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Abstract. Climate warming will cause mountain snowpacks
to melt earlier, reducing summer streamflow and threaten-
ing water supplies and ecosystems. Quantifying how sensi-
tive streamflow timing is to climate change and where it is
most sensitive remain key questions. Physically based hy-
drological models are often used for this purpose; however,
they have embedded assumptions that translate into uncer-
tain hydrological projections that need to be quantified and
constrained to provide reliable inferences. The purpose of
this study is to evaluate differences in projected end-of-
century changes to streamflow timing between a new em-
pirical model based on diel (daily) streamflow cycles and re-
gional land surface simulations across the mountainous west-
ern USA. We develop an observational technique for de-
tecting streamflow responses to snowmelt using diel cycles
of incoming solar radiation and streamflow to detect when
snowmelt occurs. We measure the date of the 20th percentile
of snowmelt days (DOS;g) across 31 western USA water-
sheds affected by snow, as a proxy for the beginning of
snowmelt-initiated streamflow. Historic DOSy( varies from
mid-January to late May among our sites, with warmer basins
having earlier snowmelt-mediated streamflow. Mean annual
DOSy strongly correlates with the dates of 25 % and 50 %
annual streamflow volume (DOQ;5 and DOQsg, both R?=
0.85), suggesting that a 1d earlier DOS;g corresponds with
a 1d earlier DOQys5 and 0.7 d earlier DOQs¢. Empirical pro-
jections of future DOS;g based on a stepwise multiple linear

regression across sites and years under the RCP8.5 scenario
for the late 21st century show that DOS»( will occur on av-
erage 11 £4d earlier per 1 °C of warming. However, DOS»q
in colder watersheds (mean November—February air temper-
ature, Tnpyr < —8 °C) is on average 70 % more sensitive to
climate change than in warmer watersheds (Txpjr > 0°C).
Moreover, empirical projections of DOQ»s and DOQs( based
on DOS,( are about four and two times more sensitive to cli-
mate change, respectively, than those simulated by a state-of-
the-art land surface model (NoahMP-WRF) under the same
scenario. Given the importance of changes in streamflow
timing for water resources, and the significant discrepancies
found in projected streamflow sensitivity, snowmelt detec-
tion methods such as DOS;¢ based on diel streamflow cycles
may help to constrain model parameters, improve hydrolog-
ical predictions, and inform process understanding.

1 Introduction

Earlier streamflow caused by earlier snowmelt is of great
concern in a changing climate (Barnett et al., 2005; Harpold
and Brooks, 2018; Musselman et al., 2017; Stewart et al.,
2004, 2005). Earlier winter and spring streamflow volume
comes at the expense of later summer streamflow in regions
like the western United States (USA; Hidalgo et al., 2009;
McCabe and Clark, 2005; Regonda et al., 2005; Stewart et
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al., 2004, 2005) and challenges reservoir operations (Barnett
et al., 2005; Immerzeel et al., 2020; Viviroli et al., 2011).
Furthermore, ecosystems may evaporate more water as re-
ductions in albedo increase energy inputs (Meira Neto et
al., 2020; Gordon et al., 2022), decreasing runoff from up-
land forested watersheds (Foster et al., 2016; Jepsen et al.,
2018; Milly and Dunne, 2020). More than 50 % of moun-
tainous watersheds play essential roles in supporting down-
stream systems (Viviroli et al., 2007), and snowpack changes
are likely to increase lowland agriculture water stress (Im-
merzeel et al., 2020). However, it remains difficult to predict
how much streamflow timing and amount will shift in future
climates (Gordon et al., 2022) due to altered snow accumula-
tion patterns (Mote et al., 2018) and melt rates (Musselman
et al., 2017) and shifts from snowfall to rainfall (Klos et al.,
2014).

Physically based hydrological models are typically used to
predict how snow accumulation and melt will interact with
the critical zone (CZ) to affect short-term flooding and sea-
sonal water supply (Kopp et al., 2018; Wood and Letten-
maier, 2006). In mountainous regions like the western USA,
models need to accurately simulate snow processes across
watersheds with varying snowpack conditions (Serreze et al.,
1999) and then transport and store that water in the CZ with
varying subsurface properties (Brooks et al., 2015). More
precipitation falling as rain instead of snow will result in
streamflow dynamics that more closely mirror the amount
and timing of rainfall. Precipitation phase (rainfall versus
snowfall) is mediated by basin elevation and hypsometry
(Jennings et al., 2018; Wayand et al., 2015), which also influ-
ences precipitation amounts (Houze, 2012), with higher ele-
vations and steeper watersheds typically having higher pre-
cipitation and snowfall. Solar radiation is the primary energy
source for snowmelt in snow-dominated montane watersheds
(Cline, 1997; Marks and Dozier, 1992). Conversely, cloudi-
ness lowers solar radiation and melt rates (Sumargo and
Cayan, 2018). Shallower snowpacks have less cold content
and begin to melt earlier when solar radiation is lower (Har-
pold et al., 2012; Harpold and Brooks, 2018; Musselman et
al., 2017), which shifts streamflow earlier (Clow, 2010). Stor-
age and drainage of water in the CZ control the sensitivity of
streamflow to earlier rain or meltwater inputs. For example,
snowmelt-mediated spring streamflow timing is more sensi-
tive to climate change in watersheds with rapid subsurface
drainage than in landscapes with deep groundwater reser-
voirs that drain slowly (Safeeq et al., 2013). In contrast, slow-
draining watersheds have greater sensitivity to snowmelt-
mediated summer streamflow volume from climate change
(Tague and Grant, 2009). The complexity of these storage
relationships is exemplified by isotopic evidence showing
that the fraction of streamflow that is young water (less than
3 months old) is smaller in steeper watersheds (Jasechko
et al.,, 2016), suggesting that physically modeling interac-
tions between CZ water storage and changing hydrometeo-
rology will be challenging in mountainous areas. In a recent
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data-driven review, Gordon et al. (2022) proposed a predic-
tive framework composed of three testable and interrelated
mechanisms to infer changes to snowmelt-driven streamflow
response under warming. Such mechanisms are associated
with snow season energy and mass exchanges and the inten-
sity of snow season liquid water input and the synchrony of
energy and water availability, and their analysis highlights
the complexities in predicting future streamflow in regions
where multiple mechanisms interact.

Hydrologists typically apply the following two types of
modeling tools to predict streamflow: empirical models and
more mechanistically oriented models (conceptual or phys-
ically based land surface models). Empirical models as-
sume that long-term and often site-to-site statistical relation-
ships among predictor variables (e.g., precipitation and air
temperature) and water fluxes (e.g., evapotranspiration and
streamflow) can be used to understand and model their likely
changes over time or space. Empirical models used to pre-
dict changes over time (sometimes referred to as space-for-
time substitutions) have been used to predict responses to
climate change in fields such as hydrology (Goulden and
Bales, 2014; Jepsen et al., 2018; Sivapalan et al., 2011), bio-
diversity (Blois et al., 2013), and tree growth (Klesse et al.,
2020). Such models use retrospective information from dif-
ferent places (space), typically spanning wide range of condi-
tions (e.g., climate gradients), to predict future changes over
time. For example, observed characteristics from warm re-
gions maybe used to infer future changes in cold regions due
to global warming. A limitation of this approach is that it ne-
glects non-correlated (or independent) changes in spatially
variable factors (Jepsen et al., 2018). For example, hetero-
geneous patterns of warming, variations in precipitation and
vegetation, or changes that occur at different temporal scales
(e.g., development of soil properties over hundreds to thou-
sands of years versus shifts from rain to snow over hours) are
implicitly neglected in such empirical frameworks.

Conversely, physically based models embed state-of-the-
art physical understanding of hydrological processes. These
models typically require some degree of calibration or val-
idation to observations (e.g., daily streamflow) to improve
and assess their predictive skill. The current generation of re-
gional weather models using the Weather Research and Fore-
casting model (WRF; Skamarock et al., 2008) coupled to the
Noah-Multiple Parameterization land surface model (Noah-
MP; Niu et al., 2011), which we refer as NoahMP-WRE, has
shown promising results for modeling atmospheric and snow
processes in the contiguous USA (He et al., 2019; Liu et al.,
2017; Musselman et al., 2017; Scaff et al., 2020). For ex-
ample, snow simulations have been used to quantify moun-
tain snowmelt and streamflow response to climate change
(Musselman et al., 2017, 2018). These simulations use a
pseudo global warming approach, which perturbs the histori-
cal climate with a climate change signal from an ensemble
of global climate models (GCMs); using this perturbation
avoids systemic biases in the GCMs and avoids issues re-
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lated to their interannual variability (Liu et al., 2017). Com-
parisons between land surface models and empirically based
predictions of future streamflow are rare but valuable (Jepsen
et al., 2018) and could help to diagnose modeling deficien-
cies and improve predictions.

New observations of streamflow generation during
snowmelt could be key to improving current hydrological
models. Determining whether streamflow response was pro-
duced by rainfall or snowmelt is an important but diffi-
cult task (Weiler et al., 2018). Few simple, low-cost obser-
vational tools are available to separate rainfall-driven from
snowmelt-driven contributions to streamflow or to separate
this year’s snowmelt from the previous years’ melt and stor-
age. One method that can be straightforwardly applied to ex-
isting long-term observations is based on coupled diel cy-
cles in solar radiation, snowmelt, and streamflow (Kirchner
et al.,, 2020; Lundquist and Cayan, 2002). Diel (24h) cy-
cles in streamflow and shallow groundwater levels can re-
sult from daily cycles in snow-/ice melt and evapotranspi-
ration, which are both ultimately driven by solar radiation
inputs (Kirchner et al., 2020). This mechanistic response
has been used to study watershed properties like kinematic
wave celerity (Kirchner et al., 2020), the impact of snowpack
variability on streamflow timing (Lundquist and Dettinger,
2005), groundwater fluctuations (Loheide and Lundquist,
2009), and transitions from snowmelt to evapotranspiration-
dominated streamflow fluctuations (Kirchner et al., 2020;
Mutzner et al., 2015; Woelber et al., 2018). More recently,
Kirchner et al. (2020) combined local observations and re-
mote sensing to show that streamflow diel response was
tightly controlled by the timing of snowpack disappearance.
However, it remains unknown whether information embed-
ded in the diel streamflow response following snowmelt
events can be used to inform streamflow predictions un-
der climate change and whether such projections are con-
sistent with current state-of-the-art hydrological modeling.
The purpose of this research is to evaluate whether land sur-
face hydrology model simulations and a new diel streamflow-
based empirical model yield similar projected end-of-century
changes in streamflow volume timing across mountainous
western USA headwater watersheds. To this aim, we extend
the diel cycle index approach of Kirchner et al. (2020) using
diel streamflow observations to detect days when streamflow
is coupled to snowmelt inputs (i.e., a snowmelt-dominated
streamflow event) and investigate their contributions to his-
torical variability in streamflow volume timing. We then
compare empirical diel streamflow-based projections by the
end of the century under a RCP8.5 pseudo global warm-
ing scenario against predictions from a state-of-the-art land
surface model (under the same climate scenario) across
31 mountainous watersheds in the western USA to answer
the following questions:

1. Do historical diel streamflow cycles indicate earlier
snowmelt in warmer watersheds and years, and can we
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use diel observations of snowmelt to predict the timing
of streamflow volume?

2. In which watersheds is the timing of snowmelt the most
sensitive to climate change, as projected by an empirical
diel streamflow-based model?

3. Do historical streamflow volume timings and future em-
pirical diel streamflow-based projections diverge from
commonly used, state-of-the-art land surface models?

A list with the abbreviations used in this study is presented
in Table 1.

2 Methods
2.1 Study domain and data

We studied 31 mountainous watersheds in the western USA
(Table 2), spanning snow fractions from 0.27 to 0.78
(Fig. A3a), aridity index values from 0.22 to 2.86 (Addor
et al., 2017), and soil depths from 0.27 to 2.52 m (Addor et
al., 2017; Pelletier et al., 2016; Table 2). These watersheds
are part of the CAMELS (Catchments Attributes and ME-
teorology for Large-sample Studies) dataset (Addor et al.,
2017; Newman et al., 2015), which provides daily stream-
flow and meteorological forcing, among other observed and
simulated hydrometeorological variables at the watershed
scale. These watersheds were chosen because their stream-
flows are unregulated, they have relatively small drainage
areas (< 250km?), and they are at relatively high eleva-
tions (> 1000ma.s.l. — above sea level). This last crite-
rion was introduced to focus on watersheds with snowmelt-
driven streamflow regimes. The names, locations, elevations,
slopes, drainage areas, and other key characteristics of the
31 watersheds are presented in Table 2.

The data used in this analysis include hourly streamflow,
incoming shortwave radiation, mean daily relative humidity,
air temperature, and precipitation. Hourly streamflow was
obtained from the U.S. Geological Survey (USGS). Hourly
incoming shortwave radiation is from phase 2 of the National
Land Data Assimilation System (NLDAS-2; Xia et al., 2012)
at the nearest grid point to the watershed outlet. Mean daily
relative humidity, air temperature, and precipitation at the
watershed scale are from CAMELS, based on the Daymet
dataset (https://daymet.ornl.gov/, last access: 20 June 2022),
which in turn is interpolated from existing ground observa-
tions. Available hourly streamflow records vary significantly
across watersheds, extending back to 1986 for some sites.
Figure Ala shows the number of years that have more than
70 %, 80 %, and 90 % of days with hourly records for the pe-
riod between 1 December and 1 August. Based on this pre-
liminary analysis, we selected water years with more than
80 % of days with hourly streamflow records. This threshold
for data availability results in most watersheds having more
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Table 1. List of abbreviations.

Abbreviation Definition

CAMELS Catchments Attributes and MEteorology for Large-sample Studies
DOQ3y5 Date of 25 % of annual streamflow volume

DOQs50 Date of 50 % of annual streamflow volume

DOS;o The day when the 20th percentile of the snowmelt days occurs, with snowmelt days as defined by the streamflow diel cycle analysis
GCM Global Climate Model

MLR Multiple linear regression model

NLDAS-2 Phase 2 of the National Land Data Assimilation System
Noah-MP Noah Multiple Parameterization land surface model
NoahMP-WRF  Simulations by WRF using the Noah-MP land surface model
RCP8.5 Representative Concentration Pathway 8.5

WRF Weather Research and Forecasting Model

Table 2. List of the 31 watersheds from the CAMELS dataset included in this study. Data are from Addor et al. (2017). Note: USGS is the
United States Geological Survey.

ID USGSID Watershed name Drainage Mean Mean  Lat. Long. Snow  Aridity  Soil
area elevation slope  (°N) (°W) fraction index  depth
(km?) (masl) (mkm™1) (m)
1 06278300  Shell Creek, WY 58.9 2953 86.7 44.51 107.40 0.73 1.32 0.74
2 06311000  North Fork Powder River, WY 61.2 2516 41.1 44.03 107.08 0.57 1.68 0.90
3 06614800  Michigan River, CO 4.0 3297 145.8  40.50 105.87 0.76 1.29 0.57
4 06622700  North Brush Creek, WY 98.7 2837 713  41.37 106.52 0.72 1.48 2.20
5 06623800  Encampment River, WY 187.7 2971 90.9 41.02 106.82 0.75 1.06 1.14
6 06632400  Rock Creek, WY 163.0 3002 69.0 41.59 106.22 0.74 1.46 2.52
7 08267500 Rio Hondo, NM 96.3 3007 149.1 36.54 105.56 0.47 2.12 0.50
8 08377900  Rio Mora, NM 139.0 3018 105.3 3578 105.66 0.47 1.50 0.85
9 09034900  Bobtail Creek, CO 15.7 3571 102.8  39.76 10591 0.73 1.16 0.47
10 09035900  South Fork of Williams Fork River, CO 72.8 3241 123.9 39.80 106.03 0.69 1.44 0.56
11 09047700 Keystone Gulch, CO 23.6 3334 103.8  39.59 105.97 0.63 1.92 0.45
12 09066200 Booth Creek, CO 16.1 3072 1454 39.65 106.32 0.71 1.40 0.27
13 09066300 Middle Creek, CO 15.5 2944 143.8  39.65 106.38 0.69 1.49 0.48
14 09352900 Vallecito Creek, CO 188.2 3283 156.1 37.48 107.54 0.63 1.24 0.50
15 09378170  South Creek, UT 21.9 2308 67.7 37.85 109.37 0.50 1.79 1.16
16 09378630 Recapture Creek, UT 104 2125 534 3776 109.48 0.50 1.88 0.55
17 09386900 Rio Nutria, NM 184.9 2342 374 3528 108.55 0.31 2.48 1.07
18 09404450 East Fork Virgin River, UT 193.0 2070 562 37.34 112.60 0.42 2.86 0.82
19 09492400 East Fork White River, AZ 129.0 2469 654 33.82 109.81 0.27 1.88 0.92
20 10205030  Salina Creek, UT 134.6 2489 762 3891 111.53 0.58 2.46 0.67
21 10234500 Beaver River, UT 236.4 2499 952 3828 11257 0.63 2.06 0.60
22 10336660 Blackwood Creek, CA 29.8 2113 83.5 39.11 120.16 0.67 0.77 0.79
23 10343500 Sagehen Creek, CA 27.6 2157 81.2 3943 120.24 0.71 1.10 1.20
24 12147600  South Fork Tolt River, WA 14.1 1068 1594 4771 121.60 0.27 0.22 0.63
25 12178100 Newhalem Creek, WA 69.7 1305 2557 48.66 121.24 0.53 0.33 0.54
26 12381400  South Fork Jocko River, MT 151.0 1877 102.2 4720 113.85 0.59 0.97 0.62
27 12447390  Andrews Creek, WA 58.1 1701 172.6  48.82 120.15 0.78 0.86 0.47
28 13018300 Cache Creek, WY 27.9 2198 109.5 43.45 110.70 0.66 1.50 0.69
29 13083000 Trapper Creek, ID 133.2 1863 69.1 4217 113.98 0.49 2.11 1.04
30 13240000 Lake Fork Payette River, ID 125.6 1965 110.1 4491 116.00 0.73 0.75 0.44
31 14158790  Smith River, OR 40.6 1027 1164 4433 122.05 0.37 0.36 0.85

than 5 years to analyze (except for site ID 10 and 30 with

4 years).
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2.2 Snowmelt and streamflow diel coupling

To identify days when solar radiation-driven snowmelt
is coupled to the streamflow response, hereafter called
snowmelt days for simplicity, we calculated the correlation
between hourly values of solar radiation and lagged stream-
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Figure 1. Examples of the diel cycle analysis applied to two watersheds located in (a, b) California (WY2016) and (¢, d) Colorado (WY2014).
Panels (a) and (c¢) show hourly solar radiation (orange) and streamflow (blue). The first statistically significant (p < 0.01) lagged Spearman
correlation (r > 0.6) between streamflow and solar radiation is shown in a text box for clear-sky days only (> 80 % of clear-sky solar
radiation). Panels (b) and (d) show the solar radiation-driven snowmelt days (blue circles) on top of the annual hydrograph (semi-log scale)

for the period of analysis (white background; December to July).

flow (Fig. 1). A snowmelt day is defined as a day in which
the Spearman correlation between hourly solar radiation and
lagged streamflow is statistically significant (p value <0.01)
and exceeds a given cutoff. Due to the lagged diel streamflow
response after snowmelt, we lagged diel streamflow from so-
lar radiation between 6 and 18 h, computed the correlation
of all combinations, and kept those statistically significant
correlations that were above a predefined correlation cut-
off. Although having both a correlation cutoff and a statis-
tical significance criterion may be redundant, we used both
to guarantee significant correlations above different corre-
lation cutoffs. We tried several correlation cutoffs (r > 0.5,
0.6, 0.7, 0.8, and 0.9; see Fig. 1 for r > 0.6) to assess their
effects on the detection algorithm (Fig. A2). The prelimi-
nary lag window of 6 to 18 h was used to avoid confound-
ing snowmelt signals with evapotranspiration (ET)-induced
streamflow diel responses (Kirchner et al., 2020; Mutzner
et al., 2015; Woelber et al., 2018). ET-induced streamflow
diel response can positively correlate with solar radiation
with lags below 6 h, due to the previous day’s ET, and above
18h, due to the next day’s ET diurnal signal (Kirchner et
al., 2020). However, this preliminary lag window may in-
correctly select days with a rainfall-induced streamflow diel
response or rain-on-snow events. To minimize this, we fur-
ther restricted the lags that could be selected based on op-
timum lags from snowmelt days with clear skies. Clear-sky
days were defined as days with solar radiation greater than
80 % of the clear-sky solar radiation value (gray areas in left

https://doi.org/10.5194/hess-26-3393-2022

panels on Fig. 1). This lag window was defined on a monthly
and watershed basis and was calculated as the lags between
the 10th and 90th percentile of clear-sky days with Spear-
man correlations above 0.8. This second filter also helped to
avoid the incorrect selection of ET-induced streamflow diel
response, as it minimized the chance of selecting 18 h lags
that can be associated with ET. Despite efforts to select only
snowmelt-driven streamflow diel responses, this methodol-
ogy does not guarantee that rainfall-driven streamflow diel
changes with lags within our lag window will always be ex-
cluded. Excluding such cases would require hourly precip-
itation observations, which are unavailable at some of our
study watersheds. However, we believe that any such cases
will minimally affect the results of our analysis.

To better assess the potential impact that rainfall may have
on our proposed diel analysis, particularly on the effect of
rain-on-snow events, we analyzed which days classified as
snowmelt days also had rainfall. We assessed daily rain-
fall using the daily precipitation time series from CAMELS
based on the Daymet product for each watershed. A false
detection rate metric was computed for each watershed, in
which every day classified as a snowmelt day with daily
precipitation above 5mm and a mean daily air temperature
above 2 °C was assumed to be misclassified (Fig. 2). A false
detection rate of 100 % means that all snowmelt days were
misclassified and 0 % means that no days had significant
rainfall. On average, the false detection rate was estimated
at 7 %, with a standard deviation of 5 %, and only watershed

Hydrol. Earth Syst. Sci., 26, 3393-3417, 2022
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Figure 2. Percentage of days that were classified as having
snowmelt following the diel streamflow cycle analysis that also
had daily precipitation above 5Smm and a mean daily air temper-
ature above 2 °C. Symbols are associated with the mean annual per-
centage of snowmelt days under clear-sky conditions. Sunny sites
(circles) have > 90 %, clear-sky snowmelt days, partly cloudy sites
(squares) have between 70 % and 90 %, and cloudy sites (diamonds)
have < 70 % clear-sky snowmelt days. Clear-sky snowmelt days are
defined as those with more than 80 % of the potential clear-sky solar
radiation.

ID 24 and 31 (located in WA and OR, respectively) exceeded
15 %, with 21 % and 29 %, respectively. This suggests that
the effect of potential rainfall-induced diel streamflow cycles
(including rain-on-snow events) in most watersheds is low
(except for watershed ID 24 and 31), supporting further anal-
ysis. We also assessed the mean cross-site false detection rate
for precipitation thresholds of 1 and 10 mm and found rea-
sonable values of 12 % and 3 %, respectively. However, we
believe that 1 mm is not a reasonable threshold, as a 1 mm
rainfall event would be unlikely to produce a distinguishable
diel streamflow signal and could represent error/noise in the
Daymet product.

2.3 The empirical diel streamflow-based model

We defined the day when the 20th percentile of the snowmelt
days (as defined in Sect. 2.2) occurs (DOSyp) as a new met-
ric to characterize the seasonality of early snowmelt for each
water year and watershed. However, other metrics such as the
5th, 10th, and 30th percentiles (presented in the Appendix)
were also investigated to assess the impact of this choice on
the analysis. We chose this metric because we expected it to
be associated with the timing of streamflow volume, and the
choice of slightly earlier or later snowmelt day metrics (e.g.,
DOS 1o or DOS3p) would not substantially change our results.
We fitted a stepwise multiple linear regression model (MLR;
p value < 0.01; Eq. 1) to reconstruct historical DOS»( across
all watersheds and years (Fig. 7) using four climate variables
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as predictors, i.e., total precipitation, air temperature, relative
humidity, and solar radiation, as follows:

DOSy = B1x1 + Baxz + B3x3 + Baxa + Bsx1x2 + Bex1x3
+ B7x1x4 + Bgx2x3 + Poxoxg + B1oX3X4, (D

where x; is cumulative air temperature (i.e., degree day;
°(C), xp is cumulative precipitation (mm), x3 iS mean rela-
tive humidity (%), x4 is mean solar radiation (W m~2), and
the B; are regression coefficients. Mean annual climate vari-
ables were calculated for the period between 1 November and
DOSyg (i.e., between late fall and the metric representing the
date of early snowmelt events). As a result, DOS» is present
in both sides of Eq. (1); therefore, the stepwise MLR requires
an iterative solution when used in a predictive mode (i.e., for
the climate change analysis when DOS»q is unknown). The
MLR model is the basis of our empirical diel streamflow-
based model which is used to assess changes in DOS;g due
to climate change (i.e., changes in x1, x2, x3, and x4 in Eq. 1).
We verified the stepwise MLR assumptions, namely linear
relationships between each predictor and DOS;(, normally
distributed residuals, homoscedasticity, and the absence of
strong multicollinearity (as suggested by a variance inflation
factor < 3). We also tested other metrics related to the timing
of early snowmelt events. These included the first snowmelt
day, the first three consecutive snowmelt events, and the Sth,
10th, and 30th percentiles of snowmelt days (DOSs, DOS,
and DOS3, respectively). All metrics were also computed
using each of the different Spearman correlation cutoffs (Ta-
bles A1-AS5), but the main analysis presented here focuses
on DOS;p based on snowmelt days calculated with hourly
Spearman correlations > 0.8.

We predict changes to DOS»( based on the stepwise MLR
model and end-of-the-century mean climate change forc-
ing from NoahMP-WRF (Liu et al., 2017). NoahMP-WRF
was run under a high-emission scenario (RCP8.5), using the
pseudo global warming approach for the end of the century.
Overall, it projects a warmer (4-5.2°C), wetter (0 %—20 %
increase in precipitation) climate (Figs. A4 and AS). These
mean annual changes in climate were applied to the pre-
dictors in the stepwise MLR model to predict changes in
DOSyg. As previously mentioned, predictors used in the step-
wise MLR were calculated for the period between 1 Novem-
ber and DOS;q; therefore, as we do not know the value of
DOS» in the future, an iterative solution is required to solve
for DOS,o in Eq. (1). We find a numerical solution, us-
ing a 2d convergence threshold between iterations, so that
IDOS20;4+1-D0OS20;| < 2d, where i is the number of the it-
eration.

2.4 Streamflow volume timing from a land surface
model

Historical NoahMP-WRF simulations include the period
2001-2013 over the contiguous USA at 4 km spatial resolu-
tion and the period 2071-2100 under pseudo global warming
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(Liu et al., 2017). NoahMP-WRF simulations include an im-
proved Noah configuration, which aims to better represent
the snow physics. These improvements include the follow-
ing (Liu et al., 2017): the rain—snow transition is based on
a microphysics partitioning approach as opposed to a sub-
jective temperature-based approach, patchy snowpack are al-
lowed in the calculation of the surface energy balance, the
heat transport from rainfall to the ground is included, and
the snow depletion curve is vegetation dependent. These im-
provements allow for a better representation of the surface
energy balance and the simulation of snow accumulation
and melt processes. We used daily watershed-scale outputs
of surface and subsurface runoff from historical and future
NoahMP-WRF simulations to estimate the date of 25 % and
50 % of annual streamflow volume (DOQ35 and DOQj5, re-
spectively). Given the range of the watershed drainage ar-
eas (4-236 km?; Table 2), watersheds covering several grid
cells use the total surface and subsurface runoff for their cor-
responding grid cells. Small watersheds are represented by
only the single nearest NoahMP-WRF grid cell. The way
NoahMP-WREF is implemented within WRF lacks a stream-
flow routing scheme such as the one in WRF-Hydro (Gochis
et al., 2020); therefore, we used the sum of surface and sub-
surface runoff to estimate DOQ;5 and DOQsg. We also re-
peated the analysis using surface runoff only, leading to sim-
ilar results (Fig. A7). Given the relatively coarse NoahMP-
WREF spatial resolution (4km) compared to the watershed
drainage areas (4-236 km?), we assume that mean stream-
flow timing metrics are not significantly affected by the lack
of streamflow routing.

3 Results

3.1 Empirical relationships between DOS;, climate,
and streamflow

Mean annual DOS;o (the date of the 20th percentile of
snowmelt days) has a strong regional variability that is rea-
sonably captured by a negative linear correlation (R? = 0.48)
with the mean winter air temperature (November to Febru-
ary; Tnpyr) in watersheds with Tnpjr < —3 °C, whereas
warmer watersheds do not follow the same pattern (Figs. 3a
and 4a). Warmer sites (Tnpjr > —3 °C) have a more vari-
able mean DOS;, ranging from mid-January to early May,
whereas the coldest sites (Inpyr < —8 °C) have a later and
less variable DOS;( around mid- to late May. On average,
the regression suggests that a 1°C warming of results in
7.2 d earlier DOSyg. A relationship between later DOS;( and
colder Tnpyr is also found in the year-to-year variations at
most watersheds (21 out of 31; Fig. 3b). A strong negative
linear relationship was found between the date of the 25 % of
the annual streamflow volume (DOQ35) and Tnpjr (Fig. 3c).
Warmer watersheds (Tnpyr > 0 °C) generate streamflow ear-
lier (DOQ35 between mid-December and early March) com-
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pared to the coldest watersheds (7Tnpjr < —8°C) where
DOQ35 is between early and late May (Fig. 3c). On average,
the cross-site regression shows that each 1 °C warmer Tnpjr
produces a 13 d earlier DOQ>5. For most watersheds (25 out
of 31), interannual regressions show a similar pattern, with
warmer years having earlier DOQ»5; however, these inter-
annual regressions have shallower slopes than the cross-site
relationships (Fig. 3b and d). Previous work by Stewart et
al. (2005) also related seasonal meteorological patterns with
the spring onset and streamflow timing and found similar re-
lationships (e.g., warmer watersheds have earlier spring on-
set and streamflow timing). However, the definition of the
spring onset was based on the cumulative hydrograph (the
day when the cumulative departure from the mean stream-
flow was the minimum), as opposed to our more mechanistic
diel streamflow analysis. Other definitions for spring onset
based on streamflow, snow pillows, and air temperature are
presented by Lundquist et al. (2004).

Strong correlations between DOS5p and both DOQ35 and
DOQsq (the date of 50 % of the annual streamflow volume;
R? = 0.85; Fig. 5a and c) suggest connections between the
timing of snowmelt and streamflow generation across wa-
tersheds and years. On average, sites that melt earlier are
associated with earlier DOQy5 (Fig. 5a) and a lower ra-
tio of snowfall to total precipitation (snow fraction < 0.5).
The relationship between DOS,p and DOQys5 closely fol-
lows the 1:1 line (Fig. 5a), although three sites in Wash-
ington and Oregon (site ID 24, 25, and 31; see Table 2 and
Fig. 6a) deviate substantially from this pattern, perhaps be-
cause they receive relatively little of their precipitation as
snow. Similar watershed-level relationships using interan-
nual variability in DOQ,5 were found for most watersheds,
with statistically significant slopes varying between 0.4 and
2.5dd~! (Fig. 5b). DOSyg also predicts DOQsq well, with
10d earlier snowmelt producing 7d earlier DOQsp on av-
erage (Fig. 5¢) and similar watershed-level interannual rela-
tionships (Fig. 5d). The same three relatively rainy water-
sheds have DOQsq prior to the DOSy (Figs. 5c and 6b),
suggesting that early snowmelt timing is not an important
predictor of DOQs( in such places.

3.2 Diel streamflow-based sensitivity of snowmelt
timing (DOS;) to climate change

We fitted a stepwise MLR with four climate variables (air
temperature, precipitation, relative humidity, and solar ra-
diation) to predict the diel streamflow-based DOS;y metric
across watersheds and years. A total of 333 watershed—year
combinations of DOS»( and climate variables were used to
train the stepwise MLR model. The watershed—year rela-
tionship between observed and MLR predictions has a rel-
atively high R? of 0.83, a root mean square error (RMSE) of
17.5d, and normally distributed residuals (p < 0.01) off the
1 : 1 line and centered at 0, with a standard deviation of 17.3d
(Fig. 7a). The relationship between observations and MLR
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Figure 3. Panels (a) and (c¢) show cross-site relationships between mean winter air temperature (November to February) and DOS,( and the
date of 25 % of the annual streamflow volume (DOQ;5), respectively. Slopes of individual sites’ interannual relationships are shown as the
lines on top of each symbol, where statistically significant (p value <0.05) slopes are red. Non-significant interannual slopes are presented
to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of snowmelt days under
clear-sky conditions. Sunny sites (circles) have > 90 % clear-sky snowmelt days, partly cloudy sites (squares) have between 70 % and 90 %,
and cloudy sites (diamonds) have < 70 % clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80 % of the
potential clear-sky solar radiation. Panels (b) and (d) show histograms of interannual slopes (for all watersheds and those with statistically
significant relationships), and the cross-site relationships are presented in their respective left panel.

predictions of inter-watershed mean annual DOS;¢ (Fig. 7b)
is also strong (R? =0.83 and RMSE = 13.2d) and follows
the 1: 1 line. Similarly, when we look at interannual values,
represented by the lines overlapping the circles in Fig. 7b,
we find a good agreement with most slopes close to 1 : 1 (see
the inset in Fig. 7b). This analysis demonstrates that the MLR
model can reasonably represent both the mean annual DOS;
values at each watershed and their interannual variability. Ta-
ble A4 shows the standardized beta coefficients that indicate
the importance of each climate variable in the stepwise MLR.
For the 0.8 correlation cutoff, we found that incoming short-
wave radiation has the greatest importance (8 = 0.75), fol-
lowed by relative humidity (8 = 0.37) and air temperature
(B=-0.30).

Empirical diel streamflow-based projections under climate
change show earlier mean annual DOS»( in all watersheds
(i.e., earlier snowmelt initiation), with significant variabil-
ity from site to site (Fig. 8a). Most watersheds show signifi-
cant end-of-century changes in DOS»(, ranging from up to 3
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months earlier in cold sites where, historically, snowmelt un-
der clear-sky conditions dominates (circles in Fig. 8a) to as
little as 20 d earlier in warm sites under historically cloudier
conditions. The cross-site average change in DOSyg is 55.3 d,
with a standard deviation of 21.8 d. In many watersheds, the
mean projection of DOS,o under climate change is within
the historically observed variability in DOS»( (Fig. 8a). The
empirical model predicts that, on average, colder watersheds
(Tnpyr < —8°C) are about 70 % more sensitive to climate
change (13.7+4.6d°C~ 1) than warmer watersheds (Tnpyg >
0°C) (8.1 £6.2d°C™1), as represented by the change in the
DOS;g per degree of warming (Fig. 8b). Site ID 24 (South
Fork Tolt River, WA) shows almost no change in its DOS»g,
which can be attributed to its weaker climate change signal
compared to the other watersheds (about +4 °C, 5 % precipi-
tation increase and virtually no change in humidity and solar
radiation; Fig. A4). The diel streamflow-based analysis sug-
gests an average sensitivity of DOS;g to a climate change of
11.14+4.2d°C~" across all watersheds.

https://doi.org/10.5194/hess-26-3393-2022



S. A. Krogh et al.: Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change

DOS,, vs. Winter Air Temperature

10
5 &
o
o
o
0 [
Q.
o
5 2
[3]
-
[ =4
[ =4
10 8
[}
=
O Partly Cloudy -15
{  Cloudy
-20
W 20'w 5w 10w 108 W

3401

DOQ,s5 vs. Winter Air Temperature

o 2
50 N Thick edge:
(b) statistically significan
9,
0
45N 2 C'P
=
4 8
5 <)
40 N ?
©
6 S
[ =
&
o @
35 N -8 £
-10
W o120'w 5w 10w 108 W

Figure 4. Spatial variability in watershed-level interannual slopes for (a) DOS,( versus winter air temperature and (b) DOQ,5 versus winter
air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with
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3.3 Sensitivity of streamflow timing to climate change:
empirical diel streamflow-based model versus
NoahMP-WRF

We compared historical and empirical diel streamflow-
based projections for DOQ»s and DOQso with those from
NoahMP-WREF. Empirical streamflow timing sensitivity pro-
jections for DOS;g under climate change were derived from
the linear regressions presented in Fig. 5a and ¢ (DOQ2s and
DOQsq versus DOSy) with projected changes in DOS» us-
ing the MLR under climate change. Empirical projections for
DOQ»5 range from early January to late May (red symbols;
Fig. 9a), advancing between 20 and 100d under RCP8.5
(x axis; Fig. 9¢). The DOQsq is projected to advance be-
tween roughly 15 and 65d (x axis; Fig. 9d), ranging from
mid-February to late May (red symbols; Fig. 9b). The his-
torical DOQ»5 is underestimated by NoahMP-WRF (blue
symbols; Fig. 9a), with a mean DOQj5 in mid-February,
whereas historical DOQys is in early April (50 d mean differ-
ence). Projected changes to DOQ;5 by NoahMP-WRF under
pseudo global warming range between early January to mid-
March (mean in early February; Fig. 9a), averaging —15d
(ADOQ»s5; Fig. 9c), whereas empirical diel streamflow-
based projections range between early January and late
March (mean in mid-February; Fig. 9a), averaging about
—60d (ADOQ>5; Fig. 9c). These results indicate that empir-
ical diel streamflow-based projections of DOQjs5 are about
4 times more sensitive to climate change than those from
NoahMP-WREF. Historical DOQs( is reasonably well rep-
resented by NoahMP-WRF under the current climate (blue
symbols; Fig. 9b) with a mean difference against observa-
tions of 7 d; however, future changes of about —20 d are pro-
jected, which are roughly half of the —40d predicted by the
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empirical streamflow-based projections (ADOQsq; Fig. 9d).
Empirical diel streamflow-based projections of DOQs( range
between mid-February and early April, whereas NoahMP-
WREF projections range between mid-March and mid-May,
suggesting later estimates of streamflow volume by the land
surface model. Watersheds with the largest disagreement be-
tween the empirical model and NoahMP-WRF projections
for streamflow volume timing are those where DOS» is the
most sensitive to warming (represented by the orange and
yellow symbols in Fig. 9c and d). These watersheds are char-
acterized by historical cold winter temperatures (TNpjr <
—6°C), with snowmelt occurring mostly under sunny con-
ditions (circle symbols) in the Rocky Mountains.

4 Discussion

The new DOS,o metric based on the diel streamflow anal-
ysis quantifies the timing of early snowmelt events and sug-
gests that shifts towards earlier snowmelt will generate larger
shifts toward earlier streamflow in colder, sunnier watersheds
than in warmer, cloudier watersheds where snowmelt is more
interspersed with rain. Despite the intuitive connections be-
tween snowmelt and streamflow, empirically linking changes
in earlier snowmelt rates (Harpold and Brooks, 2018; Mus-
selman et al., 2017) with changes in streamflow amount
(Barnhart et al., 2016) and timing (Stewart et al., 2004) has
been challenging (Weiler et al., 2018). This study repre-
sents of the first empirical analysis of streamflow-induced
snowmelt change across a regional climate gradient not re-
lying only on streamflow volume. Understanding these con-
nections is challenging due to the representative scales at
which snow (point scale) and streamflow (watershed-scale)
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are typically measured and analyzed. For example, evidence
of snowmelt at Snow Telemetry (SNOTEL) sites in the
USA has shown more intermittent snowmelt events at sites
with higher humidity, and future modeling suggests lower-
humidity sites will experience slower, earlier snowmelt (Har-
pold and Brooks, 2018; Musselman et al., 2017). However,
the cascading effects of earlier and slower snowmelt on
streamflow amount and timing remain relatively unexplored
(e.g. Berghuijs et al., 2014) and are potentially affected by
surface and subsurface hydrological connectivity, vegetation
water use, and other processes that are not easily measured
or parameterized. Our diel streamflow analysis has limita-
tions in places dominated by rainfall, as evidenced by higher
false detections in areas with low snow fractions (Fig. 2) and
by the small (or nonexistent) interannual correlation between
DOS;¢ and the metrics DOQ;5 and DOQsg (Fig. 5a and ¢)
in those places. Conversely, the colder and sunnier water-
sheds, primarily in the intermountain region, have strong in-
terannual correlations between DOS,¢ and DOQy5 (Figs. 5a
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and 6a), reflecting the importance of snowmelt (instead of
rain) in controlling streamflow volume timing.

Because the diel streamflow analysis does not require the
many assumptions that are embedded in physically based
models, it is an independent tool that can be used to verify
historical streamflow simulations from subdaily resolved hy-
drological models. For example, land surface models could
be benchmarked against observed snowmelt days based on
the diel streamflow analysis or metrics like DOSyq to better
represent processes associated with snowmelt-driven stream-
flow generation. The diel streamflow analysis is also easier
to implement than detailed process-based models because it
only requires observed hourly streamflow data and solar ra-
diation. If measured solar radiation is not available, it can
be reliably represented by land surface models like NLDAS-
2 (Luo et al., 2003) that assimilate field observations and
remotely sensed radiation (including the effects of clouds)
into an atmospheric modeling framework. In our analysis,
we tested the sensitivity of some modeling decisions, such
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as the correlation cutoff between hourly solar radiation and flow cycles can be detected across the flow regime, (2) it
streamflow used to detect snowmelt days and metrics for focuses on snowmelt driven by solar radiation (and energy
snowmelt timing and found similar sensitivities of DOS;q fluxes synchronized with it), (3) it is sensitive to assumptions
to climate change across different correlation cutoffs and about the lag time between solar radiation and streamflow,
snowmelt timing percentiles (Table AS). Metrics like the and (4) it is sensitive to assumptions about evapotranspira-
first snowmelt day or the first 3 consecutive snowmelt days tion losses. A steep stage—discharge relationship, in which
showed less consistent results (Table AS), likely due to indi- small changes in discharge are associated with large changes
vidual early or midwinter melt events that do not necessarily in stage, is ideal to observe small diel streamflow changes
represent the seasonal watershed behavior. The diel stream- with sufficient precision. The second limitation originates
flow analysis has the following four main limitations that from the assumption that the majority of snowmelt is cor-
need to be examined in future work: (1) it requires a steep related with solar radiation, which is supported by the dom-
enough stage—discharge relationship so that daily stream- inant role of solar radiation in process-based studies of mar-
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make no inference about the cloudiness condition of snowmelt days under the climate change scenario. Blue symbols in panel (a) represent
the mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have > 90 % clear-sky snowmelt days, partly cloudy
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to climate change, as projected by the empirical diel streamflow-based model.

itime and continental snowpacks (Cline, 1997; Jepsen et al.,
2012; Marks and Dozier, 1992). Because our method allows
the lag time between solar radiation and streamflow to vary
within a predefined window, we expect it to capture the ef-
fects of other important energy fluxes, such as sensible heat,
that often lag the diel patterns of solar radiation by sev-
eral hours (Ohmura, 2001). Rain-on-snow events are partic-
ularly challenging to detect with our analysis, as days with a
lower percentage of incoming shortwave radiation (< 80 %
of clear sky) are filtered out to avoid issues with poten-
tial rainfall-dominated diel signals. It may also misclassify
rainfall-driven diel streamflow cycles, although we checked
for rainfall-induced cycles and found that these accounted
for only a small fraction (7 % on average; Fig. 2) of our in-
ferred snowmelt days. The relationships between streamflow
timing (i.e., DOS39, DOQ35, and DOQ50) and meteorologi-
cal drivers in rainier sites showed cross-site and interannual
relationships that are consistent with those in colder, more
snow-dominated places (except for watershed ID 24, 25, and
31; e.g., Fig. 3a and c). The third limitation is that the spa-
tiotemporal variability in snowpack, surface and subsurface
storage, and evapotranspiration will change the magnitude
and lag time of the diel streamflow response (Kirchner et al.,
2020; Lundquist and Cayan, 2002; Lundquist and Dettinger,
2005), which we address by allowing variable watershed-
and month-specific time lags. However, lag times greater
than 24 h, which are associated with large watersheds or large
subsurface storage, will make this method impossible to ap-
ply. The method may also miss early snowmelt-driven diel
cycles in watersheds with dry soils, as the diel signal will
be buffered by the subsurface storage capacity before gener-
ating a measurable streamflow response. Our empirical diel
streamflow-based model implicitly assumes that other vari-
ables not included in the analysis vary together with the pre-
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dictive variables (climate) and neglects watersheds’ physical
(e.g., soil storage) and biological (e.g., vegetation) properties
that do not necessarily covary with climate. The fourth limi-
tation is that evapotranspiration losses must be small relative
to snowmelt inputs, which is necessary because the effect of
evapotranspiration is out of phase with the effect of snowmelt
(Kirchner et al., 2020). Evapotranspiration effects are mini-
mized by focusing on early snowmelt periods, when evapo-
transpiration losses are small (Bowling et al., 2018; Cooper
et al., 2020; Winchell et al., 2016).

Hydrological modeling in land surface models attempts
to physically represent snowpack storage, snowmelt, sub-
surface storage, and its release to the streamflow, which is
challenged by uncertain forcing data and simplified and un-
certain model parameters. For example, snowmelt model-
ing in complex terrain is challenged by steep climate gradi-
ents and by the lack of adequate forcing data (precipitation,
temperature, wind, etc.). Characterizing precipitation phase
and timing in steep watersheds remains challenging in rain-
to-snow transition zones (Harpold et al., 2017; Jennings et
al., 2018; Wayand et al., 2015), which will presumably in-
crease in extent in the future (Klos et al., 2014). Complex
terrain affects radiation fluxes, which are hard to estimate at
kilometer spatial scales (Miiller and Scherer, 2005) used in
most land surface models. Most of our study sites are for-
est covered, which exerts a strong control on the snowpack
mass and energy balance (Lundquist et al., 2013; Pomeroy
et al., 1998; Safa et al., 2021) with spatially heterogeneous
effects on snow accumulation and melt that remain challeng-
ing to model (Broxton et al., 2015; Krogh et al., 2020). The
presence of preferential flow paths through the snowpack
impacts the timing of melt release (Leroux and Pomeroy,
2017) and is not typically included in hydrological models.
Once snowmelt is released from the snowpack, simulating
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for easier interpretation.

(and validating) what fraction flows as subsurface and sur-
face runoff remains difficult. Decades of tracer studies (e.g.,
Godsey et al., 2010; Kirchner, 2003) have shown that stream-
flow during and after hydrologic events (i.e., snowmelt or
rainfall events) is typically old water that has been stored
in the watershed for months to years. Land surface models
like NoahMP-WRF lack realistic groundwater stores to rep-
resent old water and lack hillslope and near-stream processes
(Fan et al., 2019). For example, previous work at Sagehen
Creek (site ID 23) suggests that streamflow remains ~ 80 %
groundwater even during the snowmelt freshet (Uridstegui et
al., 2017), despite a strong snowmelt diel response caused by
pressure changes induced by infiltrating snowmelt. Innova-
tive observations that give new physical insights, like the diel
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streamflow analysis, could bring new information to model-
ing beyond what is possible with typical daily discharge res-
olution (Kirchner, 2006).

The diel-based analysis of snowmelt-driven streamflow to
changing climate gives unique insights over previous efforts
using daily and seasonal streamflow volumes (Berghuijs et
al., 2014; Stewart et al., 2005) and retrospective hydrologi-
cal modeling (Barnhart et al., 2016). Empirical projections of
DOS;¢ under the pseudo global warming scenario (Fig. 8b)
show that colder, drier, and sunnier sites (typical of the
Rocky Mountains) are about twice as sensitive to warming
as warmer, more humid, and cloudier sites (typical of the Pa-
cific Northwest). Humid and warmer sites have lower snow
fractions (< 0.5; more rainfall effects) and, thus, a smaller
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snowmelt signal in the diel streamflow observations. In con-
trast, Harpold and Brooks (2018) showed that winter abla-
tion at SNOTEL sites in humid places, like the Pacific North-
west, are more sensitive to warming than less humid places,
like the southwestern USA. However, Kirchner et al. (2020)
showed general agreement between SNOTEL snowmelt re-
sponse and the snowmelt-induced diel streamflow signal at
the warm Sagehen Creek watershed (site ID 23). The sensi-
tivity of the early snowmelt timing metric (DOS»p) to climate
change is a function of changes in precipitation phase (rain-
fall versus snowfall), snowpack ablation (changes in the pat-
terns of melt and sublimation), and hydrological partitioning
to streamflow versus evaporative loss. Due to the empirical
basis of our analysis, these sensitivities are not easy to dis-
entangle, but the diel analysis is a new source of information
that could help in that effort. The reliability of the empir-
ical diel streamflow-based projections partially depends on
whether climate projections are within or outside the range
of observed climate conditions across the large climatic gra-
dient found in the western USA. Under the pseudo global
warming scenario, cold, sunny watersheds like those in the
Rocky Mountains (site ID 9 and 10) will shift toward more
humid, warmer conditions (Fig. A6), like those observed in
Southern Idaho (site ID 29) and the northern Sierra Nevada
(site ID 23). In contrast, the pseudo global warming scenar-
ios for places like the Pacific Northwest, particularly those
involving changes in atmospheric humidity above 5gm™3
(Fig. A4), have not been observed in the historical record and
therefore are more uncertain. Determining reasonable con-
ditions to apply empirical models that use observed differ-
ences in sites to predict future changes (often called space-
for-time models), like the presented diel streamflow analysis,
has been posed as one of the 23 unsolved problems in hydrol-
ogy (Bloschl et al., 2019).

The sensitivity of historical snowmelt-mediated stream-
flow volume timing (DOQ325 and DOQj5¢) to climate change
differs substantially between the empirical diel streamflow-
based approach and a land surface model, raising ques-
tions about current state-of-the-art projections of early sea-
son streamflow timing from NoahMP-WREF, particularly in
cold watersheds (Fig. 9c and d). The observed data used
in the diel streamflow-based approach have larger and more
variable streamflow timing responses to climate change (10—
17d°C~") in cold, dry, sunny places that are representa-
tive of small, high-elevation Rocky Mountain watersheds
(Fig. 8b). The historical diel streamflow analysis suggests
that NoahMP-WRF may be systematically underpredict-
ing the sensitivity of streamflow volume timing to earlier
snowmelt-induced streamflow in colder and sunnier places
(Fig. 9c) that are most likely to have increased tempera-
ture and increased cloudiness in the future. The same mean
annual future climate scenarios were applied to both ap-
proaches; however, important differences in the streamflow
timing response were found between NoahMP-WRF and diel
streamflow-based projections (Fig. 9c and d). NoahMP-WRF
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underpredicts historical DOQ»5 (Fig. 9a) across most sites,
whereas DOQjs5q is much better represented. It is worth not-
ing that when DOQ;5 simulated by NoahMP-WREF is cal-
culated using surface runoff alone (Fig. A7a), rather than
subsurface plus surface runoff, it performs better against ob-
served DOQ»5. However, NoahMP-WRF projected sensitiv-
ity in streamflow timing to climate change remains signifi-
cantly lower than predictions based on the diel-streamflow
analysis (Fig. A7c). We used these simulations in the anal-
ysis because Noah-MP underlies the U.S. National Water
Model, and thus, its relevance to policy and research is high.
There are many differences in the way that NoahMP-WRF
and the empirical diel streamflow-based approach function.
NoahMP-WREF can track the hourly covariance in precipita-
tion, temperature, and humidity to estimate precipitation par-
titioning between rain and snow. It is also able to represent
hourly radiative and turbulent energy at the snowpack, and
the cold content needed to predict snowmelt. Its physical hy-
drology is also advanced and able to consider antecedent con-
ditions and allow evapotranspiration losses that also modu-
late streamflow. Despite the advantages of land surface mod-
els like NoahMP-WREF in constraining processes for future
projections, the simplicity of diel streamflow-based analysis
also provides several advantages. One of the main advan-
tages is that it is derived from observations, and thus, it is
well constrained by the observed spatial and temporal vari-
ability of snowmelt across watersheds and years (Fig. 7b).
Also, it does not assume anything about the complex spa-
tial distribution of snowpacks and precipitation or subsurface
properties, which are major constraints to physically based
models (Baroni et al., 2010; Christiaens and Feyen, 2001;
Wilby et al., 2002). While the empirical diel streamflow-
based model is not a replacement for land surface models
like NoahMP-WRE, partly because the underlying stream-
flow datasets are not available everywhere, there is added
value in including new benchmarks like the proposed DOS»¢
to further constrain modeling decisions and improve model
fidelity required for reliable and accurate hydrological pre-
dictions.

5 Conclusions

Water management in the western USA requires accurate
predictions of how both short-term climate variability and
long-term climate change will alter snowmelt and stream-
flow. Differences in predictions of snowmelt-induced stream-
flow between empirical diel streamflow-based projections
and a land surface model (NoahMP-WRF) raise important
questions about the sensitivity of streamflow timing to cli-
mate change, particularly in cold regions, and its impact on
water planning. Significant differences exist in the way diel
streamflow-based and land surface models predict changes
to snowmelt and streamflow timing, with both approaches
having strengths and weaknesses; however, the land sur-
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face model misrepresents historical patterns in streamflow
response that are more accurately estimated by the empiri-
cal model. We show that DOSy is a strong predictor of the
early season hydrograph response, particularly in cold, sunny
areas where the NoahMP-WRF streamflow timing simula-
tions lack sensitivity to climate change. Rigorously validat-
ing future model predictions is impossible, but snowmelt
and streamflow timing, inferred from diel streamflow cycles,
could be used to refine land surface models and better de-
termine the risk to valuable snow water resources (Barnett
et al., 2005; Sturm et al., 2017; Viviroli et al., 2007), partic-
ularly in cold regions. Our novel approach can complement
the benchmarking or calibration of physically based hydro-
logical models beyond typical benchmarking against daily
streamflow or snow accumulation metrics. For example, the
snowmelt timing metric DOS;( based on diel streamflow ob-
servations could be used to test how well land surface mod-
els, running at subdaily scales and fine spatial resolution, can
reproduce the historical snowmelt regime across watersheds
and years. As land surface models move towards real applica-
tion for water management (Kopp et al., 2018), the hydrology
community must seek ways to test and improve them using
widely available datasets if we are to meet the grand water
management challenges posed by climate change in moun-
tainous regions.
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Figure Al. (a) Number of available years with less than 30 %, 20 %, and 10 % gaps in days with hourly streamflow records between
1 December and 1 August. Gauge ID is as presented in Table 2. Numbers of years at site ID 13 are the same for all thresholds (overlapping
symbols). (b) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation cutoffs (0.5, 0.6, 0.7,
and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation.
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Figure A4. Historic winter climate variability for each predictor used in the stepwise MLR model (Eq. 1) for the period between November
and DOS; in blue. (a) Precipitation, (b) air temperature, (c¢) absolute humidity, and (d) solar radiation. In red are the perturbed mean
climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis suggests that most of the
climate change signal from NoahMP-WRF pseudo global warming is within the observed climate variability, except for air temperature
and atmospheric humidity in some watersheds. Blue symbols (circle, square, and diamond) associated with historical values represent the
mean annual percentage of clear-sky snowmelt days, where sunny sites have > 90 % clear-sky snowmelt days, partly cloudy have between
70 % and 90 %, and cloudy have < 70 %; clear-sky snowmelt days are defined as those with more than 80 % of the potential clear-sky solar
radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming scenario, and

thus, we use a five-point star (in red) for the future scenario.
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Figure A6. (a) Principal component analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and shortwave
radiation (SWR) at each watershed and the changes associated with the pseudo global warming as simulated by WREF. Panel (b) shows the
same analysis but excluding precipitation from the analysis. Blue symbols (circle, square, and diamond) associated with historical values
represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have > 90 % clear-sky snowmelt days, partly cloudy
have between 70 % and 90 %, and cloudy have < 70 %; clear-sky snowmelt days are defined as those with more than 80 % of the potential
clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt days under the RCP8.5 pseudo global
warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers next to blue symbols represent the gauge IDs
as presented in Table 2.
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Figure A7. Same as Fig. 9 but using streamflow timing metrics from NoahMP-WRF for a RCP8.5 pseudo global warming scenario, calculated
using surface runoff only instead of using surface plus subsurface runoff (as in Fig. 6). Note the improved fit in historical DOQ;5; however,
this analysis yields very similar results to those in Fig. 6, with NoahMP-WREF streamflow simulations being much less sensitive to climate
change than the empirical diel streamflow-based model suggests. Panels (a) and (b) compare historical against projected values between
NoahMP-WREF and the empirical diel streamflow-based model. Panels (¢) and (d) compare the projected change (future minus historical)
between NoahMP-WRF and the diel streamflow-based model, colored by the sensitivity of DOS,( to climate change as projected by the
empirical diel streamflow-based model (Fig. 5b). Symbols surrounded by black circles indicate sites that were excluded from the regression
analysis in Fig. 3 (rainier site ID 24, 25, and 31). Symbols (circle, square, and diamond) represent the historical mean annual percentage of
clear-sky snowmelt days, where sunny sites have > 90 % clear-sky snowmelt days, partly cloudy have between 70 % and 90 %, and cloudy
have < 70 %; clear-sky snowmelt days are defined as those with more than 80 % of the potential clear-sky solar radiation. We make no
inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming climate scenario; however, red symbols
(upper panels) follow the same symbology for easier interpretation.
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Table A1. Coefficient of determination (Rz) and slope (in parentheses; day/day) of the linear regression between different early snowmelt
timing metrics and DOQ;5 and DOQs(, as presented in Fig. 5, for different correlation cutoffs (r) between hourly solar radiation and
streamflow. DOS x represent the date when the xxth percentile of snowmelt days occurs. Site ID 24, 35, and 31 are excluded from the linear
relationship. Bolded numbers are those used in the result and discussion sections.

Early snowmelt timing metrics Versus Versus
DOQys DOQs0

r > 0.5 First snowmelt day 0.13 (0.61) 0.06 (0.25)
First 3 consecutive snowmelt days 0.5 (0.71) 0.4 (0.4)

DOSs5 0.37 (0.83) 0.28 (0.45)

DOS 0.49 (0.91) 0.43(0.52)

DOSy 0.69 (1.1)  0.66 (0.67)

DOS3 0.73 (1.1)  0.72 (0.68)

r > 0.6  First snowmelt day 0.24 (0.73) 0.15(0.35)
First 3 consecutive snowmelt days  0.59 (0.77)  0.49 (0.44)

DOS5 0.46 (0.82) 0.37 (0.45)

DOS g 0.63 (0.97) 0.53 (0.55)

DOSyg 0.76 (1.05) 0.72 (0.64)

DOS3g 0.77 (1.07)  0.78 (0.67)

r > 0.7  First snowmelt day 0.42 (0.73) 0.3 (0.39)
First 3 consecutive snowmelt days  0.62 (0.85)  0.59 (0.53)

DOS5 0.61 (0.86) 0.51 (0.49)

DOSqg 0.71 (0.94) 0.63 (0.55)

DOSyg 0.76 (0.99) 0.75 (0.62)

DOS3g 0.79 (1.03)  0.82 (0.65)

r > 0.8  First snowmelt day 0.66 (0.87) 0.54 (0.5)
First 3 consecutive snowmelt days  0.76 (1.09)  0.78 (0.71)

DOS5 0.79 (1.01) 0.7 (0.6)

DOS 0.83 (1.03) 0.78 (0.64)

DOS; 0.85 (1.07) 0.85 (0.68)

DOS3 0.85(1.1)  0.88 (0.72)

Table A2. Root mean square error (RMSE) and coefficient of determination (R?; in parentheses) associated with several stepwise multiple
linear regressions (similar to the one in Eq. 1) using different early snowmelt timing metrics (e.g., Eq. 1 uses DOS,() and correlation
cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSy represents the date when the xxth percentile
of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Eq. (1), which is also shown in Fig. 7a.

Early snowmelt timing metrics r>0.5 r>0.6 r>0.7 r>0.8
First snowmelt day 11.1(0.87) 12.3(0.88) 15.2(0.88) 21.7(0.82)
First 3 consecutive snowmelt days 24.6 (0.8) 24.8 (0.8) 26.1(0.77) 20.2 (0.8)
DOS5 14.9 (0.83) 15.4(0.85) 17.3(0.86) 21.1(0.8)
DOSqp 16.4 (0.82) 17.3(0.83) 19.9(0.82) 19.6(0.82)
DOSyg 16.5(0.82) 17.9(0.82) 18.9(0.82) 17.5(0.83)
DOS3 16.3(0.82) 17.4(0.82) 17.8(0.82) 16.3(0.83)
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Table A3. Coefficient of determination (R2) for the site-averaged stepwise multiple linear regression, analogous to that presented in Fig. 7b,
for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt days metrics).
DOSx represents the date when the xxth percentile of snowmelt days occurs. The bolded number is associated with the stepwise MLR in
Eq. (1) using DOSyg.

Early snowmelt timing metrics r>05 r>06 r>07 r=>0.8
First snowmelt day 0.8 0.82 0.89 0.79
First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69
DOSs 0.84 0.85 0.87 0.83
DOSg 0.84 0.85 0.86 0.84
DOS»g 0.83 0.82 0.82 0.82
DOS3 0.83 0.81 0.81 0.8

Table A4. Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly solar
radiation and streamflow and different early snowmelt metrics. These stepwise MLR models follow the same structure as that of Eq. (1);
however, in this case, predictors were standardized to estimate their relative importance. Note: AT — air temperature; Pp — precipitation; RH
—relative humidity; SWR — incoming shortwave radiation. DOS; represent the date when the xxth percentile of snowmelt days occurs. The
asterisk™ indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling decisions used in the
result and discussion sections.

Early snowmelt timing metrics Bi B2 B3 B4 Bs Beo B7 Bs By Bio
(AT) (Pp) (RH) (SWR) (ATxPp) (ATxRH) (ATxSWR) (PpxRH) (PpxSWR) (RH x SWR)
r>0.5 First snowmelt day™* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
First 3 consecutive snowmelt days —0.41  0.74 0.002 0.38 0.19 n/a n/a —0.33 n/a  —0.19
DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSo —-0.55 045 0.22 0.56 0.26 n/a n/a n/a 023 -0.21
DOS»o —-0.39 046 0.33 0.68 0.10 n/a n/a —0.10 0.12  —0.28
DOS3p —-0.32  0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 —0.27
r > 0.6 First snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
First 3 consecutive snowmelt days  —0.39  0.69 0.03 0.43 0.15 n/a n/a —0.26 0.08 —0.21
DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOS o 054 042 0.18 0.52 0.23 n/a n/a n/a 022 —-0.16
DOSyo —-0.35 041 0.31 0.69 0.10 n/a n/a —0.08 0.10 —0.24
DOS3 —-0.30 033 0.37 0.75 0.07 n/a n/a n/a 0.15 —0.24
r>0.7 First snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
First 3 consecutive snowmelt days —0.45  0.69 0.03 0.46 n/a 0.11 n/a —0.16 0.09 -0.23
DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSg -0.46 039 0.20 0.55 0.21 —0.08 n/a —0.09 0.11  —0.17
DOSyo —-0.31  0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 —0.24
DOS3p -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17  —0.26
r > 0.8 First snowmelt day —-0.57 041 0.08 0.34 0.28 n/a n/a n/a 021 —0.06
First 3 consecutive snowmelt days —0.35  0.43 0.26 0.67 n/a 0.09 n/a n/a 022 -0.27
DOSs5 —-043  0.39 0.21 0.56 0.23 n/a n/a —0.09 0.14 —0.19
DOS1o —-0.34 037 0.28 0.68 0.16 n/a n/a —0.09 0.13 —0.26
DOS»o -0.31  0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29
DOS3p —-0.29 0.29 0.37 0.76 0.09 n/a n/a n/a 0.18 —0.26

Note: n/a stands for not applicable.
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Table AS. Coefficient of determination (R2) and slope (in parentheses; d °C—1y of the linear regression between the empirical diel
streamflow-based model sensitivity to warming and sites’ mean winter air temperature as presented in Fig. 8b, for different early snowmelt
day metrics and correlation cutoffs () between hourly solar radiation and streamflow. DOS x represent the date when the xxth percentile of
snowmelt days occurs. Bolded numbers are associated with the modeling decisions used in the result and discussion sections.

Early snowmelt timing metrics r>0.5 r>0.6 r>0.7 r>0.8
First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23(=0.75)
First 3 consecutive snowmelt days  0.02 (—0.30) 0.08 (—0.51)  0.00 (—0.05) 0.00 (—0.07)
DOSs5 0.00 (0.04) 0.01 (—0.18) 0.02(—0.32) 0.25(—1.00)
DOSqo 0.00 (—0.09) 0.25(—0.86) 0.37(—1.17) 0.2 (—0.66)
DOSyg 0.27 (—0.68) 0.35(—0.89) 0.37(-=0.99)  0.33 (-0.75)
DOS3 0.22 (—0.57) 0.26(—0.65) 0.27(—0.66) 0.20 (—0.52)
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