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Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the prop-
agation of spontaneous activity through brain networks. In the current work, we describe a method to improve
the estimation of task-evoked brain activity by first “filtering-out the intrinsic propagation of pre-event activity
from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; Singh et al. 2020b)
models built from individualized resting-state data to subtract the propagation of spontaneous activity from the
task-fMRI signal (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques.
Results demonstrate that this simple operation significantly improves the statistical power and temporal preci-
sion of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural
activation profiles and prediction accuracy of individual differences in behavior across tasks measuring the same
construct (cognitive control). Thus, by subtracting the propagation of previous activity, we obtain better estimates

of task-related neural effects.

1. Introduction

Task-related analyses in fMRI typically involve statistical general lin-
ear models (GLMs) which seek to identify the amplitude and/or mean
timecourse of (BOLD) evoked-responses after removing nuisance covari-
ates. These approaches have proven statistically powerful and charac-
terize much of the current literature regarding task-induced activation
in group-level fMRI analyses. However, over the past two decades, im-
provements in fMRI data acquisition and the rise of resting-state connec-
tomics (Biswal et al., 1995) have given rise to a new literature concern-
ing variability within brain activation across trials, individuals, and/or
contexts. Understanding such variability is key to precision neuroscience
initiatives, as these studies have the potential to uncover new neural
mechanisms and generate stronger brain-behavior linkages at the level
of individuals (Ashley, 2015; Psaty et al., 2018; Satterthwaite et al.,
2018).

Previous studies in this domain have generated two key findings rele-
vant to the current study: (1) individual differences in intrinsic brain net-
works predict corresponding differences in BOLD responses (Cole et al.,
2016; Gordon et al., 2017; Mennes et al., 2010; Tavor et al., 2016) and
(2) the BOLD signal elicited by a stimulus is dependent upon the previ-

ous pattern of brain activity (He, 2013), including spontaneous fluctu-
ations (Fox et al., 2006). We use the term “brain activity” in the latter
case to indicate that this history dependence is thought to be neural,
rather than solely reflecting potential nonlinearity in the hemodynamic
coupling. The first set of findings indicate that inter-subject variabil-
ity in brain responses may be due to the “flow” (Cole et al., 2016) of
evoked activity through subject-specific connectomes. The second set of
findings suggest that evoked responses are history-dependent (i.e. reflect
underlying dynamics). Thus, the neural activity associated with BOLD is
increasingly considered as a nonlinear dynamical system—one in which
the spatiotemporal response to an input depends upon its current state,
and further, is determined by a set of rules that dictate its temporal
evolution (Ponce-Alvarez et al., 2015). These dynamical “rules” are a
function of subject-specific connectivity and the specific properties lo-
cal to each brain region (Demirta et al., 2019; Wang et al., 2019). The
manifestation of these dynamics (i.e. trial-to-trial variability in BOLD)
are thought to be neural and cognitively-relevant as they predict within-
subject behavioral variation (He and Zempel, 2013).

This framework contrasts both with current statistical approaches,
which treat the neural activity as a noisy autoregressive signal (most
GLMs), and with Dynamic Causal Modeling (DCM) approaches, which
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A MINDy-Based Filtering Procedure
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Fig. 1. Filtering and control pipelines. (A) MINDy-based Filtering procedure. (1) Latent neural activity is estimated from the BOLD signal. (2) One-step predictions
for latent neural activity are made with MINDy and (3) convolved into one-step BOLD predictions. (4) Filtered “input”/residual timeseries are the difference of
measured and predicted BOLD (we abbreviate h = I as ). For this panel, we denote the true BOLD signal as y,,; (BOLD,,, in Eq. (20)) and j for the predicted BOLD
signal (BOLD,,,, in Eq. (20)). (B) Analysis pipelines. Modeling pipelines require data to be pre-processed (nuissance regressed) before model-based filtering. The

preReg pipeline controls for this step by performing identical pre-processing before

GLM analyses. Parameters for MINDy and autoregressive models are estimated

from resting-state data. Autoregressive models (AR) are used to test whether effects are due to local signal-processing features (i.e. MINDy similar to AR) vs. exploit
brain connectivity (MINDy better than AR). Although we chose AFNI to perform GLM analyses, MINDy-based Filtering is compatible with any analysis software as

filtered timeseries are analyzed in the conventional manner.

treat the brain as a linear system (although see Stephan et al., 2008).
In the current work, we propose a new technique for modeling intrinsic
brain dynamics and their contribution to task-evoked activation pat-
terns. This approach leverages MINDy models (Singh et al., 2020b) fit
to resting-state data for each subject. These models are akin to an ab-
stracted neural mass model containing hundreds of different regions
(parcels) spanning the whole brain. Regions interact nonlinearly via a
signed, directed connectivity matrix and integrate inputs over time (i.e.
form a nonlinear dynamical system). The BOLD signal is modeled via
region-specific hemodynamic models, and all parameters (neural and
hemodynamic) are directly estimated from each subject’s resting-state
scans (a process which takes 1-3 min). In prior work (Singh et al., 2020a;
2020b), we have established that MINDy models/parameters are robust,
reliable, and predictive (Singh et al., 2020b). In the current work, we use
these models to estimate intrinsic brain dynamics (i.e. predictions based
upon resting-state MINDy models) and subtract them from the observed
BOLD, a process which we term MINDy-based Filtering. This procedure
more sensitively identifies individual differences, and enhances the tem-
poral precision and statistical power through which task events are iden-
tified. We also obtain stronger brain-behavior linkages and greater sim-
ilarity across the activation profiles of different tasks that index a com-
mon cognitive construct (cognitive control demand).

1.1. Filtering intrinsic dynamics

The current approach rests upon the ability to model the flow of neu-
ral activity between brain areas, as identified via models fit to resting-
state brain activity. However, rather than seeking to describe the flow
of task-related neural activity (e.g. Cole et al., 2016), our approach acts
to censor, or computationally estimate and remove, the flow of task-
unrelated (pre-event) activity. To be clear, we perform this operation
at every time point and use the whole timeseries for analyses. No in-
formation regarding task timing is used in our filter (Fig. 1A). However
we use the notion of “events” to provide an intuitive motivation for our
approach (conversely each timepoint could be considered an “event”).
Likewise, our approach does not require an event-related design (see SI
Section 7.5 for block-related analyses). At each time point, the measured
neural activity is considered a combination of task-evoked effects man-
ifest over fast time scales and the propagation of brain activity emerg-

ing at previous time points. By subtracting the modeled propagation of
previously-triggered (e.g. pre-event) activity, we aim to better isolate
the influence of each event (time-point).

Our approach is conceptually-similar to a previous study by Fox and
colleagues (Fox et al., 2007; 2006) which suggested that estimated task-
effects could be improved by subtracting spontaneous activity. They
demonstrated this possibility in a motor task by subtracting the recorded
BOLD in contralateral motor cortex from the task-implicated motor
hemisphere. However, the Fox et al. approach (Fox et al., 2007; 2006)
has not been applied more broadly, since it requires identifying region
pairs which are strongly correlated at rest, but only one of which is
recruited during task. This dissociation is key as it enabled Fox and col-
leagues (Fox et al., 2006) to measure intrinsic brain activity (via the con-
tralateral cortex) separately from task-evoked activity in the other hemi-
sphere. However, the current literature overwhelmingly suggests that,
for most brain regions and networks, coactivation during resting-state
fMRI predicts coactivation during task (e.g. Cole et al., 2016; Mennes
et al., 2010; Tavor et al., 2016).

By contrast, we propose to filter out the intrinsic component of brain
activity using model-based predictions. We predict brain activation at
each time-point by applying MINDy models derived from resting-state
activity (Singh et al., 2020a; 2020b) to the previous time-step (i.e. 1-step
forward predictions) and subtract these predictions to better identify
task-evoked changes. Thus, we better isolate event-related brain changes
by filtering out the propagation of pre-event activity. As mentioned pre-
viously, we use the notion of task “events” to provide an intuitive under-
standing of why our approach improves fMRI analyses. Our filter does
not utilize any prior information regarding task structure (events) and
is compatible with any task design (not just event-related designs; see
Fig. 1B).

1.2. Previous approaches using DCM

Dynamic Causal Modeling (DCM) also incorporates the temporal
evolution of brain activity and thus can consider the propagation of
neural activity through brain networks. Each DCM contains an effective
connectivity matrix and a set of extrinsic inputs that describe how task
events impinge upon each node of the network (Friston et al., 2003).
Many implementations also contain region-specific hemodynamic mod-
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els and/or an interaction between task events and effective connectiv-
ity (i.e., the effective connectivity is parameterized by task events). Al-
though the original DCM models were strongly limited in size, mod-
ern implementations (Frissle et al., 2017; Razi et al., 2017) can con-
sider a much larger number of brain regions (although the computation
cost still remains considerable; Razi et al., 2017; Singh et al., 2020b).
However, the DCM methodology also presents several constraints which
limit its application. Estimating a DCM model requires pre-specifying
the time-series of task effects. This assumption precludes analyses which
explore the temporal dynamics of task effects such as Finite Impulse
Response (FIR) modeling or nuanced task GLMs, such as those featur-
ing nuisance regressors (e.g. motion). In addition, all DCM implemen-
tations that support whole-brain models (i.e., more than a few regions;
Razi et al., 2017) are dependent upon the assumption of stationary lin-
ear dynamics (Singh et al., 2020b).

1.3. Filtering instead of parameterizing

In the current work, we aim to strike a balance between the mech-
anistic inferences made by DCM and the flexibility of standard anal-
ysis techniques. To do so, we generate dynamical systems models of
the brain and neurovasculature (as is done in DCM). However, our ap-
proach differs substantially from DCM in how we build and utilize these
models. Instead of fitting models of the brain and tasks, we propose to
fit dynamic models to independent resting-state data for each subject.
We then use these models to generate a mathematical filter for each
subject that removes, or “partials out” the effects of intrinsic dynamics
from BOLD timeseries. The approach uses no information regarding task
events and thus functions as a preprocessing step, as opposed to explic-
itly modeling task events. This feature is advantageous, as the proposed
techniques can be inserted into any data preprocessing pipeline with
minimal effort, provided that a sufficient amount of resting state data
(e.g. > 15 min Singh et al., 2020b) has been collected to build MINDy
models.

2. Approach

In our approach we predict future BOLD measurements, while mod-
eling biological activity at the neural (i.e., deconvolved) level. Gen-
erative models are parameterized according to resting-state data. The
MINDy-Filtered data is defined by the difference between measured and
model-predicted BOLD. Our procedure thus contains two stages: (1) pa-
rameterizing resting-state MINDy models; and (2) using these models to
perform MINDy-based Filtering. We begin by reviewing the resting-state
MINDy model.

2.1. Resting-state MINDy modeling

The MINDy model (Singh et al., 2020a; 2020b) is a phenomenolog-
ical extension of neural-mass type models which operates at timescales
commensurate with fMRI. Like neural-mass models, MINDy models
contain three components: a signed, directed weight matrix of esti-
mated effective connectivities (W), a sigmoidal transfer function (y)
which relates local activation to the strength of outward signaling, and
the region-specific decay rate (time-constant) D which describes how
quickly a stimulated region will return to baseline levels of activity.
MINDy models operate at two time-frames: the time-frame of neural
activity (denoted 7) and the time-frame of BOLD measurements (de-
noted ) which we assume are linked by a region-specific hemodynamic-
response-function h,. The resting-state neural activity (x,) evolves ac-
cording to the discrete-time dynamical system:

X1 = f(x)+&; )

F(x) 1= Wy(x,) + (1 - D)x, @
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with process noise ¢, assumed uncorrelated between parcels. The trans-
fer function y is parameterized by the curvature vector « which dictates
regional-differences in the shape of y:

w,(x,) 1= \/(12 + (bx, +.5)% — \/az + (bx, — .5) 3)

with b =20/3 a fixed, global hyperparameter. These neural equations
are linked to the observed BOLD measurements via the convolutional
HRF model. We model HRFs using a parameterized version of the canon-
ical double-gamma model with vector-valued parameters f;, f,:

t/’l‘le‘ﬂﬂﬁzﬁl 151
0= TGy T s @
BOLD, = [hg * x], +v, 5)

MINDy quickly and simultaneously solves for W,a, D, and # using a
unique, regularized optimization method (Singh et al., 2020a; 2020b).
Neural states are inverted from BOLD using the Wiener deconvolution
(Weiner, 1949). Gaussian noise at the level of BOLD measurements is
denoted v, which is assumed independent in time and between parcels.
Denoting complex-conjugation by z*, the Fourier-transform by 7 and
the Wiener NSR parameter £ = 0.002 (see SI Section 7.4), we define the
Wiener HRF-deconvolution (H1) as:

Flhgl* FlYJ]

- 6
TRyl + ©

+ry - p-l
HiY] :=F [
All multiplications/divisions in the above equation are understood to
be element-wise. We similarly implement convolution using the Fourier
transform (by the Convolution Theorem: F[x * y] = F[x]F[y]):

hy % x = F~'[Flhy|P[x]] @)

Thus, the combined MINDy model for resting-state (excluding noise)
is

BOLD,, = hy * [Wu/a(H;[BOLD,]) +(1 - D)H;[BOLD,] (8)

Since the exact convolution and deconvolution operators cancel for the
decay-term (as opposed to our numerical methods), we ignore these
steps for the linear decay component to reduce bias (less spectral fil-
tering). Our final model is thus:

BOLD,,, = hy * [WWQ(H;[BOLD,]) + (1= D)BOLD, 9)

2.2. Task model derivation

Our approach leverages individualized resting-state models in order
to estimate task-evoked brain effects, while making minimal modeling
assumptions about the underlying task mechanisms. We model brain
activity in task (x,) as a dynamical system containing two components:
an intrinsic dynamical component f(x) which is estimated from resting-
state models (see previous section), and an exogenous input component
1

Xop1 = fO) +1,. (10)

The latter component is exogenous with respect to the resting-state
model and should not be interpreted as “exogenous to the brain” Rather,
I, represents additional input to each brain region beyond that which
is generated via intrinsic (resting state) dynamics embedded in f(x).
In principle, this technique is compatible with any resting-state model
(f(x.)). For the current work, we chose MINDy (Singh et al., 2020a;
2020b) as it is highly scalable, nonlinear, and robust to many nuisance
factors. The aim of the current work is to estimate the exogenous in-
put (I,) for task data and to investigate this input as a marker for cog-
nitive states. We do not assume a specific mechanism underlying this
input (e.g. recurrent input, inter-regional signaling, neuronal “noise”,
or sensory afferents are all possible sources) or any spatial/temporal
properties of I,. Thus, we treat I, as a latent signal to be estimated
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(i.e., by filtering I, from BOLD). By contrast, other methods, such as
DCM (Friston et al., 2003; 2019) assume a time course of I, (the tempo-
ral aspects of I,) based upon task design and only estimate its relative
contribution to each brain area. For this reason, we term our objective
MINDy-based Filtering. Although the mechanisms of interest (I.) are
modeled as neural, fMRI measures the hemodynamic BOLD contrast.
For this reason, we use MINDy to simultaneously model neural dynamics
and the hemodynamics which link neural events to f{MRI measurements.
We assume that BOLD signal recorded in task reflects the convolution
(denoted “*”) of latent neural activity (x,) with a region-specific Hemo-
dynamic Response Function (HRF; denoted /) estimated from resting
state data (Singh et al., 2020a). Thus, for each brain region (parcel “i”)
our model of task BOLD is:

BOLDY = [h; + x? + 1)1, + v, an

We consider noise at the level of the neurovascular coupling #, and at the
level of BOLD measurements (v,). These terms are modeled as normal
random variables which are independently and identically distributed
(iid) between brain regions and time points. Process noise (physiological
stochasticity) is not explicitly modeled at the neural level in Eq. (10),
as it is absorbed in the unknown inputs I,. Substituting for x, (from
Eq. (10)) and rearranging yields:

BOLDY) —[h;  fO)], = [h; + ID], + [hy % 1P, + v (12)

Thus, the HRF-convolved input [ * I], is equal to the difference be-
tween measured and predicted BOLD plus additional autocorrelated
noise terms. For all current analyses we consider brain states estimated
with HRF-convolved estimates of input ([~ = I],) as opposed to the es-
timates of I, alone. This step enables the same statistical pipelines
(i.e. GLM structure) to analyze original fMRI BOLD data and the HRF-
convolved input. As a result, the estimation of [ = I], serves as an ad-
ditional “preprocessing” (filtering) step that can be added to any fMRI
pipeline with minimal effort. No information regarding task events is
used in estimating I, so the same statistical frameworks are applied to
model-filtered and original data.

2.3. MINDy-based filtering

In the current approach, we do not explicitly model different forms
of noise. The only noise factor we consider is the measurement noise
power in inverting BOLD onto neural activity. Since neurovasculature
noise is removed (, = 0), Wiener deconvolution (Weiner, 1949) gener-
ates the least-mean-square estimate for x,. The resultant approximation
for BOLD-convolved input ([4 * I],) is:

[h = I.], ~ BOLD,,, —[h * f(H'[BOLD],)], (13)

With H;[BOLD] denoting the Wiener deconvolution of each region’s
BOLD signal with respect to the corresponding HRF model. Thus, we
estimate neural activity by deconvolving BOLD with the region-specific
HRF’s identified at rest. Predictions are made in terms of neural activity
and then re-convolved to produce predictions in terms of BOLD. The dif-
ference between measured and predicted BOLD approximates the HRF-
convolved input. All operations are performed over the whole timeseries
simultaneously.
The full procedure is thus:

1. Resting-state data is used to estimate MINDy model parameters: con-
nectivity (W), transfer-function curvature («) and decay-rate (D) as
well as the HRF shape (8). w := {W,a, D, f} according to the dual
model:

Solve : W,a,D,f s.t. (14)
Xffit — fm(Xfext) c= WWH(Xfest) +(1- D)Xl{{ext (15)

BOLD{‘:f’ =hy* xfj;’ =hy* fw(H;BOLD,R”’) (16)
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2. Using HRFs estimated from rest, measured BOLD-level task data is
deconvolved to neural-level.

X!% = HI[BOLD/ "] (17)

3. The parameterized MINDy models use deconvolved observations to
predict task neural activity 1TR into the future.

Xpred = ol X7 m X (18)
4. Predicted neural activity is convolved into predicted BOLD measure-
ments.
Task _ Task
BOLDp 2y = hy + Xy 19

5. “Filtered” timeseries are calculated by subtracting the predicted fu-
ture BOLD from measurements.

[k + Il, = BOLD]4* — BOLDSY (20)

For the univariate-linear (decay) terms, analytic convolution and de-
convolution cancel so we only performed these steps on the nonlinear
terms to minimize bias (numerical implementations do not fully cancel).
This choice also enabled direct comparison of brain-wide MINDy models
with local auto-regressive models (see Section 3.10). Model predictions
are thus:

BOLDp,q := hy % Wy, (H;[BOLD,])| + (1 = D)BOLD,. 1)

3. Methods
3.1. Subjects

Data consisted of fMRI task and resting-state scans for 71 healthy
young-adult subjects collected as part of the Dual Mechanisms of Cogni-
tive Control (DMCC) study (Braver et al., 2021). We note that the DMCC
participant pool contains a large number of monozygotic and dizygotic
twin pairs although this feature was not relevant for our analysis.

3.2. Scanning protocol

Each participant took part in three separate scanning sessions which
occurred on different days, but all had the same general procedure. Each
day, participants provided two resting-state scans of 5 min each as well
as two scans each for four cognitive tasks: the AX-Continuous Perfor-
mance Task (AX-CPT), Sternberg Task, Stroop Task, and Cued Task-
Switching (Cued-TS). The two scans per task were performed sequen-
tially for each task whereas the two resting-state scans were separated
in time (one at the session start and one at the session midpoint). Each
of the task scans (2 per task per day) contained three task-blocks sep-
arated by inter-block intervals and lasted approximately 12 min. For
resting state and task, the two scans per day were split between anterior-
posterior and posterior-anterior phase-encoding directions. Scans were
performed at 3T with 1.2 s TR (multi-band x4; see Braver et al., 2021;
Etzel et al., 2021 for additional details).

3.3. Task descriptions

We briefly describe the general structure of each of the four cognitive
tasks in the “baseline” format which was administered on the first scan-
ning day (see Braver et al., 2021; Etzel et al., 2021 for more details on
task design and rationale). Subtle changes to task structure were made
on the two following days (subsequent section) but were not relevant to
our analyses. The AX-CPT task (Cohen et al., 1999) involves repeated
sequences of cue-probe pairs, in which the response to the probe item
is constrained by the preceding contextual cue. Thus, the A-X cue-probe
pairing requires a target response and is frequent, leading to strong as-
sociations between the cue and probe. However, both the B-X pairing
(where “B” refers to any non-X cue) and A-Y pairing (where “Y” refers
to any non-X probe) require non target responses. In the Sternberg task



M.F. Singh, A. Wang, M. Cole et al.

(Sternberg, 1966), participants are sequentially presented with a short
list of words to memorize for that trial (called the memory set; appearing
across two encoding screens). After a short retention delay, they are pre-
sented with a probe word and must determine if the probe was present
in that trial’s memory set. On some trials, the probe item is termed a
“recent negative” in that it was not present in the current trial memory
set but was present in the memory set from the preceding trial. In the
current implementation of the Stroop task, subjects are asked to ver-
bally report the font color in which probes are displayed (Stroop, 1935).
Each probe is itself a color-word, and can either be congruent (font color
is the same as the color word, e.g., BLUE in blue font) or incongruent
(font color is different from the color-word name; e.g., BLUE in red font).
Lastly, during Cued Task-Switching (Cued-TS, Bugg and Braver, 2016)
participants are pre-cued to attend to either the number or letter com-
ponent of a subsequent probe (combined letter + digit). In “attend-
number” trials, participants indicate whether the digital component of
a probe is even vs. odd. In “attend-letter” trials, participants indicate
whether the letter component is a consonant vs. vowel. The probe can
be either congruent (both letter and digit are associated with the same
response) or incongruent (the letter and digit are associated with differ-
ent responses). With the exception of the Stroop task, participants report
responses using button presses.

3.4. Cognitive control demand

The current set of trial-based analyses center upon the ability to iden-
tify neural signatures of cognitive control. Although cognitive control is
a heterogeneous construct, we specifically studied the conflict resolu-
tion aspects of cognitive control, so we use the terms control-demand
and conflict interchangeably when referring to these tasks, and contrasts
between trial types. In particular, we operationally identify cognitive
control demand as the difference in neural activity measures during
high and low-conflict trials for each task. In the AX-CPT, we contrast
BX trials (high conflict) vs. BY (low conflict). The BX trials are high
conflict because of the target-association with the X-probe, which re-
quires contextual cue information to override. For the Sternberg task, we
contrast trials with recent negative probes (high conflict) and trials con-
taining novel negative probes (low-conflict). Thus, recent negative trials
are high conflict because the familiarity of the probe, requires informa-
tion actively maintained in memory to override. In the Stroop task, we
contrast incongruent (high conflict) and congruent (low conflict) trials.
The incongruent trials are high conflict because the task goals (name the
font color) are required to override the dominant tendency to read the
color-name. Lastly, in the Cued-TS we also contrast incongruent (high
conflict) and congruent (low conflict) trials. The incongruent trials are
high conflict because it is critical to process the task cue, in order to
know what response to make (for congruent trials, the same response
would be made regardless of the task being performed).

3.5. Task manipulations

The four tasks (AX-CPT, Sternberg, Stroop, and Cued-TS) were cho-
sen to measure/engage cognitive control. On the first scanning day,
participants performed a “baseline” version of each task. On the subse-
quent days, however, participants performed modified version of each
task, meant to promote either proactive or reactive cognitive control
strategies. On the two subsequent scans participants performed all the
reactive-mode conditions of the tasks on one day and all the proactive-
mode conditions of the tasks on another, with the order of proactive
vs. reactive days counter-balanced across subjects. In the current work
we do not consider the influence of cognitive-control mode and combine
data for each task across scanning sessions, to increase statistical power.
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3.6. Behavioral measures

In each task we recorded two behavioral measures: reaction time
(RT) and accuracy. Reaction times for button presses were recorded dig-
itally, whereas reaction time for the Stroop task was defined by the du-
ration of silence (time until participant begins a verbal response; see
Braver et al., 2021). For the current work, we focused upon the dif-
ference in performance measures between trial-types with high cogni-
tive control demand and those with low cognitive control demand (see
below). As in previous work with these tasks, we observed lower per-
formance (higher RTs and lower accuracy) on the high demand trials
indicative of a cognitive control effect (Braver et al., 2021). For the RT
data, we defined cognitive control effects as the difference in normalized
RTs between high and low-control trials:

RTyp = 2(RTyp) — 2(RTp4y,) (22)

with z denoting z-score normalization. We separately normalized the
high and low RT conditions to account for potential heterogeneity of
variance between conditions. However, we could not separately nor-
malize accuracy by condition as some of the low-control distributions
were near-degenerate (e.g. in one Stroop session over 90% of subjects
had 100% accuracy for low-control trials). Similarly, we obtained near-
identical results using either the high vs. low contrast for accuracy
and using just high-control trials (since low-control accuracy was near-
ceiling). For parsimony, we chose to use the high-control data for plots
as opposed to the near-identical high vs. low contrast.

As with neural data, we averaged the normalized response times be-
tween sessions for each task. Interestingly we found that, unlike RTs,
neural data using conventional techniques only predicted accuracy in
the baseline session. Therefore, we only used the baseline accuracy for
benchmarking (averaged over tasks) and similarly for neural data.

3.7. Pre-processing and parcellation

Raw resting-state and task data were preprocessed using the same
pipeline, implemented with fMRI-prep software (Esteban et al., 2020;
2019). The whole-brain surface data were then parcellated into 400 cor-
tical parcels defined by the 400 parcel Schaefer atlas (Schaefer et al.,
2017; 7-network version). Subcortical volumetric data was divided into
19 regions derived from FreeSurfer (Fischl, 2012). Motion time-series
consisted of the 3-dimensional coordinate changes for rigid-body (brain)
rotation and translation (6 total). Motion and linear drift were regressed
out of pre-processed resting-state data before MINDy model fitting and
from task data prior to filtering. Since motion time-series are also co-
variates within our task GLMs (as is common), this step does not bias
results, as motion is implicitly removed from the unmodeled data during
GLM estimation (see below). However, we also implemented controls
(see Section 3.10) which used this same data (i.e. motion pre-regressed)
with conventional analyses.

3.8. Task GLM analyses

Statistical models of task fMRI were estimated using general linear
models (GLM) as implemented in AFNI. The same analyses were per-
formed for all data pipelines (e.g. original and MINDy-Filtered). Two
classes of GLM were used for each task: one designed to estimate event-
triggered effects and another to estimate sustained activity. These mod-
els only differed in the following respect: the event-related GLM models
contained separate terms (FIR models) for each trial-type whereas the
sustained GLM did not distinguish between trial-types, which enabled
better estimation of the sustained effects (block regressor).

The GLM design consisted of a mixed block/event-related design in
which trial-type effects were modeled using a modified Finite-Impulse-
Response (FIR, Glover, 1999; Goutte et al., 2000; Ollinger et al., 2001)
framework (AFNI TENT; Cox, 1996), whereas block effects (task vs.
inter-block interval) were modeled using a canonical HRF convolved
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with the block regressors. The TENT bases (“knots” in AFNI terminol-
ogy) generated an FIR design with each basis representing one TR (rela-
tive task start). The GLM design also included block onset/offset (mod-
eled with a canonical HRF) and the six motion regressors corresponding
to rigid body translation and rotation (3 each). Timepoints containing
excessive motion (Framewise Displacement > 0.9 mm) were censored
from task GLMs. Estimation was performed using the built-in AFNI func-
tion “3dREMLfit” and polynomial-detrending (“polort 5).

3.9. MINDy modeling

Mesoscale Individualized NeuroDynamic (MINDy, Singh et al.,
2020a; Singh et al., 2020b) models were generated from each subject
using the parcellated, pre-processed resting-state data for each subject,
combined across scanning sessions. Thus, a single MINDy model was
estimated for each subject and was used in analyzing task-data across
scanning sessions. We simultaneously estimated the neurovascular cou-
pling/HRF and latent brain networks by combining the original MINDy
model with Surrogate Deconvolution as in Singh et al. (2020a). This
combination simultaneously estimates HRF kernel parameters for each
brain region as well as the connectivity matrix, region-specific trans-
fer function shape, and local decay parameter (time-constant). Previous
work indicated that the inclusion of Surrogate Deconvolution renders
MINDy estimates robust to spatial variation in the HRF. Moreover, the
spatial distribution of estimated HRF properties such as time-to-peak
are consistent with empirical literature at the group level and are also
reliable at the level of individual differences (Singh et al., 2020a). Hy-
perparameters used in MINDy model fitting were identical to previous
studies (Singh et al., 2020b), but with batch sizes decreased to 150 TRs
each in order to accommodate the shorter scan lengths of this dataset.

3.10. Control pipelines

In addition to comparing the proposed pipeline with conventional
analyses, we also repeated all task analyses for several control pipelines
(Fig. 1B). These control pipelines considered two factors that might
explain results: (1) pre-processing and (2) mechanistic components of
the model (SI Section 7.7). The MINDy modeling framework assumes
that nuisance covariates such as motion and drift have already been
removed from time-series prior to model fitting. Therefore, to address
#1, we implemented a control in which standard GLM analyses were
computed directly upon the fMRI BOLD task timeseries, with motion co-
variates already regressed out first. The same regressors also appear in
the task GLM model (which is shared across all pipelines), but regress-
ing these factors out first will rescale estimated beta-coefficients due
to the input normalization performed by many fMRI processing pack-
ages (e.g. AFNI). This control ensured that improvements in group-level
sensitivity were due to increased similarity of estimated spatiotempo-
ral patterns rather than theoretically uninteresting factors due to pre-
processing pipelines. We refer to this control as “pre-regressed” (pre-
Reg). Estimates using this pipeline were nearly identical to the original
pipeline and event-related coefficients were highly correlated (average
over tasks: r = 0.97), collapsing over subject, parcel, and TR during the
probe period.

In the SI (Section 7.7), we address #2 by considering the influence of
anatomically local dynamics vs. interactions between brain regions. This
distinction is significant for three reasons. First, it is theoretically sig-
nificant to distinguish between purely local neural dynamics and inter-
regional brain dynamics. Secondly, long distance interactions between
brain regions cannot be explained solely in terms of neurovasculature
since the regions involved may share anatomically distinct blood supply
(i.e. different cerebral arteries). As a result, improvements identified in
whole-brain models, but not purely local models, cannot be explained
solely as a benefit of hemodynamic modeling (although other contami-
nants such as motion could still be a factor). Lastly, analyses using the
purely local models are equivalent to region-specific frequency-domain
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filtering. Although this equivalence does not imply that neural dynam-
ics are insignificant, the signal-processing interpretation is simpler and
could render the proposed neural modeling framework unnecessary (i.e.
less parsimonious). Thus, the local dynamics control serves to ensure
that our guiding neural modeling framework provides additional value
above its (partial) relationship to existing signal-processing techniques.
This control was implemented in two distinct variants: either heteroge-
neous (region-specific) or homogeneous (region-invariant) autoregres-
sive models fit to each subject.

The homogeneous model consists of an autoregressive model that is
specific to subject, but not parcel:

BOLD,,, = ¢,BOLD, +v, 23)

We assumed that the noise-component was independent and identi-
cally distributed between parcels and solved for ¢, using linear regres-
sion (collapsing BOLD across parcels). The “input” estimates from this
model consist of the residuals (v,). We fit the heterogenous model analo-
gously to the homogeneous model, but with region-specific autoregres-
sive terms:

(O (@) (i)
BOLD" =¢;BOLD" + ! 4)

W
1

for parcel “i”. We use these two cases to determine whether regional
heterogeneity is a significant factor in any improvements due to local
modeling. We refer to the homogeneous and heterogeneous models as
global (“glob”) and local (“loc”) autoregressive (AR) models, respec-
tively. Results were generally similar for the two AR models (high-low
coefficients correlated r = 0.99)

4. Validation and comparison criteria

In order to assess potential advantages of MINDy-based Filtering, we
considered two types of comparisons: benchmarking (is method “a” bet-
ter than “b”?), and sensitivity/robustness (how does factor “x” influence
method “a” vs. “b”?). The first case establishes whether MINDy-based
Filtering offers additional statistical power in detecting task effects. The
second case establishes whether MINDy-Based Filtering enhances statis-
tical power for detecting task effects in a selective (i.e., to the regions
showing significant task effects to begin with) or more global manner.

4.1. Benchmarking event-related effects

Trial-types were defined by high cognitive control demand vs.
low cognitive control demand across the four tasks (see Section 3.4).
Trial-specific activity was modeled using a Finite Impulse Response
(FIR) model with 1TR resolution (1.2 s) and task-specific length (see
Section 3.8). Group-level statistics were compared for the peak effect
(parcel x method specific) over a task-specific 2TR interval. This interval
was chosen during study piloting using the peak times in conventional
analyses (starting from 1: AX-CPT:TR 7 and 8, Cued-TS: TR 8 and 9,
Stern: TR 11 and 12, Stroop: TR 3 and 4). Thus, the analysis targets are
statistically biased against the proposed technique since they were cho-
sen to maximize conventional analyses. These times qualitatively cor-
respond with a typical HRF time-to-peak after the probe-events which
define high vs. low control trials (see Section 3.4). Previous literature
and present results suggest that these effects are primarily one-sided,
with activity increased in the high-conflict (control demand) trials rela-
tive to low-conflict (low control demand) in relevant brain regions (e.g.
Fig. 2A). Conversely, task-negative effects (significant decreases) have
largely been associated with sustained signals as opposed to high vs.
low control events. For these reasons, we only considered significant
increases in activity for trial-type analyses. Group-level t-tests (within
parcel) were compared for all parcels with significant increases (either
method; Fig. 2B), or for a set of 34 parcels which were pre-defined from
independent conventional analyses which showed consistent control-
demand effects across all tasks, (Fig. 2A, SI Table 1, Braver et al., 2021).
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Fig. 2. Statistical frameworks for comparing methods. (A) The DMCC34 set of parcels was defined by all parcels which displayed an effect of cognitive-control
demand in every task based upon separate pilot data using conventional analyses. Hence, the DMCC34 set of parcels is pre-specified and used across all tasks. (B)
Candidate regions for task-specific comparisons (parcels-of-interest) are identified for each pairing of task x pipeline by combining parcels with group-T meeting
p < 0.001 for at least one pipeline in a comparison (one-tailed for events, two-tailed for sustained effects). (C) Data is analyzed either using resampling statistics for
global measures (e.g. for brain-behavior correlations, generalizability) or in terms of paired-differences between methods over each parcel-of-interest.

Since these parcels were pre-selected based upon conventional analy-
ses, they are statistically biased against the proposed method (i.e. in fa-
vor of conventional methods). We note that in Braver et al. (2021), the
published version instead refers to a set of 35 parcels meeting criteria
for consistent control-demand effects. The current manuscript used 34
parcels drawn from an earlier stage analysis that were highly overlap-
ping with the later set of 35 parcels.

4.2. Benchmarking sustained effects

In addition to event-related analyses, we also considered the iden-
tification of sustained effects (block-related changes). Results of these
analyses are primarily presented in the SI (Section 7.5). Sustained ef-
fects in a mixed block/event design refer to “background” activity that
is present during a task-block, regardless of whether participants are per-
forming a task event (Petersen and Dubis, 2012; Visscher et al., 2003).
Since we used FIR models to span each trial type, sustained effects in
our analysis only reflect activity during inter-trial periods (non-trial pe-
riods of task-blocks) since effects during other periods are absorbed in
the trial FIR vs. rest-block contrasts (Petersen and Dubis, 2012; Visscher
et al., 2003). We compared the group-level effect size of each technique
(MINDy-based Filtering and several controls) in detecting sustained ef-
fects. Methods were compared pairwise, and benchmarking analyses
were only conducted on parcels which had a significant effect for either
method in a pair. Sustained analyses considered both signal increases
and decreases, so the target metric was absolute t-value (1-sample group
test) for the GLM sustained betas (see Section 3.8).

4.3. Testing selective vs. global improvements

We further analyzed benchmarking results by testing how MINDy-
based Filtering changed the distribution of activity across parcels. The

primary question was whether MINDy-based Filtering: (a) uniformly
changed statistical power across the brain (by shift or scale); (b) pri-
marily identified previously insignificant regions or (c) primarily al-
tered the activity profile in previously identified regions. This analysis
is important for determining whether the MINDy-based Filtering tech-
nique globally improves statistical power or, instead, better differen-
tiates task-relevant regions from the rest of the brain. We tested for
these effects using multilevel linear models to compare MINDy-based
Filtering to the different control models. These multilevel models (pre-
sented in more detail later) contain task-specific main effects of method
(anatomically global) and additional terms for task-implicated (statisti-
cally significant) parcels. We use these models to test the significance of
model improvements (increased effect sizes) after discounting anatom-
ically global changes.

4.4. Sensitivity to cognitive states

Sensitivity analyses were performed to assess the impacts of cogni-
tive states, individual differences, and motion. In the current case, cog-
nitive states differ between tasks and trials. Although, each of the four
tasks are commonly used to index cognitive control, the cognitive tasks
are not construct-pure. For instance, tasks featuring delays (AX-CPT,
Cued Task Switching, and Sternberg) are thought to be more dependent
upon working memory than those without delays (i.e. the Stroop task).
However, many task-specific factors are the same between high and low
control trials of the same task (i.e. all events prior to the probe). Thus,
we controlled for cognitive similarity across tasks by comparing results
across increasing levels of cognitive similarity: low-control trials, high-
control trials, and the contrast high vs. low control trials. These levels
progressively isolate the cognitive control construct by increasing con-
trol demand (high-control trials) and controlling for other task events
(high vs. low contrast). Methods which are sensitive to cognitive states
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will produce more similar results between task contexts when the mea-
sured cognitive states measured are also similar. Put simply, we studied
between-task similarity in the whole-brain activation profile, under the
premise that more similar task conditions should lead to more similar ac-
tivation profiles. We quantified similarity in the activation profile using
the Intraclass Correlation (ICC; Shrout and Fleiss, 1979) which general-
izes the concept of correlation to multiple groups (i.e., four tasks as op-
posed to pairs). Tasks differed in effect magnitude and there was no the-
oretical basis for assuming this factor should be identical between tasks
(i.e. we don’t assume each task equally taxes cognitive control), so we
normalized the group-average data (divided by the standard-deviation
over parcels) for each task x method before using ICC to test similarity
in activation.

4.5. Significance testing for construct identification

We used permutation statistics to compare the significance of gener-
alizability tests between methods. When testing the generalizability of
group-level patterns, we treated brain regions as the object of measure-
ment in intraclass correlations (ICC, Shrout and Fleiss, 1979) over task
classes. Larger ICC values imply more similar whole-brain activation
profiles between tasks. We estimated confidence intervals with boot-
strap sampling over the set of brain parcels.

4.6. Robustness to motion

In an SI analysis (Section 7.8), we compared methods in their robust-
ness to motion artifacts. While previous work has established that the
MINDy model-fitting technique is robust to motion (Singh et al., 2020b)
it remains unknown whether the MINDy-based Filtering technique also
exhibits similar motion robustness. Therefore, we compared methods in
terms of sensitivity to motion artifact. We considered three motion met-
rics for task data including the number of frames censored based upon
framewise-displacement (FD) criteria (> 0.9 mm), the median frame-
wise displacement, and the median-absolute-deviation (MAD) of DVARS
(Power et al., 2012). We analyzed sensitivity by comparing the similarity
(ICC) of results between high-motion and low-motion groups of subjects
(median split for each motion measure).

5. Results
5.1. Structure and presentation of results

We designed analyses to answer four questions: (1) do resting-state
MINDy models (partially) generalize to task? (2) does the proposed
technique improve power in answering cognitive-neuroscience ques-
tions? (3) can these methods test hypotheses which were previously
impractical? and (4) do improvements reflect theoretically interest-
ing concepts (e.g. signal propagation) or do they stem from signal-
processing/filtering side-effects? The first question resolves whether the
intrinsic dynamics modeled at rest meaningfully generalizes to task (al-
though not perfectly, as we are interested in the task versus rest differ-
ences). The second and third questions identify methodological contri-
butions, whereas the last question addresses whether these techniques
also offer additional theoretical insight (i.e. their success reflects some
principle of brain function). This question is important for determining
whether the results reflect brain network dynamics or can be more par-
simoniously explained in terms of (non-neural) signal processing effects.

In the main text, we emphasize comparing methods in event-related
analyses due to the popularity of event-related designs. However, we
also compared methods for the analysis of sustained-effects in a mixed
block/event design. These results are presented in SI Sections 7.5 and
7.6. We also tested the specific contribution of modeling connectivity by
comparing MINDy-based Filtering with analogous filters using reduced
(autoregressive) models (SI Section 7.7).
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5.2. Identification of task-relevant parcels

In order to compare methodologies (“third-level” analysis) we first
identified task-relevant parcels over which to gauge improvements. We
performed this step in two ways: either using a set of parcels consis-
tently engaged across tasks (“DMCC34”) or separately identifying rele-
vant parcels for each analysis (i.e., for the different tasks; Fig. 2A and
B). In the first case, we used pilot data and conventional analyses to
identify a set of 34 brain regions which displayed significant increases
(p < 0.05, Bonferoni-corrected) in activity due to cognitive-control de-
mand across all four tasks (Fig. 2A). This set is referred to as “DMCC34”
and constitutes a “pre-specified” comparison set as it was developed us-
ing a separate set of pilot subjects. It is also biased away from finding
MINDy-based Filtering improvements, since, by definition, the parcels
were identified as maximizing conventional univariate statistical con-
trasts.

In addition, we identified “parcels-of-interest” specific to each third-
level comparison (i.e., task + methods; Fig. 2B). We defined “parcels-
of-interest” as reaching an uncorrected significance of p < 0.001 for at
least one of the methods being compared (Fig. 2B). We used a slightly
more liberal criteria for identifying these parcels as several of our “third-
level” analyses compare second-level analyses over parcels-of-interest
(Fig. 2C), although we later demonstrate that general improvements in
detection power hold across significance thresholds (Section 5.5). These
“parcels-of-interest” are also specific to a given second-level contrast
(separate sets for events and for sustained/block-related effects). Thus,
for each pair of methods (e.g. MINDy vs. original) we identified one
sustained and one event-related set of parcels for each of the four tasks.

5.3. Resting-state model predictions generalize to task

The key premise of our approach is that task effects are marked by
systematic deviation from intrinsic brain dynamics, reflecting extrinsic
influences (“input”). As such we seek to estimate these influences by
filtering out intrinsic dynamics to recover task “input” (we stress that
“input” should not be taken literally; see Sections 2.2 and 6.3.2). In prac-
tice, this operation corresponds to computing the difference between
model-predicted and observed changes in brain activity at each time-
step. The validity of our framework thus rests upon three claims: (1) that
task events are marked by (slight) deviations from intrinsic-dynamics,
(2) that these deviations are systematic and can be modeled as additive
“input” to the otherwise preserved dynamics, and (3) estimated inputs
are a more consistent marker of task effects than the original BOLD sig-
nal.

Our first claim, that task events deviate (slightly) from intrinsic dy-
namics is observed by comparing MINDy prediction accuracy over task
and “rest” blocks (3 task blocks and four rest blocks per run). During
“rest” periods, prediction accuracy is nearly as high as for the train-
ing resting-state data. Overall, the range of model prediction accuracies
for resting-state scans (R? = 0.58 + 0.06) was roughly similar to that ob-
served during task (R? = 0.56 + 0.08,0.54 + 0.07,0.56 + 0.08,0.50 + 0.09,
for AX-CPT, Cued-TS, Stern, and Stroop, respectively; Fig. 3A). How-
ever, prediction accuracy differed between periods in-between task
blocks (“rest” blocks) and when subjects were actively engaged in
task. During “rest” blocks, MINDy predictions were no worse than for
resting-state scans. In AX-CPT and Stroop accuracy during “rest” blocks
was significantly greater than for resting-state scans (paired — t(70) =
3.5, p = 0.0008; paired — 1(70) = —4.5, p = 2.4E — 5) and for the other two
tasks (Cued-TS and Sternberg), the MINDy modeling of resting-state
scans and rest-blocks within task scans was equally accurate (#(70) =
—1.1,#(70) = 1.2, n.s.). By contrast, model accuracy decreased when sub-
jects were actively performing each task (p's < E — 8), while remaining
well above chance (R? = 0.54 + 0.08,0.52 + 0.08, 0.54 + 0.08, 0.45 + 0.10,
same task order; Fig. 3A and B). An illustration of the pattern is shown
for a representative task (Cued-TS), showing the amount of variance
(R?) explained by MINDy at each TR across the whole-scan timeseries



M.F. Singh, A. Wang, M. Cole et al.

Neurolmage 247 (2022) 118836

AX-CPT: BX Fig. 3. Validation of MINDy-based Filtering
pre GLM Framework. Task effects are defined by de-
N post GLM viation from intrinsic dynamics. (A) Intrin-

sic dynamics modeled by MINDy with resting-
state data, remain valid (but less accurate, see
Section 5.3) in task. (B) Deviation from intrinsic
dynamics (i.e., estimated “input”) mark periods
of active task engagement over long timescales
(task blocks) and (C) short-timescales (task
events; pre-GLM). There is a peak in unex-

A 8 Whole-Brain Fits B Cued-TS: Whole-Brain C

- A i .6
N T | T R N .6 SSEminpy
-4 .GB HL O& HA HlI x SSEprereg
> | 1 rH 1 M I S 5
g Liby Jl 2 5 .
= .41 W =
= o S B S

2 Inter-Block & 4 4

: ek Block . Inter-Block
Rest AX-CPT Cued-TS Stern Stroop 200 400 600
Time (TR=1.2s)

D, AX-CPT: BX E All Trials

' ESIMINDy T EIMINDy
~ mmpreReg ~ 5. :T + EpréReg ~. .6
o @ L o’
= =l Lol -
© i : H: ©
=, = E LT =
= ! s Lt B 2

1 o | + L

5 10
Time (TR=1.2s)

15 AX-CPT Cued-TS Stern Stroop

AX-CPT Cued-TS Stern

plained event-related variance (SSE MINDy;
pre-GLM) timed to the onset of probe effects.
However, this variance is well-explained by
task GLMs (post-GLM) indicating that event-

5
Time (TR=1.2s)

F High Cog. Control Trials

10 15

- . TEEJSRZ{; related deviations from MINDy (fit to rest)
e =T ! : are well-described as additive “input” to the
' I model. (D-F) Timeseries post-MINDy based fil-
H' g' HH = tering (red) have a greater proportion vari-
'H 'H L ! T ance attributed to task events. Statistics are
: 1 L H 1 averaged over a set of pre-specified parcels-
i *: L E of-interest (DMCC34). (D) Average timecourse
N i N 2 of BX (high-control) trials in AX-CPT demon-

strates clear increases in task-explained vari-
ance during the probe-response period (7 and
8 TR). (E) MINDy-based Filtering significantly

Stroop

increased signal variance attributed to any task event in four tasks. (F) Improvements in high-control trials were significant in 3 of 4 tasks (all but Sternberg). Shading
indicates standard error over subjects. “post-GLM” indicates that both the numerator and denominator SSE are taken after performing GLM (MINDy = MINDy-Filtered),
whereas “pre-GLM” indicates the relative sum-of-squares after MINDy-based Filtering but before fitting task GLM models. Both (C) and (D) are taken from AX-CPT
(averaged over scans). Time-courses in (C) and (D) are event-locked to the start of “high-control” trials. Vertical line indicates TR7 which marks probe-related effects
in AX-CPT (TR 7 and 8). “MINDy” denotes results using MINDy-based Filtering, while “pre-Reg” denotes the pre-regressed control (conventional analyses, but with
additional motion-regression performed pre-GLM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

(Fig. 3B). Deviations from model predictions (unexplained variance) are
also greatest during the probe/response period (Fig. 3C), indicating that
these deviations are a strong marker of task events. Thus, intrinsic dy-
namics observed at rest still predict task dynamics, but the degree of
accuracy is tightly coupled to task events.

Our second claim is that these deviations are systematic and can be
well-approximated as an exogeneous “input” to the existing dynamics.
Statistically, this assumption corresponds to the residuals (MINDy pre-
diction minus observed) being shifted (event-locked change in mean)
during task events, as opposed to primarily changing variance, which
could reflect a breakdown of the underlying dynamics. For this analysis
we only considered parcels known to be task-related: the DMCC34 set,
as the subsequent analyses assume that the signal is task-related. Us-
ing Finite-Impulse-Response GLM designs we compared residual sum-
of-squares before and after removing the effect of trial-period. Squared
errors were averaged over the DMCC34 parcel-set for each subject. Anal-
yses demonstrate that the probe-related increase in error (task-average:
t(70) = 7.2,p < 4E —9) is captured by an additive main effect of trial-
period as the post-GLM unexplained sum-of-squares was not greater for
the probe period than other trial periods in any task (n.s. 1-tailed, e.g.
Fig. 3C) and actually decreased overall (task average: #(70) = —4.5,p =
2.6 E —5). Thus, task-induced deviations from intrinsic dynamics are sys-
tematic and well-described by additive “input” to the system.

Lastly, we assume that removing (“filtering”) intrinsic dynamics will
accentuate task effects in the data by removing variance due to in-
trinsic dynamics. At present, we only consider spatially univariate ef-
fects (unlike e.g., MVPA), hence we tested the relative variance ex-
plained by task with and without MINDy-based Filtering. As in the pre-
vious analysis, we used the mean over DMCC34 parcels, as this anal-
ysis assumes that there is a true task effect to accentuate. Results in-
dicate that MINDy-based Filtering generally increased the variance as-
sociated with task events (e.g. Fig. 3D for AX-CPT). This result held
for all tasks when combining across trial-types (paired — t(70) = 15.3,p ~
0;t=50,p=47TE—6,t=67,p=45E—9; t =12.1,p=82E — 19 for
AX-CPT, Cued-TS, Sternberg, and Stroop, respectively; Fig. 3E)

and for three-of-four tasks (all but Sternberg) when restricted to
high-control trials (paired —1(70) = 13.7,p~0; t =64,p=14E - 8; t =
1.9,p=0.06; t = 11.1, p = 5.2FE — 17; Fig. 3F). Thus, MINDy-based Filter-
ing has the potential to improve the variance associated with task effects
in human BOLD. We note that some inter-trial variability in brain activ-
ity can be related to behavior, so future study is needed to understand
how MINDy-based Filtering affects veridical trial-to-trial variation (in
a later section we find improvements in inter-subject behavioral pre-
diction). However, these results demonstrate that our approach is well-
justified and statistically powerful in identifying the types of simple (uni-
variate) models of brain activity that are most common in neuroimaging.

5.4. MINDy-based filtering accounts for intra and inter-subject variability

We also tested whether these intrinsic dynamics explain unique
variability above the task GLM. This test is important for determin-
ing whether MINDy serves to predict the mean brain-response for each
trial-type or whether it also predicts trial-to-trial variability. We quan-
tified these properties through sum-of-squares partitioning (ANOVA).
Across all tasks, we found that the proportion of unique variance ex-
plained by MINDy was significant (41.2% on average, Fig. 4A). How-
ever, MINDy predictions and the task effects do have some overlap (a
non-zero MINDy X task sum-of-squares, Fig. 4A), thus MINDy predic-
tions account for some of the variation in both the trial-to-trial variabil-
ity (variation unique to MINDy) and the typical response across trials
(MINDy x task interaction). We also tested how MINDy-based Filter-
ing impacts variability in the evoked-response between subjects. We re-
stricted these analyses to the pre-defined set of regions (the DMCC34
parcels, Braver et al., 2021) which were previously identified as having
a significant control-demand effect across tasks. Results demonstrated
that MINDy filtering decreased inter-subject variability in both main ef-
fects of trial-type (e.g. Fig. 4D) and the contrast between trial-types (e.g.
Fig. 4E). In particular, these analyses and associated event-related time-
course visualizations reveal that the peak task-related effects become
sharper (more well-defined), as well as more temporally-precise, after
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Fig. 4. MINDy-based Filtering reduces variability within and between subjects. (A) MINDy-based Filtering accounts for a significant portion of unique variability
within each subject’s data. This effect holds across tasks (results averaged over all parcels, subjects). Variance partitioning was performed after removing variation
due to nuisance factors (motion and drift). (B) Difference in the relative group-explained variability between MINDy and the original data. Note that MINDy-based
filtering actually decreases the proportion of group variance in some regions, but increases for task-implicated regions (e.g. IPFC). (C) Group-explained variability
particularly increased in parcels which already had a strong effect under original analyses (putative task-relevant parcels). (D) MINDy-based Filtering reduces the
between-subject variability of task-evoked signals. Example shown is the mean signal over the DMCC34 parcels for the Cued-TS high control-demand condition
(incongruent trials). (E) Variability also decreases for contrasts between conditions. Example shown is for the AX-CPT (BX-BY contrast). “MINDy” denotes results
using MINDy-based Filtering before performing GLM, while “Orig” denotes the conventional pipeline (no MINDy).

MINDy-based filtering. We used ANOVA to partition variance in the cog-
nitive control effect into group-level variance and individual variance
over the relevent (probe) trial periods.

We then tested whether MINDy increased the proportion of cognitive
control effects attributed to a common group factor (sum-of-squares ex-
plained for the group model divided by the full/subject-specific models).
As expected, regions implicated in cognitive control, such as the lateral
and medial prefrontal cortex, anterior insulae, posterior cingulate, and
posterior parietal cortex, had larger proportions of variability explained
by the common group factor (Fig. 4B and C). MINDy-based Filtering
increased the proportion variance explained by group-level models (rel-
ative full models) for the DMCC34 parcels (Au = 0.034 + 0.023, paired —
1(33) = 8.56,p = 6.9E — 10). Brain-wide, parcels in which MINDy in-
creased group-explained variance, also had larger group-explained vari-
ance in the original analysis (1(417) =4.92,p = 1.2E - 6; Fig. 4C) and
the increase in group variance-explained (MINDy-Orig) was corre-
lated with the original variance explained (+(417) = 0.40,p = 7.5E — 17).
Thus, MINDy-based Filtering only increased group-level effects in task-
implicated brain regions (those that already had a group-effect). Con-
versely, the relative variance attributed to subject decreased correspond-
ingly (same statistics, but sign-flipped since S'S;,qi\group/SSFur = 1 =
SSGroup/S'Spur)- Thus, by removing intrinsic brain dynamics, MINDy-
based Filtering reveals more similar task-effects between subjects.

5.5. Improved group-level detection power

We tested whether MINDy-based Filtering improved statistical power
in detecting group-level neural effects for each task, and in an omnibus
test across tasks (Fig. 5A and B). For each event-related pairwise compar-
ison of methods, we calculated group-level statistics from the GLM beta
estimates of each task-relevant parcel (see Section 5.2). Results indicate
that MINDy-based Filtering significantly increased statistical detection
power on all tasks (four of four) for the event-related contrast relative
to both the traditional pipeline and the pre-regressed control pipeline
(all p’s<1.2E-4; Fig. 5C). For omnibus analyses, we collapsed observa-
tions across tasks (Fig. 5A and B). Results indicated that MINDy-based

10

Filtering generally increases statistical power for event-related analyses
(vs. original: paired-1(495) = 27.5, p ~ 0, vs. pre-regressed: 7(492) = 27.9,
p~0).

We also tested whether improvements depended upon the criteria
used to select task-relevant parcels, since methods were only compared
on these parcels. Whereas the previous analysis used a fixed selec-
tion criteria (see Section 5.2), this analysis compared methods over a
range of statistical thresholds for identifying task-relevant parcels to en-
sure results generalize across dietection criteria. Thresholds were de-
fined by uncorrected within-method (second-level) significances rang-
ing from p=0.1 to p= E — 10, one-tailed. We compared methods on
all parcels that met a given threshold for at least one pipeline (origi-
nal, pre-regressed, or MINDy). We imposed a minimum of 5 parcels for
comparison which restricted the range of Cued Task Switching (mini-
mum threshold: p = E — 5), while all other tasks had a sufficient number
of parcels (AX-CPT: n = 10, Stern: n =7, Stroop: n = 58) meeting even
the most stringent criteria (p < E — 10). Results indicated that MINDy-
based Filtering improved statistical power (effect size) relative to con-
ventional analyses on all tasks for all detection levels considered. Our
approach also increased statistical power relative the pre-regressed con-
trol for all but one case (when only five parcels were compared for Cued-
TS; 1(4) = 2.5, p = 0.065,2 — tailed). We conclude that the proposed tech-
nique improves statistical power in task-related parcels, regardless of
how strictly “task-related” is defined.

One limitation of the previous tests, however, concerns the deter-
mination of which parcels are included in analysis: we compared effect
sizes in parcels that met a significance criteria (i.e., already had large
effect sizes). This approach is anatomically parsimonious in that the
comparison regions are informed by data rather than prior assumptions.
However, this dependency could produce biases. Therefore, we repeated
the previous analyses over the fixed set of DMCC34 parcels, which had
been independently identified through pre-specified contrasts. Analy-
ses over this restricted, pre-specified group of parcels agreed with the
previous results: the omnibus (all task) statistical detection power and
the task-specific effect sizes all improved relative to both the original
pipeline and the pre-regressed controls (maximum p = 1.8 E — 4). Thus,
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results indicated that MINDy-based Filtering improved statistical detec-
tion even when analyses were restricted to this group of 34 pre-specified
parcels.

5.6. MINDy-based filtering selectively enhances task-related neural signals

Results in the previous section indicate that MINDy-based Filter-
ing increases the statistical detection power of task effects (Fig. 5C).
Statistical power and effect sizes are useful benchmarking criteria as
they are easy to interpret and relate to potential applications. However,
these markers are also limited in that they indicate the ability to re-
ject a generic null hypothesis of no task effects. Yet this generic null is
not always a useful benchmark from which to provide additional sci-
entific insight. For instance, approaches which magnify anatomically
global effects may provide little benefit to functional “brain-mapping”
studies, which are most meaningful when they differentiate between
brain regions. Therefore, we tested whether the improvements found
with MINDy-based Filtering are anatomically global or serve to further
differentiate regions (i.e., are anatomically selective).

We consider two sorts of global effects: additive “shifts” in the global
signal and global “scaling” of task effects. In statistical modeling termi-
nology, the former reflects a main-effect (intercept) of method, whereas
the latter reflects the method-specific slope. We modeled the differenti-
ation between brain regions as either a main effect of regional signifi-
cance (i.e., whether a region has a significant effect) or as an interaction
with regional significance reflecting either a shift or rescaling of effect
sizes of significant regions due to MINDy-based filtering, relative to the
control models. We use the logical-valued variable Sig,, p,, to denote
whether a parcel exhibited a significant effect for either method in a
given second-level task analysis. We denote the MINDy-filtered second-
level estimate (group-T) for each as Y, p,.. which is modeled as a func-
tion of matched control analyses (e.g. the original GLM or pre-regressed)
which are denoted X,

task,Parc*

Ymsk,Parc = ﬂmxk + ﬂOXtask,Parc + Sigmsk,Parc (ﬁl + ﬂZXIaxk,Parc) + emsk,Parc'
(25)

We assume that e is independently and identically distributed across
tasks and parcels (iid.). The coefficient g, represents the main effect
of parcel significance, while g, represents the interaction with parcel
effect size in control methods. Conceptually, these two components rep-
resent the degree to which MINDy-based Filtering further separates task-
implicated and non-implicated parcels and the degree to which dif-
ferences among task-implicated regions are further magnified, respec-
tively.

Results indicate that the MINDy-based Filtering technique demon-
strates differential sensitivity, in that improvements are greater in
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the original pipeline for comparison due to vi-
sual overlap with results from the pre-regressed

task-implicated regions (Fig. 6A). The main effect of event-related
regional significance was significant relative both the original (f; =
0.97 +.09;1(1669) = 10.8, p ~ 0) and pre-regressed pipelines (8, = 1.05 +
0.09;1(1669) = 12.2, p ~ 0). This result indicates that MINDy-based Fil-
tering further separates event-implicated and non-implicated regions
rather than simply increasing global statistical features. This feature
also held at the single-task level in which linear models revealed a main
effect of regional significance in all four tasks for both original (max
p = 0.0007; Fig. 6B) and pre-regressed controls (max p = 0.0025). MINDy-
based Filtering also differentially magnified effect sizes relative the orig-
inal analysis (8, = 0.075 + 0.023;#(1669) = 3.3, p = 0.001), but this effect
was small and did not reach significance for the pre-regressed control
(B, = 0.034 +0.022;¢ = 1.53, p = 0.13, 2-tailed). Thus, task-implicated re-
gions experienced the greatest improvements due to MINDy-based Fil-
tering. For the current dataset, this approach primarily functioned to
further highlight task-implicated brain regions (a main effect of re-
gional significance) rather than magnifying the differences between
task-implicated regions. These results imply that MINDy-based Filter-
ing is sensitive to task-implicated brain regions rather than inducing
anatomically global effects.

5.7. Identifying a latent cognitive construct

The previous analyses indicate that MINDy-based Filtering enhances
the identification of neural activity associated with a set of contrasts
between trial-types (theoretical high control-demand trials minus low
control-demand trials). However, many cognitive neuroscience studies
seek to understand cognitive constructs, as opposed to unitary tasks. In
the current section, we explore how well each method identifies the neu-
ral correlates of one such construct: cognitive control. The four tasks we
studied have all been previously used to index cognitive control (typ-
ically via the difference between high-control and low-control trials).
However, because the tasks themselves are not construct-pure (i.e., they
tap multiple cognitive constructs) the neural activity associated with
tasks is also expected to be non-identical. To control for this fact, we
used the different trial types to generate levels of “construct-purity” in
terms of cognitive control: low-control trials (low purity) and the high-
vs.-low contrast (high purity). We consider the high-vs.-low contrast to
be more “construct-pure” in terms of cognitive control since it controls
for many of the other cognitive processes that differentiate tasks. For
instance, speech production (unique to the Stroop task), is identical be-
tween high and low-conflict trials (the same set of words are produced).
Likewise, working memory maintenance during delays (Sternberg, AX-
CPT, and Cued-Task Switching) does not differ between high and low
control-demand trials since these trial-types are identical through the
delay period (up until the probe). The “construct-purity” of a condition
thus indicates the degree of psychological similarity across tasks.
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We tested whether increasingly similar psychological contexts (con-
ditions) across tasks are associated with more-similar neural effects
using the Generalizability coefficient (a form of inter-class correla-
tion/ICC; Shrout and Fleiss, 1979). We compared measures in terms of
their generalizability in tasks conditions which tapped a common con-
struct (cognitive control demand) as well as conditions in which tasks
were less psychologically similar. We predicted that MINDy-based Fil-
tering would identify greater neural similarity between psychologically
similar task conditions (higher generalizability/ICC) relative to psy-
chologically dissimilar conditions, reflecting construct-selectivity. Con-
versely, we expect the ICC for psychologically disimilar task conditions
(“low purity”) to be lower, reflecting disimilar neural activity patterns.

The ICC “units of observation” consisted of the group-mean beta for
each brain parcel (all 419 brain regions) and “classes” consisted of the
different tasks. Results indicated that the proposed technique was sen-
sitive to the cognitive control construct at group level (Fig. 7A). In the
“low purity” condition, MINDy-based Filtering reported lower similar-
ity between tasks (/CC = 0.50 + 0.02) than the original and pre-regresed
pipelines (p’s < 0.001, 5000 bootstraps). Thus, MINDy-based Filtering
does not generically increase the similarity of task results irrespective of
cognitive construct. By contrast, for the “high purity” condition, MINDy-
based Filtering generated significantly more similar results across tasks
(ICC = 0.60 +.03) than the original and pre-regressed pipelines (p's <
0.001, 5000 paired bootstraps). We conclude that MINDy-based Filter-
ing improves sensitivity to the cognitive control construct at group-level.
Based on the nature of how these ICC’s were calculated, this finding can
also be interpreted as indicating that the anatomical profile of effects
(i.e., the gradient of effect sizes across the brain) becomes more similar
or consistent across tasks after MINDy-based filtering.
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5.8. MINDy-based filtering enhances brain-behavior relationships

The previous section demonstrated that neural effects identified with
MINDy-based Filtering better generalized across task conditions tapping
a common construct (cognitive control) than conventional techniques.
In this section we demonstrate that this relationship also holds for be-
havior by using individual differences in task effects to predict the cor-
responding variation in behavioral cognitive control effects.

To isolate the effect of cognitive control demand we contrasted high-
control and low-control trials for both the neural and behavioral data.
This approach, comparing trial types, is common in neuroscience includ-
ing the neuroscience of individual differences. Interestingly, we found
that across methods, individual differences in RT were positively corre-
lated with the conflict-related (event) brain response but had a weaker
relationship to sustained activity (SI Fig. 11A and B). By contrast, indi-
vidual differences in accuracy were positively correlated with sustained
activity, but unrelated to event-related activity (SI Fig. 11A and C).
Therefore, we compared methods in predicting RT using event-related
estimates and in predicting accuracy using estimates of sustained ac-
tivity. We also found, using conventional analysis, that brain-behavior
relationships were greater for the contrast between trial-types than for
trial types in isolation. Averaged over tasks, the original pipeline had a
mean correlation with RT of p = 0.21 for high-low vs. p = —.15 for high
alone. The analogous correlations for MINDy were p = 0.36 (high-low)
and p = —0.08 (high only). For this reason, we employed the high-vs.-
low control contrast in comparing methods.

For each subject x task x session, we summarized event-related ef-
fects in each taskx method via the difference of normalized (z-scored
over subjects) high and low control trial coefficients averaged over the
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DMCC34 set of parcels and similarly for sustained effects. Behavioral
measures were similarly defined by the difference in normalized RT be-
tween high and low control trials and the accuracy in high control trials
(nearly identical results are derived using high-low since low-trial ac-
curacy is near ceiling). We found that MINDy-based Filtering increased
the recorded correlations with RT for each task (Fig. 7B) and the aver-
age change in correlation across tasks was statistically significant (vs.
original and vs. pre-regressed: p < 0.05, 5000 bootstraps). Similarly, our
approach increased correlations with accuracy (p < 0.05, 5000 boot-
straps, Fig. 7C). Results using the pre-regressed pipeline are depicted
in SI Fig. 11 C, D. We conclude that after MINDy-based Filtering, indi-
vidual differences in brain responses better predict behavioral measures
associated with cognitive control.

6. Discussion

We demonstrated that MINDy-based Filtering increases the ability
to detect both event-related (cognitive control-demand) and sustained
brain responses in task fMRI (Section 5.5, SI Section 7.5). These ef-
fects are strongest in task-implicated brain regions (Section 5.6) and
generate higher temporal precision than the original BOLD timeseries.
By modeling and then partialing-out intrinsic dynamics, MINDy-based
Filtering reduces both trial-to-trial variability within subjects, and vari-
ability between subjects (Section 5.4). However, while the absolute
magnitude of subject-to-subject variability decreased, individual differ-
ences (and group—level activity) in a latent cognitive construct (control-
demand) generalized better between tasks after MINDy-based Filtering
(Section 5.7). MINDy-estimated task effects were also more predictive
of individual differences in behavior (Section 5.8). Together, these re-
sults suggest that MINDy-based Filtering can enhance the detection of
task-evoked brain activity. We discuss further implications of the results
below.

6.1. Relationship with frequency-based filtering

Frequency-based (spectral) filtering has been applied to fMRI signals
in many previous studies (Biswal et al., 1996; Friman et al., 2004). High-
pass filtering is commonly applied to both resting-state and task data to
remove signal drift which is thought to largely reflect changes in non-
neuronal variables. Low-pass filtering is also sometimes applied, primar-
ily for resting-state data. Although these approaches were common in
early fMRI experiments, the changing nature of fMRI acquisitions (e.g.
TR length) and analyses (e.g. functional connectivity) has led to renewed
debate over these techniques (Davey et al., 2013), as well as the devel-
opment of more sophisticated methodologies (e.g. Sarkka et al., 2012;
Satterthwaite et al., 2013). In the current work, we did not perform spec-
tral filtering (instead using AFNI’s “polort” function for polynomial ba-
sis de-drifting). Likewise, MINDy-based Filtering is not a direct replace-
ment for spectral filtering, which can be applied before our technique,
afterwards, or not at all. However, as previously mentioned, when the
connectivity parameters of the model are zero, the proposed technique
reduces to a form of spectral filtering based purely upon autoregressive
models. Empirically we have demonstrated that MINDy-based Filtering
outperforms filters based upon autoregressive models (SI Section 7.7, SI
Fig. 10), so effects cannot be attributed solely to the removal of partic-
ular frequency components within each region.

Notably, MINDy-based Filtering improves detection in both sus-
tained and event-related analyses over both conventional methods and
autoregressive filters. By contrast, filters based upon autoregressive
models are expected to underperform in the identification of (low-
frequency) sustained effects, as we confirmed in supplemental analy-
ses (SI Section 7.5). At a statistical-level, dynamical systems models
(including MINDy) capture the multivariate partial autocovariance be-
tween successive time-points (i.e. how x,,; is related to x,). As a re-
sult, removing these predictions from the data inherently yields a time-
series with lower autocovariance. The improved detection of sustained
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effects is therefore significant as it indicates that MINDy-based Filtering
reveals systematic differences between the resting-state and task dynam-
ics rather than simply acting as a high-pass filter. These effects are also
more pronounced in task-implicated parcels (Section 5.6, Fig. 6) indi-
cating that these features are also context-related.

6.2. Relationship with other approaches

The current approach is conceptually related to several current ini-
tiatives for linking resting-state and task-state brain activity. Our ap-
proach uses resting-state brain dynamics to extrapolate patterns of in-
trinsic dynamics that also factor into brain activity during task states.
Frameworks such as Activity Flow (Cole et al., 2016) have demon-
strated similarity between the spatial aspects of evoked responses and
resting-state network structure. Likewise, functional connectivity pat-
terns have been found to be roughly similar between resting-state and
task (Cole et al., 2014). However, whereas these frameworks are largely
employed to discover similarities between spontaneous and evoked ac-
tivity, we analyze the manner in which the task-state subtly deviates
from resting-state activity over short time-scales (how activity changes
over short time-steps or TRs).

Other approaches have also investigated the difference between
brain dynamics in task-state and resting-state. Previous work (Fox et al.,
2006; He, 2013) has demonstrated that intrinsic dynamics shape task-
evoked activity on a trial-by-trial basis and modeling studies have re-
produced the statistical differences between task and resting-state ac-
tivity (Ponce-Alvarez et al., 2015). Our approach furthers these ef-
forts by leveraging these underlying concepts into an empirical mod-
eling/analysis framework.

Dynamic Causal Modeling (DCM, Friston et al., 2003) frameworks
have also used empirical dynamical systems models to improve esti-
mates of task effects. As previously mentioned (Section 1.2), DCM tech-
niques allow task effects to manifest changes in the exogeneous drive to
brain regions and (for small-scale DCMs) the effective coupling between
brain regions. By contrast, the current MINDy-based Filtering technique
only models a single factor: changes in the input to each brain region,
which collapses both of these mechanisms into a single term, as is also
common in larger-scale DCM models (e.g. Frissle et al., 2017). Our ap-
proach differs from all DCMs, however, in that we produce a timeseries
of latent state estimates (task-related “input” to each region) which does
not require any preconceived model of task effects (i.e., that they fol-
low a certain temporal pattern). In the current work, we used statisti-
cal GLMs to analyze the MINDy-filtered data with Finite Impulse Re-
sponse models fit for each trial type, with and additional components
to model task blocks (mixed block/event-related designs). However, the
end-product of our technique (a timeseries) could, in principle, be ana-
lyzed with a wide variety of methods, including parcel-level multivariate
techniques (e.g., multivariate pattern analysis; MVPA).

6.3. Limitations

The proposed work rests upon three related claims: (1) intrinsic dy-
namics are roughly conserved between task periods and rest, (2) that by
subtracting intrinsic dynamics we identify changes in “input” to each
brain area and (3) that the signal generated by this calculation is a better
marker of task effects (ostensibly task-related cognition). The first two
claims are interdependent. We have mathematically defined changes in
“input” as the signal components which are not explained by intrinsic
dynamics (the residual after subtracting the modeled intrinsic compo-
nent). The accuracy of estimated changes in “input” thus hinges upon
whether the modeled intrinsic dynamics meaningfully generalize. We at-
tempted to address this question empirically (see Section 5.3), and the
results suggest that this assumption does hold. Specifically, we found
that MINDy models estimate variation in the timeseries better during
rest-blocks than task-blocks, which makes sense as the short rest blocks
during task scans are more akin to resting-state scans. Moreover, even
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within task blocks, the accuracy of predicted activation is well above
chance, and the timepoints that are not well-explained by MINDy mod-
els (derived from resting-state) are precisely those during peak task ef-
fects (probe periods during each trial). Conversely, after MINDy-based
Filtering these periods were well explained by task-based GLMs (with
more variance explained than if MINDy-based Filtering were not ap-
plied) which indicates that the deviation from models is well explained
by systematic, additive “input” to the model, as opposed to a break-
down in model-assumptions, which would increase trial-to-trial vari-
ability. We also note that the generalizability assumption is “soft” in
the sense that small changes in effective connectivity do not violate our
assumptions. Since each connection describes the strength of input to
the “post-synaptic” region, changes in connection strength are absorbed
in the input estimate (summing over “pre-synaptic” sources). However,
our assumption that MINDy-based Filtering removes mostly “nuisance
variance” could be violated by some forms of large, systematic changes
in effective connectivity. Fortunately, this assumption is easy to check
(e.g., see Section 5.3) and we have not found evidence of its violation.

6.3.1. Methodological considerations

The bulk of our results concern the last claim (improved detection
power) and the demonstration that observed statistical improvements
are related to task-specific neural processes. We performed these tests
using several controlled comparisons and lines of inquiry. However, our
efforts in this domain are limited by using a specific subset of cognitive
tasks: those used to index cognitive control. As the set of potential cogni-
tive constructs remains vast, further testing in other cognitive domains
may be useful.

Another limitation concerns how MINDy models are parameterized.
Since we parameterize models based upon resting-state data, we re-
quire the collection of both resting-state and task data for each subject,
which increases data requirements. Moreover, this dependency could
prove problematic for low-quality resting-state data, as mis-specified
resting-state models could corrupt task estimates. We found that indi-
vidual differences in goodness-of-fit were consistent across tasks (see SI
Section 7.2), so this possibility cannot be ruled out. However, previous
analyses of MINDy modeling indicated that the goodness-of-fit is not
related to individual differences in motion (Singh et al., 2020b) and,
similarly, MINDy-based Filtering was not impacted by individual differ-
ences in motion (SI Section 7.8). The results also do not support model
overfitting, as goodness-of-fit did not decrease when applied to inter-
block task periods (“rest” blocks) relative to training (resting-state) data
(Fig. 3A). In supplementary analyses, we also observed that using the
group-average MINDy-Filter improved results relative to conventional
analyses (but less than individualized models; SI Section 7.3), so using a
common MINDy Filter may ammeliorate short/low-quality resting-state
data. Further study may therefore be beneficial in determining which
factors (neural or nuisance) influence individual differences in goodness
of fit, as these factors could influence estimated individual differences
in task variables.

6.3.2. Mechanistic considerations

Future study is also necessary to disambiguate which biological
mechanisms contribute to the calculated “input” signal. For decades,
computational neuroscience models have largely formalized task con-
text as an exogeneous forcing (“input” or “bias”) term in neural networks
and connectionist models (e.g. Logan and Cowan, 1984; Rogers and Mc-
Clelland, 2014; Rougier et al., 2005; Usher and McClelland, 2001; Ver-
bruggen and Logan, 2009). This formulation is appealing for its simplic-
ity; however, external contexts serve only as “inputs” during sensory
transduction, since brain activity is known to modulate even sensory
neurons (e.g. Fields and Anderson, 1978; London et al., 2013). Even
when these effects are neglected, many modeling studies assume that
brain regions receive task “inputs”, even if these regions are not directly
enervated by sensory afferents (e.g. Rougier et al., 2005). As a result,
these “inputs” should not be interpreted as literal inputs to the brain (i.e.
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signals from sensory nerves). Rather, these “inputs” include the initial
propagation of such signals over the fMRI sampling rate (1 TR), so our
approach is limited by the temporal resolution of fMRI BOLD.

The nature of these “inputs” is also somewhat underspecified. In the
current approach, we use MINDy to model the propagation of brain sig-
nals during resting-state. The model predicts task-fMRI activation based
upon the effective connectivity parameters estimated from resting-state.
However, these parameters are limited to describing the relationship of
bulk activity between brain regions. Many brain regions contain diffuse
sets of neurons with heterogeneous axonal connectivity profiles. Several
lines of evidence suggest that task-contexts can modulate the effective
connectivity between brain regions via selective recruitment of neurons
in synchronous ensembles (Akam and Kullmann, 2014; Buschman et al.,
2012; Smith et al., 2019). Our approach is therefore limited, in that it
does not explicate how changes in “input” relate to changes in the effec-
tive coupling between brain regions. Future studies may improve upon
the current approach by further modeling how task events modulate
effective connectivity between brain regions. Such studies could either
directly parameterize connectivity x task interactions (as in DCM), or ex-
tend the filtering approach to estimate time-varying (or state-varying)
connectivity.

6.4. Task dynamics could potentially influence statistical improvements

The current approach serves to estimate latent changes in input to
each brain area. In the present study we found that MINDy-based Filter-
ing consistently improved statistical detection power across tasks. How-
ever, there may be contexts in which brain activity (x(7)) is a more con-
sistent marker of task context than input (I(r)). Such cases occur when
different input patterns (i.e., inter-trial variability in input) lead to sim-
ilar outcomes in terms of activity. In these cases, MINDy-based Filtering
might actually decrease detection power, since the “input” on each trial
is less consistent than the temporally-delayed consequences of the input.
Future studies might identify such cases using a wider variety of tasks.

One area in which our approach could also be limited is in detecting
slow neural events in which task-related activity evolves over multiple
TRs. Since our approach acts as a pre-processing filter (i.e., doesn’t use
task information) it is possible that it could filter out the propagation
of very slow task-related activity in addition to task-unrelated activity.
However, this cancellation is only expected when task-related activity
propagates in an identical manner (has the same dynamics) as sponta-
neous brain activity. In practice, we have found that MINDy-based Fil-
tering improves the detection of sustained brain activity and strengthens
brain-behavior linkages (Section 5.8, SI Section 7.5).

6.5. Extension to other modalities

In the current work we have leveraged recently developed models
of human brain activity as reflected in fMRI (MINDy). In this context,
we demonstrated that our filtering procedure significantly improved the
statistical power and behavioral correlates of task-evoked activity. How-
ever, we have refrained from speculating on the source of additional
“input” to each brain area as the fMRI timescales do not allow tracing
the series of events (e.g., order of signaling) that led to this input. We
have recently proposed a new framework to enable high-dimensional
model estimation of M/EEG data (Singh et al., 2021). These modalities
have the potential to detect the sequence of neural events underlying
a given computation. Future work may benefit from using the filtering
technique with M/EEG models (Singh et al., 2021) to further explicate
neural mechanisms underlying cognition.

6.6. Conclusion

In the current work, we proposed a new technique to estimate the
influence of external contexts (task conditions) on brain activity (in
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Fig. 8. Comparison of signal decomposition via background-activity vs. MINDy-based Filtering. (A) Toy model of a two node network with separate inputs to each
node. (B) Simulated timeseries. MINDy-based filtering decomposes the timeseries into the filtered “input” (C) and the model-predicted activity based upon intrinsic
dynamics (D). By contrast, task-regression decomposes activity into a main-effect of task estimated by GLM (E) and “background activity” (F).

our case fMRI). This technique forms a mathematical filter and there-
fore functions as a preprocessing step, rather than as a direct tool for
hypothesis testing. This property is advantageous as it allows this ap-
proach to be used in conjunction with a variety of existing methods.
We have demonstrated that using MINDy-based Filtering improves sta-
tistical power (Fig. 5C), increases sensitivity to task-implicated regions
(Section 5.6; Fig. 6), and better identifies the neural signatures of a la-
tent cognitive construct (cognitive conflict) (Fig. 7A). Moreover, MINDy-
based Filtering enhances the strength of brain-behavior reslationships
that differentiate subjects (Fig. 7B and C). These improvements are not
sensitive to motion within a reasonable range (SI Section 7.8). Our tech-
nique can be easily inserted into most fMRI processing pipelines. We
have made code available via the primary author’s GitHub to facilitate
this process.

7. Supplemental information
7.1. Relationship with background-activity

Our framework is conceptually related to that of background activ-
ity (Cole et al., 2021; 2019; Fair et al., 2007; Norman-Haignere et al.,
2011) in which brain activity during task is modeled as the superposition
of a canonical task-evoked response and trial-to-trial variability (“back-
ground activity”). In that approach, background activity is isolated by
subtracting the task-related component as estimated during statistical
GLM analyses, then used to estimate Functional Connectivity during
task (Cole et al., 2021; 2019; Fair et al., 2007; Norman-Haignere et al.,
2011). However, despite both approaches dividing brain activity into
two components, our approach fundamentally differs in terms of what
signals are considered task-related vs. intrinsic. Nondynamic approaches
divide the observed signal into systematic task effects and zero-mean
“noise” (in the GLM sense) whereas dynamic frameworks consider both
extrinsic and intrinsic contributions to how the brain evolves moment-
to-moment. Passive downstream propagation of brain activity is pre-
dicted by intrinsic dynamics so these indirect effects are attributable to
intrinsic factors despite being systematic (nonzero mean). As a result,
these features remain in conventional GLMs but are removed during
MINDy-based Filtering. We illustrate this point in a toy-model simula-
tion featuring two linear nodes with a single directed connection and
time-varying input to each node (Fig. 8A and B). As the simulation in-
dicates, MINDy-based Filtering extracts the timeseries of input to the
system (Fig. 8C) whereas downstream effects (i.e., the activation of n2
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due to nl) are predicted based upon intrinsic dynamics (following the
initial input; Fig. 8D). By contrast, conventional GLM analyses do not
separate direct and indirect processes and ascribe both features to the
task-effect (Fig. 8F and G). For this reason, the background activity and
model predictions are not equivalent. Of course, unlike this toy simula-
tion, neural processes occur over multiple timescales, many below fMRI
resolution. As such, the estimated “input” actually reflects early process-
ing and later active processing (as opposed to direct input from sensory
nerves) and model-predictions reflect passive propagation of these sig-
nals over longer timescales. In our data, model predictions are more
similar to the original timeseries than to the estimated “background ac-
tivity”. Thus, although our approach has some conceptual relationships
with the task-regression approaches to estimating background activity,
these approaches are not equivalent and the intrinsic dynamics are not
synonymous with background activity.

7.2. Sensitivity and influences of MINDy goodness-of-fit

We found that model prediction accuracy was consistently lower
for some subjects across all scan-types, including the resting-state data
to which the model was trained. This observation could reflect either
model mis-estimation at rest or a general inability to predict that sub-
ject’s data even with a properly optimized MINDy model (due to poor
signal quality or deviations from the MINDy framework). To distinguish
between these possibilities, we compared cross-subject prediction accu-
racy: the degree to which models trained to one subject’s resting-state
predict another subject’s brain activity (rest or task). While cross-subject
predictions were less accurate than within-subject (as expected), we
found that the variation due to training-subject was far less than that
due to testing-subject. Moreover, many subjects with poor model fits
predicted other subject’s data better than their own. These results indi-
cate that differences in model accuracy are primarily due to properties
of the poor-fitting subject’s data rather than the model-fitting procedure
per se.

We also tested whether our filtering approach is sensitive to model
goodness-of-fit. To test this influence, we divided subjects into groups
based upon median goodness-of-fit (either whole-brain or DMCC34
parcels) as measured during rest and during task (separately for each
task). Analyses compared the mean T-value across parcels-of-interest
for the two groups with pairwise parcels-of-interest defined as previ-
ously (at least one group passes p < 0.001 threshold). Null-distributions
(10,000) were generated by randomly assigning subjects to two equal-
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Table 1

Attributes of the DMCC34 parcels. Indices are for the Schaefer 400-region, 7-network parcella-

tion Schaefer et al. (2017). Coordinates (X,Y,Z) refer to MNI centroids.
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Parcel number  Hemisphere Network ROI X Y Z

22 Left Visual 22 -19 —65 7

77 Left Dorsal Attention Post 9 -33 —46 41
78 Left Dorsal Attention Post_10 -29 -58 50
86 Left Dorsal Attention FEF_1 —-40 -3 51
87 Left Dorsal Attention FEF_2 -25 -1 55
91 Left Dorsal Attention PrCv_2 -50 3 38
93 Left Salience/Ventral Attention ParOper_2 -58 —44 27
99 Left Salience/Ventral Attention ~ FrOperIns_3 -33 25 -1
101 Left Salience/Ventral Attention FrOperIns_5 -33 19 8

103 Left Salience/Ventral Attention ~ FrOperlns_7 -43 12 2

105 Left Salience/Ventral Attention FrOperIns 9 -52 9 13
107 Left Salience/Ventral Attention Med_1 -6 22 31
110 Left Salience/Ventral Attention Med_4 -5 9 48
127 Left Control Par_1 -29 -74 42
130 Left Control Par 4 -35 —62 48
139 Left Control PFCL 5 —42 38 22
140 Left Control PFCL6 —-45 20 27
144 Left Control pCun_1 -9 -77 45
148 Left Control PFCmp_1 -4 28 47
172 Left Default PFC_7 -48 28 0

185 Left Default PFC_10 -53 19 11
185 Left Default PFC_20 —42 7 48
189 Left Default PFC_24 -6 10 65
219 Right Visual 19 9 -74 9

301 Right Salience/Ventral Attention ~ PrC_1 51 3 41
303 Right Salience/Ventral Attention FrOperIns_2 41 8 -3
306 Right Salience/Ventral Attention ~ FrOperlns 5 37 23 5

314 Right Salience/Ventral Attention Med_4 6 11 58
340 Right Control PFCv_1 34 21 -8
346 Right Control PFCL6 50 30 18
347 Right Control PFCL7 48 18 23
349 Right Control PFCL9 47 29 28
350 Right Control PFCL_10 39 11 34
353 Right Control PFCL13 43 7 51

sized groups without replacement. We did not find a significant differ-
ence in detection power for either task-combined data or any individual
tasks using either resting-state or task goodness-of-fit (2 x 5 design). We
conclude that improvements due to MINDy-based Filtering are not de-
pendent upon goodness-of-fit within a reasonable range.

7.3. Influence of individualized brain modeling

The primary restriction in applying our approach is the use of in-
dividualized brain models built from resting-state data. Acquiring suf-
ficient data (we recommend > 15 min) is time-consuming and may be
particularly burdensome in special populations, such as children. There-
fore, an important question for practical application is whether individ-
ualized brain models, as opposed to a single model, are necessary. This
question is also theoretically interesting as it pertains to how individ-
ual differences emerge: via slow propagation along intrinsic dynamics
or via the fast task “input” (dynamics below the fMRI TR). We address
these questions in two sets of analyses.

In the first set of analyses, we tested whether using a common
MINDy filter, shared among subjects, is at least as powerful as indi-
vidualized brain models. We defined a common MINDy filter by av-
eraging the predictions of each subject’s MINDy model. We note that
this procedure is not the same as using a common brain model as the
parameters interact nonlinearly and covary. Hence the “average fil-
ter” cannot necessarily be inverted onto a single, representative MINDy
brain model. Detection power using a common filter only slightly var-
ied from using individualized models. For three tasks, the group-level
filter performed significantly worse in detecting task events over the
DMCC34 parcels (all but Cued-TS; max p =0.01) and for two tasks
using the whole-brain (AX-CPT: #(175) = 8.39,p = 1.6E — 14; Stroop:
1(244) = 5.49,p = 1.0E — 7) with differences in Cued-TS and Sternberg
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insignificant. The combined detection power across tasks was significant
for events (whole-brain: #(493) = 9.15, p = 1.6 E — 18; DMCC34: #(135) =
2.6, p = 0.01). However, individualized models only improved sustained
effects over the DMCC34 parcel-set (#(135) = 3.52, p = 0.006) and not for
the whole-brain analysis (#(293) = —1.1, p = 0.28). Interestingly, we also
found little qualitative difference in terms of brain-behavior correlations
(n.s.), suggesting that improvements reported in the main text are not
dependent upon individual differences in resting-state.

We also repeated these analyses using random permutations of rest-
subject and task-subject without replacement to test whether arbitrary
assignments perform as well. Since our primary analyses concern group-
level effects, using a group-average filter decreases noise and adds a
further linkage between subjects. Using random pairings, as opposed to
group-averages, thus provides a fairer comparison for identifying the
influence of individual differences. Significance testing was performed
using permutation tests (50,000 pairings of training/testing subject).
As expected, random pairings performed worse than the group-average
filter. We again found significantly worse detection power in event-
related analyses compared to individualized models (average across
tasks: p < 0.001; Cohen’s D=6.5; 50,000 permutations), but the abso-
lute difference due to subject pairing was small (A7 = 0.22 + .03) and the
benefits over conventional analyses remained. We conclude that while
individualized models do benefit power in detecting events, this effect
is small relative the overall benefits of MINDy-based Filtering. We quan-
tified the proportion of improvements due to individualized modeling
as:

IE[T[miiv - TPerm]
[E[TPerm - TOrig]
with T;,,;, indicating the group-T of significant parcels for individual-
ized MINDy and 7,,,,, indicating the corresponding values for random
pairings of training (rest) and testing (task) subjects. Expectations are

(26)
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Fig. 9. MINDy-based Filtering generally improves the detection of sustained effects. Unlike event-related effects, we permitted bidirectional sustained effects, hence
we compared the absolute magnitude of group-T statistics. The definition of significance was likewise 2-tailed. (A) Pair-wise difference in detection power (group
T) for the original pipeline and MINDy-based Filtering. (B) Omnibus (task-collapsed) scatterplot of parcel significance using the original pipeline vs. MINDy-based
Filtering for each task. Yellow dots indicate significant parcels (in terms of absolute sustained effect) which also had increased effect sizes from MINDy-based Filtering,
while blue dots denote significant parcels whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did not exhibit a significant
control-demand effect for either method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

taken over task-relevent parcels (separately defined as in Section 5.2 for
each permutation) and rest-task subject pairings. Results indicate that
individualized models increased benefits in the cognitive-control effect
by 32%, —1.1%, 16.5%, and 13.2% for AX-CPT, Cued-TS, Sternberg, and
Stroop, respectively. The omnibus change (collapsed across tasks) was
a 25.7% increase in benefits due to individualized models (i.e., most of
the benefits for MINDy vs. orig remained). Thus, from a practial perspec-
tive, we believe that MINDy-based Filters constructed without individ-
ualized models can still significantly improve analyses above conven-
tional methods, although further study is needed. Resultantly, the use
of a single MINDy model (e.g., built from all subjects), as opposed to in-
dividualized models, may ease the requirements of quality resting-state
data for each subject.

7.4. Influence of deconvolution parameter

We tested whether choice of the NSR (noise-signal-ratio) hyperpa-
rameter in Wiener deconvolution impacts results. This parameter dic-
tates the degree of temporal filtering during deconvolution by regular-
izing the frequency-domain contributions. Larger NSR values lead to
more filtering. We tested the influence of this parameter by repeating
analyses with NSR chosen as 0.02, 0.005, 0.002 (main-text), or 0.0005.
Thus, we tested NSR values ranging over a factor of 40. Results were
highly similar for different values of the NSR parameters. Collapsing
over subjects, parcels, and probe TRs, the high-low coefficient estimates
correlated, on average, r = 0.99 across tasks and NSR combinations. Co-
efficients for the most dissimilar NSR parameters (0.02 and 0.0005) cor-
related between r = 0.96 to r = 0.97 depending upon task. For compar-
ison, the average correlation over tasks for MINDy vs. the original or
pre-regressed pipelines was r = 0.73 and r = 0.71, respectively. All cases
also preserved the benefits of MINDy-based Filtering. We conclude that,
within a reasonable range, variations in choosing the Wiener NSR pa-
rameter do not strongly influence results.

7.5. Detection of sustained effects

MINDy also improved detection of sustained effects for the Stern-
berg and Stroop tasks relative to the original and pre-regressed pipelines
(max p = 0.0004; SI Fig. 9A). Trend-level improvements were observed
in Cued-TS relative the pre-regressed pipeline (#(51) = 2.1, p = 0.04), but
not relative the original pipeline (#(55) = 1.7, p = 0.10). However, sus-
tained effects detected by MINDy did not differ relative the original or
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pre-regressed pipelines for the AX-CPT (#(103) = —1.1, p = 0.29,#(105) =
—1.5, p = 0.14, respectively). Combined across tasks, MINDy increased
detection of sustained events relative to both the original (#(355) =
5.7,p = 2E — 8; SI Fig. 9B) and pre-regressed pipelines (#(353) = 6.2,p =
1.3E-9) as well as the autoregressive models (#(300)=14.9,p~
0,7(292) = 17.3,p ~ 0 for global and local AR models, respectively; SI
Fig. 10B). Thus, the proposed technique generally increased statisti-
cal power in detecting sustained effects. MINDy-based Filtering also in-
creased the cross-task generalizability of group-average sustained effects
(MINDy ICC =0.74 + 0.04, all other pipelines < 0.65, p < 0.001, 5000
bootstraps). However, it’s important to note that sustained effects are
not “construct-pure” and their distribution was highly skewed (strong
visual component) so we urge caution in interpreting cross-task gener-
alizability of sustained responses (although see Section 5.8 for its rele-
vance to construct-specific behavior).

7.6. Sensitivity of sustained effects

As with event-related analyses, we examined whether improvements
in the detection of sustained effects were limited to task-implicated re-
gions. As before, we considered bidirectional effects for sustained anal-
yses (i.e. parcels with significant increases or decreases in sustained
activity). For this reason, we slightly modified Eq. (25) to model im-
provements in terms of magnitude rather than a linear main effect
(Y again represents MINDy group-T, while X represents comparison
pipeline group-T):

Ytask,Parc = ﬂtaxk + ﬂOXtask,Parc + Sigtaxk,Parc (ﬂl Sign(Xtask,Parc)

+ ﬂZXtask,Parc) + €task,Parc* (27)

Note that the coefficient g, is now multiplied sign(X s pqrc)- Re-
sults for sustained analysis mirrored those of the event-related analy-
sis. As with event-related analyses, the MINDy-based Filtering differ-
entially increased effect sizes over task-implicated parcels when com-
pared to the original, task-regressed, and global/local AR pipelines (8, =
0.54,0.68,1.00, 1.03, respectively; max p=1.6E —8). As with event-
related analysis, there was a slight trend of differential magnification vs.
the original analysis (8, = 0.05,1(1669) = 2.0, p = 0.048) but not vs. pre-
regressed (f, = 0.005,1(1669) = 0.22). We also observed a negative slope
of §,, indicating diminishing returns (the opposite of differential magni-
fication) relative to the global (8, = —0.13,7(1669) = -5.4,p = 7.5E — 8)
and local (8, = —0.077,1(1669) = —2.89, p = 0.0039) AR models. Thus, as
with events, improvements under MINDy largely manifest a main-effect
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Fig. 10. MINDy-based Filtering provides greater detection power using the full model over autoregressive (AR) reduced models which do not model connectivity.
(A) Omnibus (task-collapsed) scatterplot of parcel-wise event-related effects (high-low cognitive control demand contrast). Note that the improvements are smaller
than those relative the original pipeline, indicating that some benefits in event-related detection are due to autoregressive filtering. (B) Scatterplots of parcel-wise
sustained effects when filtering with the local AR model vs. full MINDy model for each task. Note that AR pipelines perform worse than the original pipeline (larger
MINDy improvement) for sustained effects. Yellow dots indicate significant parcels (in terms of the control-demand effect) which also had increased effect sizes from
MINDy-based Filtering, while blue dots denote significant parcels whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did not
exhibit a significant control-demand effect for either method. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 11. Predicting individual differences in behavior using brain activity (averaged over DMCC34). All measures are z-scored within taskxsession. In the baseline
session, individual differences in RT (averaged over task) are correlated with event-related brain activity, but not sustained activity for original and MINDy pipelines
(A,B). By contrast, accuracy is predicted by sustained activity (B) but not by event-related activity (A,B). (C) Individual differences in event-related activity better
predict task RT (averaged over session) after MINDy-based Filtering relative the original and pre-regressed pipelines. (D) Likewise, predictions of baseline-session
accuracy using sustained activity (averaged over task) also increased. Panels C, D differ from the main text Fig. 7B,C by additionally including results for the

pre-regressed pipeline.

of parcel significance (i.e. increased categorical distinction between
task-implicated and non-implicated parcels) as opposed to further dif-
ferentiating among task-implicated parcels.

7.7. Comparison with reduced models

We compared estimation of inputs using MINDy models to analogous
estimates with autoregressive forms which were either subject-specific
(but not parcel-specific) or which were specific to subject and parcel
(see Methods Section 3.10). Since the MINDy model also features an
autoregressive term (the “Decay”), these alternative models serve as re-
duced special cases which don’t include the effects of inter-regional sig-
naling (connectivity). As such, improvements of the full MINDy model
over these alternative (autoregressive) models indicate the contribution
of modeling connectivity, as opposed to simply accounting for purely
local dynamics. Results indicated that group-level detection power for
MINDy-based Filtering was greater than both the homogeneous/global
and heterogeneous/local autoregressive comparison models. MINDy in-
creased detection power over both autoregressive models in terms of
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event-related effects over the DMCC34 parcels (max p = 0.0003), and
for (whole brain) sustained effects (max p = 2E — 6; Fig. 9A). Whole
brain analyses also indicated improved detection power for events in all
tasks relative the global model (max p = 0.02) while all tasks other than
Stroop (Stroop #(253) = 1.22, p = 0.22; other tasks: max p =7.2E —6)
were improved relative the local model (SI Fig. 10A and B). There
was a main effect of regional significance during multilevel modeling
(i.e., improvement selectivity; see Section 5.6) for MINDy-based Filter-
ing relative autoregressive comparison models (local: #(1669) = 3.87,p =
1.1E — 4, global: #(1669) = 4.15,p = 3.5E — 5). However, MINDy-based
Filtering did not significantly magnify effect sizes over AR pipelines
(p=0.16,p = 0.21 for global and local, respectively). Thus, the model-
ing of connectivity in MINDy primarily serves to further differentiate
between task-implicated and non-implicated parcels as opposed to exac-
erbating differences among task-implicated parcels. MINDy-based filter-
ing also improved the cross-task generalizability of cognitive-control ef-
fects relative autoregressive controls at both the group-level (local ICC =
0.50 + 0.03, global ICC = 0.52 + 0.03 vs. MINDy-based ICC = 0.60 + 0.03,
p < 0.001, 5000 bootstraps).
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7.8. Sensitivity to motion

Lastly, we compared the sensitivity of approaches to motion artifact.
For each task and scanning session we computed three motion statistics:
the number of frames censored due to passing a critical value of frame-
wise displacement, the median framewise displacement and the median
DVARS statistic (Power et al., 2012) for each task run and averaged over
runs. We then used resampling to test the relationship between each
motion variable and the group effect-size of the high-vs.-low conflict
contrast and sustained effect for each task. In brief, we randomly drew
5000 samples of 30 subjects each without replacement. We computed
group-level statistics for motion and the cognitive control contrast and
then tested whether the average motion or variability of motion (inter-
subject) of a sample predicted the sample’s group-effect (one-sample
t-scores averaged over the 34 parcels). We also used the same technique
for predicting the difference between methods (i.e. do improvements
under our approach require low motion?). Results did not indicate a
significant effect of motion for the current dataset and subject pool. The
association (correlation) between motion and the difference between
methods (MINDy versus original averaged over tasks) was insignificant
for event-related analyses and did not display a consistent sign (propor-
tion of frames censored: r = 0.033, FD: r = —0.078, DVARS: r = —0.066).
Likewise, we did not observe differential sensitivity to motion in the
sustained effects (frames censored: r = 0.008, FD: r = —0.011, DVARS:
r=0.01). Thus, the degree to which MINDy-based Filtering improves
upon conventional methods is not influenced by motion within reason-
able bounds.

Acknowledgments

MS was funded by NSF-DGE-1143954 from the US National Science
Foundation and T32 DA007261-29 from the National Institute of Drug
Abuse. TB acknowledges R37 MH066078 from the US National Insti-
tute of Health. SC holds a Career Award at the Scientific Interface from
the Burroughs-Wellcome Fund. Portions of this work were supported by
AFOSR 15RT0189, NSF ECCS 1509342 and NSF CMMI 1537015, NSF
NCS-FO 1835209 and NIMH Administrative Supplement MH066078-
1581 from the US Air Force Office of Scientific Research, US National
Science Foundation, and US National Institute of Mental Health, respec-
tively.

References

Akam, T., Kullmann, D., 2014. Oscillatory multiplexing of population codes for selec-
tive communication in the mammalian brain. Nat. Rev. Neurosci. 15, 111-122.
doi:10.1038/nrn3668.

Ashley, E.A., 2015. The precision medicine initiative: a new national effort. JAMA 313
(21), 2119-2120. doi:10.1001/jama.2015.3595.

Biswal, B., Deyoe, E.A., Hyde, J.S., 1996. Reduction of physiological fluctua-
tions in fMRI using digital filters. Magn. Reson. Med. 35 (1), 107-113.
doi:10.1002/mrm.1910350114.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the
motor cortex of resting human brain using echoplanar MRI. Magn. Reson. Med. 34
(4), 537-541. doi:10.1002/mrm.1910340409.

Braver, T.S., Kizhner, A., Tang, R., Freund, M.C., Etzel, J.A., 2021. The dual mecha-
nisms of cognitive control (DMCC) project. J. Cogn. Neurosci. 33 (9), 1990-2015.
doi:10.1162/jocn_a_01768.

Bugg, J., Braver, T., 2016. Proactive control of irrelevant task rules during cued task
switching. Psychol. Res. 80, 860-876. doi:10.1007/500426-015-0686-5.

Buschman, T.J., Denovellis, E.L., Diogo, C., Bullock, D., Miller, E.K., 2012. Synchronous
oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76 (4), 838-
846. doi:10.1016/j.neuron.2012.09.029.

Cohen, J., Barch, D., Carter, C., Servan-Schreiber, D., 1999. Schizophrenic deficits in the
processing of context: converging evidence from three theoretically motivated cogni-
tive tasks. J. Abnorm. Psychol. 108, 120-133.

Cole, M., Ito, T., Cocuzza, C., Sanchez-Romero, R., 2021. The functional relevance of task-
state functional connectivity. J. Neurosci. 41 (21), 2684-2702. doi:10.1523/JNEU-
ROSCI.1713-20.2021.

Cole, M., Ito, T., Schultz, D., Mill, R., Chen, R., Cocuzza, C., 2019. Task activations produce
spurious but systematic inflation of task functional connectivity estimates. Neurolm-
age 189, 1-18. doi:10.1016/j.neuroimage.2018.12.054.

Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E., 2014. Intrinsic and
task-evoked network architectures of the human brain. Neuron 83 (1), 238-251.
doi:10.1016/j.neuron.2014.05.014.

19

Neurolmage 247 (2022) 118836

Cole, M.W., Ito, T., Bassett, D.S., Schultz, D.H., 2016. Activity flow over resting-state
networks shapes cognitive task activations. Nat. Neurosci. 19 (12), 1718-1726.
doi:10.1038/nn.4406.

Cox, R.W., 1996. AFNL: software for analysis and visualization of functional magnetic
resonance neuroimages. Comput. Biomed. Res. 29, 162-173.

Davey, C.E., Grayden, D.B., Egan, G.F., Johnston, L.A.,, 2013. Filtering in-
duces correlation in fMRI resting state data. Neurolmage 64, 728-740.
doi:10.1016/j.neuroimage.2012.08.022.

Demirta, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F., Essen, D.C.V.,
Sotiropoulos, S.N., Anticevic, A., Murray, J.D., 2019. Hierarchical heterogeneity
across human cortex shapes large-scale neural dynamics. Neuron 101 (6), 1181-1194.
doi:10.1016/j.neuron.2019.01.017.

Esteban, O., Ciric, R., Finc, K., et al, 2020. Analysis of task-based func-
tional MRI data preprocessed with fMRIPrep. Nat. Protoc. 15, 2186-2202.
doi:10.1038/541596-020-0327-3.

Esteban, O., Markiewicz, C., Blair, R., et al., 2019. Fmriprep: a robust pre-
processing pipeline for functional MRI. Nat. Methods 16, 111-116.
doi:10.1038/541592-018-0235-4.

Etzel, J., Brough, R., Freund, M., Kizhner, A., Lin, Y., Singh, M., Tang, R., Tay,
A., Wang, A., Braver, T., 2021. The dual mechanisms of cognitive con-
trol dataset: atheoretically-guided within-subject task fMRI battery. bioRxiv
https://www.biorxiv.org/content/early/2021,/05/30/2021.05.28.446178.full.pdf.
10.1101/2021.05.28.446178

Fair, D., Schlaggar, B., Cohen, A., Miezin, F., Dosenbach, N., Wenger, K., Fox, M., Sny-
der, A., Raichle, M., Petersen, S., 2007. A method for using blocked and event-related
fMRIdata to study resting state functional connectivity. NeuroImage 35 (3), 396-405.
doi:10.1016/j.neuroimage.2006.11.051.

Fields, H., Anderson, S., 1978. Evidence that raphe-spinal neurons mediate opi-

ate and midbrain stimulation-produced analgesias. Pain 5 (4), 333-349.
doi:10.1016,/0304-3959(78)90002-7.
Fischl, B., 2012. Freesurfer. Neurolmage 62 ), 774-781.

doi:10.1016/j.neuroimage.2012.01.021.

Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E., 2007. Intrinsic fluctuations within
cortical systems account for intertrial variability in human behavior. Neuron 56 (1),
171-184. doi:10.1016/j.neuron.2007.08.023.

Fox, M.D., Snyder, A.Z., Zacks, J.M., Raichle, M.E., 2006. Coherent spontaneous activity
accounts for trial-to-trial variability in human evoked brain responses. Nat. Neurosci.
9, 23-25. doi:10.1038/nn1616.

Fréssle, S., Lomakina, E.I., Razi, A., Friston, K.J., Buhmann, J.M., Stephan, K.E., 2017.
Regression DCM for fMRI. Neuroimage 155, 406-421.

Friman, O., Borga, M., Lundberg, P., Knutsson, H., 2004. Detection and detrending in fMRI
data analysis. Neurolmage 22 (2), 645-655. doi:10.1016/j.neuroimage.2004.01.033.

Friston, K., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neurolmage 19 (4),
1273-1302. doi:10.1016/51053-8119(03)00202-7.

Friston, K., Preller, K.H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., Zeid-
man, P., 2019. Dynamic causal modelling revisited. Neurolmage 199, 730-744.
doi:10.1016/j.neuroimage.2017.02.045.

Glover, G.H., 1999. Deconvolution of impulse response in event-related bold fMRI1. Neu-
rolmage 9 (4), 416-429. doi:10.1006/nimg.1998.0419.

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J.,
Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coal-
son, R.S., Nguyen, A.L, Mc Dermott, K.B., Shimony, J.S., Snyder, A.Z., Schlag-
gar, B.L., Petersen, S.E., Nelson, S.M., Dosenbach, N.U., 2017. Precision func-
tional mapping of individual human brains. Neuron 95 (4), 791-807.e7.
doi:10.1016/j.neuron.2017.07.011.

Goutte, C., Nielsen, F.A., Hansen, K.H., 2000. Modeling the hemodynamic response
in fMRI using smooth fir filters. IEEE Trans. Med. Imaging 19 (12), 1188-1201.
doi:10.1109/42.897811.

He, B.J., 2013. Spontaneous and task-evoked brain activity negatively interact. J. Neu-
rosci. 33 (11), 4672-4682. doi:10.1523/JNEUROSCI.2922-12.2013.

He, B.J., Zempel, J.M., 2013. Average is optimal: an inverted-U relationship between trial-
to-trial brain activity and behavioral performance. PLoS Comput. Biol. 9 (11), 1-14.
doi:10.1371/journal.pcbi.1003348.

Logan, G.D., Cowan, W.B., 1984. On the ability to inhibit thought and action: atheory of
an act of control. Psychol. Rev. 91 (3), 295-327. doi:10.1037/0033-295X.91.3.295.

London, A., Benhar, I, Schwartz, M., 2013. The retina as a window to the brain from
eye research to CNS disorders. Nat. Rev. Neurol. 9, 44-53. doi:10.1038/nrneu-
rol.2012.227.

Mennes, M., Kelly, C., Martino, A.D., Biswal, B.B., Castellanos, F.X., Milham, M.P.,
Zuo, X.-N., 2010. Inter-individual differences in resting-state functional con-
nectivity predict task-induced bold activity. Neurolmage 50 (4), 1690-1701.
doi:10.1016/j.neuroimage.2010.01.002.

Norman-Haignere, S., McCarthy, G., Chun, M., Turk-Browne, N., 2011. Category-
selective background connectivity in ventral visual cortex. Cereb. Cortex 22 (2).
doi:10.1093/cercor/bhr118.

Ollinger, J., Shulman, G., Corbetta, M., 2001. Separating processes within a trial
in event-related functional MRI: I. The method. Neurolmage 13 (1), 210-217.
doi:10.1006/nimg.2000.0710.

Petersen, S.E., Dubis, J.W., 2012. The mixed block/event-related design. Neuroimage 62
(2), 1177-1184. doi:10.1016/j.neuroimage.2011.09.084.

Ponce-Alvarez, A., He, B.J., Hagmann, P., Deco, G., 2015. Task-driven activity reduces
the cortical activity space of the brain: experiment and whole-brain modeling. PLoS
Comput. Biol. 11 (8), e1004445. doi:10.1371/journal.pcbi.1004445.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. Neurolmage 59 (3), 2142-2154. doi:10.1016/j.neuroimage.2011.10.018.


https://doi.org/10.13039/100000001
https://doi.org/10.1038/nrn3668
https://doi.org/10.1001/jama.2015.3595
https://doi.org/10.1002/mrm.1910350114
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1162/jocn_a_01768
https://doi.org/10.1007/s00426-015-0686-5
https://doi.org/10.1016/j.neuron.2012.09.029
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0008
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0008
https://doi.org/10.1523/JNEUROSCI.1713-20.2021
https://doi.org/10.1016/j.neuroimage.2018.12.054
https://doi.org/10.1016/j.neuron.2014.05.014
https://doi.org/10.1038/nn.4406
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0013
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0013
https://doi.org/10.1016/j.neuroimage.2012.08.022
https://doi.org/10.1016/j.neuron.2019.01.017
https://doi.org/10.1038/s41596-020-0327-3
https://doi.org/10.1038/s41592-018-0235-4
https://www.biorxiv.org/content/early/2021/05/30/2021.05.28.446178.full.pdf
https://doi.org/10.1016/j.neuroimage.2006.11.051
https://doi.org/10.1016/0304-3959(78)90002-7
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuron.2007.08.023
https://doi.org/10.1038/nn1616
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0024
https://doi.org/10.1016/j.neuroimage.2004.01.033
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1006/nimg.1998.0419
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.1109/42.897811
https://doi.org/10.1523/JNEUROSCI.2922-12.2013
https://doi.org/10.1371/journal.pcbi.1003348
https://doi.org/10.1037/0033-295X.91.3.295
https://doi.org/10.1038/nrneurol.2012.227
https://doi.org/10.1016/j.neuroimage.2010.01.002
https://doi.org/10.1093/cercor/bhr118
https://doi.org/10.1006/nimg.2000.0710
https://doi.org/10.1016/j.neuroimage.2011.09.084
https://doi.org/10.1371/journal.pcbi.1004445
https://doi.org/10.1016/j.neuroimage.2011.10.018

M.F. Singh, A. Wang, M. Cole et al.

Psaty, B.M., Dekkers, O.M., Cooper, R.S., 2018. Comparison of 2 treatment mod-
els: precision medicine and preventive medicine. JAMA 320 (8), 751-752.
doi:10.1001/jama.2018.8377.

Razi, A., Seghier, M.L., Zhou, Y., McColgan, P., 2017. Large-scale DCMs for resting-state
fMRI. Netw. Neurosci. 1 (3). doi:10.1162/NETN_a_00015.

Rogers, T.T., McClelland, J.L., 2014. Parallel distributed processing at 25: further explo-
rations in the microstructure of cognition. Cogn. Sci. 38 (6), 1024-1077.

Rougier, N.P., Noelle, D.C., Braver, T.S., Cohen, J.D., Reilly, R.C.O., 2005. Prefrontal cor-
tex and flexible cognitive control: rules without symbols. Proc. Natl. Acad. Sci. 102
(20), 7338-7343. doi:10.1073/pnas.0502455102.

Sarkka, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S., Lin, F.H., 2012.
Dynamic retrospective filtering of physiological noise in bold fMRI: drifter. NeuroIm-
age 60 (2), 1517-1527. doi:10.1016/j.neuroimage.2012.01.067.

Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E.,
Eickhoff, S.B., Hakonarson, H., Gur, R.C., Gur, R.E., Wolf, D.H., 2013. An improved
framework for confound regression and filtering for control of motion artifact in the
preprocessing of resting-state functional connectivity data. Neurolmage 64, 240-256.
doi:10.1016/j.neuroimage.2012.08.052.

Satterthwaite, T.D., Xia, C.H., Bassett, D.S., 2018. Personalized neuroscience: common
and individual-specific features in functional brain networks. Neuron 98 (2), 243-
245. doi:10.1016/j.neuron.2018.04.007.

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., Eick-
hoff, S.B., Yeo, B.T., 2017. Local-global parcellation of the human cerebral cortex
from intrinsic functional connectivity MRI. Cereb. Cortex 1-20. doi:10.1093/cer-
cor/bhx179.

Shrout, P., Fleiss, J., 1979. Intraclass correlations: uses in assessing rater reliability. Psy-
chol. Bull. 86 (2), 420-428.

Singh, M., Wang, A., Braver, T., Ching, S., 2020a. Scalable surrogate deconvolution for
identification of partially-observable systems and brain modeling. J. Neural Eng. 17
(4), 046025. http://iopscience.iop.org/10.1088/1741-2552/aba07d

Singh, M.F., Braver, T.S., Cole, M.W., Ching, S., 2020b. Estimation and validation of indi-
vidualized dynamic brain models with resting state fMRI. Neurolmage 221, 117046.
doi:10.1016/j.neuroimage.2020.117046.

20

Neurolmage 247 (2022) 118836

Singh, M. F., Wang, C., Cole, M. W., Ching, S., 2021. Efficient state and parameter esti-
mation for high-dimensional nonlinear system identification with application to meg
brain network modeling. http://arxiv.org/abs/2104.02827.

Smith, E., Horga, G., Yates, M., et al.,, 2019. Widespread temporal coding of cog-
nitive control in the human prefrontal cortex. Nat. Neurosci. 22, 1883-1891.
doi:10.1038/541593-019-0494-0.

Stephan, K.E., Kasper, L., Harrison, L.M., Daunizeau, J., Breakspear, M., Friston, K.J., den
Ouden, H.E., 2008. Nonlinear dynamic causal models for fMRI. Neurolmage 42 (2),
649-662. doi:10.1016/j.neuroimage.2008.04.262.

Sternberg, S., 1966. High-speed scanning in human memory. Science 153, 652-654.
doi:10.1126/science.153.3736.652.

Stroop, J., 1935. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18,
643-662.

Tavor, 1., Jones, O.P., Mars, R.B., Smith, S.M., Behrens, T.E., Jbabdi, S., 2016. Task-free
MRI predicts individual differences in brain activity during task performance. Science
352 (6282), 216-220. doi:10.1126/science/aad8127.

Usher, M., McClelland, J.L., 2001. The time course of perceptual choice: the
leaky, competing accumulator model. Psychol. Rev. 108 (3), 550-592.
doi:10.1037/0033-295X.108.3.550.

Verbruggen, F., Logan, G.D., 2009. Models of response inhibition in the stop-
signal and stop-change paradigms. Neurosci. Biobehav Rev. 33 (5), 647-661.
doi:10.1016/j.neubiorev.2008.08.014.

Visscher, K.M., Miezin, F.M., Kelly, J.E., Buckner, R.L., Donaldson, D.I., McAvoy, M.P.,
Bhalodia, V.M., Petersen, S.E., 2003. Mixed blocked/event-related designs sepa-
rate transient and sustained activity in fMRI. Neuroimage 19 (4), 1694-1708.
doi:10.1016/5s1053-8119(03)00178-2.

Wang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., van den Heuvel, M.P.,
Yeo, B.T., 2019. Inversion of a large-scale circuit model reveals a cortical hierarchy
in the dynamic resting human brain. Sci. Adv. 5 (1). doi:10.1126/sciadv.aat7854.

Weiner, N., 1949. Extrapolation, Interpolation, and Smoothing of Stationary Time Series:
With Engineering Applications. MIT Press, New York City.


https://doi.org/10.1001/jama.2018.8377
https://doi.org/10.1162/NETN_a_00015
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0043
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0043
https://doi.org/10.1073/pnas.0502455102
https://doi.org/10.1016/j.neuroimage.2012.01.067
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuron.2018.04.007
https://doi.org/10.1093/cercor/bhx179
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0048
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0048
http://iopscience.iop.org/10.1088/1741-2552/aba07d
https://doi.org/10.1016/j.neuroimage.2020.117046
http://arxiv.org/abs/2104.02827
https://doi.org/10.1038/s41593-019-0494-0
https://doi.org/10.1016/j.neuroimage.2008.04.262
https://doi.org/10.1126/science.153.3736.652
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0056
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0056
https://doi.org/10.1126/science/aad8127
https://doi.org/10.1037/0033-295X.108.3.550
https://doi.org/10.1016/j.neubiorev.2008.08.014
https://doi.org/10.1016/s1053-8119(03)00178-2
https://doi.org/10.1126/sciadv.aat7854
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0062
http://refhub.elsevier.com/S1053-8119(21)01107-1/sbref0062

	Enhancing task fMRI preprocessing via individualized model-based filtering of intrinsic activity dynamics
	1 Introduction
	1.1 Filtering intrinsic dynamics
	1.2 Previous approaches using DCM
	1.3 Filtering instead of parameterizing

	2 Approach
	2.1 Resting-state MINDy modeling
	2.2 Task model derivation
	2.3 MINDy-based filtering

	3 Methods
	3.1 Subjects
	3.2 Scanning protocol
	3.3 Task descriptions
	3.4 Cognitive control demand
	3.5 Task manipulations
	3.6 Behavioral measures
	3.7 Pre-processing and parcellation
	3.8 Task GLM analyses
	3.9 MINDy modeling
	3.10 Control pipelines

	4 Validation and comparison criteria
	4.1 Benchmarking event-related effects
	4.2 Benchmarking sustained effects
	4.3 Testing selective vs. global improvements
	4.4 Sensitivity to cognitive states
	4.5 Significance testing for construct identification
	4.6 Robustness to motion

	5 Results
	5.1 Structure and presentation of results
	5.2 Identification of task-relevant parcels
	5.3 Resting-state model predictions generalize to task
	5.4 MINDy-based filtering accounts for intra and inter-subject variability
	5.5 Improved group-level detection power
	5.6 MINDy-based filtering selectively enhances task-related neural signals
	5.7 Identifying a latent cognitive construct
	5.8 MINDy-based filtering enhances brain-behavior relationships

	6 Discussion
	6.1 Relationship with frequency-based filtering
	6.2 Relationship with other approaches
	6.3 Limitations
	6.3.1 Methodological considerations
	6.3.2 Mechanistic considerations

	6.4 Task dynamics could potentially influence statistical improvements
	6.5 Extension to other modalities
	6.6 Conclusion

	7 Supplemental information
	7.1 Relationship with background-activity
	7.2 Sensitivity and influences of MINDy goodness-of-fit
	7.3 Influence of individualized brain modeling
	7.4 Influence of deconvolution parameter
	7.5 Detection of sustained effects
	7.6 Sensitivity of sustained effects
	7.7 Comparison with reduced models
	7.8 Sensitivity to motion

	Acknowledgments
	References


