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a b s t r a c t 

Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the prop- 

agation of spontaneous activity through brain networks. In the current work, we describe a method to improve 

the estimation of task-evoked brain activity by first “filtering-out the intrinsic propagation of pre-event activity 

from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; Singh et al. 2020b) 

models built from individualized resting-state data to subtract the propagation of spontaneous activity from the 

task-fMRI signal (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. 

Results demonstrate that this simple operation significantly improves the statistical power and temporal preci- 

sion of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural 

activation profiles and prediction accuracy of individual differences in behavior across tasks measuring the same 

construct (cognitive control). Thus, by subtracting the propagation of previous activity, we obtain better estimates 

of task-related neural effects. 
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. Introduction 

Task-related analyses in fMRI typically involve statistical general lin-

ar models (GLMs) which seek to identify the amplitude and/or mean

imecourse of (BOLD) evoked-responses after removing nuisance covari-

tes. These approaches have proven statistically powerful and charac-

erize much of the current literature regarding task-induced activation

n group-level fMRI analyses. However, over the past two decades, im-

rovements in fMRI data acquisition and the rise of resting-state connec-

omics ( Biswal et al., 1995 ) have given rise to a new literature concern-

ng variability within brain activation across trials, individuals, and/or

ontexts. Understanding such variability is key to precision neuroscience

nitiatives, as these studies have the potential to uncover new neural

echanisms and generate stronger brain-behavior linkages at the level

f individuals ( Ashley, 2015; Psaty et al., 2018; Satterthwaite et al.,

018 ). 

Previous studies in this domain have generated two key findings rele-

ant to the current study: (1) individual differences in intrinsic brain net-

orks predict corresponding differences in BOLD responses ( Cole et al.,

016; Gordon et al., 2017; Mennes et al., 2010; Tavor et al., 2016 ) and

2) the BOLD signal elicited by a stimulus is dependent upon the previ-
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us pattern of brain activity ( He, 2013 ), including spontaneous fluctu-

tions ( Fox et al., 2006 ). We use the term “brain activity ” in the latter

ase to indicate that this history dependence is thought to be neural,

ather than solely reflecting potential nonlinearity in the hemodynamic

oupling. The first set of findings indicate that inter-subject variabil-

ty in brain responses may be due to the “flow ” ( Cole et al., 2016 ) of

voked activity through subject-specific connectomes. The second set of

ndings suggest that evoked responses are history-dependent (i.e. reflect

nderlying dynamics). Thus, the neural activity associated with BOLD is

ncreasingly considered as a nonlinear dynamical system —one in which

he spatiotemporal response to an input depends upon its current state,

nd further, is determined by a set of rules that dictate its temporal

volution ( Ponce-Alvarez et al., 2015 ). These dynamical “rules ” are a

unction of subject-specific connectivity and the specific properties lo-

al to each brain region ( Demirta et al., 2019; Wang et al., 2019 ). The

anifestation of these dynamics (i.e. trial-to-trial variability in BOLD)

re thought to be neural and cognitively-relevant as they predict within-

ubject behavioral variation ( He and Zempel, 2013 ). 

This framework contrasts both with current statistical approaches,

hich treat the neural activity as a noisy autoregressive signal (most

LMs), and with Dynamic Causal Modeling (DCM) approaches, which
 Box 1125, One Brookings Drive, Saint Louis, MO, 63130, USA. 
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Fig. 1. Filtering and control pipelines. (A) MINDy-based Filtering procedure. (1) Latent neural activity is estimated from the BOLD signal. (2) One-step predictions 

for latent neural activity are made with MINDy and (3) convolved into one-step BOLD predictions. (4) Filtered “input ”/residual timeseries are the difference of 

measured and predicted BOLD (we abbreviate ℎ ∗ 𝐼 as 𝐼 ). For this panel, we denote the true BOLD signal as 𝑦 𝑡 +1 ( 𝐵𝑂𝐿𝐷 𝑡 +1 in Eq. (20) ) and 𝑦̂ for the predicted BOLD 

signal ( 𝐵𝑂𝐿𝐷 𝑃𝑟𝑒𝑑 in Eq. (20) ). (B) Analysis pipelines. Modeling pipelines require data to be pre-processed (nuissance regressed) before model-based filtering. The 

preReg pipeline controls for this step by performing identical pre-processing before GLM analyses. Parameters for MINDy and autoregressive models are estimated 

from resting-state data. Autoregressive models (AR) are used to test whether effects are due to local signal-processing features (i.e. MINDy similar to AR) vs. exploit 

brain connectivity (MINDy better than AR). Although we chose AFNI to perform GLM analyses, MINDy-based Filtering is compatible with any analysis software as 

filtered timeseries are analyzed in the conventional manner. 
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reat the brain as a linear system (although see Stephan et al., 2008 ).

n the current work, we propose a new technique for modeling intrinsic

rain dynamics and their contribution to task-evoked activation pat-

erns. This approach leverages MINDy models ( Singh et al., 2020b ) fit

o resting-state data for each subject. These models are akin to an ab-

tracted neural mass model containing hundreds of different regions

parcels) spanning the whole brain. Regions interact nonlinearly via a

igned, directed connectivity matrix and integrate inputs over time (i.e.

orm a nonlinear dynamical system). The BOLD signal is modeled via

egion-specific hemodynamic models, and all parameters (neural and

emodynamic) are directly estimated from each subject’s resting-state

cans (a process which takes 1–3 min). In prior work ( Singh et al., 2020a;

020b ), we have established that MINDy models/parameters are robust,

eliable, and predictive ( Singh et al., 2020b ). In the current work, we use

hese models to estimate intrinsic brain dynamics (i.e. predictions based

pon resting-state MINDy models) and subtract them from the observed

OLD, a process which we term MINDy-based Filtering. This procedure

ore sensitively identifies individual differences, and enhances the tem-

oral precision and statistical power through which task events are iden-

ified. We also obtain stronger brain-behavior linkages and greater sim-

larity across the activation profiles of different tasks that index a com-

on cognitive construct (cognitive control demand). 

.1. Filtering intrinsic dynamics 

The current approach rests upon the ability to model the flow of neu-

al activity between brain areas, as identified via models fit to resting-

tate brain activity. However, rather than seeking to describe the flow

f task-related neural activity (e.g. Cole et al., 2016 ), our approach acts

o censor, or computationally estimate and remove, the flow of task-

nrelated (pre-event) activity. To be clear, we perform this operation

t every time point and use the whole timeseries for analyses. No in-

ormation regarding task timing is used in our filter ( Fig. 1 A). However

e use the notion of “events ” to provide an intuitive motivation for our

pproach (conversely each timepoint could be considered an “event ”).

ikewise, our approach does not require an event-related design (see SI

ection 7.5 for block-related analyses). At each time point, the measured

eural activity is considered a combination of task-evoked effects man-

fest over fast time scales and the propagation of brain activity emerg-
2 
ng at previous time points. By subtracting the modeled propagation of

reviously-triggered (e.g. pre-event) activity, we aim to better isolate

he influence of each event (time-point). 

Our approach is conceptually-similar to a previous study by Fox and

olleagues ( Fox et al., 2007; 2006 ) which suggested that estimated task-

ffects could be improved by subtracting spontaneous activity. They

emonstrated this possibility in a motor task by subtracting the recorded

OLD in contralateral motor cortex from the task-implicated motor

emisphere. However, the Fox et al. approach ( Fox et al., 2007; 2006 )

as not been applied more broadly, since it requires identifying region

airs which are strongly correlated at rest, but only one of which is

ecruited during task. This dissociation is key as it enabled Fox and col-

eagues ( Fox et al., 2006 ) to measure intrinsic brain activity (via the con-

ralateral cortex) separately from task-evoked activity in the other hemi-

phere. However, the current literature overwhelmingly suggests that,

or most brain regions and networks, coactivation during resting-state

MRI predicts coactivation during task (e.g. Cole et al., 2016; Mennes

t al., 2010; Tavor et al., 2016 ). 

By contrast, we propose to filter out the intrinsic component of brain

ctivity using model-based predictions. We predict brain activation at

ach time-point by applying MINDy models derived from resting-state

ctivity ( Singh et al., 2020a; 2020b ) to the previous time-step (i.e. 1-step

orward predictions) and subtract these predictions to better identify

ask-evoked changes. Thus, we better isolate event-related brain changes

y filtering out the propagation of pre-event activity. As mentioned pre-

iously, we use the notion of task “events ” to provide an intuitive under-

tanding of why our approach improves fMRI analyses. Our filter does

ot utilize any prior information regarding task structure (events) and

s compatible with any task design (not just event-related designs; see

ig. 1 B). 

.2. Previous approaches using DCM 

Dynamic Causal Modeling (DCM) also incorporates the temporal

volution of brain activity and thus can consider the propagation of

eural activity through brain networks. Each DCM contains an effective

onnectivity matrix and a set of extrinsic inputs that describe how task

vents impinge upon each node of the network ( Friston et al., 2003 ).

any implementations also contain region-specific hemodynamic mod-
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ls and/or an interaction between task events and effective connectiv-

ty (i.e., the effective connectivity is parameterized by task events). Al-

hough the original DCM models were strongly limited in size, mod-

rn implementations ( Frässle et al., 2017; Razi et al., 2017 ) can con-

ider a much larger number of brain regions (although the computation

ost still remains considerable; Razi et al., 2017; Singh et al., 2020b ).

owever, the DCM methodology also presents several constraints which

imit its application. Estimating a DCM model requires pre-specifying

he time-series of task effects. This assumption precludes analyses which

xplore the temporal dynamics of task effects such as Finite Impulse

esponse (FIR) modeling or nuanced task GLMs, such as those featur-

ng nuisance regressors (e.g. motion). In addition, all DCM implemen-

ations that support whole-brain models (i.e., more than a few regions;

azi et al., 2017 ) are dependent upon the assumption of stationary lin-

ar dynamics ( Singh et al., 2020b ). 

.3. Filtering instead of parameterizing 

In the current work, we aim to strike a balance between the mech-

nistic inferences made by DCM and the flexibility of standard anal-

sis techniques. To do so, we generate dynamical systems models of

he brain and neurovasculature (as is done in DCM). However, our ap-

roach differs substantially from DCM in how we build and utilize these

odels. Instead of fitting models of the brain and tasks, we propose to

t dynamic models to independent resting-state data for each subject.

e then use these models to generate a mathematical filter for each

ubject that removes, or “partials out ” the effects of intrinsic dynamics

rom BOLD timeseries. The approach uses no information regarding task

vents and thus functions as a preprocessing step, as opposed to explic-

tly modeling task events. This feature is advantageous, as the proposed

echniques can be inserted into any data preprocessing pipeline with

inimal effort, provided that a sufficient amount of resting state data

e.g. > 15 min Singh et al., 2020b ) has been collected to build MINDy

odels. 

. Approach 

In our approach we predict future BOLD measurements, while mod-

ling biological activity at the neural (i.e., deconvolved) level. Gen-

rative models are parameterized according to resting-state data. The

INDy-Filtered data is defined by the difference between measured and

odel-predicted BOLD. Our procedure thus contains two stages: (1) pa-

ameterizing resting-state MINDy models; and (2) using these models to

erform MINDy-based Filtering. We begin by reviewing the resting-state

INDy model. 

.1. Resting ‐state MINDy modeling 

The MINDy model ( Singh et al., 2020a; 2020b ) is a phenomenolog-

cal extension of neural-mass type models which operates at timescales

ommensurate with fMRI. Like neural-mass models, MINDy models

ontain three components: a signed, directed weight matrix of esti-

ated effective connectivities ( 𝑊 ), a sigmoidal transfer function ( 𝜓)

hich relates local activation to the strength of outward signaling, and

he region-specific decay rate (time-constant) 𝐷 which describes how

uickly a stimulated region will return to baseline levels of activity.

INDy models operate at two time-frames: the time-frame of neural

ctivity (denoted 𝜏) and the time-frame of BOLD measurements (de-

oted 𝑡 ) which we assume are linked by a region-specific hemodynamic-

esponse-function ℎ 𝛽 . The resting-state neural activity ( 𝑥 𝜏 ) evolves ac-

ording to the discrete-time dynamical system: 

 𝜏+1 = 𝑓 ( 𝑥 𝜏 ) + 𝜉𝜏 (1)

( 𝑥 ) ∶= 𝑊 𝜓 ( 𝑥 ) + (1 − 𝐷) 𝑥 (2)
𝜏 𝛼 𝜏 𝜏

3 
ith process noise 𝜉𝜏 assumed uncorrelated between parcels. The trans-

er function 𝜓 is parameterized by the curvature vector 𝛼 which dictates

egional-differences in the shape of 𝜓 : 

 𝛼( 𝑥 𝜏 ) ∶= 

√ 

𝛼2 + ( 𝑏𝑥 𝜏 + . 5) 2 − 

√ 

𝛼2 + ( 𝑏𝑥 𝜏 − . 5) 2 (3)

ith 𝑏 = 20∕3 a fixed, global hyperparameter. These neural equations

re linked to the observed BOLD measurements via the convolutional

RF model. We model HRFs using a parameterized version of the canon-

cal double-gamma model with vector-valued parameters 𝛽1 , 𝛽2 : 

 𝛽 ( 𝑡 ) ∶= 

𝑡 𝛽1 −1 𝑒 − 𝛽2 𝑡 𝛽
𝛽1 
2 

Γ( 𝛽1 ) 
− 

𝑡 15 𝑒 − 𝑡 

6(16!) 
(4)

𝑂𝐿𝐷 𝑡 = [ ℎ 𝛽 ∗ 𝑥 ] 𝑡 + 𝜈𝑡 (5)

INDy quickly and simultaneously solves for 𝑊 , 𝛼, 𝐷, and 𝛽 using a

nique, regularized optimization method ( Singh et al., 2020a; 2020b ).

eural states are inverted from BOLD using the Wiener deconvolution

 Weiner, 1949 ). Gaussian noise at the level of BOLD measurements is

enoted 𝜈𝑡 which is assumed independent in time and between parcels.

enoting complex-conjugation by 𝑧 ∗ , the Fourier-transform by  and

he Wiener NSR parameter 𝜀 = 0 . 002 (see SI Section 7.4 ), we define the

iener HRF-deconvolution (  

+ ) as: 

 

+ 
𝛽
[ 𝑌 ] ∶=  

−1 
[ 
 [ ℎ 𝛽 ] ∗  [ 𝑌 ] 
‖ [ ℎ 𝛽 ] ‖2 + 𝜀 

] 
(6)

ll multiplications/divisions in the above equation are understood to

e element-wise. We similarly implement convolution using the Fourier

ransform (by the Convolution Theorem:  [ 𝑥 ∗ 𝑦 ] =  [ 𝑥 ]  [ 𝑦 ]) : 

 𝛽 ∗ 𝑥 =  

−1 [
 [ ℎ 𝛽 ]  [ 𝑥 ] 

]
(7)

Thus, the combined MINDy model for resting-state (excluding noise)

s: 

𝑂𝐿𝐷 𝑡 +1 = ℎ 𝛽 ∗ 
[ 
𝑊 𝜓 𝛼

(
 

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

)
+ (1 − 𝐷)  

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

] 
(8)

ince the exact convolution and deconvolution operators cancel for the

ecay-term (as opposed to our numerical methods), we ignore these

teps for the linear decay component to reduce bias (less spectral fil-

ering). Our final model is thus: 

𝑂𝐿𝐷 𝑡 +1 = ℎ 𝛽 ∗ 
[ 
𝑊 𝜓 𝛼

(
 

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

)] 
+ (1 − 𝐷) 𝐵𝑂𝐿𝐷 𝑡 (9)

.2. Task model derivation 

Our approach leverages individualized resting-state models in order

o estimate task-evoked brain effects, while making minimal modeling

ssumptions about the underlying task mechanisms. We model brain

ctivity in task ( 𝑥 𝜏 ) as a dynamical system containing two components:

n intrinsic dynamical component 𝑓 ( 𝑥 ) which is estimated from resting-

tate models (see previous section), and an exogenous input component

 𝜏 . 

 𝜏+1 = 𝑓 ( 𝑥 𝜏 ) + 𝐼 𝜏 . (10)

he latter component is exogenous with respect to the resting-state

odel and should not be interpreted as “exogenous to the brain ” Rather,

 𝜏 represents additional input to each brain region beyond that which

s generated via intrinsic (resting state) dynamics embedded in 𝑓 ( 𝑥 ) .
n principle, this technique is compatible with any resting-state model

 𝑓 ( 𝑥 𝜏 ) ). For the current work, we chose MINDy ( Singh et al., 2020a;

020b ) as it is highly scalable, nonlinear, and robust to many nuisance

actors. The aim of the current work is to estimate the exogenous in-

ut ( 𝐼 𝜏 ) for task data and to investigate this input as a marker for cog-

itive states. We do not assume a specific mechanism underlying this

nput (e.g. recurrent input, inter-regional signaling, neuronal “noise ”,

r sensory afferents are all possible sources) or any spatial/temporal

roperties of 𝐼 . Thus, we treat 𝐼 as a latent signal to be estimated
𝜏 𝜏
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(  
i.e., by filtering 𝐼 𝜏 from BOLD). By contrast, other methods, such as

CM ( Friston et al., 2003; 2019 ) assume a time course of 𝐼 𝜏 (the tempo-

al aspects of 𝐼 𝜏 ) based upon task design and only estimate its relative

ontribution to each brain area. For this reason, we term our objective

INDy-based Filtering. Although the mechanisms of interest ( 𝐼 𝜏 ) are

odeled as neural, fMRI measures the hemodynamic BOLD contrast.

or this reason, we use MINDy to simultaneously model neural dynamics

nd the hemodynamics which link neural events to fMRI measurements.

e assume that BOLD signal recorded in task reflects the convolution

denoted “∗ ”) of latent neural activity ( 𝑥 𝜏 ) with a region-specific Hemo-

ynamic Response Function (HRF; denoted ℎ ) estimated from resting

tate data ( Singh et al., 2020a ). Thus, for each brain region (parcel “i ”)

ur model of task BOLD is: 

𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 

= [ ℎ 𝑖 ∗ ( 𝑥 ( 𝑖 ) 𝜏
+ 𝜂( 𝑖 ) 

𝜏
))] 𝑡 + 𝜈𝑡 (11)

e consider noise at the level of the neurovascular coupling 𝜂𝑡 and at the

evel of BOLD measurements ( 𝜈𝑡 ). These terms are modeled as normal

andom variables which are independently and identically distributed

iid) between brain regions and time points. Process noise (physiological

tochasticity) is not explicitly modeled at the neural level in Eq. (10) ,

s it is absorbed in the unknown inputs 𝐼 𝜏 . Substituting for 𝑥 𝜏 (from

q. (10) ) and rearranging yields: 

𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 +1 − [ ℎ 𝑖 ∗ 𝑓 ( 𝑖 ) ( 𝑥 )] 𝑡 = [ ℎ 𝑖 ∗ 𝐼 ( 𝑖 ) 𝜏

] 𝑡 + [ ℎ 𝑖 ∗ 𝜂( 𝑖 ) 𝜏
] 𝑡 + 𝜈

( 𝑖 ) 
𝑡 
. (12)

hus, the HRF-convolved input [ ℎ ∗ 𝐼] 𝑡 is equal to the difference be-

ween measured and predicted BOLD plus additional autocorrelated

oise terms. For all current analyses we consider brain states estimated

ith HRF-convolved estimates of input ( [ ℎ ∗ 𝐼] 𝑡 ) as opposed to the es-

imates of 𝐼 𝜏 alone. This step enables the same statistical pipelines

i.e. GLM structure) to analyze original fMRI BOLD data and the HRF-

onvolved input. As a result, the estimation of [ ℎ ∗ 𝐼] 𝑡 serves as an ad-

itional “preprocessing ” (filtering) step that can be added to any fMRI

ipeline with minimal effort. No information regarding task events is

sed in estimating 𝐼 𝜏 , so the same statistical frameworks are applied to

odel-filtered and original data. 

.3. MINDy ‐based filtering 

In the current approach, we do not explicitly model different forms

f noise. The only noise factor we consider is the measurement noise

ower in inverting BOLD onto neural activity. Since neurovasculature

oise is removed ( 𝜂𝑡 = 0 ), Wiener deconvolution ( Weiner, 1949 ) gener-

tes the least-mean-square estimate for 𝑥 𝑡 . The resultant approximation

or BOLD-convolved input ( [ ℎ ∗ 𝐼] 𝑡 ) is: 

 ℎ ∗ 𝐼 𝜏 ] 𝑡 ≈ 𝐵𝑂𝐿𝐷 𝑡 +1 − [ ℎ ∗ 𝑓 (  

+ [ 𝐵𝑂𝐿𝐷] 𝜏 )] 𝑡 (13)

ith  

+ 
𝛽
[ 𝐵𝑂𝐿𝐷] denoting the Wiener deconvolution of each region’s

OLD signal with respect to the corresponding HRF model. Thus, we

stimate neural activity by deconvolving BOLD with the region-specific

RF’s identified at rest. Predictions are made in terms of neural activity

nd then re-convolved to produce predictions in terms of BOLD. The dif-

erence between measured and predicted BOLD approximates the HRF-

onvolved input. All operations are performed over the whole timeseries

imultaneously. 

The full procedure is thus: 

1. Resting-state data is used to estimate MINDy model parameters: con-

nectivity ( 𝑊 ), transfer-function curvature ( 𝛼) and decay-rate ( 𝐷) as

well as the HRF shape ( 𝛽). 𝜔 ∶= { 𝑊 , 𝛼, 𝐷, 𝛽} according to the dual

model: 

𝑆𝑜𝑙𝑣𝑒 ∶ 𝑊 , 𝛼, 𝐷, 𝛽 𝑠.𝑡. (14)

𝑋 

𝑅𝑒𝑠𝑡 
𝜏+1 = 𝑓 𝜔 ( 𝑋 

𝑅𝑒𝑠𝑡 
𝜏

) ∶= 𝑊 𝜓 𝛼( 𝑋 

𝑅𝑒𝑠𝑡 
𝜏

) + (1 − 𝐷) 𝑋 

𝑅𝑒𝑠𝑡 
𝜏

(15)

𝑅𝑒𝑠𝑡 𝑅𝑒𝑠𝑡 + 𝑅𝑒𝑠𝑡 
𝐵𝑂𝐿𝐷 

𝑡 +1 = ℎ 𝛽 ∗ 𝑋 

𝜏+1 = ℎ 𝛽 ∗ 𝑓 𝜔 (  

𝛽
𝐵𝑂𝐿𝐷 

𝑡 
) (16) t  

4 
2. Using HRFs estimated from rest, measured BOLD-level task data is

deconvolved to neural-level. 

𝑋 

𝑇 𝑎𝑠𝑘 
𝜏

=  

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑡 

] (17)

3. The parameterized MINDy models use deconvolved observations to

predict task neural activity 1TR into the future. 

𝑋 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

= 𝑓 𝜔 ( 𝑋 

𝑇 𝑎𝑠𝑘 
𝜏

) ≈ 𝑋 

𝑇 𝑎𝑠𝑘 
𝜏+1 (18)

4. Predicted neural activity is convolved into predicted BOLD measure-

ments. 

𝐵𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

= ℎ 𝛽 ∗ 𝑋 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

(19)

5. “Filtered ” timeseries are calculated by subtracting the predicted fu-

ture BOLD from measurements. 

[ ℎ ∗ 𝐼] 𝑡 = 𝐵 𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑡 +1 − 𝐵 𝑂𝐿𝐷 

𝑇 𝑎𝑠𝑘 
𝑃 𝑟𝑒𝑑 

(20)

For the univariate-linear (decay) terms, analytic convolution and de-

onvolution cancel so we only performed these steps on the nonlinear

erms to minimize bias (numerical implementations do not fully cancel).

his choice also enabled direct comparison of brain-wide MINDy models

ith local auto-regressive models (see Section 3.10 ). Model predictions

re thus: 

𝑂𝐿𝐷 𝑃 𝑟𝑒𝑑 ∶= ℎ 𝛽 ∗ 
[ 
𝑊 𝜓 𝛼

(
 

+ 
𝛽
[ 𝐵𝑂𝐿𝐷 𝑡 ] 

)] 
+ (1 − 𝐷) 𝐵𝑂𝐿𝐷 𝑡 . (21)

. Methods 

.1. Subjects 

Data consisted of fMRI task and resting-state scans for 71 healthy

oung-adult subjects collected as part of the Dual Mechanisms of Cogni-

ive Control (DMCC) study ( Braver et al., 2021 ). We note that the DMCC

articipant pool contains a large number of monozygotic and dizygotic

win pairs although this feature was not relevant for our analysis. 

.2. Scanning protocol 

Each participant took part in three separate scanning sessions which

ccurred on different days, but all had the same general procedure. Each

ay, participants provided two resting-state scans of 5 min each as well

s two scans each for four cognitive tasks: the AX-Continuous Perfor-

ance Task (AX-CPT), Sternberg Task, Stroop Task, and Cued Task-

witching (Cued-TS). The two scans per task were performed sequen-

ially for each task whereas the two resting-state scans were separated

n time (one at the session start and one at the session midpoint). Each

f the task scans (2 per task per day) contained three task-blocks sep-

rated by inter-block intervals and lasted approximately 12 min. For

esting state and task, the two scans per day were split between anterior-

osterior and posterior-anterior phase-encoding directions. Scans were

erformed at 3T with 1.2 s TR (multi-band ×4 ; see Braver et al., 2021;

tzel et al., 2021 for additional details). 

.3. Task descriptions 

We briefly describe the general structure of each of the four cognitive

asks in the “baseline ” format which was administered on the first scan-

ing day (see Braver et al., 2021; Etzel et al., 2021 for more details on

ask design and rationale). Subtle changes to task structure were made

n the two following days (subsequent section) but were not relevant to

ur analyses. The AX-CPT task ( Cohen et al., 1999 ) involves repeated

equences of cue-probe pairs, in which the response to the probe item

s constrained by the preceding contextual cue. Thus, the A-X cue-probe

airing requires a target response and is frequent, leading to strong as-

ociations between the cue and probe. However, both the B-X pairing

where “B ” refers to any non-X cue) and A-Y pairing (where “Y ” refers

o any non-X probe) require non target responses. In the Sternberg task
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i  
 Sternberg, 1966 ), participants are sequentially presented with a short

ist of words to memorize for that trial (called the memory set; appearing

cross two encoding screens). After a short retention delay, they are pre-

ented with a probe word and must determine if the probe was present

n that trial’s memory set. On some trials, the probe item is termed a

recent negative ” in that it was not present in the current trial memory

et but was present in the memory set from the preceding trial. In the

urrent implementation of the Stroop task , subjects are asked to ver-

ally report the font color in which probes are displayed ( Stroop, 1935 ).

ach probe is itself a color-word, and can either be congruent (font color

s the same as the color word, e.g., BLUE in blue font) or incongruent

font color is different from the color-word name; e.g., BLUE in red font).

astly, during Cued Task-Switching (Cued-TS, Bugg and Braver, 2016 )

articipants are pre-cued to attend to either the number or letter com-

onent of a subsequent probe (combined letter + digit). In “attend-

umber ” trials, participants indicate whether the digital component of

 probe is even vs. odd. In “attend-letter ” trials, participants indicate

hether the letter component is a consonant vs. vowel. The probe can

e either congruent (both letter and digit are associated with the same

esponse) or incongruent (the letter and digit are associated with differ-

nt responses). With the exception of the Stroop task, participants report

esponses using button presses. 

.4. Cognitive control demand 

The current set of trial-based analyses center upon the ability to iden-

ify neural signatures of cognitive control. Although cognitive control is

 heterogeneous construct, we specifically studied the conflict resolu-

ion aspects of cognitive control, so we use the terms control-demand

nd conflict interchangeably when referring to these tasks, and contrasts

etween trial types. In particular, we operationally identify cognitive

ontrol demand as the difference in neural activity measures during

igh and low-conflict trials for each task. In the AX-CPT, we contrast

X trials (high conflict) vs. BY (low conflict). The BX trials are high

onflict because of the target-association with the X-probe, which re-

uires contextual cue information to override. For the Sternberg task, we

ontrast trials with recent negative probes (high conflict) and trials con-

aining novel negative probes (low-conflict). Thus, recent negative trials

re high conflict because the familiarity of the probe, requires informa-

ion actively maintained in memory to override. In the Stroop task, we

ontrast incongruent (high conflict) and congruent (low conflict) trials.

he incongruent trials are high conflict because the task goals (name the

ont color) are required to override the dominant tendency to read the

olor-name. Lastly, in the Cued-TS we also contrast incongruent (high

onflict) and congruent (low conflict) trials. The incongruent trials are

igh conflict because it is critical to process the task cue, in order to

now what response to make (for congruent trials, the same response

ould be made regardless of the task being performed). 

.5. Task manipulations 

The four tasks (AX-CPT, Sternberg, Stroop, and Cued-TS) were cho-

en to measure/engage cognitive control. On the first scanning day,

articipants performed a “baseline ” version of each task. On the subse-

uent days, however, participants performed modified version of each

ask, meant to promote either proactive or reactive cognitive control

trategies. On the two subsequent scans participants performed all the

eactive-mode conditions of the tasks on one day and all the proactive-

ode conditions of the tasks on another, with the order of proactive

s. reactive days counter-balanced across subjects. In the current work

e do not consider the influence of cognitive-control mode and combine

ata for each task across scanning sessions, to increase statistical power.
5 
.6. Behavioral measures 

In each task we recorded two behavioral measures: reaction time

RT) and accuracy. Reaction times for button presses were recorded dig-

tally, whereas reaction time for the Stroop task was defined by the du-

ation of silence (time until participant begins a verbal response; see

raver et al., 2021 ). For the current work, we focused upon the dif-

erence in performance measures between trial-types with high cogni-

ive control demand and those with low cognitive control demand (see

elow). As in previous work with these tasks, we observed lower per-

ormance (higher RTs and lower accuracy) on the high demand trials

ndicative of a cognitive control effect ( Braver et al., 2021 ). For the RT

ata, we defined cognitive control effects as the difference in normalized

Ts between high and low-control trials: 

𝑇 𝐻𝐿 = 𝑧 ( 𝑅𝑇 𝐻𝑖𝑔ℎ ) − 𝑧 ( 𝑅𝑇 𝐿𝑜𝑤 ) (22)

ith 𝑧 denoting z -score normalization. We separately normalized the

igh and low RT conditions to account for potential heterogeneity of

ariance between conditions. However, we could not separately nor-

alize accuracy by condition as some of the low-control distributions

ere near-degenerate (e.g. in one Stroop session over 90% of subjects

ad 100% accuracy for low-control trials). Similarly, we obtained near-

dentical results using either the high vs. low contrast for accuracy

nd using just high-control trials (since low-control accuracy was near-

eiling). For parsimony, we chose to use the high-control data for plots

s opposed to the near-identical high vs. low contrast. 

As with neural data, we averaged the normalized response times be-

ween sessions for each task. Interestingly we found that, unlike RTs,

eural data using conventional techniques only predicted accuracy in

he baseline session. Therefore, we only used the baseline accuracy for

enchmarking (averaged over tasks) and similarly for neural data. 

.7. Pre ‐processing and parcellation 

Raw resting-state and task data were preprocessed using the same

ipeline, implemented with fMRI-prep software ( Esteban et al., 2020;

019 ). The whole-brain surface data were then parcellated into 400 cor-

ical parcels defined by the 400 parcel Schaefer atlas ( Schaefer et al.,

017 ; 7-network version). Subcortical volumetric data was divided into

9 regions derived from FreeSurfer ( Fischl, 2012 ). Motion time-series

onsisted of the 3-dimensional coordinate changes for rigid-body (brain)

otation and translation (6 total). Motion and linear drift were regressed

ut of pre-processed resting-state data before MINDy model fitting and

rom task data prior to filtering. Since motion time-series are also co-

ariates within our task GLMs (as is common), this step does not bias

esults, as motion is implicitly removed from the unmodeled data during

LM estimation (see below). However, we also implemented controls

see Section 3.10 ) which used this same data (i.e. motion pre-regressed)

ith conventional analyses. 

.8. Task GLM analyses 

Statistical models of task fMRI were estimated using general linear

odels (GLM) as implemented in AFNI. The same analyses were per-

ormed for all data pipelines (e.g. original and MINDy-Filtered). Two

lasses of GLM were used for each task: one designed to estimate event-

riggered effects and another to estimate sustained activity. These mod-

ls only differed in the following respect: the event-related GLM models

ontained separate terms (FIR models) for each trial-type whereas the

ustained GLM did not distinguish between trial-types, which enabled

etter estimation of the sustained effects (block regressor). 

The GLM design consisted of a mixed block/event-related design in

hich trial-type effects were modeled using a modified Finite-Impulse-

esponse (FIR, Glover, 1999; Goutte et al., 2000; Ollinger et al., 2001 )

ramework (AFNI TENT; Cox, 1996 ), whereas block effects (task vs.

nter-block interval) were modeled using a canonical HRF convolved
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ith the block regressors. The TENT bases ( “knots ” in AFNI terminol-

gy) generated an FIR design with each basis representing one TR (rela-

ive task start). The GLM design also included block onset/offset (mod-

led with a canonical HRF) and the six motion regressors corresponding

o rigid body translation and rotation (3 each). Timepoints containing

xcessive motion (Framewise Displacement > 0 . 9 mm) were censored

rom task GLMs. Estimation was performed using the built-in AFNI func-

ion “3dREMLfit ” and polynomial-detrending ( “polort 5 ”). 

.9. MINDy modeling 

Mesoscale Individualized NeuroDynamic (MINDy, Singh et al.,

020a; Singh et al., 2020b ) models were generated from each subject

sing the parcellated, pre-processed resting-state data for each subject,

ombined across scanning sessions. Thus, a single MINDy model was

stimated for each subject and was used in analyzing task-data across

canning sessions. We simultaneously estimated the neurovascular cou-

ling/HRF and latent brain networks by combining the original MINDy

odel with Surrogate Deconvolution as in Singh et al. (2020a) . This

ombination simultaneously estimates HRF kernel parameters for each

rain region as well as the connectivity matrix, region-specific trans-

er function shape, and local decay parameter (time-constant). Previous

ork indicated that the inclusion of Surrogate Deconvolution renders

INDy estimates robust to spatial variation in the HRF. Moreover, the

patial distribution of estimated HRF properties such as time-to-peak

re consistent with empirical literature at the group level and are also

eliable at the level of individual differences ( Singh et al., 2020a ). Hy-

erparameters used in MINDy model fitting were identical to previous

tudies ( Singh et al., 2020b ), but with batch sizes decreased to 150 TRs

ach in order to accommodate the shorter scan lengths of this dataset. 

.10. Control pipelines 

In addition to comparing the proposed pipeline with conventional

nalyses, we also repeated all task analyses for several control pipelines

 Fig. 1 B). These control pipelines considered two factors that might

xplain results: (1) pre-processing and (2) mechanistic components of

he model (SI Section 7.7 ). The MINDy modeling framework assumes

hat nuisance covariates such as motion and drift have already been

emoved from time-series prior to model fitting. Therefore, to address

1, we implemented a control in which standard GLM analyses were

omputed directly upon the fMRI BOLD task timeseries, with motion co-

ariates already regressed out first. The same regressors also appear in

he task GLM model (which is shared across all pipelines), but regress-

ng these factors out first will rescale estimated beta-coefficients due

o the input normalization performed by many fMRI processing pack-

ges (e.g. AFNI). This control ensured that improvements in group-level

ensitivity were due to increased similarity of estimated spatiotempo-

al patterns rather than theoretically uninteresting factors due to pre-

rocessing pipelines. We refer to this control as “pre-regressed ” (pre-

eg). Estimates using this pipeline were nearly identical to the original

ipeline and event-related coefficients were highly correlated (average

ver tasks: 𝑟 = 0 . 97 ), collapsing over subject, parcel, and TR during the

robe period. 

In the SI ( Section 7.7 ), we address #2 by considering the influence of

natomically local dynamics vs. interactions between brain regions. This

istinction is significant for three reasons. First, it is theoretically sig-

ificant to distinguish between purely local neural dynamics and inter-

egional brain dynamics. Secondly, long distance interactions between

rain regions cannot be explained solely in terms of neurovasculature

ince the regions involved may share anatomically distinct blood supply

i.e. different cerebral arteries). As a result, improvements identified in

hole-brain models, but not purely local models, cannot be explained

olely as a benefit of hemodynamic modeling (although other contami-

ants such as motion could still be a factor). Lastly, analyses using the

urely local models are equivalent to region-specific frequency-domain
6 
ltering. Although this equivalence does not imply that neural dynam-

cs are insignificant, the signal-processing interpretation is simpler and

ould render the proposed neural modeling framework unnecessary (i.e.

ess parsimonious). Thus, the local dynamics control serves to ensure

hat our guiding neural modeling framework provides additional value

bove its (partial) relationship to existing signal-processing techniques.

his control was implemented in two distinct variants: either heteroge-

eous (region-specific) or homogeneous (region-invariant) autoregres-

ive models fit to each subject. 

The homogeneous model consists of an autoregressive model that is

pecific to subject, but not parcel: 

 𝑂𝐿𝐷 𝑡 +1 = 𝑐 0 𝐵 𝑂𝐿𝐷 𝑡 + 𝜈𝑡 (23)

e assumed that the noise-component was independent and identi-

ally distributed between parcels and solved for 𝑐 0 using linear regres-

ion (collapsing BOLD across parcels). The “input ” estimates from this

odel consist of the residuals ( 𝜈𝑡 ). We fit the heterogenous model analo-

ously to the homogeneous model, but with region-specific autoregres-

ive terms: 

 𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 +1 = 𝑐 𝑖 𝐵 𝑂𝐿𝐷 

( 𝑖 ) 
𝑡 

+ 𝜈
( 𝑖 ) 
𝑡 

(24)

or parcel “i ”. We use these two cases to determine whether regional

eterogeneity is a significant factor in any improvements due to local

odeling. We refer to the homogeneous and heterogeneous models as

lobal ( “glob ”) and local ( “loc ”) autoregressive (AR) models, respec-

ively. Results were generally similar for the two AR models (high-low

oefficients correlated 𝑟 = 0 . 99 ) 

. Validation and comparison criteria 

In order to assess potential advantages of MINDy-based Filtering, we

onsidered two types of comparisons: benchmarking (is method “a ” bet-

er than “b ”?), and sensitivity/robustness (how does factor “x ” influence

ethod “a ” vs. “b ”?). The first case establishes whether MINDy-based

iltering offers additional statistical power in detecting task effects. The

econd case establishes whether MINDy-Based Filtering enhances statis-

ical power for detecting task effects in a selective (i.e., to the regions

howing significant task effects to begin with) or more global manner. 

.1. Benchmarking event ‐related effects 

Trial-types were defined by high cognitive control demand vs.

ow cognitive control demand across the four tasks (see Section 3.4 ).

rial-specific activity was modeled using a Finite Impulse Response

FIR) model with 1TR resolution (1.2 s) and task-specific length (see

ection 3.8 ). Group-level statistics were compared for the peak effect

parcel × method specific) over a task-specific 2TR interval. This interval

as chosen during study piloting using the peak times in conventional

nalyses (starting from 1: AX-CPT:TR 7 and 8, Cued-TS: TR 8 and 9,

tern: TR 11 and 12, Stroop: TR 3 and 4). Thus, the analysis targets are

tatistically biased against the proposed technique since they were cho-

en to maximize conventional analyses. These times qualitatively cor-

espond with a typical HRF time-to-peak after the probe-events which

efine high vs. low control trials (see Section 3.4 ). Previous literature

nd present results suggest that these effects are primarily one-sided,

ith activity increased in the high-conflict (control demand) trials rela-

ive to low-conflict (low control demand) in relevant brain regions (e.g.

ig. 2 A). Conversely, task-negative effects (significant decreases) have

argely been associated with sustained signals as opposed to high vs.

ow control events. For these reasons, we only considered significant

ncreases in activity for trial-type analyses. Group-level t -tests (within

arcel) were compared for all parcels with significant increases (either

ethod; Fig. 2 B), or for a set of 34 parcels which were pre-defined from

ndependent conventional analyses which showed consistent control-

emand effects across all tasks, ( Fig. 2 A, SI Table 1 , Braver et al., 2021 ).
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Fig. 2. Statistical frameworks for comparing methods. (A) The DMCC34 set of parcels was defined by all parcels which displayed an effect of cognitive-control 

demand in every task based upon separate pilot data using conventional analyses. Hence, the DMCC34 set of parcels is pre-specified and used across all tasks. (B) 

Candidate regions for task-specific comparisons (parcels-of-interest) are identified for each pairing of task × pipeline by combining parcels with group-T meeting 

𝑝 < 0 . 001 for at least one pipeline in a comparison (one-tailed for events, two-tailed for sustained effects). (C) Data is analyzed either using resampling statistics for 

global measures (e.g. for brain-behavior correlations, generalizability) or in terms of paired-differences between methods over each parcel-of-interest. 
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ince these parcels were pre-selected based upon conventional analy-

es, they are statistically biased against the proposed method (i.e. in fa-

or of conventional methods). We note that in Braver et al. (2021) , the

ublished version instead refers to a set of 35 parcels meeting criteria

or consistent control-demand effects. The current manuscript used 34

arcels drawn from an earlier stage analysis that were highly overlap-

ing with the later set of 35 parcels. 

.2. Benchmarking sustained effects 

In addition to event-related analyses, we also considered the iden-

ification of sustained effects (block-related changes). Results of these

nalyses are primarily presented in the SI ( Section 7.5 ). Sustained ef-

ects in a mixed block/event design refer to “background ” activity that

s present during a task-block, regardless of whether participants are per-

orming a task event ( Petersen and Dubis, 2012; Visscher et al., 2003 ).

ince we used FIR models to span each trial type, sustained effects in

ur analysis only reflect activity during inter-trial periods (non-trial pe-

iods of task-blocks) since effects during other periods are absorbed in

he trial FIR vs. rest-block contrasts ( Petersen and Dubis, 2012; Visscher

t al., 2003 ). We compared the group-level effect size of each technique

MINDy-based Filtering and several controls) in detecting sustained ef-

ects. Methods were compared pairwise, and benchmarking analyses

ere only conducted on parcels which had a significant effect for either

ethod in a pair. Sustained analyses considered both signal increases

nd decreases, so the target metric was absolute t -value (1-sample group

est) for the GLM sustained betas (see Section 3.8 ). 

.3. Testing selective vs. global improvements 

We further analyzed benchmarking results by testing how MINDy-

ased Filtering changed the distribution of activity across parcels. The
7 
rimary question was whether MINDy-based Filtering: (a) uniformly

hanged statistical power across the brain (by shift or scale); (b) pri-

arily identified previously insignificant regions or (c) primarily al-

ered the activity profile in previously identified regions. This analysis

s important for determining whether the MINDy-based Filtering tech-

ique globally improves statistical power or, instead, better differen-

iates task-relevant regions from the rest of the brain. We tested for

hese effects using multilevel linear models to compare MINDy-based

iltering to the different control models. These multilevel models (pre-

ented in more detail later) contain task-specific main effects of method

anatomically global) and additional terms for task-implicated (statisti-

ally significant) parcels. We use these models to test the significance of

odel improvements (increased effect sizes) after discounting anatom-

cally global changes. 

.4. Sensitivity to cognitive states 

Sensitivity analyses were performed to assess the impacts of cogni-

ive states, individual differences, and motion. In the current case, cog-

itive states differ between tasks and trials. Although, each of the four

asks are commonly used to index cognitive control, the cognitive tasks

re not construct-pure. For instance, tasks featuring delays (AX-CPT,

ued Task Switching, and Sternberg) are thought to be more dependent

pon working memory than those without delays (i.e. the Stroop task).

owever, many task-specific factors are the same between high and low

ontrol trials of the same task (i.e. all events prior to the probe). Thus,

e controlled for cognitive similarity across tasks by comparing results

cross increasing levels of cognitive similarity: low-control trials, high-

ontrol trials, and the contrast high vs. low control trials. These levels

rogressively isolate the cognitive control construct by increasing con-

rol demand (high-control trials) and controlling for other task events

high vs. low contrast). Methods which are sensitive to cognitive states
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ill produce more similar results between task contexts when the mea-

ured cognitive states measured are also similar. Put simply, we studied

etween-task similarity in the whole-brain activation profile, under the

remise that more similar task conditions should lead to more similar ac-

ivation profiles. We quantified similarity in the activation profile using

he Intraclass Correlation (ICC; Shrout and Fleiss, 1979 ) which general-

zes the concept of correlation to multiple groups (i.e., four tasks as op-

osed to pairs). Tasks differed in effect magnitude and there was no the-

retical basis for assuming this factor should be identical between tasks

i.e. we don’t assume each task equally taxes cognitive control), so we

ormalized the group-average data (divided by the standard-deviation

ver parcels) for each task × method before using ICC to test similarity

n activation. 

.5. Significance testing for construct identification 

We used permutation statistics to compare the significance of gener-

lizability tests between methods. When testing the generalizability of

roup-level patterns, we treated brain regions as the object of measure-

ent in intraclass correlations (ICC, Shrout and Fleiss, 1979 ) over task

lasses. Larger ICC values imply more similar whole-brain activation

rofiles between tasks. We estimated confidence intervals with boot-

trap sampling over the set of brain parcels. 

.6. Robustness to motion 

In an SI analysis ( Section 7.8 ), we compared methods in their robust-

ess to motion artifacts. While previous work has established that the

INDy model-fitting technique is robust to motion ( Singh et al., 2020b )

t remains unknown whether the MINDy-based Filtering technique also

xhibits similar motion robustness. Therefore, we compared methods in

erms of sensitivity to motion artifact. We considered three motion met-

ics for task data including the number of frames censored based upon

ramewise-displacement (FD) criteria ( > 0 . 9 mm), the median frame-

ise displacement, and the median-absolute-deviation (MAD) of DVARS

 Power et al., 2012 ). We analyzed sensitivity by comparing the similarity

ICC) of results between high-motion and low-motion groups of subjects

median split for each motion measure). 

. Results 

.1. Structure and presentation of results 

We designed analyses to answer four questions: (1) do resting-state

INDy models (partially) generalize to task? (2) does the proposed

echnique improve power in answering cognitive-neuroscience ques-

ions? (3) can these methods test hypotheses which were previously

mpractical? and (4) do improvements reflect theoretically interest-

ng concepts (e.g. signal propagation) or do they stem from signal-

rocessing/filtering side-effects? The first question resolves whether the

ntrinsic dynamics modeled at rest meaningfully generalizes to task (al-

hough not perfectly, as we are interested in the task versus rest differ-

nces). The second and third questions identify methodological contri-

utions, whereas the last question addresses whether these techniques

lso offer additional theoretical insight (i.e. their success reflects some

rinciple of brain function). This question is important for determining

hether the results reflect brain network dynamics or can be more par-

imoniously explained in terms of (non-neural) signal processing effects.

In the main text, we emphasize comparing methods in event-related

nalyses due to the popularity of event-related designs. However, we

lso compared methods for the analysis of sustained-effects in a mixed

lock/event design. These results are presented in SI Sections 7.5 and

.6 . We also tested the specific contribution of modeling connectivity by

omparing MINDy-based Filtering with analogous filters using reduced

autoregressive) models (SI Section 7.7 ). 
8 
.2. Identification of task ‐relevant parcels 

In order to compare methodologies ( “third-level ” analysis) we first

dentified task-relevant parcels over which to gauge improvements. We

erformed this step in two ways: either using a set of parcels consis-

ently engaged across tasks ( “DMCC34 ”) or separately identifying rele-

ant parcels for each analysis (i.e., for the different tasks; Fig. 2 A and

). In the first case, we used pilot data and conventional analyses to

dentify a set of 34 brain regions which displayed significant increases

 𝑝 < 0 . 05 , Bonferoni-corrected) in activity due to cognitive-control de-

and across all four tasks ( Fig. 2 A). This set is referred to as “DMCC34 ”

nd constitutes a “pre-specified ” comparison set as it was developed us-

ng a separate set of pilot subjects. It is also biased away from finding

INDy-based Filtering improvements, since, by definition, the parcels

ere identified as maximizing conventional univariate statistical con-

rasts. 

In addition, we identified “parcels-of-interest ” specific to each third-

evel comparison (i.e., task + methods; Fig. 2 B). We defined “parcels-

f-interest ” as reaching an uncorrected significance of 𝑝 < 0 . 001 for at

east one of the methods being compared ( Fig. 2 B). We used a slightly

ore liberal criteria for identifying these parcels as several of our “third-

evel ” analyses compare second-level analyses over parcels-of-interest

 Fig. 2 C), although we later demonstrate that general improvements in

etection power hold across significance thresholds ( Section 5.5 ). These

parcels-of-interest ” are also specific to a given second-level contrast

separate sets for events and for sustained/block-related effects). Thus,

or each pair of methods (e.g. MINDy vs. original) we identified one

ustained and one event-related set of parcels for each of the four tasks.

.3. Resting ‐state model predictions generalize to task 

The key premise of our approach is that task effects are marked by

ystematic deviation from intrinsic brain dynamics, reflecting extrinsic

nfluences ( “input ”). As such we seek to estimate these influences by

ltering out intrinsic dynamics to recover task “input ” (we stress that

input ” should not be taken literally; see Sections 2.2 and 6.3.2 ). In prac-

ice, this operation corresponds to computing the difference between

odel-predicted and observed changes in brain activity at each time-

tep. The validity of our framework thus rests upon three claims: (1) that

ask events are marked by (slight) deviations from intrinsic-dynamics,

2) that these deviations are systematic and can be modeled as additive

input ” to the otherwise preserved dynamics, and (3) estimated inputs

re a more consistent marker of task effects than the original BOLD sig-

al. 

Our first claim, that task events deviate (slightly) from intrinsic dy-

amics is observed by comparing MINDy prediction accuracy over task

nd “rest ” blocks (3 task blocks and four rest blocks per run). During

rest ” periods, prediction accuracy is nearly as high as for the train-

ng resting-state data. Overall, the range of model prediction accuracies

or resting-state scans ( 𝑅 

2 = 0 . 58 ± 0 . 06 ) was roughly similar to that ob-

erved during task ( 𝑅 

2 = 0 . 56 ± 0 . 08 , 0 . 54 ± 0 . 07 , 0 . 56 ± 0 . 08 , 0 . 50 ± 0 . 09 ,
or AX-CPT, Cued-TS, Stern, and Stroop, respectively; Fig. 3 A). How-

ver, prediction accuracy differed between periods in-between task

locks ( “rest ” blocks) and when subjects were actively engaged in

ask. During “rest ” blocks, MINDy predictions were no worse than for

esting-state scans. In AX-CPT and Stroop accuracy during “rest ” blocks

as significantly greater than for resting-state scans ( 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) =
 . 5 , 𝑝 = 0 . 0008; 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = −4 . 5 , 𝑝 = 2 . 4 𝐸 − 5 ) and for the other two

asks (Cued-TS and Sternberg), the MINDy modeling of resting-state

cans and rest-blocks within task scans was equally accurate ( 𝑡 (70) =
1 . 1 , 𝑡 (70) = 1 . 2 , 𝑛.𝑠. ). By contrast, model accuracy decreased when sub-

ects were actively performing each task ( 𝑝 ′𝑠 ≤ 𝐸 − 8 ), while remaining

ell above chance ( 𝑅 

2 = 0 . 54 ± 0 . 08 , 0 . 52 ± 0 . 08 , 0 . 54 ± 0 . 08 , 0 . 45 ± 0 . 10 ,
ame task order; Fig. 3 A and B). An illustration of the pattern is shown

or a representative task (Cued-TS), showing the amount of variance

 𝑅 

2 ) explained by MINDy at each TR across the whole-scan timeseries
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Fig. 3. Validation of MINDy-based Filtering 

Framework. Task effects are defined by de- 

viation from intrinsic dynamics. (A) Intrin- 

sic dynamics modeled by MINDy with resting- 

state data, remain valid (but less accurate, see 

Section 5.3 ) in task. (B) Deviation from intrinsic 

dynamics (i.e., estimated “input ”) mark periods 

of active task engagement over long timescales 

(task blocks) and (C) short-timescales (task 

events; pre-GLM). There is a peak in unex- 

plained event-related variance (SSE MINDy; 

pre-GLM) timed to the onset of probe effects. 

However, this variance is well-explained by 

task GLMs (post-GLM) indicating that event- 

related deviations from MINDy (fit to rest) 

are well-described as additive “input ” to the 

model. (D–F) Timeseries post-MINDy based fil- 

tering (red) have a greater proportion vari- 

ance attributed to task events. Statistics are 

averaged over a set of pre-specified parcels- 

of-interest (DMCC34). (D) Average timecourse 

of BX (high-control) trials in AX-CPT demon- 

strates clear increases in task-explained vari- 

ance during the probe-response period (7 and 

8 TR). (E) MINDy-based Filtering significantly 

increased signal variance attributed to any task event in four tasks. (F) Improvements in high-control trials were significant in 3 of 4 tasks (all but Sternberg). Shading 

indicates standard error over subjects. “post-GLM ” indicates that both the numerator and denominator SSE are taken after performing GLM (MINDy = MINDy-Filtered), 

whereas “pre-GLM ” indicates the relative sum-of-squares after MINDy-based Filtering but before fitting task GLM models. Both (C) and (D) are taken from AX-CPT 

(averaged over scans). Time-courses in (C) and (D) are event-locked to the start of “high-control ” trials. Vertical line indicates TR7 which marks probe-related effects 

in AX-CPT (TR 7 and 8). “MINDy ” denotes results using MINDy-based Filtering, while “pre-Reg ” denotes the pre-regressed control (conventional analyses, but with 

additional motion-regression performed pre-GLM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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 Fig. 3 B). Deviations from model predictions (unexplained variance) are

lso greatest during the probe/response period ( Fig. 3 C), indicating that

hese deviations are a strong marker of task events. Thus, intrinsic dy-

amics observed at rest still predict task dynamics, but the degree of

ccuracy is tightly coupled to task events. 

Our second claim is that these deviations are systematic and can be

ell-approximated as an exogeneous “input ” to the existing dynamics.

tatistically, this assumption corresponds to the residuals (MINDy pre-

iction minus observed) being shifted (event-locked change in mean)

uring task events, as opposed to primarily changing variance, which

ould reflect a breakdown of the underlying dynamics. For this analysis

e only considered parcels known to be task-related: the DMCC34 set,

s the subsequent analyses assume that the signal is task-related. Us-

ng Finite-Impulse-Response GLM designs we compared residual sum-

f-squares before and after removing the effect of trial-period. Squared

rrors were averaged over the DMCC34 parcel-set for each subject. Anal-

ses demonstrate that the probe-related increase in error (task-average:

 (70) = 7 . 2 , 𝑝 < 4 𝐸 − 9 ) is captured by an additive main effect of trial-

eriod as the post-GLM unexplained sum-of-squares was not greater for

he probe period than other trial periods in any task (n.s. 1-tailed, e.g.

ig. 3 C) and actually decreased overall (task average: 𝑡 (70) = −4 . 5 , 𝑝 =
 . 6 𝐸 − 5 ). Thus, task-induced deviations from intrinsic dynamics are sys-

ematic and well-described by additive “input ” to the system. 

Lastly, we assume that removing ( “filtering ”) intrinsic dynamics will

ccentuate task effects in the data by removing variance due to in-

rinsic dynamics. At present, we only consider spatially univariate ef-

ects (unlike e.g., MVPA), hence we tested the relative variance ex-

lained by task with and without MINDy-based Filtering. As in the pre-

ious analysis, we used the mean over DMCC34 parcels, as this anal-

sis assumes that there is a true task effect to accentuate. Results in-

icate that MINDy-based Filtering generally increased the variance as-

ociated with task events (e.g. Fig. 3 D for AX-CPT). This result held

or all tasks when combining across trial-types ( 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = 15 . 3 , 𝑝 ≈
; 𝑡 = 5 . 0 , 𝑝 = 4 . 7 𝐸 − 6; 𝑡 = 6 . 7 , 𝑝 = 4 . 5 𝐸 − 9; 𝑡 = 12 . 1 , 𝑝 = 8 . 2 𝐸 − 19 for

X-CPT, Cued-TS, Sternberg, and Stroop, respectively; Fig. 3 E)
 s  

9 
nd for three-of-four tasks (all but Sternberg) when restricted to

igh-control trials ( 𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑡 (70) = 13 . 7 , 𝑝 ≈ 0; 𝑡 = 6 . 4 , 𝑝 = 1 . 4 𝐸 − 8; 𝑡 =
 . 9 , 𝑝 = 0 . 06; 𝑡 = 11 . 1 , 𝑝 = 5 . 2 𝐸 − 17 ; Fig. 3 F). Thus, MINDy-based Filter-

ng has the potential to improve the variance associated with task effects

n human BOLD. We note that some inter-trial variability in brain activ-

ty can be related to behavior, so future study is needed to understand

ow MINDy-based Filtering affects veridical trial-to-trial variation (in

 later section we find improvements in inter-subject behavioral pre-

iction). However, these results demonstrate that our approach is well-

ustified and statistically powerful in identifying the types of simple (uni-

ariate) models of brain activity that are most common in neuroimaging.

.4. MINDy ‐based filtering accounts for intra and inter ‐subject variability 

We also tested whether these intrinsic dynamics explain unique

ariability above the task GLM. This test is important for determin-

ng whether MINDy serves to predict the mean brain-response for each

rial-type or whether it also predicts trial-to-trial variability. We quan-

ified these properties through sum-of-squares partitioning (ANOVA).

cross all tasks, we found that the proportion of unique variance ex-

lained by MINDy was significant (41.2% on average, Fig. 4 A). How-

ver, MINDy predictions and the task effects do have some overlap (a

on-zero MINDy × task sum-of-squares, Fig. 4 A), thus MINDy predic-

ions account for some of the variation in both the trial-to-trial variabil-

ty (variation unique to MINDy) and the typical response across trials

MINDy × task interaction). We also tested how MINDy-based Filter-

ng impacts variability in the evoked-response between subjects. We re-

tricted these analyses to the pre-defined set of regions (the DMCC34

arcels, Braver et al., 2021 ) which were previously identified as having

 significant control-demand effect across tasks. Results demonstrated

hat MINDy filtering decreased inter-subject variability in both main ef-

ects of trial-type (e.g. Fig. 4 D) and the contrast between trial-types (e.g.

ig. 4 E). In particular, these analyses and associated event-related time-

ourse visualizations reveal that the peak task-related effects become

harper (more well-defined), as well as more temporally-precise, after
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Fig. 4. MINDy-based Filtering reduces variability within and between subjects. (A) MINDy-based Filtering accounts for a significant portion of unique variability 

within each subject’s data. This effect holds across tasks (results averaged over all parcels, subjects). Variance partitioning was performed after removing variation 

due to nuisance factors (motion and drift). (B) Difference in the relative group-explained variability between MINDy and the original data. Note that MINDy-based 

filtering actually decreases the proportion of group variance in some regions, but increases for task-implicated regions (e.g. lPFC). (C) Group-explained variability 

particularly increased in parcels which already had a strong effect under original analyses (putative task-relevant parcels). (D) MINDy-based Filtering reduces the 

between-subject variability of task-evoked signals. Example shown is the mean signal over the DMCC34 parcels for the Cued-TS high control-demand condition 

(incongruent trials). (E) Variability also decreases for contrasts between conditions. Example shown is for the AX-CPT (BX-BY contrast). “MINDy ” denotes results 

using MINDy-based Filtering before performing GLM, while “Orig ” denotes the conventional pipeline (no MINDy). 
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INDy-based filtering. We used ANOVA to partition variance in the cog-

itive control effect into group-level variance and individual variance

ver the relevent (probe) trial periods. 

We then tested whether MINDy increased the proportion of cognitive

ontrol effects attributed to a common group factor (sum-of-squares ex-

lained for the group model divided by the full/subject-specific models).

s expected, regions implicated in cognitive control, such as the lateral

nd medial prefrontal cortex, anterior insulae, posterior cingulate, and

osterior parietal cortex, had larger proportions of variability explained

y the common group factor ( Fig. 4 B and C). MINDy-based Filtering

ncreased the proportion variance explained by group-level models (rel-

tive full models) for the DMCC34 parcels ( Δ𝜇 = 0 . 034 ± 0 . 023 , 𝑝𝑎𝑖𝑟𝑒𝑑 −
 (33) = 8 . 56 , 𝑝 = 6 . 9 𝐸 − 10 ). Brain-wide, parcels in which MINDy in-

reased group-explained variance, also had larger group-explained vari-

nce in the original analysis ( 𝑡 (417) = 4 . 92 , 𝑝 = 1 . 2 𝐸 − 6 ; Fig. 4 C) and

he increase in group variance-explained (MINDy-Orig) was corre-

ated with the original variance explained ( 𝑟 (417) = 0 . 40 , 𝑝 = 7 . 5 𝐸 − 17 ).
hus, MINDy-based Filtering only increased group-level effects in task-

mplicated brain regions (those that already had a group-effect). Con-

ersely, the relative variance attributed to subject decreased correspond-

ngly (same statistics, but sign-flipped since 𝑆 𝑆 𝐼𝑛𝑑𝑖𝑣 ∖ 𝐺𝑟𝑜𝑢𝑝 ∕ 𝑆 𝑆 𝐹𝑢𝑙𝑙 = 1 −
 𝑆 𝐺𝑟𝑜𝑢𝑝 ∕ 𝑆 𝑆 𝐹𝑢𝑙𝑙 ). Thus, by removing intrinsic brain dynamics, MINDy-

ased Filtering reveals more similar task-effects between subjects. 

.5. Improved group ‐level detection power 

We tested whether MINDy-based Filtering improved statistical power

n detecting group-level neural effects for each task, and in an omnibus

est across tasks ( Fig. 5 A and B). For each event-related pairwise compar-

son of methods, we calculated group-level statistics from the GLM beta

stimates of each task-relevant parcel (see Section 5.2 ). Results indicate

hat MINDy-based Filtering significantly increased statistical detection

ower on all tasks (four of four) for the event-related contrast relative

o both the traditional pipeline and the pre-regressed control pipeline

all 𝑝 ’s ≤ 1.2E-4; Fig. 5 C). For omnibus analyses, we collapsed observa-

ions across tasks ( Fig. 5 A and B). Results indicated that MINDy-based
10 
iltering generally increases statistical power for event-related analyses

vs. original: paired- 𝑡 (495) = 27 . 5 , 𝑝 ≈ 0 , vs. pre-regressed: 𝑡 (492) = 27 . 9 ,
 ≈ 0 ). 

We also tested whether improvements depended upon the criteria

sed to select task-relevant parcels, since methods were only compared

n these parcels. Whereas the previous analysis used a fixed selec-

ion criteria (see Section 5.2 ), this analysis compared methods over a

ange of statistical thresholds for identifying task-relevant parcels to en-

ure results generalize across dietection criteria. Thresholds were de-

ned by uncorrected within-method (second-level) significances rang-

ng from 𝑝 = 0 . 1 to 𝑝 = 𝐸 − 10 , one-tailed. We compared methods on

ll parcels that met a given threshold for at least one pipeline (origi-

al, pre-regressed, or MINDy). We imposed a minimum of 5 parcels for

omparison which restricted the range of Cued Task Switching (mini-

um threshold: 𝑝 = 𝐸 − 5 ), while all other tasks had a sufficient number

f parcels (AX-CPT: 𝑛 = 10 , Stern: 𝑛 = 7 , Stroop: 𝑛 = 58 ) meeting even

he most stringent criteria ( 𝑝 ≤ 𝐸 − 10 ). Results indicated that MINDy-

ased Filtering improved statistical power (effect size) relative to con-

entional analyses on all tasks for all detection levels considered. Our

pproach also increased statistical power relative the pre-regressed con-

rol for all but one case (when only five parcels were compared for Cued-

S; 𝑡 (4) = 2 . 5 , 𝑝 = 0 . 065 , 2 − 𝑡𝑎𝑖𝑙𝑒𝑑). We conclude that the proposed tech-

ique improves statistical power in task-related parcels, regardless of

ow strictly “task-related ” is defined. 

One limitation of the previous tests, however, concerns the deter-

ination of which parcels are included in analysis: we compared effect

izes in parcels that met a significance criteria (i.e., already had large

ffect sizes). This approach is anatomically parsimonious in that the

omparison regions are informed by data rather than prior assumptions.

owever, this dependency could produce biases. Therefore, we repeated

he previous analyses over the fixed set of DMCC34 parcels, which had

een independently identified through pre-specified contrasts. Analy-

es over this restricted, pre-specified group of parcels agreed with the

revious results: the omnibus (all task) statistical detection power and

he task-specific effect sizes all improved relative to both the original

ipeline and the pre-regressed controls (maximum 𝑝 = 1 . 8 𝐸 − 4 ). Thus,
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Fig. 5. MINDy-based Filtering improves statis- 

tical power in identifying task effects. (A) Av- 

erage group-level 𝑇 -statistic for MINDy-based 

Filtering across tasks in which the parcel had 

a significant cognitive control effect for at 

least one method. Uncolored parcels did not 

meet significance averaged across tasks. (B) 

Analogous results for conventional analyses. 

(C) Effect-size (Cohen’s D) for parcels meet- 

ing significance for at least one method by 

task and across significance thresholds (uncor- 

rected). Magenta indicates the corresponding 

thresholds in terms of effect size (one-tailed) 

and shading indicates standard errors. “MINDy ”

denotes MINDy-based Filtering and “Orig ” de- 

notes the original pipeline. We only plotted 

the original pipeline for comparison due to vi- 

sual overlap with results from the pre-regressed 

pipeline (i.e. original and pre-regressed were indistinguishable). 
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esults indicated that MINDy-based Filtering improved statistical detec-

ion even when analyses were restricted to this group of 34 pre-specified

arcels. 

.6. MINDy ‐based filtering selectively enhances task ‐related neural signals 

Results in the previous section indicate that MINDy-based Filter-

ng increases the statistical detection power of task effects ( Fig. 5 C).

tatistical power and effect sizes are useful benchmarking criteria as

hey are easy to interpret and relate to potential applications. However,

hese markers are also limited in that they indicate the ability to re-

ect a generic null hypothesis of no task effects. Yet this generic null is

ot always a useful benchmark from which to provide additional sci-

ntific insight. For instance, approaches which magnify anatomically

lobal effects may provide little benefit to functional “brain-mapping ”

tudies, which are most meaningful when they differentiate between

rain regions. Therefore, we tested whether the improvements found

ith MINDy-based Filtering are anatomically global or serve to further

ifferentiate regions (i.e., are anatomically selective). 

We consider two sorts of global effects: additive “shifts ” in the global

ignal and global “scaling ” of task effects. In statistical modeling termi-

ology, the former reflects a main-effect (intercept) of method, whereas

he latter reflects the method-specific slope. We modeled the differenti-

tion between brain regions as either a main effect of regional signifi-

ance (i.e., whether a region has a significant effect) or as an interaction

ith regional significance reflecting either a shift or rescaling of effect

izes of significant regions due to MINDy-based filtering, relative to the

ontrol models. We use the logical-valued variable 𝑆𝑖𝑔 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 to denote

hether a parcel exhibited a significant effect for either method in a

iven second-level task analysis. We denote the MINDy-filtered second-

evel estimate (group-T) for each as 𝑌 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 which is modeled as a func-

ion of matched control analyses (e.g. the original GLM or pre-regressed)

hich are denoted 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 : 

 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 = 𝛽𝑡𝑎𝑠𝑘 + 𝛽0 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 + 𝑆𝑖𝑔 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ( 𝛽1 + 𝛽2 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ) + 𝜖𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 . 

(25) 

e assume that 𝜖 is independently and identically distributed across

asks and parcels (iid.). The coefficient 𝛽1 represents the main effect

f parcel significance, while 𝛽2 represents the interaction with parcel

ffect size in control methods. Conceptually, these two components rep-

esent the degree to which MINDy-based Filtering further separates task-

mplicated and non-implicated parcels and the degree to which dif-

erences among task-implicated regions are further magnified, respec-

ively. 

Results indicate that the MINDy-based Filtering technique demon-

trates differential sensitivity, in that improvements are greater in
11 
ask-implicated regions ( Fig. 6 A). The main effect of event-related

egional significance was significant relative both the original ( 𝛽1 =
 . 97 ± . 09; 𝑡 (1669) = 10 . 8 , 𝑝 ≈ 0 ) and pre-regressed pipelines ( 𝛽1 = 1 . 05 ±
 . 09; 𝑡 (1669) = 12 . 2 , 𝑝 ≈ 0 ). This result indicates that MINDy-based Fil-

ering further separates event-implicated and non-implicated regions

ather than simply increasing global statistical features. This feature

lso held at the single-task level in which linear models revealed a main

ffect of regional significance in all four tasks for both original (max

 = 0 . 0007 ; Fig. 6 B) and pre-regressed controls (max 𝑝 = 0 . 0025 ). MINDy-

ased Filtering also differentially magnified effect sizes relative the orig-

nal analysis ( 𝛽2 = 0 . 075 ± 0 . 023; 𝑡 (1669) = 3 . 3 , 𝑝 = 0 . 001 ), but this effect

as small and did not reach significance for the pre-regressed control

 𝛽2 = 0 . 034 ± 0 . 022; 𝑡 = 1 . 53 , 𝑝 = 0 . 13 , 2-tailed). Thus, task-implicated re-

ions experienced the greatest improvements due to MINDy-based Fil-

ering. For the current dataset, this approach primarily functioned to

urther highlight task-implicated brain regions (a main effect of re-

ional significance) rather than magnifying the differences between

ask-implicated regions. These results imply that MINDy-based Filter-

ng is sensitive to task-implicated brain regions rather than inducing

natomically global effects. 

.7. Identifying a latent cognitive construct 

The previous analyses indicate that MINDy-based Filtering enhances

he identification of neural activity associated with a set of contrasts

etween trial-types (theoretical high control-demand trials minus low

ontrol-demand trials). However, many cognitive neuroscience studies

eek to understand cognitive constructs, as opposed to unitary tasks. In

he current section, we explore how well each method identifies the neu-

al correlates of one such construct: cognitive control. The four tasks we

tudied have all been previously used to index cognitive control (typ-

cally via the difference between high-control and low-control trials).

owever, because the tasks themselves are not construct-pure (i.e., they

ap multiple cognitive constructs) the neural activity associated with

asks is also expected to be non-identical. To control for this fact, we

sed the different trial types to generate levels of “construct-purity ” in

erms of cognitive control: low-control trials (low purity) and the high-

s.-low contrast (high purity). We consider the high-vs.-low contrast to

e more “construct-pure ” in terms of cognitive control since it controls

or many of the other cognitive processes that differentiate tasks. For

nstance, speech production (unique to the Stroop task), is identical be-

ween high and low-conflict trials (the same set of words are produced).

ikewise, working memory maintenance during delays (Sternberg, AX-

PT, and Cued-Task Switching) does not differ between high and low

ontrol-demand trials since these trial-types are identical through the

elay period (up until the probe). The “construct-purity ” of a condition

hus indicates the degree of psychological similarity across tasks. 
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Fig. 6. MINDy-based Filtering enhances task- 

related signals relative to controls. (A) Com- 

parison of parcel significance before and af- 

ter MINDy-based Filtering collapsed across tasks. 

The multi-level model fit (averaged across the 

main effect of task) is plotted in red and 

the threshold-nonlinearity indicates sensitivity to 

parcel-significance. (B) Task-specific comparisons 

relative the original analyses. Improvements can 

be seen in the number of parcels exhibiting higher 

t -values after MINDy-based Filtering relative to 

conventional analyses (i.e., above the identity 

line). Yellow dots indicate significant parcels (in 

terms of the control-demand effect) which also had 

increased effect sizes from MINDy-based Filtering, 

while blue dots denote significant parcels whose 

effect sizes were larger with conventional analy- 

ses. Teal dots denote parcels which did not ex- 

hibit a significant control-demand effect for either 

method. “MINDy ” denotes MINDy-based Filtering and “Orig ” denotes the original pipeline. Results with the pre-Regressed pipeline were indistinguishable from those 

with the original pipeline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. MINDy-based Filtering enhances cross- 

task similarity and behavioral prediction of 

cognitive control. (A) MINDy increases the 

similarity of brain activation profiles (Gener- 

alizability Coefficient/ICC) across task condi- 

tions that engage similar psychological mech- 

anisms (high-low cognitive control contrast) 

across tasks, but not when conditions do not 

isolate a common construct (low control trials). 

(B) MINDy-based Filtering enhances correla- 

tions between event-related responses (average 

over DMCC34) and RTs in each task (collapsed 

across the 3 scanning sessions). (C) MINDy- 

based Filtering also enhances the correlation 

between sustained responses in DMCC34 and 

error-rates (baseline session). Analogous results for the pre-regressed pipeline are displayed in SI (SI Fig. 11 C and D). “MINDy ” denotes MINDy-based Filtering, 

pre-Reg denotes the control pipeline with motion regression performed before GLM fitting, and “Original ” denotes the conventional pipeline. 
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We tested whether increasingly similar psychological contexts (con-

itions) across tasks are associated with more-similar neural effects

sing the Generalizability coefficient (a form of inter-class correla-

ion/ICC; Shrout and Fleiss, 1979 ). We compared measures in terms of

heir generalizability in tasks conditions which tapped a common con-

truct (cognitive control demand) as well as conditions in which tasks

ere less psychologically similar. We predicted that MINDy-based Fil-

ering would identify greater neural similarity between psychologically

imilar task conditions (higher generalizability/ICC) relative to psy-

hologically dissimilar conditions, reflecting construct-selectivity. Con-

ersely, we expect the ICC for psychologically disimilar task conditions

 “low purity ”) to be lower, reflecting disimilar neural activity patterns. 

The ICC “units of observation ” consisted of the group-mean beta for

ach brain parcel (all 419 brain regions) and “classes ” consisted of the

ifferent tasks. Results indicated that the proposed technique was sen-

itive to the cognitive control construct at group level ( Fig. 7 A). In the

low purity ” condition, MINDy-based Filtering reported lower similar-

ty between tasks ( 𝐼𝐶𝐶 = 0 . 50 ± 0 . 02 ) than the original and pre-regresed

ipelines ( 𝑝 ′𝑠 < 0 . 001 , 5000 bootstraps). Thus, MINDy-based Filtering

oes not generically increase the similarity of task results irrespective of

ognitive construct. By contrast, for the “high purity ” condition, MINDy-

ased Filtering generated significantly more similar results across tasks

 𝐼𝐶𝐶 = 0 . 60 ± . 03 ) than the original and pre-regressed pipelines ( 𝑝 ′𝑠 <

 . 001 , 5000 paired bootstraps). We conclude that MINDy-based Filter-

ng improves sensitivity to the cognitive control construct at group-level.

ased on the nature of how these ICC’s were calculated, this finding can

lso be interpreted as indicating that the anatomical profile of effects

i.e., the gradient of effect sizes across the brain) becomes more similar

r consistent across tasks after MINDy-based filtering. 
12 
.8. MINDy ‐based filtering enhances brain ‐behavior relationships 

The previous section demonstrated that neural effects identified with

INDy-based Filtering better generalized across task conditions tapping

 common construct (cognitive control) than conventional techniques.

n this section we demonstrate that this relationship also holds for be-

avior by using individual differences in task effects to predict the cor-

esponding variation in behavioral cognitive control effects. 

To isolate the effect of cognitive control demand we contrasted high-

ontrol and low-control trials for both the neural and behavioral data.

his approach, comparing trial types, is common in neuroscience includ-

ng the neuroscience of individual differences. Interestingly, we found

hat across methods, individual differences in RT were positively corre-

ated with the conflict-related (event) brain response but had a weaker

elationship to sustained activity (SI Fig. 11 A and B). By contrast, indi-

idual differences in accuracy were positively correlated with sustained

ctivity, but unrelated to event-related activity (SI Fig. 11 A and C).

herefore, we compared methods in predicting RT using event-related

stimates and in predicting accuracy using estimates of sustained ac-

ivity. We also found, using conventional analysis, that brain-behavior

elationships were greater for the contrast between trial-types than for

rial types in isolation. Averaged over tasks, the original pipeline had a

ean correlation with RT of 𝜌 = 0 . 21 for high-low vs. 𝜌 = − . 15 for high

lone. The analogous correlations for MINDy were 𝜌 = 0 . 36 (high-low)

nd 𝜌 = −0 . 08 (high only). For this reason, we employed the high-vs.-

ow control contrast in comparing methods. 

For each subject × task × session, we summarized event-related ef-

ects in each task × method via the difference of normalized ( z -scored

ver subjects) high and low control trial coefficients averaged over the
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MCC34 set of parcels and similarly for sustained effects. Behavioral

easures were similarly defined by the difference in normalized RT be-

ween high and low control trials and the accuracy in high control trials

nearly identical results are derived using high-low since low-trial ac-

uracy is near ceiling). We found that MINDy-based Filtering increased

he recorded correlations with RT for each task ( Fig. 7 B) and the aver-

ge change in correlation across tasks was statistically significant (vs.

riginal and vs. pre-regressed: 𝑝 < 0 . 05 , 5000 bootstraps). Similarly, our

pproach increased correlations with accuracy ( 𝑝 < 0 . 05 , 5000 boot-

traps, Fig. 7 C). Results using the pre-regressed pipeline are depicted

n SI Fig. 11 C, D. We conclude that after MINDy-based Filtering, indi-

idual differences in brain responses better predict behavioral measures

ssociated with cognitive control. 

. Discussion 

We demonstrated that MINDy-based Filtering increases the ability

o detect both event-related (cognitive control-demand) and sustained

rain responses in task fMRI ( Section 5.5 , SI Section 7.5 ). These ef-

ects are strongest in task-implicated brain regions ( Section 5.6 ) and

enerate higher temporal precision than the original BOLD timeseries.

y modeling and then partialing-out intrinsic dynamics, MINDy-based

iltering reduces both trial-to-trial variability within subjects, and vari-

bility between subjects ( Section 5.4 ). However, while the absolute

agnitude of subject-to-subject variability decreased, individual differ-

nces (and group —level activity) in a latent cognitive construct (control-

emand) generalized better between tasks after MINDy-based Filtering

 Section 5.7 ). MINDy-estimated task effects were also more predictive

f individual differences in behavior ( Section 5.8 ). Together, these re-

ults suggest that MINDy-based Filtering can enhance the detection of

ask-evoked brain activity. We discuss further implications of the results

elow. 

.1. Relationship with frequency ‐based filtering 

Frequency-based (spectral) filtering has been applied to fMRI signals

n many previous studies ( Biswal et al., 1996; Friman et al., 2004 ). High-

ass filtering is commonly applied to both resting-state and task data to

emove signal drift which is thought to largely reflect changes in non-

euronal variables. Low-pass filtering is also sometimes applied, primar-

ly for resting-state data. Although these approaches were common in

arly fMRI experiments, the changing nature of fMRI acquisitions (e.g.

R length) and analyses (e.g. functional connectivity) has led to renewed

ebate over these techniques ( Davey et al., 2013 ), as well as the devel-

pment of more sophisticated methodologies (e.g. Särkkä et al., 2012;

atterthwaite et al., 2013 ). In the current work, we did not perform spec-

ral filtering (instead using AFNI’s “polort ” function for polynomial ba-

is de-drifting). Likewise, MINDy-based Filtering is not a direct replace-

ent for spectral filtering, which can be applied before our technique,

fterwards, or not at all. However, as previously mentioned, when the

onnectivity parameters of the model are zero, the proposed technique

educes to a form of spectral filtering based purely upon autoregressive

odels. Empirically we have demonstrated that MINDy-based Filtering

utperforms filters based upon autoregressive models (SI Section 7.7 , SI

ig. 10 ), so effects cannot be attributed solely to the removal of partic-

lar frequency components within each region. 

Notably, MINDy-based Filtering improves detection in both sus-

ained and event-related analyses over both conventional methods and

utoregressive filters. By contrast, filters based upon autoregressive

odels are expected to underperform in the identification of (low-

requency) sustained effects, as we confirmed in supplemental analy-

es (SI Section 7.5 ). At a statistical-level, dynamical systems models

including MINDy) capture the multivariate partial autocovariance be-

ween successive time-points (i.e. how 𝑥 𝑡 +1 is related to 𝑥 𝑡 ). As a re-

ult, removing these predictions from the data inherently yields a time-

eries with lower autocovariance. The improved detection of sustained
13 
ffects is therefore significant as it indicates that MINDy-based Filtering

eveals systematic differences between the resting-state and task dynam-

cs rather than simply acting as a high-pass filter. These effects are also

ore pronounced in task-implicated parcels ( Section 5.6, Fig. 6 ) indi-

ating that these features are also context-related. 

.2. Relationship with other approaches 

The current approach is conceptually related to several current ini-

iatives for linking resting-state and task-state brain activity. Our ap-

roach uses resting-state brain dynamics to extrapolate patterns of in-

rinsic dynamics that also factor into brain activity during task states.

rameworks such as Activity Flow ( Cole et al., 2016 ) have demon-

trated similarity between the spatial aspects of evoked responses and

esting-state network structure. Likewise, functional connectivity pat-

erns have been found to be roughly similar between resting-state and

ask ( Cole et al., 2014 ). However, whereas these frameworks are largely

mployed to discover similarities between spontaneous and evoked ac-

ivity, we analyze the manner in which the task-state subtly deviates

rom resting-state activity over short time-scales (how activity changes

ver short time-steps or TRs). 

Other approaches have also investigated the difference between

rain dynamics in task-state and resting-state. Previous work ( Fox et al.,

006; He, 2013 ) has demonstrated that intrinsic dynamics shape task-

voked activity on a trial-by-trial basis and modeling studies have re-

roduced the statistical differences between task and resting-state ac-

ivity ( Ponce-Alvarez et al., 2015 ). Our approach furthers these ef-

orts by leveraging these underlying concepts into an empirical mod-

ling/analysis framework. 

Dynamic Causal Modeling (DCM, Friston et al., 2003 ) frameworks

ave also used empirical dynamical systems models to improve esti-

ates of task effects. As previously mentioned ( Section 1.2 ), DCM tech-

iques allow task effects to manifest changes in the exogeneous drive to

rain regions and (for small-scale DCMs) the effective coupling between

rain regions. By contrast, the current MINDy-based Filtering technique

nly models a single factor: changes in the input to each brain region,

hich collapses both of these mechanisms into a single term, as is also

ommon in larger-scale DCM models (e.g. Frässle et al., 2017 ). Our ap-

roach differs from all DCMs, however, in that we produce a timeseries

f latent state estimates (task-related “input ” to each region) which does

ot require any preconceived model of task effects (i.e., that they fol-

ow a certain temporal pattern). In the current work, we used statisti-

al GLMs to analyze the MINDy-filtered data with Finite Impulse Re-

ponse models fit for each trial type, with and additional components

o model task blocks (mixed block/event-related designs). However, the

nd-product of our technique (a timeseries) could, in principle, be ana-

yzed with a wide variety of methods, including parcel-level multivariate

echniques (e.g., multivariate pattern analysis; MVPA). 

.3. Limitations 

The proposed work rests upon three related claims: (1) intrinsic dy-

amics are roughly conserved between task periods and rest, (2) that by

ubtracting intrinsic dynamics we identify changes in “input ” to each

rain area and (3) that the signal generated by this calculation is a better

arker of task effects (ostensibly task-related cognition). The first two

laims are interdependent. We have mathematically defined changes in

input ” as the signal components which are not explained by intrinsic

ynamics (the residual after subtracting the modeled intrinsic compo-

ent). The accuracy of estimated changes in “input ” thus hinges upon

hether the modeled intrinsic dynamics meaningfully generalize. We at-

empted to address this question empirically (see Section 5.3 ), and the

esults suggest that this assumption does hold. Specifically, we found

hat MINDy models estimate variation in the timeseries better during

est-blocks than task-blocks, which makes sense as the short rest blocks

uring task scans are more akin to resting-state scans. Moreover, even



M.F. Singh, A. Wang, M. Cole et al. NeuroImage 247 (2022) 118836 

w  

c  

e  

f  

F  

m  

p  

b  

d  

a  

t  

a  

t  

i  

o  

v  

i  

(

6

 

p  

a  

u  

e  

t  

t  

m

 

S  

q  

w  

p  

r  

v  

S  

a  

r  

s  

e  

o  

b  

(  

g  

a  

c  

d  

f  

o  

i

6

 

m  

c  

t  

a  

C  

b  

i  

t  

n  

w  

b  

e  

t  

s  

p  

a

 

c  

n  

u  

H  

b  

s  

l  

c  

i  

2  

d  

t  

t  

e  

d  

t  

c

6

 

e  

i  

e  

s  

d  

i  

m  

i  

F

 

s  

T  

t  

o  

H  

p  

n  

t  

b

6

 

o  

w  

s  

e  

“  

t  

h  

m  

h  

a  

t  

n

6

 

i  
ithin task blocks, the accuracy of predicted activation is well above

hance, and the timepoints that are not well-explained by MINDy mod-

ls (derived from resting-state) are precisely those during peak task ef-

ects (probe periods during each trial). Conversely, after MINDy-based

iltering these periods were well explained by task-based GLMs (with

ore variance explained than if MINDy-based Filtering were not ap-

lied) which indicates that the deviation from models is well explained

y systematic, additive “input ” to the model, as opposed to a break-

own in model-assumptions, which would increase trial-to-trial vari-

bility. We also note that the generalizability assumption is “soft ” in

he sense that small changes in effective connectivity do not violate our

ssumptions. Since each connection describes the strength of input to

he “post-synaptic ” region, changes in connection strength are absorbed

n the input estimate (summing over “pre-synaptic ” sources). However,

ur assumption that MINDy-based Filtering removes mostly “nuisance

ariance ” could be violated by some forms of large, systematic changes

n effective connectivity. Fortunately, this assumption is easy to check

e.g., see Section 5.3 ) and we have not found evidence of its violation. 

.3.1. Methodological considerations 

The bulk of our results concern the last claim (improved detection

ower) and the demonstration that observed statistical improvements

re related to task-specific neural processes. We performed these tests

sing several controlled comparisons and lines of inquiry. However, our

fforts in this domain are limited by using a specific subset of cognitive

asks: those used to index cognitive control. As the set of potential cogni-

ive constructs remains vast, further testing in other cognitive domains

ay be useful. 

Another limitation concerns how MINDy models are parameterized.

ince we parameterize models based upon resting-state data, we re-

uire the collection of both resting-state and task data for each subject,

hich increases data requirements. Moreover, this dependency could

rove problematic for low-quality resting-state data, as mis-specified

esting-state models could corrupt task estimates. We found that indi-

idual differences in goodness-of-fit were consistent across tasks (see SI

ection 7.2 ), so this possibility cannot be ruled out. However, previous

nalyses of MINDy modeling indicated that the goodness-of-fit is not

elated to individual differences in motion ( Singh et al., 2020b ) and,

imilarly, MINDy-based Filtering was not impacted by individual differ-

nces in motion (SI Section 7.8 ). The results also do not support model

verfitting, as goodness-of-fit did not decrease when applied to inter-

lock task periods ( “rest ” blocks) relative to training (resting-state) data

 Fig. 3 A). In supplementary analyses, we also observed that using the

roup-average MINDy-Filter improved results relative to conventional

nalyses (but less than individualized models; SI Section 7.3 ), so using a

ommon MINDy Filter may ammeliorate short/low-quality resting-state

ata. Further study may therefore be beneficial in determining which

actors (neural or nuisance) influence individual differences in goodness

f fit, as these factors could influence estimated individual differences

n task variables. 

.3.2. Mechanistic considerations 

Future study is also necessary to disambiguate which biological

echanisms contribute to the calculated “input ” signal. For decades,

omputational neuroscience models have largely formalized task con-

ext as an exogeneous forcing ( “input ” or “bias ”) term in neural networks

nd connectionist models (e.g. Logan and Cowan, 1984; Rogers and Mc-

lelland, 2014; Rougier et al., 2005; Usher and McClelland, 2001; Ver-

ruggen and Logan, 2009 ). This formulation is appealing for its simplic-

ty; however, external contexts serve only as “inputs ” during sensory

ransduction, since brain activity is known to modulate even sensory

eurons (e.g. Fields and Anderson, 1978; London et al., 2013 ). Even

hen these effects are neglected, many modeling studies assume that

rain regions receive task “inputs ”, even if these regions are not directly

nervated by sensory afferents (e.g. Rougier et al., 2005 ). As a result,

hese “inputs ” should not be interpreted as literal inputs to the brain (i.e.
14 
ignals from sensory nerves). Rather, these “inputs ” include the initial

ropagation of such signals over the fMRI sampling rate (1 TR), so our

pproach is limited by the temporal resolution of fMRI BOLD. 

The nature of these “inputs ” is also somewhat underspecified. In the

urrent approach, we use MINDy to model the propagation of brain sig-

als during resting-state. The model predicts task-fMRI activation based

pon the effective connectivity parameters estimated from resting-state.

owever, these parameters are limited to describing the relationship of

ulk activity between brain regions. Many brain regions contain diffuse

ets of neurons with heterogeneous axonal connectivity profiles. Several

ines of evidence suggest that task-contexts can modulate the effective

onnectivity between brain regions via selective recruitment of neurons

n synchronous ensembles ( Akam and Kullmann, 2014; Buschman et al.,

012; Smith et al., 2019 ). Our approach is therefore limited, in that it

oes not explicate how changes in “input ” relate to changes in the effec-

ive coupling between brain regions. Future studies may improve upon

he current approach by further modeling how task events modulate

ffective connectivity between brain regions. Such studies could either

irectly parameterize connectivity × task interactions (as in DCM), or ex-

end the filtering approach to estimate time-varying (or state-varying)

onnectivity. 

.4. Task dynamics could potentially influence statistical improvements 

The current approach serves to estimate latent changes in input to

ach brain area. In the present study we found that MINDy-based Filter-

ng consistently improved statistical detection power across tasks. How-

ver, there may be contexts in which brain activity ( 𝑥 ( 𝑡 ) ) is a more con-

istent marker of task context than input ( 𝐼( 𝑡 ) ). Such cases occur when

ifferent input patterns (i.e., inter-trial variability in input) lead to sim-

lar outcomes in terms of activity. In these cases, MINDy-based Filtering

ight actually decrease detection power, since the “input ” on each trial

s less consistent than the temporally-delayed consequences of the input.

uture studies might identify such cases using a wider variety of tasks. 

One area in which our approach could also be limited is in detecting

low neural events in which task-related activity evolves over multiple

Rs. Since our approach acts as a pre-processing filter (i.e., doesn’t use

ask information) it is possible that it could filter out the propagation

f very slow task-related activity in addition to task-unrelated activity.

owever, this cancellation is only expected when task-related activity

ropagates in an identical manner (has the same dynamics) as sponta-

eous brain activity. In practice, we have found that MINDy-based Fil-

ering improves the detection of sustained brain activity and strengthens

rain-behavior linkages ( Section 5.8 , SI Section 7.5 ). 

.5. Extension to other modalities 

In the current work we have leveraged recently developed models

f human brain activity as reflected in fMRI (MINDy). In this context,

e demonstrated that our filtering procedure significantly improved the

tatistical power and behavioral correlates of task-evoked activity. How-

ver, we have refrained from speculating on the source of additional

input ” to each brain area as the fMRI timescales do not allow tracing

he series of events (e.g., order of signaling) that led to this input. We

ave recently proposed a new framework to enable high-dimensional

odel estimation of M/EEG data ( Singh et al., 2021 ). These modalities

ave the potential to detect the sequence of neural events underlying

 given computation. Future work may benefit from using the filtering

echnique with M/EEG models ( Singh et al., 2021 ) to further explicate

eural mechanisms underlying cognition. 

.6. Conclusion 

In the current work, we proposed a new technique to estimate the

nfluence of external contexts (task conditions) on brain activity (in
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Fig. 8. Comparison of signal decomposition via background-activity vs. MINDy-based Filtering. (A) Toy model of a two node network with separate inputs to each 

node. (B) Simulated timeseries. MINDy-based filtering decomposes the timeseries into the filtered “input ” (C) and the model-predicted activity based upon intrinsic 

dynamics (D). By contrast, task-regression decomposes activity into a main-effect of task estimated by GLM (E) and “background activity ” (F). 
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ur case fMRI). This technique forms a mathematical filter and there-

ore functions as a preprocessing step, rather than as a direct tool for

ypothesis testing. This property is advantageous as it allows this ap-

roach to be used in conjunction with a variety of existing methods.

e have demonstrated that using MINDy-based Filtering improves sta-

istical power ( Fig. 5 C), increases sensitivity to task-implicated regions

 Section 5.6; Fig. 6 ), and better identifies the neural signatures of a la-

ent cognitive construct (cognitive conflict) ( Fig. 7 A). Moreover, MINDy-

ased Filtering enhances the strength of brain-behavior reslationships

hat differentiate subjects ( Fig. 7 B and C). These improvements are not

ensitive to motion within a reasonable range (SI Section 7.8 ). Our tech-

ique can be easily inserted into most fMRI processing pipelines. We

ave made code available via the primary author’s GitHub to facilitate

his process. 

. Supplemental information 

.1. Relationship with background-activity 

Our framework is conceptually related to that of background activ-

ty ( Cole et al., 2021; 2019; Fair et al., 2007; Norman-Haignere et al.,

011 ) in which brain activity during task is modeled as the superposition

f a canonical task-evoked response and trial-to-trial variability ( “back-

round activity ”). In that approach, background activity is isolated by

ubtracting the task-related component as estimated during statistical

LM analyses, then used to estimate Functional Connectivity during

ask ( Cole et al., 2021; 2019; Fair et al., 2007; Norman-Haignere et al.,

011 ). However, despite both approaches dividing brain activity into

wo components, our approach fundamentally differs in terms of what

ignals are considered task-related vs. intrinsic. Nondynamic approaches

ivide the observed signal into systematic task effects and zero-mean

noise ” (in the GLM sense) whereas dynamic frameworks consider both

xtrinsic and intrinsic contributions to how the brain evolves moment-

o-moment. Passive downstream propagation of brain activity is pre-

icted by intrinsic dynamics so these indirect effects are attributable to

ntrinsic factors despite being systematic (nonzero mean). As a result,

hese features remain in conventional GLMs but are removed during

INDy-based Filtering. We illustrate this point in a toy-model simula-

ion featuring two linear nodes with a single directed connection and

ime-varying input to each node ( Fig. 8 A and B). As the simulation in-

icates, MINDy-based Filtering extracts the timeseries of input to the

ystem ( Fig. 8 C) whereas downstream effects (i.e., the activation of 𝑛 2
15 
ue to 𝑛 1 ) are predicted based upon intrinsic dynamics (following the

nitial input; Fig. 8 D). By contrast, conventional GLM analyses do not

eparate direct and indirect processes and ascribe both features to the

ask-effect ( Fig. 8 F and G). For this reason, the background activity and

odel predictions are not equivalent. Of course, unlike this toy simula-

ion, neural processes occur over multiple timescales, many below fMRI

esolution. As such, the estimated “input ” actually reflects early process-

ng and later active processing (as opposed to direct input from sensory

erves) and model-predictions reflect passive propagation of these sig-

als over longer timescales. In our data, model predictions are more

imilar to the original timeseries than to the estimated “background ac-

ivity ”. Thus, although our approach has some conceptual relationships

ith the task-regression approaches to estimating background activity,

hese approaches are not equivalent and the intrinsic dynamics are not

ynonymous with background activity. 

.2. Sensitivity and influences of MINDy goodness ‐of ‐fit 

We found that model prediction accuracy was consistently lower

or some subjects across all scan-types, including the resting-state data

o which the model was trained. This observation could reflect either

odel mis-estimation at rest or a general inability to predict that sub-

ect’s data even with a properly optimized MINDy model (due to poor

ignal quality or deviations from the MINDy framework). To distinguish

etween these possibilities, we compared cross-subject prediction accu-

acy: the degree to which models trained to one subject’s resting-state

redict another subject’s brain activity (rest or task). While cross-subject

redictions were less accurate than within-subject (as expected), we

ound that the variation due to training-subject was far less than that

ue to testing-subject. Moreover, many subjects with poor model fits

redicted other subject’s data better than their own. These results indi-

ate that differences in model accuracy are primarily due to properties

f the poor-fitting subject’s data rather than the model-fitting procedure

er se. 

We also tested whether our filtering approach is sensitive to model

oodness-of-fit. To test this influence, we divided subjects into groups

ased upon median goodness-of-fit (either whole-brain or DMCC34

arcels) as measured during rest and during task (separately for each

ask). Analyses compared the mean T -value across parcels-of-interest

or the two groups with pairwise parcels-of-interest defined as previ-

usly (at least one group passes 𝑝 < 0 . 001 threshold). Null-distributions

10,000) were generated by randomly assigning subjects to two equal-
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Table 1 

Attributes of the DMCC34 parcels. Indices are for the Schaefer 400-region, 7-network parcella- 

tion Schaefer et al. (2017) . Coordinates (X,Y,Z) refer to MNI centroids. 

Parcel number Hemisphere Network ROI X Y Z 

22 Left Visual 22 − 19 − 65 7 

77 Left Dorsal Attention Post_9 − 33 − 46 41 

78 Left Dorsal Attention Post_10 − 29 − 58 50 

86 Left Dorsal Attention FEF_1 − 40 − 3 51 

87 Left Dorsal Attention FEF_2 − 25 − 1 55 

91 Left Dorsal Attention PrCv_2 − 50 3 38 

93 Left Salience/Ventral Attention ParOper_2 − 58 − 44 27 

99 Left Salience/Ventral Attention FrOperIns_3 − 33 25 − 1 
101 Left Salience/Ventral Attention FrOperIns_5 − 33 19 8 

103 Left Salience/Ventral Attention FrOperIns_7 − 43 12 2 

105 Left Salience/Ventral Attention FrOperIns_9 − 52 9 13 

107 Left Salience/Ventral Attention Med_1 − 6 22 31 

110 Left Salience/Ventral Attention Med_4 − 5 9 48 

127 Left Control Par_1 − 29 − 74 42 

130 Left Control Par_4 − 35 − 62 48 

139 Left Control PFCl_5 − 42 38 22 

140 Left Control PFCl_6 − 45 20 27 

144 Left Control pCun_1 − 9 − 77 45 

148 Left Control PFCmp_1 − 4 28 47 

172 Left Default PFC_7 − 48 28 0 

185 Left Default PFC_10 − 53 19 11 

185 Left Default PFC_20 − 42 7 48 

189 Left Default PFC_24 − 6 10 65 

219 Right Visual 19 9 − 74 9 

301 Right Salience/Ventral Attention PrC_1 51 3 41 

303 Right Salience/Ventral Attention FrOperIns_2 41 8 − 3 
306 Right Salience/Ventral Attention FrOperIns_5 37 23 5 

314 Right Salience/Ventral Attention Med_4 6 11 58 

340 Right Control PFCv_1 34 21 − 8 
346 Right Control PFCl_6 50 30 18 

347 Right Control PFCl_7 48 18 23 

349 Right Control PFCl_9 47 29 28 

350 Right Control PFCl_10 39 11 34 

353 Right Control PFCl_13 43 7 51 
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ized groups without replacement. We did not find a significant differ-

nce in detection power for either task-combined data or any individual

asks using either resting-state or task goodness-of-fit ( 2 × 5 design). We

onclude that improvements due to MINDy-based Filtering are not de-

endent upon goodness-of-fit within a reasonable range. 

.3. Influence of individualized brain modeling 

The primary restriction in applying our approach is the use of in-

ividualized brain models built from resting-state data. Acquiring suf-

cient data (we recommend ≥ 15 min) is time-consuming and may be

articularly burdensome in special populations, such as children. There-

ore, an important question for practical application is whether individ-

alized brain models, as opposed to a single model, are necessary. This

uestion is also theoretically interesting as it pertains to how individ-

al differences emerge: via slow propagation along intrinsic dynamics

r via the fast task “input ” (dynamics below the fMRI TR). We address

hese questions in two sets of analyses. 

In the first set of analyses, we tested whether using a common

INDy filter, shared among subjects, is at least as powerful as indi-

idualized brain models. We defined a common MINDy filter by av-

raging the predictions of each subject’s MINDy model. We note that

his procedure is not the same as using a common brain model as the

arameters interact nonlinearly and covary. Hence the “average fil-

er ” cannot necessarily be inverted onto a single, representative MINDy

rain model. Detection power using a common filter only slightly var-

ed from using individualized models. For three tasks, the group-level

lter performed significantly worse in detecting task events over the

MCC34 parcels (all but Cued-TS; max 𝑝 = 0 . 01 ) and for two tasks

sing the whole-brain (AX-CPT: 𝑡 (175) = 8 . 39 , 𝑝 = 1 . 6 𝐸 − 14 ; Stroop:

 (244) = 5 . 49 , 𝑝 = 1 . 0 𝐸 − 7 ) with differences in Cued-TS and Sternberg
16 
nsignificant. The combined detection power across tasks was significant

or events (whole-brain: 𝑡 (493) = 9 . 15 , 𝑝 = 1 . 6 𝐸 − 18 ; DMCC34: 𝑡 (135) =
 . 6 , 𝑝 = 0 . 01 ). However, individualized models only improved sustained

ffects over the DMCC34 parcel-set ( 𝑡 (135) = 3 . 52 , 𝑝 = 0 . 006 ) and not for

he whole-brain analysis ( 𝑡 (293) = −1 . 1 , 𝑝 = 0 . 28 ). Interestingly, we also

ound little qualitative difference in terms of brain-behavior correlations

n.s.), suggesting that improvements reported in the main text are not

ependent upon individual differences in resting-state. 

We also repeated these analyses using random permutations of rest-

ubject and task-subject without replacement to test whether arbitrary

ssignments perform as well. Since our primary analyses concern group-

evel effects, using a group-average filter decreases noise and adds a

urther linkage between subjects. Using random pairings, as opposed to

roup-averages, thus provides a fairer comparison for identifying the

nfluence of individual differences. Significance testing was performed

sing permutation tests (50,000 pairings of training/testing subject).

s expected, random pairings performed worse than the group-average

lter. We again found significantly worse detection power in event-

elated analyses compared to individualized models (average across

asks: 𝑝 < 0 . 001 ; Cohen’s D = 6.5; 50,000 permutations), but the abso-

ute difference due to subject pairing was small ( Δ𝑡 = 0 . 22 ± . 03 ) and the

enefits over conventional analyses remained. We conclude that while

ndividualized models do benefit power in detecting events, this effect

s small relative the overall benefits of MINDy-based Filtering. We quan-

ified the proportion of improvements due to individualized modeling

s: 

𝔼 [ 𝑇 𝐼𝑛𝑑𝑖𝑣 − 𝑇 𝑃𝑒𝑟𝑚 ] 
𝔼 [ 𝑇 𝑃𝑒𝑟𝑚 − 𝑇 𝑂𝑟𝑖𝑔 ] 

(26) 

ith 𝑇 𝐼𝑛𝑑𝑖𝑣 indicating the group- T of significant parcels for individual-

zed MINDy and 𝑇 𝑝𝑒𝑟𝑚 indicating the corresponding values for random

airings of training (rest) and testing (task) subjects. Expectations are
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Fig. 9. MINDy-based Filtering generally improves the detection of sustained effects. Unlike event-related effects, we permitted bidirectional sustained effects, hence 

we compared the absolute magnitude of group- T statistics. The definition of significance was likewise 2-tailed. (A) Pair-wise difference in detection power (group 

T ) for the original pipeline and MINDy-based Filtering. (B) Omnibus (task-collapsed) scatterplot of parcel significance using the original pipeline vs. MINDy-based 

Filtering for each task. Yellow dots indicate significant parcels (in terms of absolute sustained effect) which also had increased effect sizes from MINDy-based Filtering, 

while blue dots denote significant parcels whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did not exhibit a significant 

control-demand effect for either method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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aken over task-relevent parcels (separately defined as in Section 5.2 for

ach permutation) and rest-task subject pairings. Results indicate that

ndividualized models increased benefits in the cognitive-control effect

y 32%, − 1.1%, 16.5%, and 13.2% for AX-CPT, Cued-TS, Sternberg, and

troop, respectively. The omnibus change (collapsed across tasks) was

 25.7% increase in benefits due to individualized models (i.e., most of

he benefits for MINDy vs. orig remained). Thus, from a practial perspec-

ive, we believe that MINDy-based Filters constructed without individ-

alized models can still significantly improve analyses above conven-

ional methods, although further study is needed. Resultantly, the use

f a single MINDy model (e.g., built from all subjects), as opposed to in-

ividualized models, may ease the requirements of quality resting-state

ata for each subject. 

.4. Influence of deconvolution parameter 

We tested whether choice of the NSR (noise-signal-ratio) hyperpa-

ameter in Wiener deconvolution impacts results. This parameter dic-

ates the degree of temporal filtering during deconvolution by regular-

zing the frequency-domain contributions. Larger NSR values lead to

ore filtering. We tested the influence of this parameter by repeating

nalyses with NSR chosen as 0.02, 0.005, 0.002 (main-text), or 0.0005.

hus, we tested NSR values ranging over a factor of 40. Results were

ighly similar for different values of the NSR parameters. Collapsing

ver subjects, parcels, and probe TRs, the high-low coefficient estimates

orrelated, on average, 𝑟 = 0 . 99 across tasks and NSR combinations. Co-

fficients for the most dissimilar NSR parameters (0.02 and 0.0005) cor-

elated between 𝑟 = 0 . 96 to 𝑟 = 0 . 97 depending upon task. For compar-

son, the average correlation over tasks for MINDy vs. the original or

re-regressed pipelines was 𝑟 = 0 . 73 and 𝑟 = 0 . 71 , respectively. All cases

lso preserved the benefits of MINDy-based Filtering. We conclude that,

ithin a reasonable range, variations in choosing the Wiener NSR pa-

ameter do not strongly influence results. 

.5. Detection of sustained effects 

MINDy also improved detection of sustained effects for the Stern-

erg and Stroop tasks relative to the original and pre-regressed pipelines

max 𝑝 = 0 . 0004 ; SI Fig. 9 A). Trend-level improvements were observed

n Cued-TS relative the pre-regressed pipeline ( 𝑡 (51) = 2 . 1 , 𝑝 = 0 . 04 ), but

ot relative the original pipeline ( 𝑡 (55) = 1 . 7 , 𝑝 = 0 . 10 ). However, sus-

ained effects detected by MINDy did not differ relative the original or
17 
re-regressed pipelines for the AX-CPT ( 𝑡 (103) = −1 . 1 , 𝑝 = 0 . 29 , 𝑡 (105) =
1 . 5 , 𝑝 = 0 . 14 , respectively). Combined across tasks, MINDy increased

etection of sustained events relative to both the original ( 𝑡 (355) =
 . 7 , 𝑝 = 2 𝐸 − 8 ; SI Fig. 9 B) and pre-regressed pipelines ( 𝑡 (353) = 6 . 2 , 𝑝 =
 . 3 𝐸 − 9 ) as well as the autoregressive models ( 𝑡 (300) = 14 . 9 , 𝑝 ≈
 , 𝑡 (292) = 17 . 3 , 𝑝 ≈ 0 for global and local AR models, respectively; SI

ig. 10 B). Thus, the proposed technique generally increased statisti-

al power in detecting sustained effects. MINDy-based Filtering also in-

reased the cross-task generalizability of group-average sustained effects

MINDy 𝐼𝐶𝐶 = 0 . 74 ± 0 . 04 , all other pipelines < 0 . 65 , 𝑝 < 0 . 001 , 5000

ootstraps). However, it’s important to note that sustained effects are

ot “construct-pure ” and their distribution was highly skewed (strong

isual component) so we urge caution in interpreting cross-task gener-

lizability of sustained responses (although see Section 5.8 for its rele-

ance to construct-specific behavior). 

.6. Sensitivity of sustained effects 

As with event-related analyses, we examined whether improvements

n the detection of sustained effects were limited to task-implicated re-

ions. As before, we considered bidirectional effects for sustained anal-

ses (i.e. parcels with significant increases or decreases in sustained

ctivity). For this reason, we slightly modified Eq. (25) to model im-

rovements in terms of magnitude rather than a linear main effect

 𝑌 again represents MINDy group- T , while 𝑋 represents comparison

ipeline group- T ): 

 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 = 𝛽𝑡𝑎𝑠𝑘 + 𝛽0 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 + 𝑆𝑖𝑔 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ( 𝛽1 𝑠𝑖𝑔𝑛 ( 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ) 

+ 𝛽2 𝑋 𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 ) + 𝜖𝑡𝑎𝑠𝑘,𝑃 𝑎𝑟𝑐 . (27) 

Note that the coefficient 𝛽1 is now multiplied sign ( 𝑋 task , Parc ) . Re-

ults for sustained analysis mirrored those of the event-related analy-

is. As with event-related analyses, the MINDy-based Filtering differ-

ntially increased effect sizes over task-implicated parcels when com-

ared to the original, task-regressed, and global/local AR pipelines ( 𝛽1 =
 . 54 , 0 . 68 , 1 . 00 , 1 . 03 , respectively; max 𝑝 = 1 . 6 𝐸 − 8 ). As with event-

elated analysis, there was a slight trend of differential magnification vs.

he original analysis ( 𝛽2 = 0 . 05 , 𝑡 (1669) = 2 . 0 , 𝑝 = 0 . 048 ) but not vs. pre-

egressed ( 𝛽2 = 0 . 005 , 𝑡 (1669) = 0 . 22 ). We also observed a negative slope

f 𝛽2 , indicating diminishing returns (the opposite of differential magni-

cation) relative to the global ( 𝛽2 = −0 . 13 , 𝑡 (1669) = −5 . 4 , 𝑝 = 7 . 5 𝐸 − 8 )
nd local ( 𝛽2 = −0 . 077 , 𝑡 (1669) = −2 . 89 , 𝑝 = 0 . 0039 ) AR models. Thus, as

ith events, improvements under MINDy largely manifest a main-effect
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Fig. 10. MINDy-based Filtering provides greater detection power using the full model over autoregressive (AR) reduced models which do not model connectivity. 

(A) Omnibus (task-collapsed) scatterplot of parcel-wise event-related effects (high-low cognitive control demand contrast). Note that the improvements are smaller 

than those relative the original pipeline, indicating that some benefits in event-related detection are due to autoregressive filtering. (B) Scatterplots of parcel-wise 

sustained effects when filtering with the local AR model vs. full MINDy model for each task. Note that AR pipelines perform worse than the original pipeline (larger 

MINDy improvement) for sustained effects. Yellow dots indicate significant parcels (in terms of the control-demand effect) which also had increased effect sizes from 

MINDy-based Filtering, while blue dots denote significant parcels whose effect sizes were larger with conventional analyses. Teal dots denote parcels which did not 

exhibit a significant control-demand effect for either method. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 11. Predicting individual differences in behavior using brain activity (averaged over DMCC34). All measures are z-scored within task ×session. In the baseline 

session, individual differences in RT (averaged over task) are correlated with event-related brain activity, but not sustained activity for original and MINDy pipelines 

(A,B). By contrast, accuracy is predicted by sustained activity (B) but not by event-related activity (A,B). (C) Individual differences in event-related activity better 

predict task RT (averaged over session) after MINDy-based Filtering relative the original and pre-regressed pipelines. (D) Likewise, predictions of baseline-session 

accuracy using sustained activity (averaged over task) also increased. Panels C, D differ from the main text Fig. 7 B,C by additionally including results for the 

pre-regressed pipeline. 
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f parcel significance (i.e. increased categorical distinction between

ask-implicated and non-implicated parcels) as opposed to further dif-

erentiating among task-implicated parcels. 

.7. Comparison with reduced models 

We compared estimation of inputs using MINDy models to analogous

stimates with autoregressive forms which were either subject-specific

but not parcel-specific) or which were specific to subject and parcel

see Methods Section 3.10 ). Since the MINDy model also features an

utoregressive term (the “Decay ”), these alternative models serve as re-

uced special cases which don’t include the effects of inter-regional sig-

aling (connectivity). As such, improvements of the full MINDy model

ver these alternative (autoregressive) models indicate the contribution

f modeling connectivity, as opposed to simply accounting for purely

ocal dynamics. Results indicated that group-level detection power for

INDy-based Filtering was greater than both the homogeneous/global

nd heterogeneous/local autoregressive comparison models. MINDy in-

reased detection power over both autoregressive models in terms of
18 
vent-related effects over the DMCC34 parcels (max 𝑝 = 0 . 0003 ), and

or (whole brain) sustained effects (max 𝑝 = 2 𝐸 − 6 ; Fig. 9 A). Whole

rain analyses also indicated improved detection power for events in all

asks relative the global model (max 𝑝 = 0 . 02 ) while all tasks other than

troop (Stroop 𝑡 (253) = 1 . 22 , 𝑝 = 0 . 22 ; other tasks: max 𝑝 = 7 . 2 𝐸 − 6 )
ere improved relative the local model (SI Fig. 10 A and B). There

as a main effect of regional significance during multilevel modeling

i.e., improvement selectivity; see Section 5.6 ) for MINDy-based Filter-

ng relative autoregressive comparison models (local: 𝑡 (1669) = 3 . 87 , 𝑝 =
 . 1 𝐸 − 4 , global: 𝑡 (1669) = 4 . 15 , 𝑝 = 3 . 5 𝐸 − 5 ). However, MINDy-based

iltering did not significantly magnify effect sizes over AR pipelines

 𝑝 = 0 . 16 , 𝑝 = 0 . 21 for global and local, respectively). Thus, the model-

ng of connectivity in MINDy primarily serves to further differentiate

etween task-implicated and non-implicated parcels as opposed to exac-

rbating differences among task-implicated parcels. MINDy-based filter-

ng also improved the cross-task generalizability of cognitive-control ef-

ects relative autoregressive controls at both the group-level (local ICC =
 . 50 ± 0 . 03 , global ICC = 0 . 52 ± 0 . 03 vs. MINDy-based ICC = 0 . 60 ± 0 . 03 ,
 < 0 . 001 , 5000 bootstraps). 
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.8. Sensitivity to motion 

Lastly, we compared the sensitivity of approaches to motion artifact.

or each task and scanning session we computed three motion statistics:

he number of frames censored due to passing a critical value of frame-

ise displacement, the median framewise displacement and the median

VARS statistic ( Power et al., 2012 ) for each task run and averaged over

uns. We then used resampling to test the relationship between each

otion variable and the group effect-size of the high-vs.-low conflict

ontrast and sustained effect for each task. In brief, we randomly drew

000 samples of 30 subjects each without replacement. We computed

roup-level statistics for motion and the cognitive control contrast and

hen tested whether the average motion or variability of motion (inter-

ubject) of a sample predicted the sample’s group-effect (one-sample

-scores averaged over the 34 parcels). We also used the same technique

or predicting the difference between methods (i.e. do improvements

nder our approach require low motion?). Results did not indicate a

ignificant effect of motion for the current dataset and subject pool. The

ssociation (correlation) between motion and the difference between

ethods (MINDy versus original averaged over tasks) was insignificant

or event-related analyses and did not display a consistent sign (propor-

ion of frames censored: 𝑟 = 0 . 033 , FD: 𝑟 = −0 . 078 , DVARS: 𝑟 = −0 . 066 ).
ikewise, we did not observe differential sensitivity to motion in the

ustained effects (frames censored: 𝑟 = 0 . 008 , FD: 𝑟 = −0 . 011 , DVARS:

 = 0 . 01 ). Thus, the degree to which MINDy-based Filtering improves

pon conventional methods is not influenced by motion within reason-

ble bounds. 
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