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A BLOCK BIDIAGONALIZATION METHOD FOR
FIXED-ACCURACY LOW-RANK MATRIX APPROXIMATION*
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Abstract. We present randUBV, a randomized algorithm for matrix sketching based on the
block Lanzcos bidiagonalization process. Given a matrix A, it produces a low-rank approximation
of the form UBV7T, where U and V have orthonormal columns in exact arithmetic and B is block
bidiagonal. In finite precision, the columns of both U and V will be close to orthonormal. Our
algorithm is closely related to the randQB algorithms of Yu, Gu, and Li [SIAM J. Matriz Anal.
Appl., 39 (2018), pp. 1339-1359]. in that the entries of B are incrementally generated and the
Frobenius norm approximation error may be efficiently estimated. It is therefore suitable for the
fixed-accuracy problem and so is designed to terminate as soon as a user input error tolerance is
reached. Numerical experiments suggest that the block Lanczos method is generally competitive with
or superior to algorithms that use power iteration, even when A has significant clusters of singular
values.
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1. Introduction. In this paper, we consider the problem of finding a quality
low-rank approximation A, to a given matrix A € R™*" where we assume that
m > n. In particular, we consider the fized-accuracy problem, where the desired
truncation rank r is not known in advance, but we instead want to find the smallest
possible r such that |A — A, ||r < 7 for some tolerance 7.

The optimal approximation can be found by computing and truncating the SVD
of A, but when A is large this method may be impractically expensive. It is therefore
increasingly common to use randomized techniques to find an approximation to the
dominant subspace of A, that is, to find a matrix Q € R™*" with orthonormal
columns so that [13]

(1.1) A ~ QB,
where B is an r X n matrix satisfying
(1.2) B=Q"A.

Two variants on this basic approach are randomized subspace iteration and ran-
domized block Lanczos. Algorithms 1.1 and 1.2 present prototype algorithms for each
of these methods for the fized-rank problem, where r is specified in advance.
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Algorithm 1.1 Randomized Subspace Iteration (rand@B) [13, Algorithm 4.3].

Input: A € R™*" rank r, integer £ > r, power parameter p > 0
Output: Q € R™** with orthonormal columns, B € R**"

1: Draw a random standard Gaussian matrix Q € R™"*¢

2: Form Y = (AAT)?PAQ

3: Compute the QR factorization Y = QR

4 B= QTA

Algorithm 1.2 Randomized Block Lanczos [32, Algorithm 1].

Input: A € R™*" block size b > 1, rank r, iterations ¢ such that (¢ + 1)b > r
Output: Q € R"*(@+D? with orthonormal columns, B € R(a+1bxn

1: Draw a random standard Gaussian matrix Q € R"*?

2. Form Y = [AQ, (AAT)AQ, ..., (AAT)7AQ]

3: Compute the QR factorization Y = QR

4 B= QTA

Extensions of these algorithms to the fixed-accuracy problem make use of the fact
that the columns of Q and rows of B can be computed incrementally rather than all
at once. The process can then be terminated once a user-specified error threshold has
been reached, assuming the error can be efficiently computed or estimated. Algorithms
for the fixed-accuracy problem are proposed in [13, 18] and more recently by Yu, Gu,
and Li in [30]. One algorithm by the latter authors, randQB_EI, is currently the
foundation for the MATLAB function svdsketch [19].

The algorithms cited above all rely on the randomized range finder popularized
in [13] rather than the block Lanczos method despite the fact that Krylov subspace
methods are “the classical prescription for obtaining a partial SVD” [13], as with svds
in MATLAB. In recent years, however, several works have improved the analysis for
randomized block Lanczos. Analyzing Algorithm 1.2 for the case b > r, Musco and
Musco [20] derive bounds on the approximation error that do not depend on the gaps
between the singular values of A. Yuan, Gu, and Li [32] derive results under the
more general condition where A has no singular values with multiplicity greater than
b. Both papers focus mostly on theoretical results, but the latter authors make the
following observation:

“A practical implementation of [Algorithm 1.2] should involve, at the
very least, a reorganization of the computation to use the three-term
recurrence and bidiagonalization [8], and reorthogonalization of the
Lanczos vectors at each step using one of the numerous schemes that
have been proposed [8, 22, 24].”

The goal of this paper is to provide a practical implementation of Algorithm 1.2
for the fixed-accuracy problem, along with a method for efficiently estimating the
Frobenius norm approximation error.

1.1. Contributions. Our main contribution is the algorithm randUBV (Algo-
rithm 4.1), which uses the block Lanczos method to solve the fixed-accuracy problem.
It is for the most part a straightforward combination of the block Lanzcos bidiag-
onalization process [9] shown in Algorithm 2.2 with a randomized starting matrix
Vi = Q. As such, it yields a factorization of the form UBVY, where U and V
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have orthonormal columns in exact arithmetic and B is block bidiagonal. Our sec-
ondary contribution is Theorem 4.3, which establishes bounds on the accuracy of the
Frobenius norm error estimate (2.6).

Our algorithm has two notable features that make it competitive with methods
based on randQB:

e It accepts block sizes smaller than the target rank. Contrary to what an
exact arithmetic analysis would suggest, the block Lanczos method can find
multiple singular values of A even when the multiplicity is greater than the
block size b. Large clusters in the spectrum of A are inconvenient but rarely
fatal.

e It uses one-sided reorthogonalization, wherein V is reorthogonalized but U is
not. This technique was recommended in [25] for the single-vector case (i.e.,
b = 1) and leads to considerable cost savings when A is sparse and m > n.
If m < n, our algorithm should be run on A7 instead. The matrix U may
slowly lose orthogonality in practice, but Theorem 4.3 shows that our error
estimate (2.6) will still remain accurate.

For simplicity, we use full reorthogonalization on V as opposed to more care-
fully targeted methods such as those discussed in [22, 24].

One other design choice merits discussion: Deflation occurs when the blocks pro-
duced by the block Lanczos method are nearly rank-deficient and results in a reduc-
tion in the block size. In the event of deflation, we propose to augment the block
Krylov space in order to keep the block column size constant. This will prevent
the process from terminating early in extreme cases such as when A is the identity
matrix.

We compare the performance of our algorithm with that of randQB_EI [30]. We
use the code made publicly available! by its authors, which differs from the version
in [30] in that it accepts a parameter p > 0 for the number of power iterations. This
feature allows the user to make a trade-off between the number of steps required
for convergence and the computational cost per step, similar to the cost/accuracy
trade-off in the fixed-rank version randQB.

In numerical experiments on synthetic and real data, we find that randUBV and
randQB_EI have the same cost per iteration when the latter algorithm is run with
power parameter p = 0, and empirically randUBV converges faster. If randQB_EI
instead uses p = 1 or p = 2, then randUBV empirically requires more iterations to
converge, but each iteration costs significantly less. Either way, our results suggest
that randUBV generally compares favorably with randQB_EI, at least on modestly sized
problems.

1.2. Outline. The paper is organized as follows. In section 2, we review the
background of QB algorithms for the fixed-accuracy problem as well as the block
Lanczos method. In section 3, we discuss several implementation details including
the choice of block size, deflation and augmentation, and one-sided reorthogonaliza-
tion. We present our main algorithm in section 4 and establish the accuracy of the
error indicator. Our numerical experiments are in section 5, and section 6 offers our
concluding remarks and some avenues for future exploration.

1.3. Notation. Matrices, vectors, integers, and scalars will be, respectively, de-
noted by A, a, a, and a. We use |A||r and ||A||2 for the Frobenius norm and operator
norm, respectively, and I for the identity matrix, whose dimensions can be inferred

Thttps://github.com/WenjianYu/randQB_auto/blob/master /randQB_EI_auto.m.
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from context. We use MATLAB notation for matrix indices; i.e., A(i,7) and A(:, ),
respectively, represent the (4, ) element and the jth column of A.

For the cost analysis of our algorithm, we use the same notation as in [18, 30]: Cryul
and Cg, will represent constants so that the cost of multiplying two dense matrices
of sizes m x n and n x [ is taken to be Cymnl, and the cost of computing the QR
factorization of an m x n matrix with m > n is taken to be Cyymn?, or Cypepmn? if
column pivoting is used.

A matrix A will be said to have a (1 + ¢)-cluster of size s if it has singular values
Of > Ok41 > -+ + > Okys—1, Where o < (1 + €)opts—1. When we say only that A has
a cluster, we mean loosely that it has a (1 + €)-cluster where € is “sufficiently small”
to be considered problematic for the convergence analysis.

2. Background. In this section, we review the fixed-accuracy QB factorization
algorithm randQB_EI and the block Lanczos bidiagonalization process.

2.1. A fixed-accuracy QB algorithm. In order to extend Algorithm 1.1 to
the fixed-accuracy problem, Yu, Gu, and Li [30] make use of two key ideas. First, for
a given block size b < /¢, the matrix €2 can be generated b columns at a time rather
than all at once, allowing the resulting factors Q and B to be generated incremen-
tally. Second, since Q has orthonormal columns and B = QT A, it follows by the
Pythagorean theorem that

(21)  [|A-QB|% =|A - QQ"A|% = |AlF — IQQ" A% = |Al% — 1B

As long as the columns of Q are kept close to orthonormal, the Frobenius norm error
can be efficiently estimated at each step simply by updating ||B||r. It is therefore
possible to compute the low-rank factorization QB and cheaply estimate its error
without ever forming the error matrix A — QB explicitly. The algorithm randQB_EI
incorporates both of these ideas, the second of which is particularly useful when A is
sparse.

Algorithm 2.1 presents code for randQB_EI, which in exact arithmetic will output
the same QB factorization as randQB when run to the same rank. It is noted in
[13] that a stable implementation should include a reorthogonalization step after each
application of A or AT. The reorthogonalization step in line 10 provides further
stability. Note that since Q and B are initialized as empty matrices, the first call to
Q(BS2}) in line 5 requires no operations.

Suppose that we stop Algorithm 2.1 after ¢ iterations and set ¢ = tb. The runtime
of randQB_EI can then be approximated as

1 2
TrandQBJEII ~ QCmulmn£ + Ecmul('?)m + n)‘ez + EC’qrmfz
(2.2) .
+p <2C’mu1mn€ + Crput(m + n) % + gcqr(m + n)€2> ,

where the cost increases more or less proportionally to p+ 1. By comparison, the cost
of the fixed-rank prototype randQB can be approximated as
(2.3) Tranags = 2(p + 1)Crpumndt + Coymt?.

2.2. Block Lanczos bidiagonalization. Here we describe a block Lanczos
method for reducing a matrix to block bidiagonal form. Since this method gener-
alizes the single-vector algorithm by Golub and Kahan [7] commonly known as the
Golub-Kahan-Lanczos process, we will abbreviate it as bGKL.
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Algorithm 2.1 Blocked randQB Algorithm (randQB_EI).

Input: A € R™*", block size b > 1, power parameter p > 0, tolerance 7
Output: Q € R™** B € R*", such that |[A — QB|/r < T
Q=[] B=]
2. E=|A|% (Approximate costs)
3: for k=1,2,3,... do
4:  Draw a random standard Gaussian matrix Qj € R?*?
5 Qi = qr(AQk — Q(Bﬂk)) Comumnb + (k — 1)Cru (m + 71,)1)2 + qu.me
6: for j=1:pdo
7 Qi = ql"(ATQ;€ — BT(QTQk)) Crumnb + (K — 1)Crpur (m + n)b? + Cqrnb?
8
9

Qi = qr(AQk - Q(Bék)) Cmumnb + (k — 1)Cru(m + n)b2 + qumb2
:  end for
10 Qi =qr(Qr — Q(QTQL)) 2(k — 1)Craumb® + Coymb®
11: B, = Q{A Crnamnb
122 Q=(Q, Q4

13 B=[BT,Bf]"

14: E=F—- HBkH%‘

15:  if E < 72 then stop
16: end for

The bGKL process was introduced by Golub, Luk, and Overton [9] to find the
largest singular values and associated singular vectors of a large and sparse matrix.
Since then, it has been applied to both least squares problems [15, 26] and total least
squares problems [2, 14] with multiple right-hand sides.

The process takes a matrix A € R™*" and matrix V| € R"*? with orthonormal
columns and after k steps produces the orthonormal bases Uy = [Uy,---, U] and
Viks1) = [V1,+ -, Vip1] satisfying

Span {U(;) } = Span { AV, A(ATA)Vy, ..., A(ATA)* 1V, },
Span {Vj,11)} = Span {V1, (ATA)Vy,..., (ATA)FV, }.
Furthermore, it produces the kb x (k + 1)b block bidiagonal matrix
R: L,
(2.4) B, = Ro

Ly
Ri Lgy:

so that at each step of the process, the relations
(2.5) AV () =UBi(:,1:kb) and ATUy) = V(i) B]

are satisfied. Assuming no loss of rank, the blocks {R;}¥_; or {L;}**! are, respec-
tively, b x b upper and lower triangular.

The basic outline of the process is given in Algorithm 2.2, where the costs assume
no loss of rank in the blocks {R;}¥_; or {L;}*T!. We note that the original algorithm
in [9] is organized so that By is square at the end of each iteration. Our current presen-
tation more directly mimics the QB factorization since U(k)BkV(T;CH) = U(k)Ua)A
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Algorithm 2.2 Block Lanczos Bidiagonalization Process (bGKL) [9].

Input: A € R™*" matrix V; € R"*? with orthonormal columns

1: Up=0;L; =0 (Approximate costs)
2: for k=1,2,...do

3 UrRy = qr(AVy — Ug_1Lg) Cruamnb + %CnmmeQ + Cyemb?
4 VLl =qr(ATU, — ViRY) Craumnb + 2Crpunb? + Conb?
5. end for

by the second relation in (2.5). It follows that in exact arithmetic, the identity
(2.6) 1A = U B Vi I = [AlIF — 1B]l%

will hold, and so the bGKL process can be readily adapted to find a fixed-accuracy
approximation to A.

Suppose that we stop the process after ¢ iterations and set £ = tb. The runtime
of the bGKL process can then be approximated as

1 1
(2.7) Tockr, ~ 2Cumnt + Q—tCmul(m + n)€2 + qur(m + n)£2.

At this point, it is not fair to compare this cost to the cost of (2.2) because we have
not yet accounted for the cost of reorthogonalization in bGKL, which is necessary for
stability. Nonetheless, it suggests that we may be able to obtain an algorithm based
on bGKL that costs no more per iteration than randQB_EI with power parameter p = 0.

3. Implementation details. In this section, we discuss how to handle several
important issues in the implementation of our fixed-accuracy algorithm. The first
concerns the difficulty the Lanczos method encounters when A has large singular
value clusters. The second is the matter of ensuring that the columns of Uy and V1,
remain close to orthonormal, and the third is the use of deflation and augmentation
when the blocks Ry or Ly are rank-deficient.

3.1. Block size and singular value clusters. It is known that if A has a sin-
gular value with multiplicity greater than the block size b, then in exact arithmetic,
the block Lanczos process will recover at most b of those singular values. More gen-
erally, if the spectrum of A has a cluster of size greater than b, then the approximate
singular vectors recovered by the Lanczos process may converge slowly. This behavior
stands in stark contrast to that of methods such as randQB_EI, whose outputs do
not in exact arithmetic depend on b. Consequently, recent theoretical analyses of the
block Lanczos process have restricted their attention to the case where the cluster
size is bounded by b [17], where the multiplicity is bounded by b [32, 31], or where b
is greater than or equal to the target rank r [20, 27, 4].

In practice, repeated singular values are not necessarily fatal to the Lanczos
process thanks to rounding errors, which, as Parlett and Scott [22] note, “introduce
components in all directions.” Rounding errors do not always help: If A is diagonal
and V; has a row with all zero entries, for example, then the corresponding diago-
nal entry of A will never be found. Nonetheless, we should expect that in a typical
case, even repeated singular values will be found eventually (though not necessarily
in consecutive order of magnitude; see [25]). Our numerical experiments support this
notion: Large clusters and repeated singular values may delay convergence but will
not prevent it entirely, and so the choice of block size b should not necessarily be
restricted by current theoretical analysis.
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3.1.1. Adaptive block size. An alternate method for dealing with clusters
is offered in [29] and explored further in [1, 33]: Instead of keeping the block size
constant, we may periodically augment the block Krylov space with new vectors in
order to better approximate clusters. The rough idea would be to monitor the singular
values of By and to increase the block size b so that it remains larger than the largest
cluster in By. For the sake of keeping the implementation of our algorithm simple,
we leave this extension for future exploration.

3.2. Onme-sided reorthogonalization. In exact arithmetic, the matrices Uy,
and V will have orthonormal columns. In practice, they will quickly lose orthog-
onality due to roundoff error, and so we must take additional steps to mitigate this
loss of orthogonality.

For the single-vector case b = 1, Simon and Zha [25] observe that it may suf-
fice to reorthogonalize only one of Uy or V(3 in order to obtain a good low-rank
approximation. They suggest that if the columns of V(1) alone are kept close to or-
thonormal, then U(k)BkV(j;c +1) will remain a good approximation to A regardless of
the orthogonality of Uy. Separately, experiments by Fong and Saunders [6] suggest
that keeping V ;) orthonormal to machine precision €yach might be enough to keep
Uy orthonormal to at least O(\/€macn). For the sake of computational efficiency,
we therefore choose to explicitly reorthogonalize V ;) but not U, (assuming that
m>n).

Reorthogonalization can take up a significant portion of the runtime of our al-
gorithm, particularly if A is sparse. However, it is known for the Lanczos process
that orthogonality is lost only in the direction of singular vectors that have already
converged [21]. Thus, in a high-quality implementation, it should be possible to save
time by orthogonalizing each block V, against a smaller carefully chosen set of vectors
obtained from V,_qy (see [22, 11, 24] for a few such proposals). In our implementa-
tion, we use full reorthogonalization for simplicity. We note that even if A is square,
full reorthogonalization will cost no more than the equivalent step in randQB_EI (line
10 of Algorithm 2.1).

3.3. Deflation and augmentation. In practice, the block Lanczos process may
yield blocks Ry or L that are rank-deficient or nearly so. Here and with other block
Krylov methods, it is typical to reduce the block size b in response so that Ry and Ly
retain full row rank and column rank, respectively. This process is known as deflation.
For more background, we refer the reader to the survey paper by Gutknecht [12] and
the references therein.

In the context of matrix sketching, deflation can be problematic. Consider an
extreme example where the columns of V; are right singular vectors of A: The
Lanczos process will terminate after a single iteration, returning an approximation
of the form A ~ U;XV?{. Termination at this point would yield accurate singular
vectors, but the factorization may not approximate A to within the desired error
tolerance. To prevent such a situation, we propose to replace any deflated vectors
with new randomly drawn ones in order to keep the block column size constant.
Similar augmentation techniques have been proposed to prevent breakdown in the
case of the nonsymmetric Lanczos process [28] and GMRES [23].

The procedure for deflation is outlined in Algorithm 3.1. We use QR with column
pivoting for the factorizations in lines 3—4 of Algorithm 2.2, then truncate the result
according to a deflation tolerance ¢, presumably somewhat larger than epacnh||A||2-
As Bjorck [2] notes, the recurrence in those lines will still work in the presence of
deflation.
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Algorithm 3.1 Deflated QR (def1QR).

Input: X € R™*" deflation tolerance §

Output: Q € R™*® with orthonormal columns, R € R**", rank s
: Compute the pivoted QR factorization XII = QR

: Find the largest s such that |R(s, s)| > ¢

R = ﬁ(l s s, )T

:Q=Q(:,1:9)

=W N =

For the augmentation step, if Algorithm 3.1 returns a factorization VL] with
rank less than b, we generate a standard Gaussian matrix Qj so that [V, Q] has
b columns. We then orthogonalize ), against V}, and V(;_;), obtaining Vj. The
resulting matrix [V, V] is then used in place of Vy, in the next step of the Lanczos
process.

In keeping with the spirit of one-sided reorthogonalization, we do not augment
Uy, if a block Ry, is found to be rank-deficient. This will allow us to avoid accessing
the matrix U, _1) while the block Lanczos process is running. As a consequence, the
blocks of By will each have b columns, but some may have fewer than b rows.

Bjorck [2] alternately proposes using Householder reflections without column piv-
oting, in a manner slightly different from standard unpivoted QR. The resulting matrix
By will be not just block bidiagonal but a banded matrix whose effective bandwidth
begins at b and decreases with each deflation. Our version is slower and less ele-
gant but simpler to implement in terms of readily available subroutines. We also
observe that in the presence of augmentation, the space Span {V(k)} will not be a
block Krylov space but will instead be the sum of multiple block Krylov spaces with
different dimensions. As of the time of writing, we are not aware of any convergence
results for this more general case.

4. Fixed-accuracy algorithm. Algorithm 4.1 presents code for randUBV. Ig-
noring the augmentation step in line 16, the cost is more or less equal to the cost of
bGKL plus the cost of reorthogonalizing Vi1 in line 11. Thus, if we stop the process
after ¢ iterations and set £ = tb, the total cost is approximately

1 1
(4.1) Tranavgy = 2Cmumnt + Copmnl? + Q—tCmul(m + n)€2 + Equ(m + n)€2.

Comparing this quantity to (2.2), we see that randUBV requires fewer floating point
operations than randQB_EI when run for the same number of iterations, even when
the latter is run with power parameter p = 0. In particular, the cost of one-sided
reorthogonalization is only O(nf?), while the stabilization steps in lines 5 and 10 of
randQB_EI cost O((m+n)f?). We can therefore expect that if A is sparse and m >> n,
randUBV may run significantly faster.

Since our focus is on the fixed-accuracy algorithm, however, different algorithms
(and, for randQB_EI, different power parameters p) will converge after different num-
bers of iterations. We must therefore consider not just the cost per iteration but how
quickly the approximations converge. We discuss this matter further along with the
numerical experiments in section 5.

4.1. Approximation accuracy. It is noted in [30] that due to cancellation,
the computed value of E = ||A[|% — ||B||% may be inaccurate when E is very small.
In order to estimate the error E to within a relative tolerance of v (say, v = 1%),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/25/22 to 152.7.255.204 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BLOCK BIDIAGONALIZATION FOR MATRIX APPROXIMATION 669

Algorithm 4.1 Blocked Bidiagonalization Algorithm (randUBV).

Input: A € R™*" block size b, relative error 7, deflation tolerance §
Output: U, B, V, such that |[A — UBVT|r <7

1 E=|Al% (Approximate costs)
2: Draw a random standard Gaussian matrix Q € R?x?

3: Vi =qr(Q) Cyrenb?
4:U;=0L; =0

5 V = Vl; U=U;

6: for k=1,2,3,... do

7. [Ug,Rg] = def1QR(AVy — Uy_1Ly, 0) Cruymnb + %Cmumsz + Corepmb?
g U =[U,Uy]

0. E—E- |Ry3

10: Vi =ATU, — VkRz Cramnb + %C’mumb2
11: Vk+1 = Vk-i—l — V(VTV;H_l) 2]{011111177,52
12 [Vigr, L4, s] = def1QR(V g1, 0) Carepnb?
132 V=[V, V]

14: if s < b then

15: Draw a random standard Gaussian matrix Qj € R?*(0=s)

16: Vi =ar(Q — V(VIy)) 2kCrnunb(b — ) + Cqn(b — )2
17: V=[V,Vi]

18: end if

190 E=E— |[Ly |l

20:  if E < 7%||A||% then stop
21: end for

the authors suggest that the absolute accuracy tolerance 7 for the QB factorization
should be set large enough to satisfy

4 m 1
(4.2) r>VE> %HAHF,

where €yach is the machine precision. In short, the proposed method of error estima-
tion cannot reliably estimate a relative error below 2./€mach.

We provide a similar analysis in order to account for deflation and loss of orthog-
onality of U). In particular, we show in Theorem 4.3 that the error estimate can
remain accurate even as Uy loses orthogonality in practice. To that end, we define
the local loss of orthogonality of a matrix as follows.

DEFINITION 4.1. Given a matriz Uy = [Uy,..., U], the local loss of orthogo-
nality of Uy, is defined as

£, = max {lrgggk U7 U —1|s, Joax. IIUiTlUin} :

The main idea is that we do not require ||UT,€)U(;€) —1I||2 to be small. Instead, we
need only the milder condition that adjacent blocks be close to orthogonal.

LeEMMA 4.2. Consider the matriz Uy = [U1, ..., U], and let e denote the local
loss of orthogonality of Uy. Let By be a block upper bidiagonal matriz whose blocks
are partitioned conformally with those of Uy. Then

IUBrllz = 1+ 0)IBrlE, 0] < 2.
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Proof. We will find the squared Frobenius norm of U)By one block column at
a time and use the fact that since By is block bidiagonal, each block column in the
product uses at most two adjacent blocks of Uy,.

Let {R;}%_; denote the blocks on the main block diagonal of By, and let {L;} "}
denote the off-diagonal blocks. Then for 2 < i < k, the squared Frobenius norm of
the ith block column of U;,)By is given by

(4.3) Ui 1L + UiRi[|% = Ui 1 Lil |7 + [|[UiRs||7 + 2t (R U U, L) .
Examining the first term, it can be seen that

[Ui-1Li|| 7 = tr(Li UL Ui Ly)
=tr(LY(UT ,U;_; —DL;) + tr(LTL;)
= (1 +6)||Ls| %,

where |01| < €. A similar result applies to the term |[U;R;||%. As for the final term,
we find that

2/tr R U7 U1 Li| < 2| U Ui ||| Rl ¢ || Ls|
< 2e1||Ry|| p[|Li |
< en(IRillF + LI 7)-

By adding these expressions back together, we arrive at the bound
(4.4) UL+ URE = (14 O)([Ral[3 + L), 160] < 22,

so the desired relative error bound holds for each block column (the first and last
columns may be checked separately). The main claim then follows by summing over
the block columns. |

Next, we observe that with one-sided reorthogonalization of V) and in the ab-
sence of deflation, the first relation in (2.5) will remain accurate to machine precision
regardless of the orthogonality of Uy (as noted in [25], the second relation will not).
In the presence of deflation, the first relation must be amended slightly. We rewrite
it as

where B, is shorthand for By (:, 1 : kb) and Dy, is a matrix accounting for all deflations
in Ug,). Assuming the column pivoting in Algorithm 3.1 selects at each step the
column with the largest 2-norm, it can be verified that |Dy||r < 6v/d, where § is the
deflation tolerance and d is the total number of columns that have been removed from
U ) through deflation.

We now show that the error estimate Ej = ||A]|% — ||Bg||% will remain accurate
up to terms involving the deflation tolerance and the local loss of orthogonality in
U(). The proof makes the simplifying assumptions that V(;;1) has orthonormal
columns and that there is no rounding error term in (4.5), but accounting for both of
these effects will change the bound (4.6) by at most O(€macn|Al/%). The proof also
ignores the effect of cancellation in the computation of E, so as with [30], we cannot
expect to reliably estimate a relative error below \/€mach.
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THEOREM 4.3. Given a matriz A, let U1y, Bj 1, and V (11 be as produced by
Algorithm 4.1 with deflation tolerance §. Let ey, denote the local loss of orthogonality
of U(rt1). Assume that V1) has orthonormal columns. Assume that (4.5) holds
exactly at each iteration, and let d be the number of columns removed from U 1)
due to deflation. Finally, let By, = ||A||% — ||Bk||%. Then

(46) A~ UgBeVi 3 < B + e |AlF +20VA(1 +2611) | Al .
Proof. First, by assuming the columns of V ;1) are orthonormal, we find that
4.7) A =UwBiViyllz = |AlF + [UwBklE — 2tr(AV oy B UL,
By assuming that (4.5) holds exactly at each step, we also get the identity
AV(iy1) = Uy Byt + Dit1 = Uy Bi + [0, U1 Rig1] + Dy,

where |Dyy1||r < dv/d. It follows that
(4.8)
tr(AV (441 B Uyy) = U g Bl + tr(UL Up 1Ry 1 Li ) + tr(Dr i BE UG, ).

From the definition of €41, we have
(4.9)  |r(Uf UpaReaLi )| < 1UFUpall2|Ricsr ol s |r < erpr | ALl
and since | Dy 1]|r < 6v/d, we also have

(4.10) (D BIUG)) | < Dy U Brllr < 5V Uy Bl

Lemma 4.2 gives us bounds on ||U B[/, so by returning to (4.7) and using
(4.8), (4.9), and (4.10), we conclude that

|A = UBi Vi lE = A% + [[UgBillz — 2tr(AV (4 1)BL Uf)
< A% = |UwBklF + 2es1l|AlF + 20vd|| U By |
< By + dejq1 || A% + 26V d(1 4 2e141) || Al 7 0

Thus, as long as local orthogonality is maintained for Uy and as long as the
number of deflations is not too large, we can expect Fj to remain an accurate estimate
of the Frobenius norm approximation error, at least when the error tolerance is not
too small. We conclude that even if we use one-sided reorthogonalization, the quantity
|A]|% — ||Bk||% will remain a reliable estimate of the approximation error.

4.2. Postprocessing of B. Recall that our original goal for the fixed-accuracy
problem was not just to find a factorization that satisfies the bound [|[A —UBV” |z <
7 but to find the factorization with the smallest rank that does so. In order to
accomplish this, we may compute the SVD of B as B = ﬂEVT, truncate it to the
smallest rank 7 such that |A — U, X, VT |z < 7, and then approximate the left and
right singular vectors of A by UU, and VV,. It should be noted that since B is a
block bidiagonal matrix, its SVD can in theory be computed more efficiently than if
B were dense. Algorithms for computing the SVD typically first reduce the matrix to
bidiagonal form [7], and B can be efficiently reduced to this form using band reduction
techniques as in [16].
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This postprocessing step takes on additional importance when dealing with the
block Lanczos method rather than subspace iteration. Where subspace iteration will
yield a matrix B whose singular values are all decent approximations of the top singu-
lar values of A, the factor B produced by the Lanczos method will contain approxima-
tions to the smallest singular values of A as well [10]. It is therefore possible that the
matrix B produced by randUBV can be truncated significantly without diminishing
the quality of the approximation.

In fact, if one has the goal of obtaining a factorization whose rank is as small as
possible, we recommend setting the stopping tolerance Tyiop slightly smaller than the
desired approximation tolerance 7o (or, similarly, running the algorithm for a few
more iterations after the approximation tolerance has already been satisfied). Doing
so may significantly reduce the rank r of the truncated SVD, which will in turn pay
dividends by reducing the cost of computing UU, and VV,.

5. Numerical experiments. Here we report the results of numerical experi-
ments on synthetic and real test cases. We run four sets of experiments in order to
examine the following:

1. The rate of convergence by iteration. We use synthetic matrices whose spectra
decay at different rates and compare randUBV with randQB_EI using power
iterations p = 0, 1, 2 for the latter.

2. The effect of sparsity and truncation rank on reorthogonalization costs.

3. The effect of block size on the time and number of iterations required for
convergence.

4. The effect of choosing a smaller stopping tolerance Tyop < Terr 00 the quality
of the approximation.

All experiments were carried out in MATLAB 2021a on a 4-core Intel Core i7 with
32 GB RAM.

5.1. Convergence rate by iteration. For our first set of test cases we created
matrices of size 2000 x 2000 with the form A = UXVT, where U and V were formed
by orthogonalizing standard Gaussian matrices and ¥ was set in the following manner:

e (Matrix 1) Slow decay, in which o; = 1/5% for 1 < j < 2000.

e (Matrix 2) Very slow decay, in which o; = 1/j for 1 < j < 2000.

o (Matrix 3) Fast decay, in which o; = exp(—;/20) for 1 < j < 2000.

e (Matrix 4) Step function decay, in which o; = 1070:6([3/301-1) for 1 < j <

2000. Each singular value of A (except for the smallest) has multiplicity 30.

In all four cases, we ran the sketching algorithms to a maximum rank r = 200 using
block size b = 10. The deflation tolerance was set at § = 1072 /||A||1[|A]|«, but we
did not encounter deflation in any of these cases.

Results are shown in Figure 5.1. In the first three test cases, the approxima-
tion error for randUBV was smaller than that of randQB_EI (with power parameter
p = 0) for every iteration after the first. It lagged somewhat behind randQB_EI with
p =1 or p =2, both of which were quite close to optimal. In the final case, where
the singular values of A were chosen to have multiplicity larger than the block size,
randUBV lagged significantly behind even randQB_EI with p = 0. We note that algo-
rithm randUBV did nonetheless converge, which would not have been possible in exact
arithmetic.

Finally, we offer a snapshot of the singular values of Bygg after the algorithms
have terminated. Results for test cases 1 and 4 are shown in Figure 5.2. We note
that the leading singular values returned by randUBV are more accurate than those
returned by randQB_EI with p = 0 and comparable to the cases p = 1 or p = 2.
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The smallest singular values for randUBV are much smaller than their randQB coun-
terparts, which appears to be undesirable but has a bit of a silver lining: It sug-
gests that the rank of By can be truncated without losing much approximation

accuracy.

5.1.1. Accuracy of error indicator. Here we examine the accuracy of the
error indicator for each of the test cases (Matrices 1-4) defined above, using the same
parameters, and compare it to the theoretical bound of Theorem 4.3. As mentioned
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TABLE 5.1
The local loss of orthogonality exy1 of U1y remained small for all four test cases. The
final two columns show that the error indictor Ej was highly accurate and even several orders of
magnitude more accurate than the theoretical guarantee of Theorem 4.3.

Matrix | €11 By A — U(k)BkV(Tk_H) |2 — Ex| | depr1|All%
1 9.1e-14 | 6.5¢-08 3.9¢-16 3.9e-13
2 1.9e-15 | 5.8e-03 3.1e-17 1.2¢-14
3 2.0e-13 | 5.2e-08 7.4e-16 7.7e-12
4 4.1e-13 | 1.9e-04 3.5e-15 5.2e-11

earlier, deflation did not occur in any of the four cases. By rearranging (4.6), it follows
that the bound
IA = U@Bi Vi lF — Ex| <4era||Al7

holds, where €1 is the local loss of orthogonality in U ;1) from Definition 4.1 and
Ej = |A|% — ||Bk||% is the error indicator. This bound implies that a small value of
€k+1 is sufficient to guarantee the accuracy of the indicator E.

Results are shown in Table 5.1. We found that the local loss of orthogonality ey 1
remained small and accordingly that Theorem 4.3 guaranteed that the error indictor
Ej, would be a good approximation to the true error || A fU(k)BkV(Tk_H) |%. This was
indeed the case, and in fact the error indicator was more accurate by several orders
of magnitude than the theoretical guarantee.

It is not necessary for U 1) to have orthonormal columns in order for the error
indicator to remain accurate—all that is needed is for the local loss of orthogonality
€k+1 to be small. Regardless, we also observed that global loss of orthogonality
HU(k+1)TU(k+1) —IJ|2 ran one to three orders of magnitude larger than €511 but not

larger than 9.1 - 10719 for any of the trials.

5.2. Reorthogonalization costs. For our second set of test cases, we generated
random sparse matrices as A = sprand(m,n,d) with n = 4000 columns and varying
numbers of rows m and densities d. We then approximated A to a variable rank r
using randUBV and randQB_EI with p = 0. We tested three different variations:

e Number of rows m varying from 8000 to 40000, rank r» = 600, and d = 0.8%
nonzeros.

e Number of rows m = 24000, rank r varying from 200 to 1000, and d = 0.8%
NoNZzeros.

e Number of rows m = 24000, rank r = 600, and nonzeros varying from d =
0.4% to d = 2%.

Results are shown in Figures 5.3 and 5.4, which confirm our general expectations:
For a rectangular matrix with m > n, if the matrix is sparse or the approximation
rank large, then reorthogonalization will take up a larger proportion of the overall cost.
Consequently, randUBV will gain a competitive advantage over randQB_EI due to the
fact that it uses one-sided reorthogonalization. This effect will be more pronounced
the larger m is compared to n, although we found that changing m alone did not have
much effect on the relative runtimes of the two algorithms.

5.3. Block size. For our third set of test cases, we examine how the choice of
block size affects the time and number of iterations required for convergence. We use
one synthetic matrix and two real ones: The synthetic matrix is a 4000 x 4000 matrix
whose singular values decrease according to the step function o; = 1079-1([3/301=1),
Thus, each singular value except for the last has multiplicity 30.
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Fic. 5.4. Effects of sparsity (left) and approximation rank (right) on runtime.

The first real matrix is a dense 3168 x 4752 matrix, representing the grayscale
image of a spruce pine. The second, lp_cre_b, comes from a linear programming
problem from the SuiteSparse collection [3] and is a 9648 x 77137 sparse matrix with
260, 785 nonzero elements and at most 9 nonzero elements per column. This second
matrix has several sizable clusters of singular values, for example, 63 ~ 71.10 and
o33 ~ 70.77. The median relative gap (0; — 0j41)/0;+1 among the first 800 singular
values is about 8.6 x 107°, and the smallest relative gap is about 2.3 x 10~8. Prior
to running the sketching algorithms, both matrices were transposed in order to have
more rows than columns. The image represented by the first real matrix and the
leading singular values of the second are shown in Figure 5.5.

We compare randUBV to randQB_EI with power parameters p = 0,1. For both
algorithms we approximate the synthetic matrix to a relative error 7o, = 0.01, the
grayscale image to a relative error 7o, = 0.1, and the SuiteSparse matrix to a relative
error Ter = 0.5.

Results are shown in Figure 5.6. The behavior of randQB_EI was fairly straight-
forward: Using larger block sizes was more efficient, at least up to the point where
the block size was large enough to waste computation by computing Q and B to a
larger rank than necessary. This makes sense because larger block sizes offer more
opportunities for using BLAS 3 operations and parallelization. Relatedly, we note
that MATLAB’s svdsketch function adaptively increases the block size in order to
accelerate convergence. On the opposite end, the routine svds uses b = 1 and is
optimized for computing a small number of singular values to high accuracy but is
inefficient at matrix sketching.
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The behavior of randUBV was very similar to that of randQB_EI on the grayscale
image but less so on the other two cases. For the synthetic matrix whose singular
values were distributed according to a step function, increasing b from just below
the cluster size to just above it led to a sharp drop in both the time and number of
iterations required. On the matrix 1p_cre_b, the optimal block size was near b = 10
even though the approximation rank was close to constant over all block sizes tested.
We speculate that the reason for this is that 1p_cre_b is both sparse and rectangular,
so dense QR operations are a significant portion of the cost of the algorithm. Looking
back to the cost of randUBV as shown in (4.1), we note that using a smaller block size
reduces the cost of performing QR operations on U.

5.4. Stopping tolerance. In our final set of experiments, we examined the
effect of choosing a stopping tolerance 7o, smaller than the desired approximation
error tolerance 7e.;, with the conjecture that doing so would allow randUBV to attain
significantly better compression rates. We used randQB_EI with p = 0,1,2 as a
reference for comparison.

The procedure went as follows: In the first step, each sketching algorithm was run
until the Frobenius norm approximation error dropped below a set tolerance Tyiop. In
the second step, the SVD of B was then computed and truncated as B, = UTETV,T
to the smallest rank such that |A — B, ||r < Tere||AllF, and the singular vectors of A
were computed as UU,. and V'V, (or as QU,. for randQB_EI). The SVD was computed
using the eigSVD routine advocated in [5], which essentially uses eig(BTB) in place
of svd(B). The time required for each of these two stages was recorded using tic
and toc.

5.4.1. Image data. For the image data, we ran all algorithms to a relative error
of Ttop = Terr = 0.1 with block size b = 20 and for randUBV additionally considered
the stricter stopping tolerance 7gop = 0.09. In both cases, we found that the U factor
from randUBV satisfied |[UTU — I|j; < 1072, We also observed that the output
satisfied the stopping tolerances, confirming the accuracy of the error indicator.

Results are shown in Table 5.2, with all time reported in seconds. There, tg,.
is the time required for the QB or UBV factorization, ts,q is the time required to
compute the SVD of B and the new singular vectors of A, and tiotal = ffac + tsvd-
Finally, k is the rank at which the process was terminated and r the rank to which
B was truncated. The first line represents the time required to directly compute the
SVD of A and the optimal truncation rank.

We observe that randUBV ran faster than randQB_EI regardless of the value of
the power parameter p. Even though it required more iterations to converge than
randQB_EI with p = 1 or p = 2, it required fewer matrix-vector products with A or
AT per iteration. Furthermore, running randUBV to a stopping tolerance that was
slightly smaller than the truncation tolerance took somewhat longer but resulted in
nearly optimal compression, even superior to subspace iteration with p = 2.

TABLE 5.2
Results for image data with approximation tolerance Terr = 0.1.

Method Tstop teac tsvd Ltotal k r
SVD - - 13.52 | 13.52 - 388
UBV 0.1 0.81 0.05 0.86 520 | 439
UBV 0.09 0.96 0.06 1.02 600 | 392

QB(P=0) 0.1 1.10 | 0.09 1.18 | 700 | 663
QB(P=1) 0.1 1.17 | 0.05 1.23 | 440 | 420
QB(P=2) 0.1 1.64 | 0.04 1.68 | 420 | 398
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TABLE 5.3
Results for lp_cre_b with approximation tolerance Terr = 0.5.

Method Tstop Ltac tsvd teotal k r
SVD - - — - — 608
UBV 0.5 4.63 | 0.85 5.48 900 747
UBV 0.45 | 5.40 | 0.92 6.33 1050 627

QB(P=0) | 05 | 9.64 | 2.95 | 12.59 | 1150 | 1123
QB(P=1) | 05 | 596 | 0.97 | 6.94 | 700 | 676
QB(P=2) | 05 | 7.19 | 0.88 | 8.07 | 650 | 627

TABLE 5.4
Results for lp_cre_b with approzximation tolerance Terr = 0.15.

Method Tstop ttac tsvd Liotal k r
SVD - - - - - 2082
UBV 0.15 13.06 8.62 21.68 | 2600 | 2293
UBV 0.14 14.56 9.24 23.80 | 2700 | 2150

QB(P=0) | 0.15 | 72.37 | 25.33 | 97.71 | 3600 | 3505
QB(P=1) | 0.15 | 38.37 | 8.91 47.28 | 2150 | 2147
QB(P=2) | 0.15 | 48.50 | 8.45 | 56.96 | 2100 | 2100

5.4.2. SuiteSparse data. For the matrix 1p_cre_b from the SuiteSparse col-
lection, we ran two trials. In the first, we ran all algorithms to the rather modest
relative error of Tyop = Terr = 0.5 and for randUBV considered the stricter stopping
tolerance Tyop = 0.45. In the second, we ran the algorithms to the stricter relative
error of Tgop = Terr = 0.15 and for randUBV additionally considered Tyop = 0.14.
We used block size b = 50 for both trials. In the first trial, the U factor from the
UBV factorization satisfied ||[UTU — 1| < 107!3, and in the second trial, it satisfied
[UTU — Il < 10712, It was again confirmed that the output satisfied the stopping
tolerances in practice.

Results are shown in Tables 5.3 and 5.4, with all time reported in seconds. Due to
the size of the matrix A, we did not attempt to compute its SVD directly but instead
found the optimal truncation rank using the precomputed singular values available
online [3].

Once again, randUBV ran faster than its subspace-iteration—based counterpart,
and using a slightly smaller stopping tolerance 7o, improved the compression ratio
without significantly increasing the runtime. The iteration k£ at which randUBV termi-
nated was significantly smaller than it was for randQB_EI with p = 0 but significantly
larger than for randQB_EI with p = 1 or p = 2 (perhaps in part due to the singular
value clusters).

It should be noted that the matrix A in question is quite sparse with only about
0.03% of its entries nonzero and fairly skinny with m ~ 8n. It is therefore worth ex-
ploring whether randQB_EI might save time on reorthogonalization costs if performed
on AT instead. We reran the experiment for 7o, = 0.15 and found that while the
factorization time t¢,. did not change much, the second step tsyq took around twice
as long due to the matrix B being k x m rather than k x n.

6. Conclusions. We have proposed a randomized algorithm randUBV that takes
a matrix A and uses block Lanczos bidiagonalization to find an approximation of the
form UBVT, where U and V each have orthonormal columns in exact arithmetic
and B is a block bidiagonal matrix. For square matrices, it costs approximately the
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same per iteration as randQB-type methods run with power parameter p = 0 while
having better convergence properties. On rectangular matrices, it exploits one-sided
reorthogonalization to run faster without much degrading the accuracy of the error
estimator. Numerical experiments suggest that randUBV is generally competitive with
existing randUBV-type methods, at least as long as the problem is not so large that it
becomes important to minimize the number of passes over A.

A few avenues for future exploration are suggested. First and most importantly,
roundoff error allows block Lanczos methods to handle repeated singular values, which
they would be unable to do in exact arithmetic. This fact has been known for decades,
but we are not currently aware of any rigorous convergence bounds that account for
finite precision. Second, augmentation or adaptively changing the block size b will
make the span of V a sum of Krylov spaces of different dimensions. We are not aware
of any convergence results that cover this more general setting.

It is also worth exploring just how much the block Lanczos method benefits from
oversampling. We have observed that running randUBV for a few more iterations than
necessary can result in near-optimal compression, but it would be worthwhile to turn
the convergence results of, e.g., [32] into practical guidance.

Finally, the behavior of U when using one-sided reorthogonalization merits further
study. We generally found that when using a larger stopping tolerance 7, the columns
of U remained closer to orthonormal. It would be highly desirable to obtain a rigorous
result establishing that one-sided reorthogonalization is safe as long as only a rough
approximation is required, but we leave this goal for a future work.

MATLAB code is available at https://github.com/erhallma/randUBV, including
our main algorithm randUBV as well as code used to reproduce the figures and tables
used in this paper.

Acknowledgments. The author would like to thank the reviewers for their time
and helpful suggestions and Ilse Ipsen and Arvind Saibaba for their comments on an
earlier draft of this paper.
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