
Hydrol. Earth Syst. Sci., 26, 3393–3417, 2022

https://doi.org/10.5194/hess-26-3393-2022

© Author(s) 2022. This work is distributed under

the Creative Commons Attribution 4.0 License.

Diel streamflow cycles suggest more sensitive snowmelt-driven

streamflow to climate change than land surface modeling does

Sebastian A. Krogh1,2,3, Lucia Scaff4, James W. Kirchner5,6, Beatrice Gordon1, Gary Sterle2, and Adrian Harpold1,2

1Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89557, USA
2Global Water Center, University of Nevada, Reno, Nevada 89557, USA
3Water Resources Department, Faculty of Agricultural Engineering, University of Concepción, Chillán 3780000, Chile
4Global Water Futures, Canada First Research Excellence Fund (CFREF),

University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada
5Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
6Mountain Hydrology Research Unit, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland

Correspondence: Sebastian A. Krogh (skrogh@udec.cl)

Received: 19 August 2021 – Discussion started: 20 August 2021

Revised: 24 May 2022 – Accepted: 2 June 2022 – Published: 5 July 2022

Abstract. Climate warming will cause mountain snowpacks

to melt earlier, reducing summer streamflow and threaten-

ing water supplies and ecosystems. Quantifying how sensi-

tive streamflow timing is to climate change and where it is

most sensitive remain key questions. Physically based hy-

drological models are often used for this purpose; however,

they have embedded assumptions that translate into uncer-

tain hydrological projections that need to be quantified and

constrained to provide reliable inferences. The purpose of

this study is to evaluate differences in projected end-of-

century changes to streamflow timing between a new em-

pirical model based on diel (daily) streamflow cycles and re-

gional land surface simulations across the mountainous west-

ern USA. We develop an observational technique for de-

tecting streamflow responses to snowmelt using diel cycles

of incoming solar radiation and streamflow to detect when

snowmelt occurs. We measure the date of the 20th percentile

of snowmelt days (DOS20) across 31 western USA water-

sheds affected by snow, as a proxy for the beginning of

snowmelt-initiated streamflow. Historic DOS20 varies from

mid-January to late May among our sites, with warmer basins

having earlier snowmelt-mediated streamflow. Mean annual

DOS20 strongly correlates with the dates of 25 % and 50 %

annual streamflow volume (DOQ25 and DOQ50, both R2 =

0.85), suggesting that a 1 d earlier DOS20 corresponds with

a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical pro-

jections of future DOS20 based on a stepwise multiple linear

regression across sites and years under the RCP8.5 scenario

for the late 21st century show that DOS20 will occur on av-

erage 11 ±4 d earlier per 1 ◦C of warming. However, DOS20

in colder watersheds (mean November–February air temper-

ature, TNDJF < −8 ◦C) is on average 70 % more sensitive to

climate change than in warmer watersheds (TNDJF > 0 ◦C).

Moreover, empirical projections of DOQ25 and DOQ50 based

on DOS20 are about four and two times more sensitive to cli-

mate change, respectively, than those simulated by a state-of-

the-art land surface model (NoahMP-WRF) under the same

scenario. Given the importance of changes in streamflow

timing for water resources, and the significant discrepancies

found in projected streamflow sensitivity, snowmelt detec-

tion methods such as DOS20 based on diel streamflow cycles

may help to constrain model parameters, improve hydrolog-

ical predictions, and inform process understanding.

1 Introduction

Earlier streamflow caused by earlier snowmelt is of great

concern in a changing climate (Barnett et al., 2005; Harpold

and Brooks, 2018; Musselman et al., 2017; Stewart et al.,

2004, 2005). Earlier winter and spring streamflow volume

comes at the expense of later summer streamflow in regions

like the western United States (USA; Hidalgo et al., 2009;

McCabe and Clark, 2005; Regonda et al., 2005; Stewart et
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al., 2004, 2005) and challenges reservoir operations (Barnett

et al., 2005; Immerzeel et al., 2020; Viviroli et al., 2011).

Furthermore, ecosystems may evaporate more water as re-

ductions in albedo increase energy inputs (Meira Neto et

al., 2020; Gordon et al., 2022), decreasing runoff from up-

land forested watersheds (Foster et al., 2016; Jepsen et al.,

2018; Milly and Dunne, 2020). More than 50 % of moun-

tainous watersheds play essential roles in supporting down-

stream systems (Viviroli et al., 2007), and snowpack changes

are likely to increase lowland agriculture water stress (Im-

merzeel et al., 2020). However, it remains difficult to predict

how much streamflow timing and amount will shift in future

climates (Gordon et al., 2022) due to altered snow accumula-

tion patterns (Mote et al., 2018) and melt rates (Musselman

et al., 2017) and shifts from snowfall to rainfall (Klos et al.,

2014).

Physically based hydrological models are typically used to

predict how snow accumulation and melt will interact with

the critical zone (CZ) to affect short-term flooding and sea-

sonal water supply (Kopp et al., 2018; Wood and Letten-

maier, 2006). In mountainous regions like the western USA,

models need to accurately simulate snow processes across

watersheds with varying snowpack conditions (Serreze et al.,

1999) and then transport and store that water in the CZ with

varying subsurface properties (Brooks et al., 2015). More

precipitation falling as rain instead of snow will result in

streamflow dynamics that more closely mirror the amount

and timing of rainfall. Precipitation phase (rainfall versus

snowfall) is mediated by basin elevation and hypsometry

(Jennings et al., 2018; Wayand et al., 2015), which also influ-

ences precipitation amounts (Houze, 2012), with higher ele-

vations and steeper watersheds typically having higher pre-

cipitation and snowfall. Solar radiation is the primary energy

source for snowmelt in snow-dominated montane watersheds

(Cline, 1997; Marks and Dozier, 1992). Conversely, cloudi-

ness lowers solar radiation and melt rates (Sumargo and

Cayan, 2018). Shallower snowpacks have less cold content

and begin to melt earlier when solar radiation is lower (Har-

pold et al., 2012; Harpold and Brooks, 2018; Musselman et

al., 2017), which shifts streamflow earlier (Clow, 2010). Stor-

age and drainage of water in the CZ control the sensitivity of

streamflow to earlier rain or meltwater inputs. For example,

snowmelt-mediated spring streamflow timing is more sensi-

tive to climate change in watersheds with rapid subsurface

drainage than in landscapes with deep groundwater reser-

voirs that drain slowly (Safeeq et al., 2013). In contrast, slow-

draining watersheds have greater sensitivity to snowmelt-

mediated summer streamflow volume from climate change

(Tague and Grant, 2009). The complexity of these storage

relationships is exemplified by isotopic evidence showing

that the fraction of streamflow that is young water (less than

3 months old) is smaller in steeper watersheds (Jasechko

et al., 2016), suggesting that physically modeling interac-

tions between CZ water storage and changing hydrometeo-

rology will be challenging in mountainous areas. In a recent

data-driven review, Gordon et al. (2022) proposed a predic-

tive framework composed of three testable and interrelated

mechanisms to infer changes to snowmelt-driven streamflow

response under warming. Such mechanisms are associated

with snow season energy and mass exchanges and the inten-

sity of snow season liquid water input and the synchrony of

energy and water availability, and their analysis highlights

the complexities in predicting future streamflow in regions

where multiple mechanisms interact.

Hydrologists typically apply the following two types of

modeling tools to predict streamflow: empirical models and

more mechanistically oriented models (conceptual or phys-

ically based land surface models). Empirical models as-

sume that long-term and often site-to-site statistical relation-

ships among predictor variables (e.g., precipitation and air

temperature) and water fluxes (e.g., evapotranspiration and

streamflow) can be used to understand and model their likely

changes over time or space. Empirical models used to pre-

dict changes over time (sometimes referred to as space-for-

time substitutions) have been used to predict responses to

climate change in fields such as hydrology (Goulden and

Bales, 2014; Jepsen et al., 2018; Sivapalan et al., 2011), bio-

diversity (Blois et al., 2013), and tree growth (Klesse et al.,

2020). Such models use retrospective information from dif-

ferent places (space), typically spanning wide range of condi-

tions (e.g., climate gradients), to predict future changes over

time. For example, observed characteristics from warm re-

gions maybe used to infer future changes in cold regions due

to global warming. A limitation of this approach is that it ne-

glects non-correlated (or independent) changes in spatially

variable factors (Jepsen et al., 2018). For example, hetero-

geneous patterns of warming, variations in precipitation and

vegetation, or changes that occur at different temporal scales

(e.g., development of soil properties over hundreds to thou-

sands of years versus shifts from rain to snow over hours) are

implicitly neglected in such empirical frameworks.

Conversely, physically based models embed state-of-the-

art physical understanding of hydrological processes. These

models typically require some degree of calibration or val-

idation to observations (e.g., daily streamflow) to improve

and assess their predictive skill. The current generation of re-

gional weather models using the Weather Research and Fore-

casting model (WRF; Skamarock et al., 2008) coupled to the

Noah-Multiple Parameterization land surface model (Noah-

MP; Niu et al., 2011), which we refer as NoahMP-WRF, has

shown promising results for modeling atmospheric and snow

processes in the contiguous USA (He et al., 2019; Liu et al.,

2017; Musselman et al., 2017; Scaff et al., 2020). For ex-

ample, snow simulations have been used to quantify moun-

tain snowmelt and streamflow response to climate change

(Musselman et al., 2017, 2018). These simulations use a

pseudo global warming approach, which perturbs the histori-

cal climate with a climate change signal from an ensemble

of global climate models (GCMs); using this perturbation

avoids systemic biases in the GCMs and avoids issues re-
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lated to their interannual variability (Liu et al., 2017). Com-

parisons between land surface models and empirically based

predictions of future streamflow are rare but valuable (Jepsen

et al., 2018) and could help to diagnose modeling deficien-

cies and improve predictions.

New observations of streamflow generation during

snowmelt could be key to improving current hydrological

models. Determining whether streamflow response was pro-

duced by rainfall or snowmelt is an important but diffi-

cult task (Weiler et al., 2018). Few simple, low-cost obser-

vational tools are available to separate rainfall-driven from

snowmelt-driven contributions to streamflow or to separate

this year’s snowmelt from the previous years’ melt and stor-

age. One method that can be straightforwardly applied to ex-

isting long-term observations is based on coupled diel cy-

cles in solar radiation, snowmelt, and streamflow (Kirchner

et al., 2020; Lundquist and Cayan, 2002). Diel (24 h) cy-

cles in streamflow and shallow groundwater levels can re-

sult from daily cycles in snow-/ice melt and evapotranspi-

ration, which are both ultimately driven by solar radiation

inputs (Kirchner et al., 2020). This mechanistic response

has been used to study watershed properties like kinematic

wave celerity (Kirchner et al., 2020), the impact of snowpack

variability on streamflow timing (Lundquist and Dettinger,

2005), groundwater fluctuations (Loheide and Lundquist,

2009), and transitions from snowmelt to evapotranspiration-

dominated streamflow fluctuations (Kirchner et al., 2020;

Mutzner et al., 2015; Woelber et al., 2018). More recently,

Kirchner et al. (2020) combined local observations and re-

mote sensing to show that streamflow diel response was

tightly controlled by the timing of snowpack disappearance.

However, it remains unknown whether information embed-

ded in the diel streamflow response following snowmelt

events can be used to inform streamflow predictions un-

der climate change and whether such projections are con-

sistent with current state-of-the-art hydrological modeling.

The purpose of this research is to evaluate whether land sur-

face hydrology model simulations and a new diel streamflow-

based empirical model yield similar projected end-of-century

changes in streamflow volume timing across mountainous

western USA headwater watersheds. To this aim, we extend

the diel cycle index approach of Kirchner et al. (2020) using

diel streamflow observations to detect days when streamflow

is coupled to snowmelt inputs (i.e., a snowmelt-dominated

streamflow event) and investigate their contributions to his-

torical variability in streamflow volume timing. We then

compare empirical diel streamflow-based projections by the

end of the century under a RCP8.5 pseudo global warm-

ing scenario against predictions from a state-of-the-art land

surface model (under the same climate scenario) across

31 mountainous watersheds in the western USA to answer

the following questions:

1. Do historical diel streamflow cycles indicate earlier

snowmelt in warmer watersheds and years, and can we

use diel observations of snowmelt to predict the timing

of streamflow volume?

2. In which watersheds is the timing of snowmelt the most

sensitive to climate change, as projected by an empirical

diel streamflow-based model?

3. Do historical streamflow volume timings and future em-

pirical diel streamflow-based projections diverge from

commonly used, state-of-the-art land surface models?

A list with the abbreviations used in this study is presented

in Table 1.

2 Methods

2.1 Study domain and data

We studied 31 mountainous watersheds in the western USA

(Table 2), spanning snow fractions from 0.27 to 0.78

(Fig. A3a), aridity index values from 0.22 to 2.86 (Addor

et al., 2017), and soil depths from 0.27 to 2.52 m (Addor et

al., 2017; Pelletier et al., 2016; Table 2). These watersheds

are part of the CAMELS (Catchments Attributes and ME-

teorology for Large-sample Studies) dataset (Addor et al.,

2017; Newman et al., 2015), which provides daily stream-

flow and meteorological forcing, among other observed and

simulated hydrometeorological variables at the watershed

scale. These watersheds were chosen because their stream-

flows are unregulated, they have relatively small drainage

areas (< 250 km2), and they are at relatively high eleva-

tions (> 1000 m a.s.l. – above sea level). This last crite-

rion was introduced to focus on watersheds with snowmelt-

driven streamflow regimes. The names, locations, elevations,

slopes, drainage areas, and other key characteristics of the

31 watersheds are presented in Table 2.

The data used in this analysis include hourly streamflow,

incoming shortwave radiation, mean daily relative humidity,

air temperature, and precipitation. Hourly streamflow was

obtained from the U.S. Geological Survey (USGS). Hourly

incoming shortwave radiation is from phase 2 of the National

Land Data Assimilation System (NLDAS-2; Xia et al., 2012)

at the nearest grid point to the watershed outlet. Mean daily

relative humidity, air temperature, and precipitation at the

watershed scale are from CAMELS, based on the Daymet

dataset (https://daymet.ornl.gov/, last access: 20 June 2022),

which in turn is interpolated from existing ground observa-

tions. Available hourly streamflow records vary significantly

across watersheds, extending back to 1986 for some sites.

Figure A1a shows the number of years that have more than

70 %, 80 %, and 90 % of days with hourly records for the pe-

riod between 1 December and 1 August. Based on this pre-

liminary analysis, we selected water years with more than

80 % of days with hourly streamflow records. This threshold

for data availability results in most watersheds having more
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Table 1. List of abbreviations.

Abbreviation Definition

CAMELS Catchments Attributes and MEteorology for Large-sample Studies

DOQ25 Date of 25 % of annual streamflow volume

DOQ50 Date of 50 % of annual streamflow volume

DOS20 The day when the 20th percentile of the snowmelt days occurs, with snowmelt days as defined by the streamflow diel cycle analysis

GCM Global Climate Model

MLR Multiple linear regression model

NLDAS-2 Phase 2 of the National Land Data Assimilation System

Noah-MP Noah Multiple Parameterization land surface model

NoahMP-WRF Simulations by WRF using the Noah-MP land surface model

RCP8.5 Representative Concentration Pathway 8.5

WRF Weather Research and Forecasting Model

Table 2. List of the 31 watersheds from the CAMELS dataset included in this study. Data are from Addor et al. (2017). Note: USGS is the

United States Geological Survey.

ID USGS ID Watershed name Drainage Mean Mean Lat. Long. Snow Aridity Soil

area elevation slope (◦ N) (◦ W) fraction index depth

(km2) (m a.s.l.) (m km−1) (m)

1 06278300 Shell Creek, WY 58.9 2953 86.7 44.51 107.40 0.73 1.32 0.74

2 06311000 North Fork Powder River, WY 61.2 2516 41.1 44.03 107.08 0.57 1.68 0.90

3 06614800 Michigan River, CO 4.0 3297 145.8 40.50 105.87 0.76 1.29 0.57

4 06622700 North Brush Creek, WY 98.7 2837 71.3 41.37 106.52 0.72 1.48 2.20

5 06623800 Encampment River, WY 187.7 2971 90.9 41.02 106.82 0.75 1.06 1.14

6 06632400 Rock Creek, WY 163.0 3002 69.0 41.59 106.22 0.74 1.46 2.52

7 08267500 Rio Hondo, NM 96.3 3007 149.1 36.54 105.56 0.47 2.12 0.50

8 08377900 Rio Mora, NM 139.0 3018 105.3 35.78 105.66 0.47 1.50 0.85

9 09034900 Bobtail Creek, CO 15.7 3571 102.8 39.76 105.91 0.73 1.16 0.47

10 09035900 South Fork of Williams Fork River, CO 72.8 3241 123.9 39.80 106.03 0.69 1.44 0.56

11 09047700 Keystone Gulch, CO 23.6 3334 103.8 39.59 105.97 0.63 1.92 0.45

12 09066200 Booth Creek, CO 16.1 3072 145.4 39.65 106.32 0.71 1.40 0.27

13 09066300 Middle Creek, CO 15.5 2944 143.8 39.65 106.38 0.69 1.49 0.48

14 09352900 Vallecito Creek, CO 188.2 3283 156.1 37.48 107.54 0.63 1.24 0.50

15 09378170 South Creek, UT 21.9 2308 67.7 37.85 109.37 0.50 1.79 1.16

16 09378630 Recapture Creek, UT 10.4 2125 53.4 37.76 109.48 0.50 1.88 0.55

17 09386900 Rio Nutria, NM 184.9 2342 37.4 35.28 108.55 0.31 2.48 1.07

18 09404450 East Fork Virgin River, UT 193.0 2070 56.2 37.34 112.60 0.42 2.86 0.82

19 09492400 East Fork White River, AZ 129.0 2469 65.4 33.82 109.81 0.27 1.88 0.92

20 10205030 Salina Creek, UT 134.6 2489 76.2 38.91 111.53 0.58 2.46 0.67

21 10234500 Beaver River, UT 236.4 2499 95.2 38.28 112.57 0.63 2.06 0.60

22 10336660 Blackwood Creek, CA 29.8 2113 83.5 39.11 120.16 0.67 0.77 0.79

23 10343500 Sagehen Creek, CA 27.6 2157 81.2 39.43 120.24 0.71 1.10 1.20

24 12147600 South Fork Tolt River, WA 14.1 1068 159.4 47.71 121.60 0.27 0.22 0.63

25 12178100 Newhalem Creek, WA 69.7 1305 255.7 48.66 121.24 0.53 0.33 0.54

26 12381400 South Fork Jocko River, MT 151.0 1877 102.2 47.20 113.85 0.59 0.97 0.62

27 12447390 Andrews Creek, WA 58.1 1701 172.6 48.82 120.15 0.78 0.86 0.47

28 13018300 Cache Creek, WY 27.9 2198 109.5 43.45 110.70 0.66 1.50 0.69

29 13083000 Trapper Creek, ID 133.2 1863 69.1 42.17 113.98 0.49 2.11 1.04

30 13240000 Lake Fork Payette River, ID 125.6 1965 110.1 44.91 116.00 0.73 0.75 0.44

31 14158790 Smith River, OR 40.6 1027 116.4 44.33 122.05 0.37 0.36 0.85

than 5 years to analyze (except for site ID 10 and 30 with

4 years).

2.2 Snowmelt and streamflow diel coupling

To identify days when solar radiation-driven snowmelt

is coupled to the streamflow response, hereafter called

snowmelt days for simplicity, we calculated the correlation

between hourly values of solar radiation and lagged stream-
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Figure 1. Examples of the diel cycle analysis applied to two watersheds located in (a, b) California (WY2016) and (c, d) Colorado (WY2014).

Panels (a) and (c) show hourly solar radiation (orange) and streamflow (blue). The first statistically significant (p < 0.01) lagged Spearman

correlation (r > 0.6) between streamflow and solar radiation is shown in a text box for clear-sky days only (> 80 % of clear-sky solar

radiation). Panels (b) and (d) show the solar radiation-driven snowmelt days (blue circles) on top of the annual hydrograph (semi-log scale)

for the period of analysis (white background; December to July).

flow (Fig. 1). A snowmelt day is defined as a day in which

the Spearman correlation between hourly solar radiation and

lagged streamflow is statistically significant (p value ≤ 0.01)

and exceeds a given cutoff. Due to the lagged diel streamflow

response after snowmelt, we lagged diel streamflow from so-

lar radiation between 6 and 18 h, computed the correlation

of all combinations, and kept those statistically significant

correlations that were above a predefined correlation cut-

off. Although having both a correlation cutoff and a statis-

tical significance criterion may be redundant, we used both

to guarantee significant correlations above different corre-

lation cutoffs. We tried several correlation cutoffs (r > 0.5,

0.6, 0.7, 0.8, and 0.9; see Fig. 1 for r > 0.6) to assess their

effects on the detection algorithm (Fig. A2). The prelimi-

nary lag window of 6 to 18 h was used to avoid confound-

ing snowmelt signals with evapotranspiration (ET)-induced

streamflow diel responses (Kirchner et al., 2020; Mutzner

et al., 2015; Woelber et al., 2018). ET-induced streamflow

diel response can positively correlate with solar radiation

with lags below 6 h, due to the previous day’s ET, and above

18 h, due to the next day’s ET diurnal signal (Kirchner et

al., 2020). However, this preliminary lag window may in-

correctly select days with a rainfall-induced streamflow diel

response or rain-on-snow events. To minimize this, we fur-

ther restricted the lags that could be selected based on op-

timum lags from snowmelt days with clear skies. Clear-sky

days were defined as days with solar radiation greater than

80 % of the clear-sky solar radiation value (gray areas in left

panels on Fig. 1). This lag window was defined on a monthly

and watershed basis and was calculated as the lags between

the 10th and 90th percentile of clear-sky days with Spear-

man correlations above 0.8. This second filter also helped to

avoid the incorrect selection of ET-induced streamflow diel

response, as it minimized the chance of selecting 18 h lags

that can be associated with ET. Despite efforts to select only

snowmelt-driven streamflow diel responses, this methodol-

ogy does not guarantee that rainfall-driven streamflow diel

changes with lags within our lag window will always be ex-

cluded. Excluding such cases would require hourly precip-

itation observations, which are unavailable at some of our

study watersheds. However, we believe that any such cases

will minimally affect the results of our analysis.

To better assess the potential impact that rainfall may have

on our proposed diel analysis, particularly on the effect of

rain-on-snow events, we analyzed which days classified as

snowmelt days also had rainfall. We assessed daily rain-

fall using the daily precipitation time series from CAMELS

based on the Daymet product for each watershed. A false

detection rate metric was computed for each watershed, in

which every day classified as a snowmelt day with daily

precipitation above 5 mm and a mean daily air temperature

above 2 ◦C was assumed to be misclassified (Fig. 2). A false

detection rate of 100 % means that all snowmelt days were

misclassified and 0 % means that no days had significant

rainfall. On average, the false detection rate was estimated

at 7 %, with a standard deviation of 5 %, and only watershed
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Figure 2. Percentage of days that were classified as having

snowmelt following the diel streamflow cycle analysis that also

had daily precipitation above 5 mm and a mean daily air temper-

ature above 2 ◦C. Symbols are associated with the mean annual per-

centage of snowmelt days under clear-sky conditions. Sunny sites

(circles) have > 90 %, clear-sky snowmelt days, partly cloudy sites

(squares) have between 70 % and 90 %, and cloudy sites (diamonds)

have < 70 % clear-sky snowmelt days. Clear-sky snowmelt days are

defined as those with more than 80 % of the potential clear-sky solar

radiation.

ID 24 and 31 (located in WA and OR, respectively) exceeded

15 %, with 21 % and 29 %, respectively. This suggests that

the effect of potential rainfall-induced diel streamflow cycles

(including rain-on-snow events) in most watersheds is low

(except for watershed ID 24 and 31), supporting further anal-

ysis. We also assessed the mean cross-site false detection rate

for precipitation thresholds of 1 and 10 mm and found rea-

sonable values of 12 % and 3 %, respectively. However, we

believe that 1 mm is not a reasonable threshold, as a 1 mm

rainfall event would be unlikely to produce a distinguishable

diel streamflow signal and could represent error/noise in the

Daymet product.

2.3 The empirical diel streamflow-based model

We defined the day when the 20th percentile of the snowmelt

days (as defined in Sect. 2.2) occurs (DOS20) as a new met-

ric to characterize the seasonality of early snowmelt for each

water year and watershed. However, other metrics such as the

5th, 10th, and 30th percentiles (presented in the Appendix)

were also investigated to assess the impact of this choice on

the analysis. We chose this metric because we expected it to

be associated with the timing of streamflow volume, and the

choice of slightly earlier or later snowmelt day metrics (e.g.,

DOS10 or DOS30) would not substantially change our results.

We fitted a stepwise multiple linear regression model (MLR;

p value < 0.01; Eq. 1) to reconstruct historical DOS20 across

all watersheds and years (Fig. 7) using four climate variables

as predictors, i.e., total precipitation, air temperature, relative

humidity, and solar radiation, as follows:

DOS20 = β1x1 + β2x2 + β3x3 + β4x4 + β5x1x2 + β6x1x3

+ β7x1x4 + β8x2x3 + β9x2x4 + β10x3x4, (1)

where x1 is cumulative air temperature (i.e., degree day;
◦ C), x2 is cumulative precipitation (mm), x3 is mean rela-

tive humidity (%), x4 is mean solar radiation (W m−2), and

the βi are regression coefficients. Mean annual climate vari-

ables were calculated for the period between 1 November and

DOS20 (i.e., between late fall and the metric representing the

date of early snowmelt events). As a result, DOS20 is present

in both sides of Eq. (1); therefore, the stepwise MLR requires

an iterative solution when used in a predictive mode (i.e., for

the climate change analysis when DOS20 is unknown). The

MLR model is the basis of our empirical diel streamflow-

based model which is used to assess changes in DOS20 due

to climate change (i.e., changes in x1, x2, x3, and x4 in Eq. 1).

We verified the stepwise MLR assumptions, namely linear

relationships between each predictor and DOS20, normally

distributed residuals, homoscedasticity, and the absence of

strong multicollinearity (as suggested by a variance inflation

factor < 3). We also tested other metrics related to the timing

of early snowmelt events. These included the first snowmelt

day, the first three consecutive snowmelt events, and the 5th,

10th, and 30th percentiles of snowmelt days (DOS5, DOS10,

and DOS30, respectively). All metrics were also computed

using each of the different Spearman correlation cutoffs (Ta-

bles A1–A5), but the main analysis presented here focuses

on DOS20 based on snowmelt days calculated with hourly

Spearman correlations > 0.8.

We predict changes to DOS20 based on the stepwise MLR

model and end-of-the-century mean climate change forc-

ing from NoahMP-WRF (Liu et al., 2017). NoahMP-WRF

was run under a high-emission scenario (RCP8.5), using the

pseudo global warming approach for the end of the century.

Overall, it projects a warmer (4–5.2 ◦C), wetter (0 %–20 %

increase in precipitation) climate (Figs. A4 and A5). These

mean annual changes in climate were applied to the pre-

dictors in the stepwise MLR model to predict changes in

DOS20. As previously mentioned, predictors used in the step-

wise MLR were calculated for the period between 1 Novem-

ber and DOS20; therefore, as we do not know the value of

DOS20 in the future, an iterative solution is required to solve

for DOS20 in Eq. (1). We find a numerical solution, us-

ing a 2 d convergence threshold between iterations, so that

|DOS20i+1–DOS20i | ≤ 2 d, where i is the number of the it-

eration.

2.4 Streamflow volume timing from a land surface

model

Historical NoahMP-WRF simulations include the period

2001–2013 over the contiguous USA at 4 km spatial resolu-

tion and the period 2071–2100 under pseudo global warming
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(Liu et al., 2017). NoahMP-WRF simulations include an im-

proved Noah configuration, which aims to better represent

the snow physics. These improvements include the follow-

ing (Liu et al., 2017): the rain–snow transition is based on

a microphysics partitioning approach as opposed to a sub-

jective temperature-based approach, patchy snowpack are al-

lowed in the calculation of the surface energy balance, the

heat transport from rainfall to the ground is included, and

the snow depletion curve is vegetation dependent. These im-

provements allow for a better representation of the surface

energy balance and the simulation of snow accumulation

and melt processes. We used daily watershed-scale outputs

of surface and subsurface runoff from historical and future

NoahMP-WRF simulations to estimate the date of 25 % and

50 % of annual streamflow volume (DOQ25 and DOQ50, re-

spectively). Given the range of the watershed drainage ar-

eas (4–236 km2; Table 2), watersheds covering several grid

cells use the total surface and subsurface runoff for their cor-

responding grid cells. Small watersheds are represented by

only the single nearest NoahMP-WRF grid cell. The way

NoahMP-WRF is implemented within WRF lacks a stream-

flow routing scheme such as the one in WRF-Hydro (Gochis

et al., 2020); therefore, we used the sum of surface and sub-

surface runoff to estimate DOQ25 and DOQ50. We also re-

peated the analysis using surface runoff only, leading to sim-

ilar results (Fig. A7). Given the relatively coarse NoahMP-

WRF spatial resolution (4 km) compared to the watershed

drainage areas (4–236 km2), we assume that mean stream-

flow timing metrics are not significantly affected by the lack

of streamflow routing.

3 Results

3.1 Empirical relationships between DOS20, climate,

and streamflow

Mean annual DOS20 (the date of the 20th percentile of

snowmelt days) has a strong regional variability that is rea-

sonably captured by a negative linear correlation (R2 = 0.48)

with the mean winter air temperature (November to Febru-

ary; TNDJF) in watersheds with TNDJF < −3 ◦C, whereas

warmer watersheds do not follow the same pattern (Figs. 3a

and 4a). Warmer sites (TNDJF > −3 ◦C) have a more vari-

able mean DOS20, ranging from mid-January to early May,

whereas the coldest sites (TNDJF < −8 ◦C) have a later and

less variable DOS20 around mid- to late May. On average,

the regression suggests that a 1 ◦C warming of results in

7.2 d earlier DOS20. A relationship between later DOS20 and

colder TNDJF is also found in the year-to-year variations at

most watersheds (21 out of 31; Fig. 3b). A strong negative

linear relationship was found between the date of the 25 % of

the annual streamflow volume (DOQ25) and TNDJF (Fig. 3c).

Warmer watersheds (TNDJF > 0 ◦C) generate streamflow ear-

lier (DOQ25 between mid-December and early March) com-

pared to the coldest watersheds (TNDJF < −8 ◦C) where

DOQ25 is between early and late May (Fig. 3c). On average,

the cross-site regression shows that each 1 ◦C warmer TNDJF

produces a 13 d earlier DOQ25. For most watersheds (25 out

of 31), interannual regressions show a similar pattern, with

warmer years having earlier DOQ25; however, these inter-

annual regressions have shallower slopes than the cross-site

relationships (Fig. 3b and d). Previous work by Stewart et

al. (2005) also related seasonal meteorological patterns with

the spring onset and streamflow timing and found similar re-

lationships (e.g., warmer watersheds have earlier spring on-

set and streamflow timing). However, the definition of the

spring onset was based on the cumulative hydrograph (the

day when the cumulative departure from the mean stream-

flow was the minimum), as opposed to our more mechanistic

diel streamflow analysis. Other definitions for spring onset

based on streamflow, snow pillows, and air temperature are

presented by Lundquist et al. (2004).

Strong correlations between DOS20 and both DOQ25 and

DOQ50 (the date of 50 % of the annual streamflow volume;

R2 = 0.85; Fig. 5a and c) suggest connections between the

timing of snowmelt and streamflow generation across wa-

tersheds and years. On average, sites that melt earlier are

associated with earlier DOQ25 (Fig. 5a) and a lower ra-

tio of snowfall to total precipitation (snow fraction < 0.5).

The relationship between DOS20 and DOQ25 closely fol-

lows the 1 : 1 line (Fig. 5a), although three sites in Wash-

ington and Oregon (site ID 24, 25, and 31; see Table 2 and

Fig. 6a) deviate substantially from this pattern, perhaps be-

cause they receive relatively little of their precipitation as

snow. Similar watershed-level relationships using interan-

nual variability in DOQ25 were found for most watersheds,

with statistically significant slopes varying between 0.4 and

2.5 d d−1 (Fig. 5b). DOS20 also predicts DOQ50 well, with

10 d earlier snowmelt producing 7 d earlier DOQ50 on av-

erage (Fig. 5c) and similar watershed-level interannual rela-

tionships (Fig. 5d). The same three relatively rainy water-

sheds have DOQ50 prior to the DOS20 (Figs. 5c and 6b),

suggesting that early snowmelt timing is not an important

predictor of DOQ50 in such places.

3.2 Diel streamflow-based sensitivity of snowmelt

timing (DOS20) to climate change

We fitted a stepwise MLR with four climate variables (air

temperature, precipitation, relative humidity, and solar ra-

diation) to predict the diel streamflow-based DOS20 metric

across watersheds and years. A total of 333 watershed–year

combinations of DOS20 and climate variables were used to

train the stepwise MLR model. The watershed–year rela-

tionship between observed and MLR predictions has a rel-

atively high R2 of 0.83, a root mean square error (RMSE) of

17.5 d, and normally distributed residuals (p < 0.01) off the

1 : 1 line and centered at 0, with a standard deviation of 17.3 d

(Fig. 7a). The relationship between observations and MLR
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Figure 3. Panels (a) and (c) show cross-site relationships between mean winter air temperature (November to February) and DOS20 and the

date of 25 % of the annual streamflow volume (DOQ25), respectively. Slopes of individual sites’ interannual relationships are shown as the

lines on top of each symbol, where statistically significant (p value ≤ 0.05) slopes are red. Non-significant interannual slopes are presented

to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of snowmelt days under

clear-sky conditions. Sunny sites (circles) have > 90 % clear-sky snowmelt days, partly cloudy sites (squares) have between 70 % and 90 %,

and cloudy sites (diamonds) have < 70 % clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80 % of the

potential clear-sky solar radiation. Panels (b) and (d) show histograms of interannual slopes (for all watersheds and those with statistically

significant relationships), and the cross-site relationships are presented in their respective left panel.

predictions of inter-watershed mean annual DOS20 (Fig. 7b)

is also strong (R2 = 0.83 and RMSE = 13.2 d) and follows

the 1 : 1 line. Similarly, when we look at interannual values,

represented by the lines overlapping the circles in Fig. 7b,

we find a good agreement with most slopes close to 1 : 1 (see

the inset in Fig. 7b). This analysis demonstrates that the MLR

model can reasonably represent both the mean annual DOS20

values at each watershed and their interannual variability. Ta-

ble A4 shows the standardized beta coefficients that indicate

the importance of each climate variable in the stepwise MLR.

For the 0.8 correlation cutoff, we found that incoming short-

wave radiation has the greatest importance (β = 0.75), fol-

lowed by relative humidity (β = 0.37) and air temperature

(β = −0.31).

Empirical diel streamflow-based projections under climate

change show earlier mean annual DOS20 in all watersheds

(i.e., earlier snowmelt initiation), with significant variabil-

ity from site to site (Fig. 8a). Most watersheds show signifi-

cant end-of-century changes in DOS20, ranging from up to 3

months earlier in cold sites where, historically, snowmelt un-

der clear-sky conditions dominates (circles in Fig. 8a) to as

little as 20 d earlier in warm sites under historically cloudier

conditions. The cross-site average change in DOS20 is 55.3 d,

with a standard deviation of 21.8 d. In many watersheds, the

mean projection of DOS20 under climate change is within

the historically observed variability in DOS20 (Fig. 8a). The

empirical model predicts that, on average, colder watersheds

(TNDJF ≤ −8 ◦C) are about 70 % more sensitive to climate

change (13.7±4.6 d ◦C−1) than warmer watersheds (TNDJF >

0 ◦C) (8.1 ± 6.2 d ◦C−1), as represented by the change in the

DOS20 per degree of warming (Fig. 8b). Site ID 24 (South

Fork Tolt River, WA) shows almost no change in its DOS20,

which can be attributed to its weaker climate change signal

compared to the other watersheds (about +4 ◦C, 5 % precipi-

tation increase and virtually no change in humidity and solar

radiation; Fig. A4). The diel streamflow-based analysis sug-

gests an average sensitivity of DOS20 to a climate change of

11.1 ± 4.2 d ◦C−1 across all watersheds.
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Figure 4. Spatial variability in watershed-level interannual slopes for (a) DOS20 versus winter air temperature and (b) DOQ25 versus winter

air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with

those presented in Fig. 3. Symbols are associated with the mean annual percentage of snowmelt days under clear-sky conditions. Sunny sites

(circles) have > 90 % clear-sky snowmelt days, partly cloudy sites (squares) have between 70 % and 90 %, and cloudy sites (diamonds) have

< 70 % clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80 % of the potential clear-sky solar radiation.

3.3 Sensitivity of streamflow timing to climate change:

empirical diel streamflow-based model versus

NoahMP-WRF

We compared historical and empirical diel streamflow-

based projections for DOQ25 and DOQ50 with those from

NoahMP-WRF. Empirical streamflow timing sensitivity pro-

jections for DOS20 under climate change were derived from

the linear regressions presented in Fig. 5a and c (DOQ25 and

DOQ50 versus DOS20) with projected changes in DOS20 us-

ing the MLR under climate change. Empirical projections for

DOQ25 range from early January to late May (red symbols;

Fig. 9a), advancing between 20 and 100 d under RCP8.5

(x axis; Fig. 9c). The DOQ50 is projected to advance be-

tween roughly 15 and 65 d (x axis; Fig. 9d), ranging from

mid-February to late May (red symbols; Fig. 9b). The his-

torical DOQ25 is underestimated by NoahMP-WRF (blue

symbols; Fig. 9a), with a mean DOQ25 in mid-February,

whereas historical DOQ25 is in early April (50 d mean differ-

ence). Projected changes to DOQ25 by NoahMP-WRF under

pseudo global warming range between early January to mid-

March (mean in early February; Fig. 9a), averaging −15 d

(1DOQ25; Fig. 9c), whereas empirical diel streamflow-

based projections range between early January and late

March (mean in mid-February; Fig. 9a), averaging about

−60 d (1DOQ25; Fig. 9c). These results indicate that empir-

ical diel streamflow-based projections of DOQ25 are about

4 times more sensitive to climate change than those from

NoahMP-WRF. Historical DOQ50 is reasonably well rep-

resented by NoahMP-WRF under the current climate (blue

symbols; Fig. 9b) with a mean difference against observa-

tions of 7 d; however, future changes of about −20 d are pro-

jected, which are roughly half of the −40 d predicted by the

empirical streamflow-based projections (1DOQ50; Fig. 9d).

Empirical diel streamflow-based projections of DOQ50 range

between mid-February and early April, whereas NoahMP-

WRF projections range between mid-March and mid-May,

suggesting later estimates of streamflow volume by the land

surface model. Watersheds with the largest disagreement be-

tween the empirical model and NoahMP-WRF projections

for streamflow volume timing are those where DOS20 is the

most sensitive to warming (represented by the orange and

yellow symbols in Fig. 9c and d). These watersheds are char-

acterized by historical cold winter temperatures (TNDJF <

−6 ◦C), with snowmelt occurring mostly under sunny con-

ditions (circle symbols) in the Rocky Mountains.

4 Discussion

The new DOS20 metric based on the diel streamflow anal-

ysis quantifies the timing of early snowmelt events and sug-

gests that shifts towards earlier snowmelt will generate larger

shifts toward earlier streamflow in colder, sunnier watersheds

than in warmer, cloudier watersheds where snowmelt is more

interspersed with rain. Despite the intuitive connections be-

tween snowmelt and streamflow, empirically linking changes

in earlier snowmelt rates (Harpold and Brooks, 2018; Mus-

selman et al., 2017) with changes in streamflow amount

(Barnhart et al., 2016) and timing (Stewart et al., 2004) has

been challenging (Weiler et al., 2018). This study repre-

sents of the first empirical analysis of streamflow-induced

snowmelt change across a regional climate gradient not re-

lying only on streamflow volume. Understanding these con-

nections is challenging due to the representative scales at

which snow (point scale) and streamflow (watershed-scale)
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Figure 5. (a) The day when the 20th percentile of snowmelt days occurs (DOS20), compared to the date of the 25 % of the annual streamflow

volume (DOQ25). (c) DOS20 against the date of 50 % of the annual streamflow volume (DOQ50). Dashed lines in panels (a) and (c) are

1 : 1 lines, and the slopes of the sites’ interannual relationships are shown as the lines on top of each symbol, with statistically significant

(p value ≤ 0.05) slopes shown in red. Site ID 24, 25, and 31, indicated by dashed circles, fall far from the linear regression and are not

included in its calculation. Symbols indicate the mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have > 90 %

clear-sky snowmelt days, partly cloudy sites (squares) have between 70 % and 90 %, and cloudy sites (diamonds) have < 70 %; clear-sky

snowmelt days are defined as those with more than 80 % of the potential clear-sky solar radiation. Panels (b) and (d) show histograms of

interannual slopes (for all watersheds and those with statistically significant relationships), and the cross-site relationships are presented in

their respective left panels.

are typically measured and analyzed. For example, evidence

of snowmelt at Snow Telemetry (SNOTEL) sites in the

USA has shown more intermittent snowmelt events at sites

with higher humidity, and future modeling suggests lower-

humidity sites will experience slower, earlier snowmelt (Har-

pold and Brooks, 2018; Musselman et al., 2017). However,

the cascading effects of earlier and slower snowmelt on

streamflow amount and timing remain relatively unexplored

(e.g. Berghuijs et al., 2014) and are potentially affected by

surface and subsurface hydrological connectivity, vegetation

water use, and other processes that are not easily measured

or parameterized. Our diel streamflow analysis has limita-

tions in places dominated by rainfall, as evidenced by higher

false detections in areas with low snow fractions (Fig. 2) and

by the small (or nonexistent) interannual correlation between

DOS20 and the metrics DOQ25 and DOQ50 (Fig. 5a and c)

in those places. Conversely, the colder and sunnier water-

sheds, primarily in the intermountain region, have strong in-

terannual correlations between DOS20 and DOQ25 (Figs. 5a

and 6a), reflecting the importance of snowmelt (instead of

rain) in controlling streamflow volume timing.

Because the diel streamflow analysis does not require the

many assumptions that are embedded in physically based

models, it is an independent tool that can be used to verify

historical streamflow simulations from subdaily resolved hy-

drological models. For example, land surface models could

be benchmarked against observed snowmelt days based on

the diel streamflow analysis or metrics like DOS20 to better

represent processes associated with snowmelt-driven stream-

flow generation. The diel streamflow analysis is also easier

to implement than detailed process-based models because it

only requires observed hourly streamflow data and solar ra-

diation. If measured solar radiation is not available, it can

be reliably represented by land surface models like NLDAS-

2 (Luo et al., 2003) that assimilate field observations and

remotely sensed radiation (including the effects of clouds)

into an atmospheric modeling framework. In our analysis,

we tested the sensitivity of some modeling decisions, such
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Figure 6. Spatial variability in the watershed-level interannual slopes for (a) DOQ25 versus DOS20 and (b) DOQ50 versus DOS20. Wa-

tersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with those presented in

Fig. 5. Watersheds that fall far from the linear regression presented in Fig. 5 are surrounded by a circle with a dashed line. Symbols are asso-

ciated with the mean annual percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have > 90 % clear-sky snowmelt

days, partly cloudy sites (squares) have between 70 % and 90 %, and cloudy sites (diamonds) have < 70 %. Clear-sky snowmelt days are

defined as those with more than 80 % of the potential clear-sky solar radiation.

Figure 7. (a) Scatterplot showing the fit of the stepwise multiple linear regression (MLR) model to the observed DOS20 across all sites

and years. Panel (b) shows the same stepwise MLR model applied at the mean annual watershed level across all watersheds. Interannual

variability represented by the slope of the linear relationship is shown as a line overlapping each circle (i.e., watershed); red and blue lines

indicate statistically significant (p ≤ 0.05) and insignificant slopes, respectively.

as the correlation cutoff between hourly solar radiation and

streamflow used to detect snowmelt days and metrics for

snowmelt timing and found similar sensitivities of DOS20

to climate change across different correlation cutoffs and

snowmelt timing percentiles (Table A5). Metrics like the

first snowmelt day or the first 3 consecutive snowmelt days

showed less consistent results (Table A5), likely due to indi-

vidual early or midwinter melt events that do not necessarily

represent the seasonal watershed behavior. The diel stream-

flow analysis has the following four main limitations that

need to be examined in future work: (1) it requires a steep

enough stage–discharge relationship so that daily stream-

flow cycles can be detected across the flow regime, (2) it

focuses on snowmelt driven by solar radiation (and energy

fluxes synchronized with it), (3) it is sensitive to assumptions

about the lag time between solar radiation and streamflow,

and (4) it is sensitive to assumptions about evapotranspira-

tion losses. A steep stage–discharge relationship, in which

small changes in discharge are associated with large changes

in stage, is ideal to observe small diel streamflow changes

with sufficient precision. The second limitation originates

from the assumption that the majority of snowmelt is cor-

related with solar radiation, which is supported by the dom-

inant role of solar radiation in process-based studies of mar-
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Figure 8. (a) Historical DOS20 from the diel analysis and projected changes in DOS20 using the empirical diel streamflow-based projections

under the RCP8.5 pseudo global warming climate for the end of the 21st century. Watersheds are sorted from earlier (left) to later (right)

historical DOS20. Symbols associated with future projections (stars) are not classified by sunny, partly cloudy, or cloudy conditions, as we

make no inference about the cloudiness condition of snowmelt days under the climate change scenario. Blue symbols in panel (a) represent

the mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have > 90 % clear-sky snowmelt days, partly cloudy

sites (squares) have between 70 % and 90 %, and cloudy sites (diamonds) have < 70 %. Clear-sky snowmelt days are defined as those with

more than 80 % of the potential clear-sky solar radiation. (b) Relationship between mean winter air temperature and the sensitivity of DOS20

to climate change, as projected by the empirical diel streamflow-based model.

itime and continental snowpacks (Cline, 1997; Jepsen et al.,

2012; Marks and Dozier, 1992). Because our method allows

the lag time between solar radiation and streamflow to vary

within a predefined window, we expect it to capture the ef-

fects of other important energy fluxes, such as sensible heat,

that often lag the diel patterns of solar radiation by sev-

eral hours (Ohmura, 2001). Rain-on-snow events are partic-

ularly challenging to detect with our analysis, as days with a

lower percentage of incoming shortwave radiation (< 80 %

of clear sky) are filtered out to avoid issues with poten-

tial rainfall-dominated diel signals. It may also misclassify

rainfall-driven diel streamflow cycles, although we checked

for rainfall-induced cycles and found that these accounted

for only a small fraction (7 % on average; Fig. 2) of our in-

ferred snowmelt days. The relationships between streamflow

timing (i.e., DOS20, DOQ25, and DOQ50) and meteorologi-

cal drivers in rainier sites showed cross-site and interannual

relationships that are consistent with those in colder, more

snow-dominated places (except for watershed ID 24, 25, and

31; e.g., Fig. 3a and c). The third limitation is that the spa-

tiotemporal variability in snowpack, surface and subsurface

storage, and evapotranspiration will change the magnitude

and lag time of the diel streamflow response (Kirchner et al.,

2020; Lundquist and Cayan, 2002; Lundquist and Dettinger,

2005), which we address by allowing variable watershed-

and month-specific time lags. However, lag times greater

than 24 h, which are associated with large watersheds or large

subsurface storage, will make this method impossible to ap-

ply. The method may also miss early snowmelt-driven diel

cycles in watersheds with dry soils, as the diel signal will

be buffered by the subsurface storage capacity before gener-

ating a measurable streamflow response. Our empirical diel

streamflow-based model implicitly assumes that other vari-

ables not included in the analysis vary together with the pre-

dictive variables (climate) and neglects watersheds’ physical

(e.g., soil storage) and biological (e.g., vegetation) properties

that do not necessarily covary with climate. The fourth limi-

tation is that evapotranspiration losses must be small relative

to snowmelt inputs, which is necessary because the effect of

evapotranspiration is out of phase with the effect of snowmelt

(Kirchner et al., 2020). Evapotranspiration effects are mini-

mized by focusing on early snowmelt periods, when evapo-

transpiration losses are small (Bowling et al., 2018; Cooper

et al., 2020; Winchell et al., 2016).

Hydrological modeling in land surface models attempts

to physically represent snowpack storage, snowmelt, sub-

surface storage, and its release to the streamflow, which is

challenged by uncertain forcing data and simplified and un-

certain model parameters. For example, snowmelt model-

ing in complex terrain is challenged by steep climate gradi-

ents and by the lack of adequate forcing data (precipitation,

temperature, wind, etc.). Characterizing precipitation phase

and timing in steep watersheds remains challenging in rain-

to-snow transition zones (Harpold et al., 2017; Jennings et

al., 2018; Wayand et al., 2015), which will presumably in-

crease in extent in the future (Klos et al., 2014). Complex

terrain affects radiation fluxes, which are hard to estimate at

kilometer spatial scales (Müller and Scherer, 2005) used in

most land surface models. Most of our study sites are for-

est covered, which exerts a strong control on the snowpack

mass and energy balance (Lundquist et al., 2013; Pomeroy

et al., 1998; Safa et al., 2021) with spatially heterogeneous

effects on snow accumulation and melt that remain challeng-

ing to model (Broxton et al., 2015; Krogh et al., 2020). The

presence of preferential flow paths through the snowpack

impacts the timing of melt release (Leroux and Pomeroy,

2017) and is not typically included in hydrological models.

Once snowmelt is released from the snowpack, simulating
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Figure 9. Changes to DOQ25 and DOQ50 due to climate change under a RCP8.5 pseudo global warming climate scenario by the end of

the century. Panels (a) and (b) compare historical against projected values between NoahMP-WRF and the empirical diel streamflow-based

model. Panels (c) and (d) compare the projected change in streamflow timing (future minus historical) between NoahMP-WRF and the

empirical diel streamflow-based model, colored by the sensitivity of DOS20 to climate change as projected by the empirical diel streamflow-

based model (Fig. 8b). Symbols surrounded by black circles indicate sites that were excluded from the regression analysis in Fig. 5 (rainier

site ID 24, 25, and 31). Symbols represent the historical mean annual percentage of clear-sky snowmelt days, where sunny sites (circles)

have > 90 % clear-sky snowmelt days, partly cloudy sites (squares) have between 70 % and 90 %, and cloudy sites (diamonds) have < 70 %;

clear-sky snowmelt days are defined as those with more than 80 % of the potential clear-sky solar radiation. We make no inference about the

cloudiness condition of snowmelt days under the RCP8.5 climate scenario; however, red symbols (upper panels) follow the same symbology

for easier interpretation.

(and validating) what fraction flows as subsurface and sur-

face runoff remains difficult. Decades of tracer studies (e.g.,

Godsey et al., 2010; Kirchner, 2003) have shown that stream-

flow during and after hydrologic events (i.e., snowmelt or

rainfall events) is typically old water that has been stored

in the watershed for months to years. Land surface models

like NoahMP-WRF lack realistic groundwater stores to rep-

resent old water and lack hillslope and near-stream processes

(Fan et al., 2019). For example, previous work at Sagehen

Creek (site ID 23) suggests that streamflow remains ∼ 80 %

groundwater even during the snowmelt freshet (Urióstegui et

al., 2017), despite a strong snowmelt diel response caused by

pressure changes induced by infiltrating snowmelt. Innova-

tive observations that give new physical insights, like the diel

streamflow analysis, could bring new information to model-

ing beyond what is possible with typical daily discharge res-

olution (Kirchner, 2006).

The diel-based analysis of snowmelt-driven streamflow to

changing climate gives unique insights over previous efforts

using daily and seasonal streamflow volumes (Berghuijs et

al., 2014; Stewart et al., 2005) and retrospective hydrologi-

cal modeling (Barnhart et al., 2016). Empirical projections of

DOS20 under the pseudo global warming scenario (Fig. 8b)

show that colder, drier, and sunnier sites (typical of the

Rocky Mountains) are about twice as sensitive to warming

as warmer, more humid, and cloudier sites (typical of the Pa-

cific Northwest). Humid and warmer sites have lower snow

fractions (< 0.5; more rainfall effects) and, thus, a smaller
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snowmelt signal in the diel streamflow observations. In con-

trast, Harpold and Brooks (2018) showed that winter abla-

tion at SNOTEL sites in humid places, like the Pacific North-

west, are more sensitive to warming than less humid places,

like the southwestern USA. However, Kirchner et al. (2020)

showed general agreement between SNOTEL snowmelt re-

sponse and the snowmelt-induced diel streamflow signal at

the warm Sagehen Creek watershed (site ID 23). The sensi-

tivity of the early snowmelt timing metric (DOS20) to climate

change is a function of changes in precipitation phase (rain-

fall versus snowfall), snowpack ablation (changes in the pat-

terns of melt and sublimation), and hydrological partitioning

to streamflow versus evaporative loss. Due to the empirical

basis of our analysis, these sensitivities are not easy to dis-

entangle, but the diel analysis is a new source of information

that could help in that effort. The reliability of the empir-

ical diel streamflow-based projections partially depends on

whether climate projections are within or outside the range

of observed climate conditions across the large climatic gra-

dient found in the western USA. Under the pseudo global

warming scenario, cold, sunny watersheds like those in the

Rocky Mountains (site ID 9 and 10) will shift toward more

humid, warmer conditions (Fig. A6), like those observed in

Southern Idaho (site ID 29) and the northern Sierra Nevada

(site ID 23). In contrast, the pseudo global warming scenar-

ios for places like the Pacific Northwest, particularly those

involving changes in atmospheric humidity above 5 g m−3

(Fig. A4), have not been observed in the historical record and

therefore are more uncertain. Determining reasonable con-

ditions to apply empirical models that use observed differ-

ences in sites to predict future changes (often called space-

for-time models), like the presented diel streamflow analysis,

has been posed as one of the 23 unsolved problems in hydrol-

ogy (Blöschl et al., 2019).

The sensitivity of historical snowmelt-mediated stream-

flow volume timing (DOQ25 and DOQ50) to climate change

differs substantially between the empirical diel streamflow-

based approach and a land surface model, raising ques-

tions about current state-of-the-art projections of early sea-

son streamflow timing from NoahMP-WRF, particularly in

cold watersheds (Fig. 9c and d). The observed data used

in the diel streamflow-based approach have larger and more

variable streamflow timing responses to climate change (10–

17 d ◦C−1) in cold, dry, sunny places that are representa-

tive of small, high-elevation Rocky Mountain watersheds

(Fig. 8b). The historical diel streamflow analysis suggests

that NoahMP-WRF may be systematically underpredict-

ing the sensitivity of streamflow volume timing to earlier

snowmelt-induced streamflow in colder and sunnier places

(Fig. 9c) that are most likely to have increased tempera-

ture and increased cloudiness in the future. The same mean

annual future climate scenarios were applied to both ap-

proaches; however, important differences in the streamflow

timing response were found between NoahMP-WRF and diel

streamflow-based projections (Fig. 9c and d). NoahMP-WRF

underpredicts historical DOQ25 (Fig. 9a) across most sites,

whereas DOQ50 is much better represented. It is worth not-

ing that when DOQ25 simulated by NoahMP-WRF is cal-

culated using surface runoff alone (Fig. A7a), rather than

subsurface plus surface runoff, it performs better against ob-

served DOQ25. However, NoahMP-WRF projected sensitiv-

ity in streamflow timing to climate change remains signifi-

cantly lower than predictions based on the diel-streamflow

analysis (Fig. A7c). We used these simulations in the anal-

ysis because Noah-MP underlies the U.S. National Water

Model, and thus, its relevance to policy and research is high.

There are many differences in the way that NoahMP-WRF

and the empirical diel streamflow-based approach function.

NoahMP-WRF can track the hourly covariance in precipita-

tion, temperature, and humidity to estimate precipitation par-

titioning between rain and snow. It is also able to represent

hourly radiative and turbulent energy at the snowpack, and

the cold content needed to predict snowmelt. Its physical hy-

drology is also advanced and able to consider antecedent con-

ditions and allow evapotranspiration losses that also modu-

late streamflow. Despite the advantages of land surface mod-

els like NoahMP-WRF in constraining processes for future

projections, the simplicity of diel streamflow-based analysis

also provides several advantages. One of the main advan-

tages is that it is derived from observations, and thus, it is

well constrained by the observed spatial and temporal vari-

ability of snowmelt across watersheds and years (Fig. 7b).

Also, it does not assume anything about the complex spa-

tial distribution of snowpacks and precipitation or subsurface

properties, which are major constraints to physically based

models (Baroni et al., 2010; Christiaens and Feyen, 2001;

Wilby et al., 2002). While the empirical diel streamflow-

based model is not a replacement for land surface models

like NoahMP-WRF, partly because the underlying stream-

flow datasets are not available everywhere, there is added

value in including new benchmarks like the proposed DOS20

to further constrain modeling decisions and improve model

fidelity required for reliable and accurate hydrological pre-

dictions.

5 Conclusions

Water management in the western USA requires accurate

predictions of how both short-term climate variability and

long-term climate change will alter snowmelt and stream-

flow. Differences in predictions of snowmelt-induced stream-

flow between empirical diel streamflow-based projections

and a land surface model (NoahMP-WRF) raise important

questions about the sensitivity of streamflow timing to cli-

mate change, particularly in cold regions, and its impact on

water planning. Significant differences exist in the way diel

streamflow-based and land surface models predict changes

to snowmelt and streamflow timing, with both approaches

having strengths and weaknesses; however, the land sur-
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face model misrepresents historical patterns in streamflow

response that are more accurately estimated by the empiri-

cal model. We show that DOS20 is a strong predictor of the

early season hydrograph response, particularly in cold, sunny

areas where the NoahMP-WRF streamflow timing simula-

tions lack sensitivity to climate change. Rigorously validat-

ing future model predictions is impossible, but snowmelt

and streamflow timing, inferred from diel streamflow cycles,

could be used to refine land surface models and better de-

termine the risk to valuable snow water resources (Barnett

et al., 2005; Sturm et al., 2017; Viviroli et al., 2007), partic-

ularly in cold regions. Our novel approach can complement

the benchmarking or calibration of physically based hydro-

logical models beyond typical benchmarking against daily

streamflow or snow accumulation metrics. For example, the

snowmelt timing metric DOS20 based on diel streamflow ob-

servations could be used to test how well land surface mod-

els, running at subdaily scales and fine spatial resolution, can

reproduce the historical snowmelt regime across watersheds

and years. As land surface models move towards real applica-

tion for water management (Kopp et al., 2018), the hydrology

community must seek ways to test and improve them using

widely available datasets if we are to meet the grand water

management challenges posed by climate change in moun-

tainous regions.

Appendix A

Figure A1. (a) Number of available years with less than 30 %, 20 %, and 10 % gaps in days with hourly streamflow records between

1 December and 1 August. Gauge ID is as presented in Table 2. Numbers of years at site ID 13 are the same for all thresholds (overlapping

symbols). (b) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation cutoffs (0.5, 0.6, 0.7,

and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation.
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Figure A2. (a) CAMELS mean winter (November to February) air temperature, (b) mean annual DOS20, and (c) mean annual DOQ25.

Symbols (circle, square, and diamond) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have > 90 %

clear-sky snowmelt days, partly cloudy have between 70 % and 90 %, and cloudy have < 70 %; clear-sky snowmelt days are defined as those

with more than 80 % of the potential clear-sky solar radiation.

Figure A3. (a) CAMELS mean annual snow fraction (snowfall/precipitation), (b) mean annual number of snowmelt days between 1 De-

cember and 1 August (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater than 0.8), and

(c) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky conditions as a fraction

of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80 % of the potential clear-sky solar radiation. Symbols

(circle, square, and diamond) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have > 90 % clear-sky

snowmelt days, partly cloudy have between 70 % and 90 %, and cloudy have < 70.
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Figure A4. Historic winter climate variability for each predictor used in the stepwise MLR model (Eq. 1) for the period between November

and DOS20 in blue. (a) Precipitation, (b) air temperature, (c) absolute humidity, and (d) solar radiation. In red are the perturbed mean

climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis suggests that most of the

climate change signal from NoahMP-WRF pseudo global warming is within the observed climate variability, except for air temperature

and atmospheric humidity in some watersheds. Blue symbols (circle, square, and diamond) associated with historical values represent the

mean annual percentage of clear-sky snowmelt days, where sunny sites have > 90 % clear-sky snowmelt days, partly cloudy have between

70 % and 90 %, and cloudy have < 70 %; clear-sky snowmelt days are defined as those with more than 80 % of the potential clear-sky solar

radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming scenario, and

thus, we use a five-point star (in red) for the future scenario.

Figure A5. Mean annual climate changes projected by WRF under a RCP8.5 pseudo global warming scenario by the end of the century.

Panel (a) shows changes in precipitation against air temperature. Panel (b) shows incoming shortwave against absolute humidity. Numbers

represent the gauge IDs as presented in Table 2.

https://doi.org/10.5194/hess-26-3393-2022 Hydrol. Earth Syst. Sci., 26, 3393–3417, 2022



3410 S. A. Krogh et al.: Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change

Figure A6. (a) Principal component analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and shortwave

radiation (SWR) at each watershed and the changes associated with the pseudo global warming as simulated by WRF. Panel (b) shows the

same analysis but excluding precipitation from the analysis. Blue symbols (circle, square, and diamond) associated with historical values

represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have > 90 % clear-sky snowmelt days, partly cloudy

have between 70 % and 90 %, and cloudy have < 70 %; clear-sky snowmelt days are defined as those with more than 80 % of the potential

clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt days under the RCP8.5 pseudo global

warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers next to blue symbols represent the gauge IDs

as presented in Table 2.

Figure A7. Same as Fig. 9 but using streamflow timing metrics from NoahMP-WRF for a RCP8.5 pseudo global warming scenario, calculated

using surface runoff only instead of using surface plus subsurface runoff (as in Fig. 6). Note the improved fit in historical DOQ25; however,

this analysis yields very similar results to those in Fig. 6, with NoahMP-WRF streamflow simulations being much less sensitive to climate

change than the empirical diel streamflow-based model suggests. Panels (a) and (b) compare historical against projected values between

NoahMP-WRF and the empirical diel streamflow-based model. Panels (c) and (d) compare the projected change (future minus historical)

between NoahMP-WRF and the diel streamflow-based model, colored by the sensitivity of DOS20 to climate change as projected by the

empirical diel streamflow-based model (Fig. 5b). Symbols surrounded by black circles indicate sites that were excluded from the regression

analysis in Fig. 3 (rainier site ID 24, 25, and 31). Symbols (circle, square, and diamond) represent the historical mean annual percentage of

clear-sky snowmelt days, where sunny sites have > 90 % clear-sky snowmelt days, partly cloudy have between 70 % and 90 %, and cloudy

have < 70 %; clear-sky snowmelt days are defined as those with more than 80 % of the potential clear-sky solar radiation. We make no

inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming climate scenario; however, red symbols

(upper panels) follow the same symbology for easier interpretation.
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Table A1. Coefficient of determination (R2) and slope (in parentheses; day/day) of the linear regression between different early snowmelt

timing metrics and DOQ25 and DOQ50, as presented in Fig. 5, for different correlation cutoffs (r) between hourly solar radiation and

streamflow. DOSxx represent the date when the xxth percentile of snowmelt days occurs. Site ID 24, 35, and 31 are excluded from the linear

relationship. Bolded numbers are those used in the result and discussion sections.

Early snowmelt timing metrics Versus Versus

DOQ25 DOQ50

r > 0.5 First snowmelt day 0.13 (0.61) 0.06 (0.25)

First 3 consecutive snowmelt days 0.5 (0.71) 0.4 (0.4)

DOS5 0.37 (0.83) 0.28 (0.45)

DOS10 0.49 (0.91) 0.43 (0.52)

DOS20 0.69 (1.1) 0.66 (0.67)

DOS30 0.73 (1.1) 0.72 (0.68)

r > 0.6 First snowmelt day 0.24 (0.73) 0.15 (0.35)

First 3 consecutive snowmelt days 0.59 (0.77) 0.49 (0.44)

DOS5 0.46 (0.82) 0.37 (0.45)

DOS10 0.63 (0.97) 0.53 (0.55)

DOS20 0.76 (1.05) 0.72 (0.64)

DOS30 0.77 (1.07) 0.78 (0.67)

r > 0.7 First snowmelt day 0.42 (0.73) 0.3 (0.39)

First 3 consecutive snowmelt days 0.62 (0.85) 0.59 (0.53)

DOS5 0.61 (0.86) 0.51 (0.49)

DOS10 0.71 (0.94) 0.63 (0.55)

DOS20 0.76 (0.99) 0.75 (0.62)

DOS30 0.79 (1.03) 0.82 (0.65)

r > 0.8 First snowmelt day 0.66 (0.87) 0.54 (0.5)

First 3 consecutive snowmelt days 0.76 (1.09) 0.78 (0.71)

DOS5 0.79 (1.01) 0.7 (0.6)

DOS10 0.83 (1.03) 0.78 (0.64)

DOS20 0.85 (1.07) 0.85 (0.68)

DOS30 0.85 (1.1) 0.88 (0.72)

Table A2. Root mean square error (RMSE) and coefficient of determination (R2; in parentheses) associated with several stepwise multiple

linear regressions (similar to the one in Eq. 1) using different early snowmelt timing metrics (e.g., Eq. 1 uses DOS20) and correlation

cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents the date when the xxth percentile

of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Eq. (1), which is also shown in Fig. 7a.

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8

First snowmelt day 11.1 (0.87) 12.3 (0.88) 15.2 (0.88) 21.7 (0.82)

First 3 consecutive snowmelt days 24.6 (0.8) 24.8 (0.8) 26.1 (0.77) 20.2 (0.8)

DOS5 14.9 (0.83) 15.4 (0.85) 17.3 (0.86) 21.1 (0.8)

DOS10 16.4 (0.82) 17.3 (0.83) 19.9 (0.82) 19.6 (0.82)

DOS20 16.5 (0.82) 17.9 (0.82) 18.9 (0.82) 17.5 (0.83)

DOS30 16.3 (0.82) 17.4 (0.82) 17.8 (0.82) 16.3 (0.83)
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Table A3. Coefficient of determination (R2) for the site-averaged stepwise multiple linear regression, analogous to that presented in Fig. 7b,

for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r , and early snowmelt days metrics).

DOSxx represents the date when the xxth percentile of snowmelt days occurs. The bolded number is associated with the stepwise MLR in

Eq. (1) using DOS20.

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8

First snowmelt day 0.8 0.82 0.89 0.79

First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69

DOS5 0.84 0.85 0.87 0.83

DOS10 0.84 0.85 0.86 0.84

DOS20 0.83 0.82 0.82 0.82

DOS30 0.83 0.81 0.81 0.8

Table A4. Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly solar

radiation and streamflow and different early snowmelt metrics. These stepwise MLR models follow the same structure as that of Eq. (1);

however, in this case, predictors were standardized to estimate their relative importance. Note: AT – air temperature; Pp – precipitation; RH

– relative humidity; SWR – incoming shortwave radiation. DOSxx represent the date when the xxth percentile of snowmelt days occurs. The

asterisk∗ indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling decisions used in the

result and discussion sections.

Early snowmelt timing metrics β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

(AT) (Pp) (RH) (SWR) (AT × Pp) (AT × RH) (AT × SWR) (Pp × RH) (Pp × SWR) (RH × SWR)

r > 0.5 First snowmelt day∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

First 3 consecutive snowmelt days −0.41 0.74 0.002 0.38 0.19 n/a n/a −0.33 n/a −0.19

DOS5
∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

DOS10 −0.55 0.45 0.22 0.56 0.26 n/a n/a n/a 0.23 −0.21

DOS20 −0.39 0.46 0.33 0.68 0.10 n/a n/a −0.10 0.12 −0.28

DOS30 −0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 −0.27

r > 0.6 First snowmelt day∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

First 3 consecutive snowmelt days −0.39 0.69 0.03 0.43 0.15 n/a n/a −0.26 0.08 −0.21

DOS5
∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

DOS10 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 −0.16

DOS20 −0.35 0.41 0.31 0.69 0.10 n/a n/a −0.08 0.10 −0.24

DOS30 −0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 −0.24

r > 0.7 First snowmelt day∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

First 3 consecutive snowmelt days −0.45 0.69 0.03 0.46 n/a 0.11 n/a −0.16 0.09 −0.23

DOS5
∗ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

DOS10 −0.46 0.39 0.20 0.55 0.21 −0.08 n/a −0.09 0.11 −0.17

DOS20 −0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 −0.24

DOS30 −0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 −0.26

r > 0.8 First snowmelt day −0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 −0.06

First 3 consecutive snowmelt days −0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 −0.27

DOS5 −0.43 0.39 0.21 0.56 0.23 n/a n/a −0.09 0.14 −0.19

DOS10 −0.34 0.37 0.28 0.68 0.16 n/a n/a −0.09 0.13 −0.26

DOS20 –0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 –0.29

DOS30 −0.29 0.29 0.37 0.76 0.09 n/a n/a n/a 0.18 −0.26

Note: n/a stands for not applicable.
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Table A5. Coefficient of determination (R2) and slope (in parentheses; d ◦C−1) of the linear regression between the empirical diel

streamflow-based model sensitivity to warming and sites’ mean winter air temperature as presented in Fig. 8b, for different early snowmelt

day metrics and correlation cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when the xxth percentile of

snowmelt days occurs. Bolded numbers are associated with the modeling decisions used in the result and discussion sections.

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8

First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23 (−0.75)

First 3 consecutive snowmelt days 0.02 (−0.30) 0.08 (−0.51) 0.00 (−0.05) 0.00 (−0.07)

DOS5 0.00 (0.04) 0.01 (−0.18) 0.02 (−0.32) 0.25 (−1.00)

DOS10 0.00 (−0.09) 0.25 (−0.86) 0.37 (−1.17) 0.2 (−0.66)

DOS20 0.27 (−0.68) 0.35 (−0.89) 0.37 (−0.99) 0.33 (–0.75)

DOS30 0.22 (−0.57) 0.26 (−0.65) 0.27 (−0.66) 0.20 (−0.52)

Code and data availability. Data from NoahMP-WRF sim-

ulations can be accessed through their public website at

https://doi.org/10.5065/49SN-8E08 (Rasmussen et al., 2021).

Hourly shortwave radiation can be accessed online at

https://doi.org/10.5067/6J5LHHOHZHN4 (Xia et al., 2009).

Hourly streamflow from the USGS database can be accessed online

at https://waterdata.usgs.gov/nwis/sw (US Geological Survey,

2016). The code used to process and analyze the data presented in

the study is available upon request to the corresponding author.
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