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Abstract
We present a computational framework for dimension reduction and surrogate modeling to accelerate uncertainty quantifica-
tion in computationally intensive models with high-dimensional inputs and function-valued outputs. Our driving application
is multiphase flow in saturated-unsaturated porous media in the context of radioactive waste storage. For fast input dimen-
sion reduction, we utilize an approximate global sensitivity measure, for function-valued outputs, motivated by ideas from
the active subspace methods. The proposed approach does not require expensive gradient computations. We generate an
efficient surrogate model by combining a truncated Karhunen-Loéve (KL) expansion of the output with polynomial chaos
expansions, for the output KL modes, constructed in the reduced parameter space. We demonstrate the effectiveness of the
proposed surrogate modeling approach with a comprehensive set of numerical experiments, where we consider a number of
function-valued (temporally or spatially distributed) QoIs.

Keywords Uncertainty quantification · Surrogate models · Dimension reduction ·Multiphase flow · Sensitivity analysis ·
Spectral representations

Mathematics Subject Classification (2010) 65C20 · 65C50 · 65D15 · 76S05 · 35Q86

1 Introduction

Low permeability argillites are considered as suitable host
rocks for underground radioactive waste storage to retain
radionuclides locally. However, hydrogen gas produced by
corrosion of steel engineered barriers can represent a threat
to the installation safety. A significant impact of this produc-
tion is the overpressurization of hydrogen around alveolus
leading to opening fractures in the surrounding host rock
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and inducing groundwater flow and transport of radionu-
clides outside of the geological repositories. This problem
renews the mathematical interest in the equations describing
multiphase multicomponent flows through porous media,
within the present context. An important aspect of improv-
ing the prediction fidelity of such models is to account for
the various sources of uncertainty in the governing equa-
tions.

Performing uncertainty analysis on the models under
study using a direct Monte Carlo sampling approach is
infeasible. This is due to the high cost of model simulations
and the need for a large number of such simulations.
Therefore, there is a need for quick-to-evaluate surrogate
models that accurately capture the underlying physics and
statistical properties of the quantities of interest (QoIs).
Surrogate modeling, however, is a formidable task for
the applications considered in the present work. Models
describing flow through porous media exhibit distinct
challenges with regards to uncertainty quantification and
surrogate modeling including expensive simulations, high-
dimensional uncertain parameters, and function-valued
outputs. Addressing these challenges effectively requires
understanding and exploiting the problem structure. To this
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end, we propose a framework that deploys a sensitivity
analysis approach to reduce the dimensionality of the input
parameter and utilizes the spectral properties of the output
QoI to generate an efficient surrogate model.

Related work The modeling of underground radioactive
waste storage involves simulating the coupled transport of
multiphase multicomponent flow in porous medium. Equa-
tions governing this type of flow in porous media are
nonlinear and involve simulation of complex phenomena
such as the appearance and the disappearance of the gas
phase leading to the degeneracy of the equations satis-
fied by the saturation. There have been significant research
efforts dealing with mathematical and numerical models
for simulating the transport migration of radionuclides. The
articles [8, 9] present test-cases and set up benchmark exam-
ples to address some of the specific problems encountered
when numerically simulating gas migration in underground
nuclear waste repositories. In [4, 9, 31] different choices of
primary variables have been proposed to tackle the degen-
eracy of the equations satisfied by the saturation. In [5],
the authors study a compressible and partially miscible
phase flow model in porous media, applied to gas migra-
tion in an underground nuclear waste repository in the case
where the velocity of the mass exchange between dissolved
hydrogen and hydrogen in the gas phase is supposed finite.
Also presented is a numerical scheme based on a two-
step convection/diffusion-relaxation strategy to simulate the
non-equilibrium model. There have also been efforts to
quantify uncertainty in models of multiphase flow [10, 29,
30, 32, 34, 40].

The tools from uncertainty quantification that are relevant
to the present work include global sensitivity analysis (GSA)
and surrogate modeling. GSA provides insight into how
uncertainties in model parameters influence model outputs
by identifying the input parameters a QoI is sensitive
to. This increases overall understanding of the underlying
physics and guides parameter dimension reduction. The
Sobol’ indices [36], derivative-based global sensitivity
measures (DGSMs) [23, 24, 37], and active subspace
methods [12, 13] are examples of GSA tools widely used
in practice. These concepts were originally conceived for
scalar QoIs. Recent works such as [1, 11, 42] generalize
standard GSA tools to the case of vector- and function-
valued QoIs. In particular, [1, 17] concern variance-based
GSA using Sobol’ indices for such QoIs. The article [11]
studies DGSMs for function-valued QoIs. A generalization
of active subspace methods for vectorial outputs is presented
in [42].

For expensive-to-compute QoIs calculating GSA mea-
sures such as Sobol’ indices is computationally expensive.
A common method for mitigating the computational cost
is to construct a cheap-to-evaluate surrogate model for the

QoI and then apply GSA techniques to the surrogate. For
example, polynomial chaos expansions (PCEs) have been a
popular approach for accelerating the computation of Sobol’
indices; see, e.g., [3, 7, 15, 38]. Surrogate model construc-
tion, however, is itself a computationally challenging task,
especially in the case of models with high-dimensional
input parameters. For such models it is also possible to use
a multilevel approach: initial parameter screening can be
performed using cheap, but less precise, tools and further
dimension reduction is performed through more rigorous
methods such as a variance-based analysis using accu-
rate surrogate models constructed in a reduced-dimensional
parameter space; see e.g., [20].

For function-valued QoIs, a straightforward approach is
to compute surrogate models for every grid point in a
discretized computational domain. This approach, how-
ever, can be inefficient and ignores an important problem
structure—the low-rank structure of the output. Specifically,
in many applications, function-valued QoIs can be repre-
sented via a spectral representation, such as a Karhunen–
Loéve expansion (KLE), with a small number of terms. This
problem structure can be exploited for surrogate modeling:
instead of approximating a field quantity at every point in
a computational grid, one can approximate a few dominant
modes of the output QoI. Such surrogate models can also be
used to accelerate GSA methods; see e.g., [1, 11, 19, 26].

Our approach and contributions In the present work, we
seek to construct surrogate models for fast analysis of
computationally intensive models with high-dimensional
parameters and function-valued QoIs. We consider QoIs of
the form

f = f (s, ξ), s ∈ X , ξ ∈ Θ,

where Θ ⊆ RNp is the uncertain parameter domain and X
is compact subset of Rd , with d ∈ {1, 2, 3}. In practice,
s can represent a spatial or temporal point. Our focus in
the present work is models of flow in porous media, and
f (s, ξ) is an observable in a multiphase flow problem. Our
approach identifies and exploits low-dimensional structures
in both input and output spaces. Specifically, we rely
on approximate GSA measures for fast input parameter
screening and utilize low-rank spectral representations of
output fields.

We propose a fast-to-compute screening metric that
utilizes ideas from active subspaces [12] and derivative-
based GSA for functional outputs [11] to perform parameter
dimension reduction. The proposed screening metric does
not require gradient computation in the parameter space.
This makes the proposed methods applicable to a broad
class of problems involving complex physics systems for
which adjoint solvers, which are essential for gradient computa-
tion in high dimensions, are not necessarily available.
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Following parameter screening, we combine two dif-
ferent spectral approaches—KLEs and PCEs—to gener-
ate an efficient surrogate model in a reduced-dimensional
uncertain parameter space. The overall surrogate model
constructed takes the form,

f PC
Nqoi

(s, ξ r ) = f0(s)+
Nqoi∑

i=1

f PC
i (ξ r )Φi (s),

where Φi’s are orthogonal basis functions in L2(X )

obtained from a KLE of f (s, ξ) and f PC
i are approximate

KL modes as functions of a reduced-dimensional parameter
vector ξ r ⊆ Rnp ; these KL modes are represented by PCEs,

f PC
i (ξ r ) =

NPC∑

k=0

fikΨk(ξ
r ),

where Ψk’s are a basis consisting of multivariate orthogonal
polynomials in L2(Θ) and NPC is specified based on the
choice of truncation strategy. Thus, the overall surrogate
model can be expressed as

f (s, ξ) ≈ f0(s)+
Nqoi∑

i=1

NPC∑

k=0

fikΨk(ξ
r )Φi (s). (1)

We refer to the class of surrogate models of the form (1)
as bispectral surrogates due to the use of spectral
representations in L2(X ) and L2(Θ). In Fig. 1, we provide
a schematic of the proposed bispectral surrogate modeling
framework. We point out that the proposed approach is
non-intrusive and requires only the ability to evaluate the
governing model at a sample of uncertain inputs. See
Section 5 for details.

While computing a surrogate model from a truncated
KLE by replacing the KL modes with PCEs (or other
surrogates) is not new, see e.g., [1, 19, 26], we build
upon this approach by including a gradient-free input
dimension reduction approach as a first step. This enables
the PCEs for the KL modes to be built in a lower-
dimensional space. Thus, a major contribution of this arti-
cle is a synergy of known techniques combined with a
novel input dimension reduction strategy to furnish an inte-
grated surrogate modeling approach. We also provide a

detailed computational procedure for the proposed frame-
work, making the present work a self-contained guide.
We elaborate our approach on an intricate multiphase
multicomponent flow model for which a comprehensive
presentation is also given. In our numerical results, we
implement the proposed approach for both spatially- and
temporally-varying QoIs. Additionally, a variety of statis-
tical studies are conducted with the constructed bispec-
tral surrogate. These tests are intended to showcase the
versatility of the surrogate model and explore the phys-
ical phenomenon under study. In particular, we perform
model predictions, compute variance-based global sensitiv-
ity indices, and study statistical model response behavior.
In addition to demonstrating the effectiveness of the pro-
posed strategy, our computational results provide valuable
insight regarding the response of complex porous media
flow models to uncertainties in material properties.

Article overview In Section 2 we present a detailed overview
of the multiphase multicomponent flow model that is central
to the present work. We also provide a description of our
choice of numerical solver for the governing equations. In
Section 3, we discuss modeling the uncertainties in material
properties, as well as give a brief explanation of the model
response and relevant QoIs. We supply a concise overview
of KLEs, PCEs, and bispectral surrogates in Section 4.
In Section 5 we provide a detailed framework, including
algorithms, for the proposed dimension reduction and
surrogate modeling approach. Our computational results
are presented in Section 6. Finally, we provide closing
comments in Section 7.

2Model description

2.1 Mathematical formulation of the continuous
problem

Here we state the physical model used in this work. We
consider a porous medium saturated with a fluid composed
of two phases, liquid (l) and gas (g), and a mixture of
two components, water (w) and hydrogen (h). The spatial
domain Ω is a bounded open subset of R% (% = 1, 2, or 3)

Fig. 1 A schematic of the proposed bispectral surrogate modeling approach
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and the problem is considered in the time interval [0, Tf ],
where Tf > 0 is the final time. To define the physical
model, we write the mass conservation of each component
in each phase

(2)

(3)

where is the given porosity of the medium, Sα(t, x) the
saturation of the phase α ∈ {l, g}, with the two saturations
summing to one. Also, pα(t, x) is the pressure of the phase
α, ρ

β
α is the density of the component β ∈ {w, h} in the

phase α, and ρα = ρh
α + ρw

α is the density of the phase α.
The velocity of each fluid, Vα is given by Darcy’s law

Vα = −K
krα (Sα)

µα

(
∇pα − ρα(pα)g

)
,

where K(x) is the intrinsic (given) permeability tensor of
the porous medium, krα the relative permeability of the α-
phase, µα the constant α-phase’s viscosity, pα the α-phase’s
pressure, and g, the gravity vector. For further details of the
model we refer to the presentation of the benchmark [8, 9].
Following the Fick’s law, the diffusive flux of a component
β in the phase α is given by

where coefficientDβ
α is the Darcy scale molecular diffusion

coefficients of β-component in α-phase andX β
α = ρ

β
α /ρα is

the component β molar fraction in phase α. Diffusive fluxes
satisfy

∑
β J

β
α = 0 for each α.

The capillary pressure law, which links the jump of
pressure of the two phases to the saturation, is

pc(Sl) = pg − pl .

This function is decreasing ( dpcdSl
(Sl) < 0 for all Sl ∈ [0, 1]),

and satisfies pc(1) = 0.
In the present work, the water is supposed only present

in the liquid phase (no vapor of water due to evaporation).
Thus, Eqs. 2–3 could be rewritten as

(4)

(5)

The system (4)–(5) is not complete; to close the system, we
use the ideal gas law and the Henry’s law

ρh
g = Mh

RT
pg and ρh

l = MhHhpg, (6)

where the quantities Mh, Hh, R and T represent respec-
tively the molar mass of hydrogen, the Henry’s constant for
hydrogen, the universal constant of perfect gases and T the
temperature. By these formulation, the system (4)–( 5) is
closed and we choose the liquid pressure and the density of
dissolved hydrogen as unknowns. From Eq. 6, the Henry’s
law combined to the ideal gas law, to obtain that the density
of hydrogen gas is proportional to the density of hydrogen
dissolved

ρh
g = Cρh

l where C = 1
HhRT

= 52.51.

Note that the density of water ρw
l in the liquid phase is

constant and from the Henry’s law, we can write

ρl∇X h
l = Xw

l ∇ρh
l .

Then the system (4)–(5) can be written as

(7)

where m(Sl) = Sl + CSg .
A van Genuchten-Mualem model with the parameters n,

Sαr and pr as given in Table 1 (left) is used for the relative
permeabilities and capillary pressure:

pc(Sle) = pr

(
S

−1/υ
le − 1

)1/n
,

krl (Sle) =
√
Sle

(
1 −

(
1 − S

1/υ
le

)υ)2
,

krg (Sle) =
√
1 − Sle

(
1 − S

1/υ
le

)2υ
,

with the effective saturation

Sle = (Sl − Slr )/(1 − Slr − Sgr),

where Slr and Sgr are the liquid and gas residual saturations,
respectively, and υ = 1 − 1/n.

2.2 Numerical solver

As is well known, the modeling of underground radioactive
waste storage involves simulation of complex phenomena
such as the appearance and the disappearance of the gas
phase leading to the degeneracy of the equations satisfied
by the saturation. This is mainly due to the migration of
gas produced by the corrosion of nuclear waste packages
within a complex heterogeneous domain. To overcome this
difficulty, an important consideration, in the modelling
of multiphase flow with mass exchange between phases,
is the choice of the primary variables that define the
thermodynamic state of the system. Different choices of
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primary variables have been proposed [4, 9, 31]. In
this article, we consider pressure of the liquid phase and
density of dissolved hydrogen the primary unknowns in
the multiphase flow system. A cell-centered finite volume
scheme is used for the space discretization and an implicit
Euler scheme for the temporal discretization. The nonlinear
system is solved with a fixed point method.

In this section, we present a numerical study dedicated to
understanding the computational issues caused by gas phase
appearance produced by injecting of hydrogen in a one-
dimensional homogeneous porous domain. We consider a
domain that is fully saturated with water. This numerical
study is inspired by the MoMaS benchmark on multiphase
flow in porous media [8].

2.3 Numerical experiment

We consider a one-dimensional domain with the benchmark
setup described in [8]. The spatial domain Ω is the interval
(0, L), with L = 200 meters, and the final simulation time
is Tf = 106 years. The parameters for porous medium,
fluid characteristics, and initial and boundary conditions are
presented in [8] and summarized in Table 1.

Initial conditions are uniform over the whole domain
with pure liquid water at fixed liquid pressure and no
hydrogen present,

pl(0, x) = pinit and ρh
l (0, x) = 0, x ∈ Ω .

For boundary conditions, a constant flux of hydrogen and
zero water flow rate were imposed on the left boundary

ρw
l Vl − Jh

l = 0,

ρh
l Vl + ρh

gVg + Jh
l =

{
qh 0 ≤ t ≤ Tinj,

0 t > Tinj.

On the right boundary, Dirichlet boundary conditions the
same as the initial conditions are imposed.

To validate our solver, we run simulations with the
nominal parameters and report the phase pressures and gas
saturation at the inflow boundary. Our results are consistent
with those reported in [4, 9, 31]. Figure 2 shows the gas

Fig. 2 Gas saturation (top) and liquid and gas pressures (bottom) at
the inflow boundary

saturation (top) and the phase pressures (bottom), with
respect to time (years) during and after injection. For 0 <

t < 13 × 103 years, the gas saturation remains zero, all
injected hydrogen dissolves into the liquid phase, the whole
domain is saturated with water, and the liquid pressure
remains constant. At t ≈ 13 × 103 years, the maximum
solubility is reached and the gas phase appears at the
injection boundary. Gas saturation keeps growing during the
period of hydrogen injection. When injection stops at t =
5×105 years, gas saturation decreases until it disappears. A
negative water flux is observed (see Fig. 3) as water comes
from right to left to fill in the empty space. At the end of the
simulation, the gas pressure continues to decrease and the
liquid pressure gradient goes to zero, as the system reaches
a steady state.

Table 1 Left: parameter values for the porous medium and fluid characteristics used in test case 1. Right: parameter values for domain size,
boundary and initial conditions, total injection time and total simulation time

Parameter Value Parameter Value Parameter Value

0.15 Dh
l [m2· s−1] 3 × 10−9 L [m] 200

K [m2] 5 × 10−20 µl [Pa · s] 1 × 10−3 qh [kg/m2/year] 5.57 × 10−6

pr [Pa] 2 × 106 µg [Pa · s] 9 × 10−6 pinit [Pa] 106

n [-] 1.54 Hh [mol.Pa−1.m−3] 7.65 × 10−6 Tinj [years] 5 × 105

Slr [-] 0.4 Mh [Kg · mol−1] 2 × 10−3 Tf [years] 106

Sgr [-] 0 ρw
l [Kg · mol−3] 103
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Fig. 3 Liquid (top) and gas (bottom) flux at the outflow boundary

3Modeling under uncertainty

We seek to understand the impact of uncertainty in hetero-
geneous material properties on model predictions. Specif-
ically, we focus on uncertainties in porosity and absolute
permeability. Our goal is to understand the impact of uncer-
tainties in material properties on the gas phase appear-
ance/disappearance in a two phase flow produced by hydro-
gen injection through a porous medium, which is initially
fully saturated with water.

3.1 Modeling uncertainty inmaterial properties

While in the setup of the benchmark problem constant
values for porosity and permeability were used, allowing for
spatially varying porosity and permeability provides a more
realistic representation. This leads to representation of these
quantities as random fields.

We model the porosity, , as a random field as follows.
Let Z(x,ω) be a Gaussian process, with exponential
covariance function c(x, y) = e−|x−y|/%, where % > 0 is the
correlation length. We chose % = 10 m (recall the length
of the domain is 200 m). The covariance operator of Z is
defined by

[Cparu](x) =
∫

Ω
c(x, y)u(y) dy, u ∈ L2(Ω). (8)

We define the random porosity field by

(9)

Here F−1
B (·;αbeta,βbeta) is the inverse CDF of a Beta(αbeta,

βbeta) distribution and FG is the CDF of a standard normal
distribution. This ensures that for every x ∈ Ω the porosity
is distributed according to Beta(αbeta,βbeta). The random
permeability field is obtained using a Kozeny–Carman
relation [14, 27]:

We set the proportionality constant in the above relation so
that , where and K̄ are the nominal porosity
and permeability values listed in Table 1 (left). The values
of αbeta and βbeta in Eq. 9 are set such that the mode of
the porosity distribution (at each x ∈ Ω) is the nominal
porosity of . Specifically, we chose αbeta = 20 and
found βbeta from the formula for the mode of a Beta dis-
tribution: . We depict the
distributions for pointwise porosity and permeability values
along with the porosity permeability relation in Fig. 4 (top).
We note that the present setup provides a physically mean-
ingful range of values for porosity and permeability, for the
application problem under study.

To facilitate uncertainty quantification, we consider a
truncated KLE of the Gaussian random field Z(x,ω) used
in definition of in Eq. 9. That is, we consider

Z(x,ω) ≈
Np∑

i=1

√
λiξiei(x), (10)

where (λi , ei), i = 1, . . . , Np are the eigenpairs of the
covariance operator ofZ(x,ω); see e.g., [2, 6, 25] for details
about the use of KL expansions for representing random
fields in mathematical models. For the present problem, we
let Np = 100, which enables capturing over 96 percent of
the average variance of the process. Notice that with the
present setup, the uncertainty in the porosity field is fully
captured by the vector ξ = [ξ1 ξ2 · · · ξNp]T, where ξi’s
are the KLE coefficients in Eq. 10, which are independent
standard normal random variables. As an illustration, we
show a few realizations of the random porosity field in
Fig. 4 (bottom).
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Fig. 4 Top: the porosity permeability relation and the distributions of
pointwise porosity and permeability. Bottom: a few realizations of the
porosity field

3.2 The QoIs under study

We focus on dynamics of hydrogen in gas phase by consid-
ering on the time evolution of gas saturation and pressure
at the inflow boundary and gas flux at the outflow bound-
ary. The units for gas pressure and gas flux are [bar] and
[kg/m2/year], respectively. These time-dependent QoIs are
indeed random field quantities due to randomness in poros-
ity and permeability fields. Notice that since the uncertainty
in porosity field is encoded in the coefficients ξ in Eq. 10,
the randomness in these QoIs is also parameterized by the
vector ξ of the KL coefficients. We denote the uncertain gas
saturation at the inflow boundary and gas flux at the outflow
boundary by S(t, ξ), andQ(t, ξ), respectively. In Fig. 5, we
depict a few realizations of these uncertain QoIs.

We also consider the gas saturation throughout the
domain, at various points in time. We denote this QoI by
S(x, ξ ; t∗), where t∗ is a fixed time. Figure 6 shows a few
realizations of this QoI at t∗ = 300,091 years. To further
illustrate the impact of spatial heterogeneity on the flow

Fig. 5 A few realizations of the time evolution of top: gas saturation
at the inflow boundary, bottom: gas flux at the outflow boundary

model, we also report a plot of the gas saturation in the
space-time domain in Fig. 7.

Performing statistical studies and predictions on the QoIs
outlined above is challenging due to the high cost of solv-
ing the governing equations and the high-dimensionality of
the input and output spaces. A major aim of this article is to
present a surrogate modelling framework that approximates
the time- or space-dependent QoIs efficiently by reducing
the input and output dimensions and using suitable approx-
imations.

4 Spectral representations of random
processes

4.1 Karhunen-Loéve expansions

Here we discuss spectral representations of a function-
valued output f (s, ξ). We assume f is a mean-square con-
tinuous random process. Such processes admit spectral
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Fig. 6 Gas saturation at t∗ = 300,091 years

representations, as given by a Karhunen-Loéve expan-
sion (KLE) [25, 28]:

f (s, ξ) = f̄ (s)+
∞∑

i=1

√
λifi(ξ)Φi (s). (11)

Here f̄ (s) is the mean of the process, (λi ,Φi ) are the
eigenpairs of the covariance operator Cqoi of the process,

CqoiΦi = λiΦi , i = 1, 2, . . . , (12)

and fi(ξ) are the KL modes,

fi(ξ)=
1√
λi

∫

X

(
f (s, ξ)−f̄ (s)

)
Φi (s) ds, i = 1, 2, 3, . . .

An approximation fNqoi(s, ξ) to f (s, ξ) can be obtained
by truncating (11) and retaining the first Nqoi terms in
the series. In many physical and biological models the
eigenvalues of Cqoi decay rapidly. Consequently, such QoIs
can be represented with sufficient accuracy by a truncated

Fig. 7 Space time evolution of gas saturation

KLE with a small Nqoi. Such processes are referred to as
“low-rank”.

We rely on Nyström’s method to compute the KLE [22].
This approach, as used in the present work, requires sample
averaging to approximate the covariance kernel, because
we do not in general have a closed-form expression for
the output covariance operator. Typically, a modest number
of QoI evaluations is sufficient for accurately estimating
the dominant eigenpairs of the covariance operator Cqoi. To
determine a suitable value for the number Nqoi of terms in a
truncated KLE, we consider

rk =
∑k

i=1 λi∑∞
i=1 λi

. (13)

The quantity rk represents the fraction of the average
variance of f captured by the first k eigenvalues. The steps
for computing the truncated KLE of f are included in
Algorithm 1, which is adapted from [2].

Note that evaluating the truncated KLE of f requires
computing the KL modes, which in turn requires a model
evaluation. To convert the truncated KLE into an efficient
surrogate model for f , we need a cheap-to-evaluate rep-
resentation for the KL modes. This approach is similar to
the one taken by [1, 26], in which PCE surrogates are
constructed for the modes of the related spectral repre-
sentations. In Section 5, we modify this approach by first
reducing the dimension of the input parameter and then con-
structing the KL modes surrogates in the reduced uncertain
parameter space.

4.2 Polynomial chaos expansions for fi (ξ ).

Recall, the polynomial chaos expansion of a square integrable
function g(ξ) is a series approximation of the form

g(ξ) ≈
NPC∑

k=0

ckΨk(ξ), (14)

where {Ψk}NPC
k=0 are a predetermined set of orthogonal poly-

nomials, and {ck}NPC
k=0 are the corresponding expansion coef-

ficients [25]. Following a total order truncation [25], NPC is
given by

NPC + 1 = (Nord +Np)!
Nord!Np!

,

where Nord is the maximum total polynomial degree and
Np is the dimension of ξ . There are a variety of approaches
for determining the expansion coefficients {ck}NPC

k=0 includ-
ing quadrature or regression based methods [25]. For this
application, we implement sparse linear regression [16, 41].
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In this method, the expansion coefficients are found by
solving

min
c∈RNPC

‖Λc − d‖22 , subject to
NPC∑

k=0

|ck| ≤ τ, (15)

where Λ ∈ RNs×NPC is defined by Λij = Ψj (ξ i ),
d = (g(ξ1), g(ξ2), . . . , g(ξNs

))T is a vector containing
model evaluations, and τ is the sparsity control parameter.
Determining Nord and τ may be done with trial and error or
with a cross-validation process, as detailed in Section 6.

4.3 Bispectral surrogates

Earlier we broached the subject of utilizing PCEs to convert
a truncated KLE into a surrogate model for f . Consider the
truncated KLE of f ,

fNqoi(s, ξ) = f̄ (s)+
Nqoi∑

i=1

√
λifi(ξ)Φi (s). (16)

By replacing the KL modes in Eq. 16 with PCEs we
construct a surrogate model for f of the form

f PC
Nqoi

(s, ξ) = f̄ (s)+
Nqoi∑

i=1

√
λif

PC
i (ξ)Φi (s), (17)

where f PC
i (ξ) is the PCE for fi(ξ), i = 1, . . . , Nqoi.

Once constructed, a bispectral surrogate can be used to
characterize the statistical properties of the field QoI very
efficiently.

To provide further insight, we also consider the approxi-
mation error for a bispectral surrogate. Let ‖·‖, represent the
L2 norm in the product space Θ × X . The total error can
be bounded as follows:
∥∥∥f −f PC

Nqoi

∥∥∥
2

≤ 2
∥∥f − fNqoi

∥∥2 + 2
∥∥∥fNqoi − fNqoi

PC
∥∥∥
2

= 2
∞∑

i=Nqoi+1

λi

+ 2
Nqoi∑

i=1

λi

[ NPC∑

k=0

(ci,k−ĉi,k)
2 ‖Ψk‖2L2(Θ)

]

+ 2
Nqoi∑

i=1

λi

[ ∞∑

j=1+NPC

c2i,j
∥∥Ψj

∥∥2
L2(Θ)

]
.

See Appendix A, for a derivation of this bound. The first
term in the upper bound corresponds to KLE truncation
error, the second term corresponds to error due to inexact
PCE coefficients, and the third term corresponds to PCE
truncation error.

Controlling the total error involves a balance between
computational cost, accuracy requirements, and the proper-
ties of the process. The KLE truncation error gets smaller

as Nqoi increases. However, increasing the number of terms
in the KLE increases the number of eigenpairs that need
accurate approximations. Also, a larger Nqoi results in more
KL modes, each of which requires a sufficiently accurate
PCE. Similarly, the PCE error can be minimized by increas-
ing the maximum polynomial degree, Nord. However, this
increases the total number of coefficients, which increases
the number of unknowns in Eq. 14, resulting in increased
computational cost.

The function-valued QoIs in the present work are low-
rank processes with a high-dimensional input parameter.
Therefore, a modest Nqoi will give a sufficiently small KLE
truncation error. However, for large Np, estimating the PCE
coefficients for each KL mode with sufficient accuracy
can become computationally expensive. Our approach for
addressing this challenge is presented in the next section.

Algorithm 1 Computing the truncated KLE of f .
.
Input: Quadrature nodes sk and weightswk , k = 1, . . . , m;

Function evaluations y
j
k = f (sk, ξ j ), k = 1, . . . , m,

j = 1, . . . , Ns; rk tolerance 0 < tol < 1.
Output: Eigenpairs (λi ,Φi ) of the output covariance

operator, and KL modes evaluations fi(ξj ), j =
1, . . . , Ns, i = 1, . . . Nqoi.

1: Compute meanMk = 1
Ns

∑Ns
j=1 y

j
k , k = 1, . . . m.

2: Center process f c
k (sk, ξ

j ) = y
j
k − Mk , k = 1, . . . , m.

3: Compute covariance matrix C.
Ckl = 1

Ns−1
∑Ns

j=1 f
c
k (sk, ξ j )f

c
l (sl, ξ j ), k, l =

1, . . . m.
4: Let W = diag(w1, w2, . . . wm) and solve:

W1/2CW1/2vk = λkvk , k = 1, . . . , m.
5: Determine Nqoi:
6: for k = 1, . . . m do

7: Compute rk =
∑k

l=1 λl∑m
l=1 λl

.
8: if rk > tol then
9: Nqoi = k; BREAK
10: end if
11: end for
12: Compute Φk = W−1/2vk , k = 1, . . . , Nqoi.
13: Compute KL modes:

fi(ξ j ) = 1√
λi

∑m
k=1wkf

c
k (sk, ξ j )Φi (sk), i =

1, . . . , Nqoi, j = 1, . . . , Ns.

14: Compute fNqoi(s, ξ j ) =
∑Nqoi

k=1
√

λkfi(ξ j )Φk(s).

5Method

In this section, we present our approach for reducing the
dimensionality of the random vector ξ = [ξ1 ξ2 . . . ξNp]T
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and constructing a cheap-to-compute bispectral surrogate
for function-valued QoIs under study. We begin by describ-
ing a screening procedure for input dimension reduction
in Section 5.1. Then, we discuss our surrogate model-
ing approach that utilizes a truncated KLE of the output
(Section 4.1) along with generalized PCEs for the output
KL modes (Section 5.2). We also show how the surrogate
model can be used to efficiently compute the correlation
function of the output, as well as cross-correlation of two
function-valued QoIs.

5.1 Parameter screening

Consider a function-valued QoI f (s, ξ) : X × Θ → R,
where Θ ⊆ RNp is the sample space of the uncertain
parameters and X ⊆ Rd is a compact set. The set X can
be either a time interval, in which case d = 1, or a spatial
region, in which case d ∈ {1, 2, 3}. Here we consider the
case of d = 1, as it applies to our application problem,
but the procedure below can be generalized to the case of
d ∈ {2, 3} in a straightforward manner.

Parameter screening can be done using functional derivative-
based global sensitivity measures (DGSMs) given by [11]:

Nj (f ) =
∫

X

∫

Θ

(
∂f (s, ξ)

∂ξj

)2

µ(dξ) ds, j = 1, . . . , Np,

(18)

whereµ is the law of the parameter vector ξ . These DGSMs
can be used to screen for “unimportant” inputs, which can
be fixed at their respective nominal values. These functional
DGSMs, however, require gradient evaluations. For com-
plex models with high-dimensional parameters, such as the
one considered in the present work, gradient computation is
challenging. While adjoint-based gradient computation can
overcome this, adjoint solvers are not always available for
complex flow solvers and implementing them may be infea-
sible. Here we derive a screening indices based on ideas
from active subspace methods [12] and activity scores [13]
that approximate the functional DGSMs and circumvent
gradient computation.

Let us briefly recall the concept of the active subspace
and activity scores [13]. Fix s ∈ X and let (λk,uk), k =
1, . . . , Np be the eigenpairs of the matrix

G =
∫

Θ
[∇f (s, ξ)][∇f (s, ξ)]Tµ(dξ), (19)

where we assume the eigenvalues are sorted in descending
order. In many cases there exists an M such that λM -
λM+1, representing a gap in the eigenvalues. The active sub-
space corresponds to the subspace spanned by eigenvectors
{uk}Mk=1; this subspace captures the directions in the uncer-
tain parameter space along which the QoI varies most. The
case of a one-dimensional active subspace is surprisingly

common [12]. The activity scores [13] utilize the active sub-
space structure to provide approximate screening indices,
given by

αj [f (s, ·);M] =
M∑

k=1

λk〈ej ,uk〉2,

j = 1, . . . , Np, M ≤ Np, (20)

where 〈·, ·〉 denotes the Euclidean inner product and ej is
the j th coordinate vector in RNp . One can use the activity
scores to approximate functional DGSMs according to
∫

X
αj [f (s, ·);M] ds, j = 1, . . . , Np.

Note that with M=Np, we recover the exact DGSMs [13].
Computing the activity scores still requires gradient compu-
tation, as seen in the definition of the matrixG in Eq. 19. For
cases where full model gradients are unavailable, we pro-
pose use of suitable and cheap-to-compute surrogate models
for the purpose of computing the activity scores. One pos-
sibility is the use of global linear models as done in [12],
for the case of scalar QoIs. Building on this idea, we use a
global linear model for f (s, ξ), use the gradient of the linear
model to approximate the matrix G, and define screening
indices for function-valued QoIs. Specifically, we construct
a global linear approximation f̃ for the QoI

f̃ (s, ξ) = b0(s)+
Np∑

j=1

bj (s)ξj . (21)

Next, we use the activity scores for f̃ as a “surrogate” for
the scores of f . Note that ∇f̃ (s, ξ) = b(s), where b(s) =
[b1(t) b2(t) · · · bNp(t)]T. The matrix G(s) in Eq. 19, using
f̃ in place of f then simplifies to G(s) = b(s)b(s)T. This
rank one matrix can be written as

G(s) = λu(s)u(s)T,

where λ = ‖b(s)‖22, and u(s) = b(s)/ ‖b(s)‖2. (Here ‖·‖2
denotes the Euclidean vector norm). Hence, the correspond-
ing active subspace for f̃ is 1-dimensional resulting in
activity scores

α̃j (s) = b2j (s), j = 1, . . . , Np.

This gives rise to the following approximate functional
DGSMs:

Ñj (f ) :=
∫

X
b2j (s) ds.

This relationship motivates the following normalized screen-
ing indices

sj = Ñj (f )
∑Np

l=1 Ñl (f )
, j = 1, . . . , Np. (22)

Henceforth, we refer to sj as the screening index of f with
respect to parameters ξj .
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The purpose of the screening indices sj is to inform input
parameter dimension reduction. Let Kr be an ordered index
set with cardinality np < Np, corresponding to parameters
with a screening index above some tolerance tol ∈ (0, 1).
We denote the reduced input parameter vectors ξ r , where
each component ξ ri , i = 1, . . . , np corresponds to the ith
element of Kr .

Next, we discuss the computation of the global linear
model for f . This is done by computing a linear model
at each point s ∈ X , which can be done efficiently
using linear regression. Recall that X is assumed to be
a (compact) subset of R (i.e., in one space dimension).
Specifically, we assume X = [s0, sF ]. We discretize X
using a grid

s0 = s1 < s2 < s3 < · · · < sm = sF .

Denote b̄(s) = [b0(s) b1(s) b2(s) · · · bNp(s)]T, with bj ,
j = 0, . . . , Np as in Eq. 21. We require a set of model
evaluations,

yik = f (sk, ξ i ), i = 1, . . . , Ns.

The number of samples required depends on computational
budget as well as the application problem under study. We
show in our numerical results that a modest Ns is adequate
for the proposed approach, and the application problem
considered herein.

Let yk = [y1k y2k · · · yNs
k
]T ∈ RNs , and define the matrix

A =





1 ξT1
1 ξT2
1 ξT3
...

...
1 ξTNs




. (23)

The vectors b̄(sk) can be computed numerically by solving
linear least squares problems

b̄(sk) = argmin
b∈RNs+1

∥∥Ab − yk
∥∥2
2 , (24)

for k = 1, . . . , m. Note that here we assume A has full
column rank and we are in the overdetermined case, i.e.
Ns > Np+1. Under these assumptions, the QR factorization
A = QRmay be used to solve the linear regression problem
in Eq. 24 by

b̄(sk) = R−1QTyk .

Then, for each k = 1, . . . , m, the cost of computing bk is
one matrix-vector product withQT and one triangular solve.
The procedure for computing the global linear model is sum-
marized in Algorithm 2. In the case where the dimension
of ξ is larger than the number of available function evalua-
tions, i.e. Ns < Np+ 1, other methods for solving the linear
regression in Eq. 24, e.g. using SVD, can be used.

Note that when using a global linear model for the
approximating function f̃ , the screening indices (22)
coincide with the normalized functional DGSMs of f̃ ,

sj = Nj (f̃ )
∑Np

i=1Ni (f̃ )
,

withNj is as in Eq. 18. Additionally, since we have indepen-
dent standard normal input parameters the screening indices
are equal to the function-valued Sobol’ indices [1, 17] of f̃ ,
as well as the square root of the standard regression coeffi-
cients [13, 21] for f . In general, the relations across these
sensitivity measures will not hold for alternative choices of
f̃ or input parameter distributions.

We emphasize that, while simplifications occur when a
global linear model is used, the proposed screening approach,
i.e., computing activity scores of the f̃ , is intended to be
flexible and adjustable to alternative modeling approaches
for f̃ . Furthermore, the proposed screening method is not
constrained by the assumption of independent parameters
and can be used for the case of dependent inputs. The only
requirements of the proposed screening method are that f̃
be cheap to compute and adequately approximate the full
model for the purposes of parameter screening.

Algorithm 2 Computing the screening indices sj , j =
1, . . . , Np: the overdetermined case.

Input: Quadrature nodes sk and weightswk , k = 1, . . . , m.
Function evaluations yik = f (sk, ξ i ), i = 1, . . . , Ns,
k = 1, . . . , m;

Output: Sensitivity measures sj , j = 1, . . . , Np.
1: Form the matrix A in Eq. 23 and compute its QR

factorization, A = QR.
2: for k = 1 to m do
3: Compute zk = QTyk .
4: Solve Rb̄(sk) = zk .
5: end for
6: for j = 1 to Np do

7: Compute Ñj = ∑Np
k=1wkbj (sk)

2.
8: end for
9: for j = 1 to Np do
10: Compute sj = Ñj /(

∑
k Ñk).

11: end for

5.2 Polynomial Chaos surrogates for KLmodes

To form a surrogate model, we construct a PC surrogate
f PC
i (ξ r ), i = 1, . . . Nqoi in the reduced parameter space.

Explicitly, we have the following training data for the KL
mode surrogates: the input parameter samplesW = {ξ rj }Ns

j=1
and, for each KL mode fi i = 1, . . . Nqoi, we have the
evaluations Fi = {fi(ξ j )}Ns

j=1. For each KL mode fi , we
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use the corresponding training data to solve the optimization
problem Eq. 15 for the coefficients c; see Algorithm 3 for
more details. Observe that each input parameter sample
ξ rj is the reduced version of the original input parameter
sample, whereas the data points in Fi correspond to the
KL mode fi evaluated on the full parameter ξ j . Utilizing
the data this way has two benefits. Firstly, we do not
require more model evaluations. Secondly, the KL modes
corresponding to the exact QoI capture the behavior of f
more accurately than the KL modes corresponding to an f

re-evaluated in the reduced parameter space. After the PCE
for each KL mode is computed, we replace each fi(ξ) in the
KL expansion described in Eq. 11 with the corresponding
f PC
i to form a (reduced space) bispectral surrogate for f :

f (t, ξ)≈f PC
Nqoi

(t, ξ r )= f̂ (t)+
Nqoi∑

i=1

√
λif

PC
i (ξ r )Φi (t). (25)

In Section 6, we demonstrate the proposed approach for
dimension reduction and surrogate modeling for temporally
varying QoI S(t, ξ) andQ(t, ξ), as well as spatially varying
QoI S(x, ξ).

Bispectral surrogates of the form Eq. 25 can be sampled
efficiently to study the statistical properties of the QoI. As
seen below, such surrogates can also be used to efficiently
compute the correlation structure of function-valued out-
puts.

Note that the use of a PCE to construct the bispectral sur-
rogate for f relies on the assumption of independent input
parameters. In the case of dependent inputs, an alternative
surrogate modeling approach should be utilized for the out-
put KL modes. The outline of the procedure would remain
the same, with the final surrogate model being constructed
in the reduced parameter space.

5.3 Correlation structure of the output

Let f : X × Θ → R be a random process with mean f̄ (s)
and assume f admits a surrogate f PC

Nqoi
of the form in Eq. 25.

It is straightforward to show that the covariance operator of
f PC
Nqoi

satisfies

cf (s1, s2)= Cov{f PC
Nqoi

(s1, ·), f PC
Nqoi

(s2, ·)} (26)

=
Nqoi∑

i=1

Nqoi∑

j=1

NPC∑

k=1

ηki η
k
j ‖Ψk‖2L2(Θ)

Φi (s1)Φj (s2),

for ηki = ci,k
√

λi and ‖·‖L2(Θ) denotes the L
2 norm on Θ .

Let us define

Bij :=
m∑

k=1

ηki η
k
j ‖Ψk‖2L2(Θ)

, i, j = 1, . . . , Nqoi,

Algorithm 3 Computing the surrogate model f PC
Nqoi

.

Input: Reduced input parameters ξ rj ∈ Rnp , j =
1, . . . Ns; KL mode evaluations f k

i = fi(ξ j ), i =
1, . . . , Nqoi, j = 1, . . . , Ns; highest polynomial degree
Nord; sparsity parameter τ ; polynomial basis Ψk , k =
1 . . . NPC.

Output: Surrogate model f PC
Nqoi

(t, ξ r ) and polynomial KL

mode expansions f PC
i (ξ r ), i = 1, . . . , Nqoi.

1: for i = 1 to Nqoi do
2: Let d i = [fi(ξ1), . . . , fi(ξNs

)]
3: and Λkj = Ψk(ξ

r
j ).

4: Solve

min
ci∈RNPC

‖Λci − d i‖22 , subject to
NPC∑

k=0

|ck| ≤ τ

5: end for
6: Form fi(ξ

r ) = ∑NPC
k=1 ci,kΨk(ξ

r ), i = 1, . . . , Nqoi.

7: Form f PC
Nqoi

(s, ξ r ) = ∑Nqoi
k=1

√
λi (C)f PC

i (ξ r )Φi (s).

and

p(s) := [Φ1(s) Φ2(s) . . . ΦNqoi(s)]T.
We can rewrite the expression in Eq. 27 as

cf (s1, s2) = 〈p(s1),Bp(s2)〉,
where 〈·, ·〉 denotes the Euclidean inner product. Using this,
we an also obtain the correlation function of f PC

Nqoi
:

ρf (s1, s2) =
cf (s1, s2)√

cf (s1, s1)
√
cf (s2, s2)

. (27)

We can also compute the cross-covariance function of two
random processes represented via bispectral surrogates. Con-
sider a random process g approximated by the surrogate model

gPCMqoi
= ḡ(s)+

Mqoi∑

j=1

MPC∑

k=0

√
γj dj,kΨk(ξ

r )Φ̃j (s),

where Mqoi is the number of KL modes, (γj , Φ̃j (s)) are
the eigenpairs corresponding to the covariance function of
g, MPC is the maximum polynomial degree, and di,k are
the PCE coefficients. A calculation similar to the one above
gives the cross–covariance function of f PC

Nqoi
and gPCMqoi

as

cfg(s1, s2) = 〈p(s1), B̃q(s2)〉,
where

q(s) := [Φ̃1(s) Φ̃2(s) . . . Φ̃Mqoi(s)]T,

B̃i,j :=
m∑

k=1

ηki η̃
k
j ‖Ψk‖2L2(Θ)

, i = 1, . . . , Nqoi,

j = 1, . . .Mqoi,
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with η̃kj = dj,k
√

γj . We can also compute the cross-
correlation function,

ρfg(s1, s2) =
cfg(s1, s2)√

cf (s1, s1)
√
cg(s2, s2)

, (28)

where cg is the covariance function of gPCMqoi
.

6 Numerical results

In this section, we demonstrate the dimension reduction and
surrogate modeling approach proposed in Section 5 for tem-
porally and spatially varying QoIs discussed in Section 3.
In Section 6.1, we detail surrogate model construction for
gas saturation at the inflow boundary. To provide further
insight, we also consider surrogate modeling for gas flux
at the outflow boundary in Section 6.2 and for gas sat-
uration across the spatial domain in Section 6.3. Finally,
in Section 6.4, we use the surrogates constructed in Sec-
tions 6.1 and 6.2 to better understand the behavior and
properties of the corresponding QoIs.

6.1 Gas saturation at the outflow boundary

Here we focus on gas saturation at the inflow boundary, i.e.,
S(t, ξ). Recall that the input parameter ξ parameterizes the
uncertainty in the porosity field, as described in Section 3.1,
and has dimension Np = 100. For the present numerical
study, we computed a database of 550 model evaluations,
which we use for parameter screening and surrogate model
construction.

Input parameter screening We use Algorithm 2 with com-
posite trapezoid rule and Ns = 500 full model evaluations
to compute the screening indices sj , j = 1, 2, . . . , Np, for
S(t, ξ). The remaining 50 realizations were used for val-
idation of the linear models computed as a part of the
algorithm. In Fig. 8, we report representative comparisons
of the linear model versus the exact model, at the validation
points at selected times. Note that the linear models capture
the overall behavior of the model response.

In Fig. 9, we report the screening indices that are above
the importance threshold tol = 0.002. The parameters with
screening indices below tol are considered unimportant.
This reduces the input parameter dimension fromNp = 100
to np = 10 and the resulting reduced parameter is ξ r =
[ξ1 . . . ξ10]T .

Spectral representation of the QoI Next, we compute the
KLE of S(t, ξ) using Algorithm 1. This requires solving the
eigenvalue problem in Eq. 12, with Cqoi being the covariance
operator of S(t, ξ). We use a sample average approximation
of Cqoi with sample size Ns ∈ {100, 200, 350, 550} exact

Fig. 8 Fifty point comparison of the true model to the linear model for
S(t, ξ) at top: t = 400,234 years, bottom: t = 500,106 years

Fig. 9 Screening indices sj for S(t, ξ) calculated using Algorithm 2
with 500 full QoI samples. Indices above tol = 0.002 displayed only
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QoI evaluations, as detailed in Algorithm 1. For this cal-
culation we utilize the weights and nodes associated with
the composite trapezoid rule. In Fig. 10 (top), we show
the computed (dominant) eigenvalues of Cqoi. We note that
the dominant eigenvalues are approximated well even with
Ns = 100. We use the computations corresponding Ns =
550 in what follows. We note that the eigenvalues of the
output covariance operator decay rapidly. We also report rk
from Eq. 13, in Fig. 10 (bottom). We note that rk exceeds
0.99 for k ≥ 5. This indicates that S(t, ξ) is a low-rank pro-
cess and a KL expansion with Nqoi = 5 provides a suitable
approximation of the QoI. Consequently, we consider the
truncated KL expansion of S(t, ξ)

SNqoi(t, ξ) = S̄(t)+
Nqoi∑

i=1

√
λi (Cqoi)Si(ξ)Φi (t), (29)

Fig. 10 Top: comparison of ratio λk/λ1, k = 1 . . . , 30 for λi (Cqoi)
corresponding to S(t, ξ) computed with various sample sizes, bottom:
rk as defined in Eq. 13, k = 1, . . . , 10, for S(t, ξ). Dotted line
corresponds to 0.99

where Nqoi = 5. The next step is to compute PCEs for the
KL modes Si(ξ), i = 1, . . . , Nqoi.

PCE surrogates of the KL modes Next, we construct a
bispectral surrogate for S(t, ξ) which we denote SPCNqoi

.
Recall that the components of ξ r are sampled from a
Gaussian distribution. Hence, we utilize the np-variate
Hermite polynomials as the orthogonal basis for the PC
expansions, with np = 10. We use the sparse-regression
approach (see Section 4.2) for computing PCEs of the
output KL modes (see Section 5.2). To determine suitable
values for the maximum polynomial degree Nord and the
sparsity parameter τ , we use a 10-fold cross validation
procedure, which we briefly explain next.

Note that for each evaluation of SNqoi(t, ξ j ), j = 1, . . . ,
Ns, there is a corresponding KL mode evaluation Si(ξ j ),
for i=1, . . . , Nqoi. We separate the parameter samples into
W ={ξ rj }350j=1 and Ŵ ={ξ rj }550j=351. Similarly, for each i= 1,

. . . Nqoi, we have Fi={Si(ξ j )}350j=1 and F̂i={Si(ξ j )}550j=351.

Fig. 11 Top: cross-validation results for τ = {1, 1.1, . . . , 3.9, 4} and
Nord = {1, 2, 3, 4} for gas saturation, bottom: comparison of sample
standard deviations of S(t, ξ) and SPCNqoi

(t, ξ r ) computed on 200 sample
points
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We partition W and Fi , i = 1, . . . , Nqoi 10 different
ways, such that each data partition has a 35 point
validation set and a 315 point training set. Let Wk and
Fk
i , denote the kth such data partition, k = 1, . . . , 10.

Next, for every combination of Nord ∈ {1, . . . 4},
τ ∈ {1, 1.1, 1.2, . . . , 3.9, 4}, k = 1, . . . , 10, and i =
1, . . . , Nqoi we solve the optimization problem Eq. 15; in
our computations, we use the solver SPGL1 [39]. For the
components of that data vector of d in Eq. 15, we use the
training set of Fk

i . Therefore, every combination of k, Nord
and τ results in a surrogate model denoted as gkNord,τ

(s, ξ r ).
To assess the accuracy of each bispectral surrogate we

compute the average relative error

erel(g
k
Nord,τ

)=




∑M

j=1
∫
X

[
S(t, ξ j )−gkNord,τ

(s, ξ rj )
]2 ds

∑M
j=1

∫
X S(t, ξ j )

2 ds





1
2

,

(30)

where X = [0, Tf ], M = 35 and ξ j is the input parameter
in the full space corresponding to ξ rj in the validation set of
Wk .

We repeat the process for each of the 10 partitions, and
compute the average of erel across all partitions

eNord
τ = 1

10

10∑

k=1

erel(g
k
Nord,τ

).

The cross-validation errors corresponding to S(t, ξ) are
displayed in Fig. 11. The smallest eNord

τ corresponds with
Nord = 2 and τ = 3.5.

Computing the overall bispectral surrogate Once we have
determined appropriate values for Nord and τ we follow
Algorithm 3 to construct a surrogate model from the
truncated KLE expansion of the function-valued QoI. To
determine PCE for each KL mode Si(ξ), i = 1, . . . , Nqoi,
we use the solver SPGL [39] to implement sparse linear
regression over the entire 350 point data set Fi . We use
the resulting expansions to form the overall bispectral
surrogate:

SPCNqoi
= S̄(t)+

Nqoi∑

i=1

√
λ(Cqoi)SPCi (ξ r )Φi (t).

Note that in numerical computations, S̄(t) is the sample
mean S̄(t) = 1

Ns

∑Ns
j=1 S(t, ξ j ).

Next, we assess the effectiveness of the bispectral
surrogate to reflect the statistical properties of the true
model. First, we compare the sample standard deviations
of SPCNqoi

(t, ξ r ) and S(t, ξ) computed over the testing set

Ŵ . The results are shown in Fig. 11 (bottom). Note,
the surrogate model does an excellent job capturing the
behavior of S(t, ξ). Then, we compute the pdf of SPCNqoi

(t, ξ r )

with 100,000 surrogate evaluations and compare with the
normalized histograms of the 550 exact model evaluations.
In Fig. 12 clockwise from upper left we show the pdf
estimates for a few representative simulation times. Note
that pdf estimates closely match the distribution of the full
model.

Fig. 12 Comparison of normalized histograms for S(t, ξ) and pdf estimates of the surrogate SPCNqoi
(t, ξ r ) for a variety of times t ∈ [0, Tf ]
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6.2 Gas flux at the outflow boundary

In this section, we study gas flux at the outflow boundary,
denoted byQ(t, ξ). A few realizations ofQ(t, ξ) are shown
in Fig. 5 (bottom). The global linear model is computed with
500 model realizations. A representation of the linear model
at time t = 500,106 years is displayed in Fig. 13 (top). Next,
we compute the screening indices sj . In Fig. 13 (bottom) we
display sj , j = 1 . . . , 10 above tol = 0.02 only. Therefore,
dimension reduction results in the reduced input parameter
ξ r = [ξ1 . . . ξ10]T. Next, we compute the KLE and truncate
at Nqoi = 7 terms. Then, we construct the surrogate model
using the data setsW and Fi , where the Fi’s for this instance
consist of the KL modes computed for Q(t, ξ). We use the
10-fold cross-validation technique described in Section 6.1
to choose the sparse linear regression parameters Nord = 2
and τ = 4. Finally, we use these values to generate the
bispectral surrogateQPC

Nqoi
(t, ξ r ).

As before, to assess the effectiveness of the surrogate to
capture the statistical properties of the true model we

Fig. 13 Top: comparison of the true model to the linear model for
Q(t, ξ) at t = 500,106 years, bottom: screening indices for Q(t, ξ)

compare the sample standard deviation of the full model
Q(t, ξ) and the surrogate QPC

Nqoi
(t, ξ r ), computed on 200

validation samples. Results are displayed in Fig. 15. Lastly,
using 100,000 samples of QPC

Nqoi
(t, ξ r ) we compute pdf

estimates at equally spaced points in time and compare
to normalized histograms created with 550 full model
evaluations; see Fig. 14. The results in Fig. 14 and Fig. 15
demonstrate that the constructed surrogate for gas flux
approximates the distribution of the full model reliably.

6.3 Gas saturation across the domain

In this section, we focus on a spatially varying QoI. Let
S(x, ξ ; t∗) represent the QoI gas saturation across the spa-
tial domain for a fixed time t∗. In particular, we include sur-
rogate results at t∗ ∈ {100,099, 300,091, 600,043} years.
We display several realizations for each QoI in Fig. 17 (top).
The surrogate models for spatial QoIs are computed via a
similar procedure. Hence, for brevity, we include procedure
details for t∗ = 600,043 years only. The relevant parameter
values for the other QoIs are included in Table 2.

We consider the (spatial) global linear model for S(x, ξ ;
t∗). In Fig. 16 (top) the linear model at x = 65.5 meters
is displayed. The global linear model was observed to
perform similarly at other values of x. Next, we compute the
screening indices sj and use the importance tolerance tol =
0.002 for dimension reduction resulting in the reduced
input parameter ξ r = [ξ1 ξ2 . . . ξ8]T. In Fig. 16 (middle)
we display the screening indices corresponding to these
parameters.

Next, we compute the KLE of S(x, ξ ; t∗) using Nyström’s
method with 550 model evaluations. In Fig. 16 (bottom) we
report the normalized eigenvalues of the output covariance
operator Cqoi for S(x, ξ ; t∗). This result is included to
demonstrate that the gas saturation process is also low-rank
in space. We truncate the KLE at Nqoi = 5 terms.

As before, the PCE for the KL modes are computed with
sparse linear regression using 350 full model realizations.
Once again, the cross-validation procedure described in
Section 6.1 is used to determine Nord = 3 and τ = 2.8.
Lastly, the computed PCEs for each KL mode is used to
construct the bispectral surrogate SPCNqoi

(x, ξ r ).
To evaluate the effectiveness of the surrogate models

for t∗ ∈ {100,099, 300,091, 600,043}, we compare the
sample standard deviation of S(x, ξ ; t∗) and SPCNqoi

(x, ξ r )

for 200 sample points. These results are displayed in
Fig. 17 (bottom). Observe, for t∗ = 100,099 and t∗ =
300,091 years the surrogate model replicates the sample
standard deviation well. For t∗ = 600,043 years note
that while we are underestimating the sample standard
deviation, we are still capture the overall behavior of the full
model.
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Fig. 14 Comparison of normalized histograms forQ(t, ξ) and pdf estimates of the surrogateQPC
Nqoi

(t, ξ r ) for a variety of times t ∈ [0, Tf ]

The capability of the computed bispectral surrogate
to replicate true model behavior can also be tested by
computing the average relative error defined in Eq. 30.
Table 2 contains the values for erel computed over the
validation set Ŵ for each surrogate presented in this section,
as well as those in Sections 6.1 and 6.2. Note that for
the spatially varying QoIs, we let X = [0, 200] and
for temporally varying we let X = [0, Tf ], in Eq. 30.
Note, the error across all surrogates is less than 8%, and
in four out the five surrogates is less than 4%. The largest
erel corresponds to SPCNqoi

(c, ξ) at t = 600,043 years,
in which case we are also underestimating the standard
deviation.

Fig. 15 Comparison of sample standard deviations of Q(t, ξ) and
QPC

Nqoi
(t, ξ r ) computed with 200 sample points

6.4 Using the surrogatemodel

Here we illustrate the use of surrogates for temporally vary-
ing QoIs in performing statistical studies. In particular, we
perform model prediction, variance-based global sensitivity
analysis (GSA) by computing Sobol’ indices, and a study
of output correlation structure. It is worth noting that Sobol’
indices can be computed analytically when using bispectral
surrogates; see [1]. However, to keep the discussion gen-
eral and since the cost of evaluating the bispectral surrogate
is negligible, here we rely on sampling the bispectral sur-
rogate for performing GSA. Specifically, we also perform
GSA on QoIs that are derived from the bispectral surrogates
such as maximum gas saturation and maximum gas flux at
the outflow boundary.

Model prediction We consider using SPCNqoi
(t, ξ r ) and QPC

Nqoi

(t, ξ r ) for making predictions. Recall, these bispectral
surrogates correspond to gas saturation at the inflow

Table 2 Surrogate parameter values and erel errors for surrogate
models

surrogate for fixed t or x Nqoi Nord error

SPCNqoi
(t, ξ) x = 0 meters 5 2 3.4813 · 10−2

QPC
Nqoi

(t, ξ) x = 200 meters 7 2 7.5019 · 10−3

SPCNqoi
(x, ξ) t∗ = 100,099 years 7 2 3.0397 · 10−2

SPCNqoi
(x, ξ) t∗ = 300,091 years 11 2 2.1690 · 10−2

SPCNqoi
(x, ξ) t∗ = 600,043 years 5 3 8.3110 · 10−2
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Fig. 16 Results for S(x, ξ ; t∗) with t∗ = 600,043 years. Top:
comparison of the true model and the linear model for gas saturation
across the domain, middle: screening indices for S(x, ξ ; t∗), bottom:
ratio λk/λ1, k = 1, . . . , 30 for λk(Cqoi) corresponding to S(x, ξ ; t∗)

boundary and gas flux at the outflow boundary. We study
three observables of interest: maximum gas saturation,
denoted Smax, maximum gas flux, denoted Qmax, and the
first time for which gas saturation rises above 20% of Smax.
We compute 100,000 realizations of each surrogate, extract
the pertinent observables, and use the samples to compute
pdf estimates. In Fig. 18, we compare the pdf estimates
against the normalized histograms computed using exact
model evaluations. These results indicate the utility of the
surrogates for estimating the statistical properties of model
observables.

Variance based sensitivity analysis via Sobol’ indices Total
Sobol’ indices provide an informative global sensitivity
analysis tool that apportions percentages of QoI variance
due to input parameter variations. While total Sobol’ indices
are traditionally applied to scalar QoIs [35, 36], there exist
extensions for variance based analysis to function-valued
QoIs [1, 17], referred to as functional total Sobol’ indices.

In general, calculating Sobol’ indices for computation-
ally intensive models is challenging. This involves an expen-
sive sampling procedure that requires a large number of
model evaluations. An efficient-to-evaluate surrogate model
can be used to accelerate this process. We use the tem-
poral surrogates to compute total Sobol’ indices for both
function-valued and scalar QoIs. In particular, we com-
pute the functional total Sobol’ indices for SPCNqoi

(t, ξ r ) and

QPC
Nqoi

(t, ξ r ), both of which are functions in t , and we com-
pute the total Sobol’ indices for the scalar QoIs Smax and
Qmax. In each case, we compute the total Sobol’ indices
via sampling, using a variety of samples sizes: Ns =
{1,000, 10,000, 50,000}.

The results in the top row of Fig. 20 show the functional
Sobol’ indices for SPCNqoi

(t, ξ r ) andQPC
Nqoi

(t, ξ r ). Note that the
magnitudes in the top row of Fig. 20 are similar to those
in Fig. 9 and Fig. 13. This provides further support for the
original input parameter importance ranking and subsequent
dimension reduction. In the bottom row of Fig. 20 we report
the total Sobol’ indices for Smax andQmax. We also note that
for the gas saturation QoIs (Fig. 20(left: top and bottom)),
the importance ranking of the input parameters is similar.
In contrast, there is more variability in ranking for gas flux
QoIs (Fig. 20 (right: top and bottom)).

Finally, we mention that for many applications, the total
Sobol’ indices can be used for further input parameter
dimension reduction. For the present model however, we did
not reduce the input parameter further because the surrogate
model computed was already efficient and sufficiently
accurate.
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Fig. 17 Top row, left to right: sample realizations of S(x, ξ ; t∗) for times 100,099, 300,091, and 600,043 years; bottom row, left to right:
comparison of sample standard deviation of S(x, ξ ; t∗) and SPCNqoi

(x, ξ ; t∗) computed on 200 sample points

Correlation structure Lastly, we illustrate the use of the
bispectral surrogates for computing the correlation structure
of the output, which is a useful tool for understanding
overall model dynamics. Using Eq. 27 we compute the
correlation function of SPCNqoi

(t, ξ r ) and QPC
Nqoi

(t, ξ r ). The
resulting heat maps are shown in Fig. 19 top and middle,
respectively. The results for SPCNqoi

(t, ξ r ) suggest significant
correlations across time. This behavior is also seen in the
correlation function of QPC

Nqoi
(t, ξ r ), except the sudden shift

in dynamics at the time t = 500,000 years; recall, this
the time gas injection stops. We also compute the cross-
correlation between SPCNqoi

(t, ξ r ) and QPC
Nqoi

(t, ξ r ) using the
formula in Eq. 28; see Fig. 19 (bottom). The heat map
suggests there is large cross-correlation between the two
QoI for both early and late times.

7 Conclusion

We have presented a structure exploiting non-intrusive
framework for efficient dimension reduction and surrogate
modeling for models with high-dimensional inputs and
outputs. The proposed parameter screening metric utilizes
approximate global sensitivity measures for function-valued
outputs that rely on concepts from global sensitivity analysis
and active subspace methods. An efficient bispectral
surrogate model was constructed from a truncated KLE
of the QoI by approximating the KL modes with PCEs.
Note, these KL mode PCEs were constructed in the reduced
parameter space.

We deployed our framework for fast uncertainty analysis
in a multiphase multicomponent flow model. The effi-
ciency and effectiveness of the surrogate model was demon-
strated with a comprehensive set of numerical experi-
ments, where we consider a number of function-valued
(temporally or spatially distributed) QoIs. In particular,
our results indicate that it is possible to use a modest
amount of model realizations to reduce both the input
and output dimensions and construct an efficient surrogate
model. The proposed framework not only provides effi-
cient surrogates, it also reveals and exploits the low-dimen-
sional structures in model input and output spaces, which
provides further insight into the behavior of the governing
model.

In general, the screening approach takes the following
form. We construct a cheap approximation f̃ , compute the
corresponding screening indices (22), and use them to
reduce the input parameter space. Our approach relies on
the screening metrics being sufficiently accurate surrogates
and cheap to compute for the derivative-based global sen-
sitivity measures for the function-valued QoIs under study.
This in turn assumes the global linear model constructed
within the parameter screening procedure leads to a suf-
ficient approximation of the activity scores. It is observed
that this global linear model can successfully capture one-
dimensional active subspaces in a wide range of appli-
cations [12]. The success of this strategy for obtaining
approximate activity scores was also observed in the present
work, in the context of a complex nonlinear flow model.
However, for models that exhibit highly nonlinear parame-
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Fig. 18 Comparison of normalized histograms and pdf estimates for
top: max saturation value of Smax, middle: first time SPCNqoi

(t, ξ r ) is
above 20% Smax, bottom: max flux value Qmax

Fig. 19 Top: correlation matrix for SPCNqoi
(t, ξ r ) computed using the

analytic formula in Eq. 27, middle: correlation matrix for QPC
Nqoi

(t, ξ r )

computed using the analytic formula in Eq. 27, bottom: cross-
correlation structure of SPCNqoi

(t, ξ r ) and QPC
Nqoi

(t, ξ r ) computed using
the analytic formula in Eq. 28
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Fig. 20 From top left counter
clockwise: functional total
Sobol’ indices for SPCNqoi

(t, ξ r ),
functional total Sobol’ indices
for QPC

Nqoi
(t, ξ r ), total Sobol’

indices for Smax, total Sobol’
indices forQmax

ter dependence a linear model might fail to provide accurate
global sensitivity information. In [18, 33], global quadratic
models were used effectively to accelerate active subspace
discovery for scalar-valued QoIs. Exploring quadratic mod-
els within our framework provides an interesting direction
for future work and would allow application of the proposed
strategy to a broader class of problems.

Appendix

A.1 Proof of upper bound on total error in product
space

Proof Let f (s, ξ) be in L2 of the product space Θ × X
and ‖·‖ be the L2 error in the product space Θ × X . The
truncated KLE of f is given by

f PC
Nqoi

(s, ξ) = f̄ (s)+
Nqoi∑

i=1

√
λif

PC
i (ξ)Φi (s).

The total error in the product space is given by

∥∥∥f − f PC
Nqoi

∥∥∥
2

≤ 2
∥∥f − fNqoi

∥∥2 + 2
∥∥∥fNqoi − f PC

Nqoi

∥∥∥
2

We consider the first term

2
∥∥f − fNqoi

∥∥2

= 2

∥∥∥∥∥∥

∞∑

i=1

√
λifi(ξ)Φi (s) −

Nqoi∑

i=1

√
λifi(ξ)Φi (s)

∥∥∥∥∥∥

2

= 2
∫

Θ

∫

X




∞∑

i=Nqoi+1

√
λifi(ξ)Φi (s)




2

dsµ(dξ)

= 2
∞∑

i,j=Nqoi+1

√
λi

√
λj

∫

Θ
fi(ξ)fj (ξ)

∫

X

Φi (s)Φj (s) dsµ(dξ)

= 2
∞∑

i=Nqoi+1

λi

∫

Θ
fi(ξ)

2µ(dξ) = 2
∞∑

i=Nqoi+1

λi .

Changing the order of infinite sums and integral is a conse-
quence of the Dominated Convergence Theorem and reorder-
ing of integrals is a justified by Fubini’s Theorem. The
orthogonality of the eigenfunctions in L2(X ) justifies the
simplification in the second to last line, and the last step is
a consequence of the KL modes properties.
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Next, we consider the second error term. Let

f PC
i =

NPC∑

k=0

ĉi,kΨk(ξ),

where ĉi,k represents the numerical approximation of the
exact PCE coefficients ci,k and recall, fi =

∑∞
k=0 ci,kΨk(ξ)

we have

2
∥∥∥fNqoi − f PC

Nqoi

∥∥∥
2

= 2

∥∥∥∥∥∥

Nqoi∑

i=1

√
λifi (ξ)Φi (s) −

Nqoi∑

i=1

√
λif

PC
i (ξ)Φ(s)

∥∥∥∥∥∥

2

= 2
∫

Θ

∫

X




Nqoi∑

i=1

√
λiΦi (s)

[
fi(ξ) − f PC

i (ξ)
]



2

dsµ(dξ)

= 2
Nqoi∑

i,j=1

√
λi

√
λj

∫

Θ
(fi − f PC

i )(fj − f PC
j )

∫

X

Φi (s)Φj (s) dsµ(dξ)

= 2
Nqoi∑

i=1

λi

∫

Θ
(fi(ξ) − f PC

i (ξ))2µ(dξ)

= 2
Nqoi∑

i=1

λi

∫

Θ




∞∑

k=0

ci,kΨk(ξ) −
NPC∑

k=0

ĉi,kΨk(ξ)




2

µ(dξ)

= 2
Nqoi∑

i=1

λi

∫

Θ




NPC∑

k=0

(ci,k−ĉi,k)Ψk(ξ)+
∞∑

k=1+NPC

ci,kΨk(ξ)




2

µ(dξ)

= 2
Nqoi∑

i=1

λi

NPC∑

k=1

(ci,k − ĉi,k)
2 ‖Ψk‖2L2(Θ)

+ 2
Nqoi∑

i=1

λi

∞∑

j=1+NPC

c2i,j
∥∥Ψj

∥∥2
L2(Θ)

.

The simplification in the third line a consequence of the
orthogonality of the PCE basis functions.

Thus, we have a bound on the total error
∥∥∥f −fNqoi

PC
∥∥∥
2
≤2

∥∥f −fNqoi

∥∥2 + 2
∥∥∥fNqoi − fNqoi

PC
∥∥∥
2

= 2
∞∑

i=Nqoi+1

λi +
Nqoi∑

i=1

λi

NPC∑

k=1

(ci,k − ĉi,k)
2 ‖Ψk‖2L2(Θ)

+2
Nqoi∑

i=1

λi

∞∑

j=1+NPC

c2i,j
∥∥Ψj

∥∥2
L2(Θ)

.
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