained IFP encoding
network.

Stable manifold encoding is forgetful, but robust

We sought to better understand the functional advantages of the different mechanism types.
In this regard, we interrogated networks by extending delay periods beyond the nominal train-
ing requirements, a form of increased memory demand. The main question here is how
increasing the memory demand in this way would affect activity and consequently degrade
task performance. Fig 5a illustrates the comparison of neural activity patterns for DFP and IFP
encoding categories (with extended delay equal to five times the nominal delay interval). For
DFP encoding, regardless of the length of the extended delay, the neural activity is unaffected
since the network uses fixed points as the invariant structure to encode memory traces. Conse-
quently, after the extended delay ends and the network receives the second stimulus, task com-
putations can be executed correctly. However, for IFP encoding, during the extended delay
interval, neural activity gradually drops away which results in loss of function due to deviation
from the ‘correct’ activity pattern upon receiving the second stimulus. Fig 5b summarizes the
deviation from the nominally ‘correct’ post-delay neural activity as a function of delay exten-
sion for our two FP mechanisms, as well as LC and Mix. As expected, for DFP encoding this
deviation is near zero. In contrast, for IFP the networks can tolerate extended delay up to %
100 of the nominal delay, after which point performance gradually drops, i.e., the correct
representation is ‘forgotten’.

To assay other functional aspects of these mechanisms, we examined how performance of
our networks would tolerate the presence of a distracting noise added to the actual stimulus.
Here, we found a counterintuitive functional advantage of ‘forgetting,’ relative to the DFP
mechanism. We specifically added uncorrelated noise of differing variance to the first of the
two sequential stimuli and examined deterioration from the nominal ‘correct’ neural represen-
tation at trial conclusion. For values of noise variance that are less than the stimulus variance
(vertical dotted line Fig 5¢), IFP and LC encoding are highly robust to perturbations, and
indeed variances in excess of an order of magnitude greater than the stimulus can be tolerated.
In stark contrast, DFP encoding is highly fragile with respect to distracting noise, with
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Fig 5. Functional advantages/disadvantages of each mechanism type. a, Comparison of activity patterns before and after
increasing memory demand for DFP (top panel) and IFP (bottom panel). b, Summary of deviation from correct pattern of activity
across different values of extended delay for all optimized networks. The squared error shows the difference between correct and
deviated trial outputs averaged over all trials and associated networks. ¢, Summary of deviation from correct pattern of activity
across different values of noise variance for all optimized networks. b and ¢ show that IFP, LC and mixed mechanisms are
forgetful, but robust to sizable perturbations.

https://doi.org/10.1371/journal.pcbi.1009366.9005

rapid and near-complete breakdown of the correct neural representation after modest pertur-
bation (Fig 5¢). To understand this mechanism we carefully studied the trajectories in
low-dimensional space in the presence of distracting noise (54 Fig), from which we ascertained
that the distracting noise was placing the trajectory in an erroneous basin of attraction, i.e.,
causing an incorrect memory fixed point to be asymptotically approached. This result appears
to run counter to classical Hopfield-type associative memory theory [38], which presumes that
basins are useful to rejecting noise and uncertainty. Our results suggest that a short-term
working memory mechanism that is reliant on excessive creation and use of fixed point attrac-
tors is not robust to persistent distracting stimulus noise (see also Discussion).

Initial network properties dictate the emergence of different solution
dynamics

Finally, we sought to understand the factors prior to optimization that bias the emergent
dynamics towards one type of mechanism versus another. We considered three main network
properties: (i) the strength of connectivity, g, (ii) the variance of feedback, o5 and (iii) the
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sparsity of the initial connectivity matrix. We varied these parameters over their possible
ranges. Fig 6 illustrates the effect of different parameterizations: for small values of g the train-
ability of networks is poor, but improves significantly as g increases. In other words, large ran-
dom initial connectivity facilitates training, consistent with known results [33, 35]. For g < 1
the untrained network has one stable fixed point at the origin and the emergent trained
dynamics tend to be of DFP or IFP encoding (Fig 6a). Also, note that networks with DFP are
not chaotic after optimization even for large g, because the contribution of the low-rank com-
ponent is much larger than the initial connectivity matrix. Interestingly, the variance of feed-
back weights, oyhas a notable effect on the emergent dynamics; for large values of oy the
networks tend to form DFP models and as oy decreases only IFP and LC models arise (Fig 6b).
The sparsity of initial connectivity matrix has no significant effect on the trainability of net-
works nor the emergent dynamics (Fig 6¢).

Discussion
Learning a diversity of dynamics for working memory function

In this work we used a top-down optimization-based approach to investigate potential dynam-
ical mechanisms mediating WM function. By training/optimizing RNNs using a modification
of the FORCE regression method, we found four qualitatively different types of network
dynamics that can mediate function. At a mechanistic level, these solutions are differentiated
on the basis of the number of asymptotically stable fixed points manifest in the network vector
field and, crucially, how those fixed points are leveraged in the service of the task. We note
especially two solution types, one reflecting neural memory representations that are highly
persistent corresponding to direct encoding at fixed points (i.e., DFP), versus the other where
neural representations are transient and correspond to traversal along slow manifolds in the
network state space (i.e., IFP). At the level of neural activity, DFP produces tonic sustained
activity during delay periods, while IFP produces phasic, transient activity.

Our results are related to prior work that has shown that persistent versus transient encod-
ing of memories can manifest in neural networks trained on different WM tasks and under
different optimization/learning schemes [30]. Here, we choose to focus on a single, structured
task in an effort to go beyond overt activity characterizations and carefully dissect the underly-
ing dynamical mechanisms associated, namely the attractor landscape in the neural state
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space. Doing so provides not only insight into potential generative circuit processes but also
allows us to perform sensitivity analyses to ascertain nuanced functional advantages associated
with the different mechanisms.

Tradeoff between efficiency, memory persistence and robustness

In particular, our results suggest an interesting balance between persistence and robustness of
memory representations. Specifically, the DFP mechanism resembles traditional associative
memory attractor dynamics, in the sense of Hopfield networks [38]. Here, each memoranda is
associated with a distinct, asymptotically stable fixed point. On the one hand, such a mecha-
nism is able to retain memories for arbitrary lengths of time. Further, the dynamics within the
attractor basins can nominally correct for small perturbations to neural trajectories at the
onset of memory periods. However, our results add caveats to this latter classical interpreta-
tion. Specifically, our DFP analyses suggest that noise robustness breaks down when consider-
ing sequential, time-varying stimuli. In this case, perturbations to stimuli can accrue over time
and along trajectories, causing neural representations to stray into errant basins of attraction,
ultimately leading to failure of performance. Our finding, in essence, indicates that the high
reliance on many fixed points for stable memory representations in DFP encoding makes this
mechanism more susceptible to the temporal integration of noise.

In contrast, in the IFP encoding mechanism, the network vector field exhibits a smaller
number of fixed points that do not encode memoranda directly. Rather, memory representa-
tions are formed from projection of neural activity along slow manifolds that are ostensibly
shaped through optimization of the network vector field. The fixed points here are, in essence,
‘shared’ between memoranda. This mechanism turns out to be far more robust to time-varying
stimulus perturbations. There are likely two factors related to this robustness. First, noisy per-
turbations may not be able to easily move trajectories off of the ‘correct’ slow manifold. Sec-
ond, there are no competing attractors to absorb errant trajectories, as would be the case in the
DFP mechanism. In total, the IFP encoding can be viewed as an overall more efficient use of
neural dynamics wherein the lack of a persistent representation (i.e., ‘forgetfulness’) is offset by
both a lighter weight coding scheme in terms of the number of attractors deployed in the state
space, leading—perhaps paradoxically—to more robust performance.

Shaping a landscape with few attractors

Expanding on the above point of efficiency, it is of note that the limit cycle and mixed mecha-
nisms are most comparable to IFP in terms of the way in which the attractor landscape is

used in the service of the task. In the LC mechanism in particular, the oscillatory cycle is not
itself used to encode or sustain the memory, but rather shapes the landscape to create slow
manifolds for encoding, similar to IFP. Thus, while the oscillation is not directly functional, it
nonetheless is critical in establishing the ‘correct’ landscape for task completion. From an ener-
getic standpoint, the indirect mechanisms are potentially less expensive since most neurons
are inactive at any moment in time, in contrast to DFP encoding. This latter point is evidenced
in Fig 4c, where we see that in DFP a much greater proportion of neurons are at activity satura-
tion, relative to the other encoding strategies. Interestingly, we found that for networks to
implement the DFP mechanism (i.e., by directly using a large number of fixed points), stron-
ger perturbations of the initial weights are required. Relative to the smaller perturbations of
IFP encoding, the larger modification of the initial weights may enable an associated large
alteration to the dynamics of the system, which creates a more structured dynamical landscape
consisting of multiple fixed points and basins of attractions.
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Temporally restricted optimization promotes solutions that are compatible
with observed dynamics in vivo

Our results shed light on the different means by which recurrent networks can embed memory
functions within their dynamics. These findings suggest mechanistic interpretations for actual
WM circuits in the brain, given the seeming prevalence of phasic activity patterns during delay
intervals observed in vivo [20]. Indeed, it has been observed that neurons in memory-relevant
regions such as prefrontal cortex do not necessarily maintain persistent activity throughout
long delay periods, but rather may ‘ramp’ on and off at systematic time points [20], as is com-
patible with our IFP mechanism. Further, in the IFP mechanism, most neurons are lightly sat-
urated (Fig 4c), meaning that most neurons are within a linear regime, as thought to occur in
actual neural circuits [34, 39].

Notably, the IFP dynamical mechanism only arises after using the proposed temporally
restricted error kernel. Indeed, we found that using the native FORCE method without such a
kernel leads to poor trainability; and further those networks that do manage to be trained are
highly fragile to the extended delay and noise perturbations we considered. This fragility
ostensibly arises due to the latent outputs being overly constrained in this situation. Indeed,
the choice of how to constrain these outputs throughout the task is somewhat arbitrary in the
first place. Hence, the temporally restricted error kernel may be allowing for the emergence of
more naturalistic dynamics in our RNNG.

Potential for enhanced fast learning and generalization

An important technical caveat is that we have set up our RNNs to produce activity in the posi-
tive quadrant. Hence, our analysis focuses on characterization of the attractor landscape in
that region of the state space. However, because we consider an odd activation function, we
know analytically that the fixed points analyzed in our networks have ‘mirror’ negative fixed
points that are not directly used in the service of the task, which means that these dynamical
features are essentially ‘wasted’ by construction and network design. A speculative hypothesis
is that these fixed points may allow the network to more quickly learn a related task with mini-
mal synaptic modification, i.e., by leveraging the mirror dynamics that are already embedded
in the network. Such a concept is related to the idea of meta-learning [40] and may be an inter-
esting line of future study.

Limitations

It is important to note and emphasize that our framework uses a prior optimization/training
paradigm. In other words, after optimization, our connectivity matrix J is static. This is distinct
from short-term plasticity models of working memory wherein synaptic weights are continu-
ally updated according to an online, activity-dependent learning rule, i.e., wherein the connec-
tivity matrix is a function of time i.e. J(t) [41, 42], during training and testing. Most biological
synaptic plasticity rules rely on local activity only, i.e., each synapse evolves as a function of
pre- and post-synaptic activity. In our work, synaptic connections are modified via an addi-
tional low-rank synaptic connectivity matrix (optimized via a modified FORCE method) that
uses the full network activity. Hence, our work is different from synaptic plasticity mechanisms
that adjusts the network connectivity dynamically to induce working memory encoding.
Assessing the relationship between our optimization paradigm and an online learning rule is
left for future study.

We also note that our study has focused on general network dynamical mechanisms, with-
out implicating specific brain regions. Working memory in broader cognitive settings is
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thought to involve the interaction of many regions, as has been described through resting state
network analyses [43]. Our focus here has not been on these macro-scale functional interac-
tions, but on more granular questions regarding how particular networks might generate
activity that reliably and robustly represent memories. We posit that such mechanisms would
be embedded in the regions relevant to working memory, e.g., DLPFC, and thus might mani-
fest different functional interactions between these and other brain regions [44], though a full
examination of this issue is not performed here.

From a technical standpoint, a key detail of our approach is the imposition of latent repre-
sentations (i.e., z;) during the training phase. We found that the inclusion of these enforced
latent representations greatly aided training convergence and stability. Eliminating these latent
representations led to training instability, similar to those encountered in reservoir computing
strategies, e.g., [23]. Notably, alternative optimization frameworks such as backpropagation
through time [30] have been used to produce networks without overt latent representation.
However, these approaches rely on regressing the error gradient over long temporal epochs, as
opposed to the step-wise, reinforcement-based modification used herein. We found that this
training paradigm was essential to giving rise to the diversity of dynamical mechanisms we
studied.

Methods
Working memory task details

In this study, we considered a sequential pattern-matching task that takes into account key
aspects of working memory tasks: stimulus processing, memory encoding and response execu-
tion [20]. Our goal was to use a task of sufficiently low dimension as to be able to perform trac-
table and potentially illuminating post-hoc analysis on the emergent dynamics of RNNs. In the
proposed task, each trial consists of two random process stimuli that are sequentially presented
and interleaved with delay intervals, followed by a brief response interval (Fig 1). Each stimu-
lus is a two-dimensional Gaussian process obtained in the latent space of a Variational Auto
Encoder (VAE) trained on the MNIST dataset of hand-written digits (see S5 Fig). We designed
the task pattern association rule to emulate summation, which differs from simple match or
non-match tasks [45]. Specifically, to keep the dimensionality of the task low, we use two dif-
ferent stimuli resulting in 3 potential task outcomes (for summation).

Recurrent network model

We considered recurrent networks composed of N nonlinear firing-rate units specified by:
Tx(t) = —x(t) + Jr(¢) (1)

where x € R" is the state vector and r (£) = tanh(x()) denotes the activity obtained via apply-
ing hyperbolic nonlinearity to the neuronal state variables. We set the network time constant,
7= 1 for simplicity. Here, J is the (untrained) synaptic connectivity matrix with elements

drawn randomly from a Gaussian distribution, i.e. J;, ~ N(0, 7). Specifically, we parameter-

2

ize o] = EQ, so that g controls the strength of synaptic interactions.

Optimization method

Recurrent networks with fully random connectivity as in Eq (1) have a rich dynamical reper-
toire and thus are capable of generating complex temporal patterns that are commensurate
with spontaneous cortical activities [12, 46]. To make these networks learn the function of
interest and thus perform the task, we first define two variables decoded from the network
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activity:
z,(t) = W, x(t)

z,(t) = W, x(t)

where z,(t) is a network output for generating responses, while z,(t) is a low-dimensional
latent variable that is linearly decoded from neural firing rate activity, i.e.

z4(t) = (2, (1), 24, (t)). In our network, invariant memory representations will be formed

in this latent space. Optimization/learning proceeds by modifying the projection vectors

W, € R"" and W, € R"**. As such, W, linearly maps neural activity to invariant memory
representations during delay intervals. The network output z,() and dummy output z,(t) are
fed back to the network via feedback weights i.e. W, € R¥" and W, € R™*?, respectively.

This results in modified synaptic connectivity:
x(t) = =x(t) + (J + W,W, + W, W)r(t) + Wu(t) (3)

The elements of Wrand W are drawn independently from Gaussian distributions with zero
mean and variance o7. The network receives the exogenous input (i.e., stimulus) u(t) € R*>

via input weights W, € R"*? (see Fig 1b). This strategy effectively modifies the initial connec-
tivity by addition of a low-rank component, allowing for more interpretable relations between
the overall network connectivity and function [35, 37]. Note that a minimal rank, i.e. rank 1,
perturbation could be used, but it is known to induce high correlations between emergent
fixed points, thus restricting the potential range of emergent dynamics [35, 47]. Hence, to
allow for a potentially wide range of solutions, we used a random connectivity plus rank 3
structure for the SPM task.

In our framework, optimization occurs only during the relevant temporal intervals in
which these target signals are defined (Fig 1a), which we term a temporally restricted error ker-
nel. When applying this kernel, the total error derived for a given trial is:

E(t) :%/T ed(t)2dt+%/760(t)2dt (4)

r

where 7, and 7, are the temporal epochs associated with the two delay periods and response
period, respectively (Fig 1a). Here,

ea(t) = llz,(t) = full; (5)
where z, = (2, , z,) and f; = (f, . f,,) and

e,(t) = llz,(t) = £.II- (6)

Here, f, , f;, and f, are scalar real numbers chosen prior to optimization to represent the
2-dimensional stimulus and the trial outcome. During the delay intervals in particular, a low
error thus implies that the neural activity linearly maps to a constant, invariant representation
(ie., z; € R*"). Activity during temporal epochs outside of the these periods do not impact
the error. Optimization proceeds by modifying readout weights W, and W, to minimize these
errors. Within the temporal error kernel, we deploy the FORCE method for parametric regres-
sion in RNNs. Here, W, and W ; are updated using recursive least squares [33]. Briefly, to
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reduce e,(t), we obtain
W, (1) = W,(t — At) — ¢, (t)P(t)r(t)

P(t — At)r(t)r" (1)P(t — At) (7)
1+ 7(t)P(t — At)x(t)

P(t) = P(t — At) —

where P(t) denotes the approximate estimate for the inverse of the correlation matrix of net-
work activities with a regularization term

P(t) = /T r(6)r" (£)dt + ol 8)

where « is the regularization parameter and Iy the identity matrix. In the same manner, to
reduce e,(t) we have

W, () = W,(t — At) —¢,(£)P(t)r(2). ©)

Note that we update the associated inverse correlation matrices during training intervals 7,
and 7', (shown in Fig 1a). In total, our training paradigm is a temporally regularized FORCE
method that mitigates overfitting and in turn provides a potentially broader range of dynam-
ical solutions to manifest. Indeed, it is known that optimizing RNNs using FORCE for a
sequential trial-based task (here, a pattern association task with memory requirement) pre-
vents the emergence of multiple fixed points in optimized networks, and thus can overly con-
strain the range of possible solution dynamics [47].

Dynamical systems analysis

The central theoretical question in our study pertains to analyzing the dynamics of our opti-
mized networks. A first order question in this regard is to elucidate the landscape of attractors
manifest in the network’s vector field. In Eq (1), the origin is always a fixed point associated
with the Jacobian matrix J (shifted by —I). To study the stability of the origin, we can thus con-
sider the eigenvalues (i.e. A;) of the connectivity matrix. It is well known that the eigenvalues of
a random connectivity matrix J are distributed over a disk with radius g for N — oo [46, 48].
Thus, the stability of origin varies with these parameters. For g < 1 the origin is asymptotically
stable, while for g > 1 the origin is unstable, suggestive of potentially chaotic dynamics in the
overall network. For the optimized networks with the rank 3 structure, the Jacobian matrix at
the origin is J, = J + W, W] + W, W, where we denote associated eigenvalues as . .

Understanding the location and stability of fixed points away from the origin is harder to
ascertain analytically. Hence, we rely on a number of numerical procedures to identify these
points. To locate stable fixed points used for task computations, we arrest trials at relevant
time moments, then forward simulate to ascertain the asymptotic behavior of the network. In
one set of simulations, this forward simulation is carried out for trials arrested at the end of the
first delay period. In a second set of simulations, it is carried out after trial conclusion. The for-
ward simulation is carried out for ten times the nominal trial length, at which time we assume
the network state is in a stationary regime, i.e., within an e distance of either a stable fixed
point or limit cycle. We can perform additional linearization about stable fixed points that are
discovered numerically in this way. Here, the eigenvalue spectrum of Jacobian matrix, Q, at
these non-zero fixed points, denoted x*, is as follows

Q=(J+ WfWZ + Wfdwg)R’ (10)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1009366 September 15, 2021 15/20


https://doi.org/10.1371/journal.pcbi.1009366

PLOS COMPUTATIONAL BIOLOGY Slow manifolds within network dynamics encode working memory efficiently and robustly

where R’ is a diagonal matrix with elements R}, = J,r; with
r = 1 — tanh’(x). (11)

Note that if the states are largely saturated at a fixed point (as in the case of DFP encoding, Fig
4c), then the entires of ¥ are very small, which contracts the spectrum of Q.

Network connectivity analysis

To link network connectivity properties with the identified mechanisms, we first sorted neu-
rons based on the time they reach their peak activity for each task trial. Then, we sorted ele-
ments of the optimized connectivity matrix, i.e. J1, using the same ordered sequence of

Z]»N’Tf;
N >

see Fig 4e. Moreover, we performed an analysis suggested by [36]; we computed the average of
diagonal and successive off-diagonal elements of sorted connectivity matrix, i.e. |i —j| = ¢, c €
{0, . .., N}, see Fig 4f, which indicates the strength of reciprocal coupling between neurons as a
function of the temporal distance between their peak activation.

neurons. We calculated the average pre-synaptic (or incoming) connections, i.e. J, =

Simulation parameters and specification

To perform dynamical system analysis for trained recurrent networks, we fixed the trained
network parameters during subsequent testing and analysis. Throughout the paper we have
referred to this setup as ‘forward simulation’ of the network dynamics. In the task, we set the
stimulus interval to 100 time steps, delay intervals to 50 time steps (except for the extended
delay experiments) and response interval to 50 time steps. From the sequential bivariate ran-
dom process stimuli, we trained a variational auto encoder on the MNIST digits 1 and 0. We
encoded the summation rule outcomes (i.e. 0, 1, 2) as 0.5, 1 and 1.5 (i.e., different values of f,
in Eq (6)), respectively for training the networks. We encoded the latent outputs f, and f, as
the two dimensional mean vector for each digit representation, whenever that digit appeared
prior to the delay period being optimized.

For all simulations the value of ¢ is initialized to 1 and P was initialized to the identity
matrix. The number of neurons was set as N = 1000 and elements of W, and W are initialized
to zero. Input weights were drawn randomly from zero mean Gaussian distribution with
variance 0.02. We set the time step, dt, for Euler integration to 0.1. During training intervals,
shown in Fig la, we updated weights every 2 time steps. For four different initialization
seeds we considered all possible combination of feasible values for g, orand sparsity
(in Fig 6). The value of oy was chosen proportional to the size of network, i.e.

2 11 1 1 1 1 1 1 L . :
0; € {1.5N N RN TN 003N * O0RN » T00aN 0.001N}‘ Training was terminated if the average root

mean squared error between target and output was less that 0.01 for all trials.
For exemplar networks used in Figs 3a, 3¢, 4a, 4b and 4d-4f, for type DFP: g = 0.9,07 = 1

and sparsity is 0.2. For IFP: g = 0.9, 07 = 0.05 and sparsity is 0.1. For LC: g = 0.9, 67 = 0.2
and sparsity is 0.1. For Mix: g = 0.9, 67 = 0.1 and sparsity is 0.1. The initialization seed is the

same for these 4 exemplar networks.

Supporting information

S1 Fig. RNN outputs after optimization for performing SPM task. Several concatenated tri-
als of the task with outputs z, = (z, , z,,) and 2, are shown. Using the modified FORCE
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method the network generates memory encodings during 7, and trial output during response
intervals, 7, (shaded area).
(TIF)

S2 Fig. Flow chart. Categorization of dynamical mechanisms based on (i) the type of asymp-
totic attractor (either fixed point or limit cycle) and (ii) whether delay periods correspond to a
fixed point.

(TIF)

S3 Fig. Neural activities and associated dynamical landscape for a single trial. For the same
exemplar networks as in Fig 3¢, but a different set of stimuli (i.e., here, two realizations of the
same digit are presented), neural activity and associated low-dimensional (PCA) trajectories
are plotted. Note that PCA components are obtained for each exemplar network individually.
The trajectories are color coded using the same scheme as the color bar on the top. In DFP, the
network creates four stable fixed points to solve the SPM task (the inset shows the area inside
the circle). For the displayed trajectory, the network uses two fixed points (shown in yellow) to
represent memory and trial output. In IFP, memory representation and trial output are
encoded along the slow manifold of the single fixed point in the state space. In LC, the trajecto-
ries approach a stable limit cycle. For the mixed mechanism, both a stable fixed point and limit
cycle can be seen.

(TIF)

S4 Fig. Neural trajectories of perturbed and salient trials. Plot shows how noise corrupts the
salient trajectory for all four mechanisms (same trial and initial condition). PCs are exclusive
to each network. In DFP, distracting noise places the trajectory in an erroneous basin of attrac-
tion and thus the network generates an incorrect response; in IFP noise pushes the trajectory
away from the ‘correct’ slow manifold.

(TIF)

S5 Fig. VAE architecture. The latent space of VAE (i.e. z) is used to construct the input to the
RNN model, where we have chosen a 2 dimensional latent space to represent x and y coordi-
nates of MNIST digits dataset. For example, for x coordinate we obtain y, and o, correspond-
ing to each specific digit and we can generate samples of that digit representation as temporal
inputs (i.e. Gaussian process) to the network.

(TIF)
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