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Abstract. We show that the complex-hyperbolic Einstein Dehn filling com-
pactification cannot possibly be performed in dimension four.
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1. Introduction and statement of the main result

Hyperbolic Dehn filling is a remarkable construction, due to Thurston [Thu78],
that allows to build hyperbolic metrics on closed 3-manifolds starting from non-
compact complete hyperbolic 3-manifolds of finite volume. Anderson [And06]
adapted this construction to higher dimension, allowing to build Einstein met-
rics on n-manifolds starting from non-compact hyperbolic n-manifolds of finite vol-
ume, whose ends (or cusps) are all diffeomorphic to Tn−1 × R+, where Tn−1 is
a (n − 1)-dimensional torus. This construction is called hyperbolic Einstein Dehn
filling. Given the nature of the arguments in [And06], there was hope that a sim-
ilar construction could work starting from a complex-hyperbolic n-manifold (note
that n is the complex dimension). This problem is for example mentioned in the
survey [And10, Page 28]. We show that such a construction is not allowed, i.e.,
that complex-hyperbolic Einstein Dehn filling on ball quotients in dimension four is
impossible.

It is well-known that complex-hyperbolic surfaces have infra-nilmanifold cusp
cross-sections. Torus-like cusps, i.e., cusps whose ideal boundary fibers over a
torus, are parametrized by their Euler number, which is a positive integer e >
0. Moreover, the result of Dehn filling a torus-like cusp is uniquely determined
up to diffeomorphism (see Proposition 2.1). If a complex-hyperbolic surface has
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282 LUCA F. DI CERBO AND MARCO GOLLA

only torus-like cusps, we will call the result of filling all cusps the Dehn filling
compactification of the surface.

Theorem 1.1. For each positive integer e there exists a complex-hyperbolic surface
Xe with cusps, all torus-like and with Euler number e, whose Dehn filling compact-
ification does not admit any Einstein metric.

The nature of the proof of the theorem is topological. We will show that the
closed 4-manifolds obtained by filling the cusps of Xe violates the Hitchin–Thorpe
inequality, and therefore cannot support an Einstein metric. In fact, since the
Hitchin–Thorpe inequality only depends on the homotopy type of the 4-manifold,
this is true for any 4-manifold homeomorphic to the Dehn filling compactification.

Based on similar ideas, we prove the following non-compact version of Theo-
rem 1.1. In this case, though, we bring in more geometry: Dai and Wei’s logarith-
mic version of the Hitchin–Thorpe inequality and Cheeger and Gromoll’s splitting
theorem.

Theorem 1.2. For each integer e > 1 there exists a complex-hyperbolic surface Ye

with e+3 cusps, all torus-like, three of which have Euler number e and the rest with
Euler number 1, such the 4-manifold obtained from Ye by Dehn filling the first three
cusps does not admit an Einstein metric with fibered cusp structure at infinity.

The remarkable property of the surfaces Xe and Ye, that ultimately makes them
useful to prove the non-existence of Einstein Dehn filling compactifications, is that
they admit smooth toroidal compactifications with non-nef canonical divisors. Re-
call that a toroidal compactification is a Dehn filling compactification that mini-
mally and uniquely compactifies the complex structure of the complex-hyperbolic
surface with nilmanifold cusps, see [DCDC15, Section 1.1] and [DCDC17, Proposi-
tion 2.3] for more details. We note that such examples cannot exist if the complex
dimension is bigger than or equal to three, as shown by G. Di Cerbo and the first
author [DCDC17]. Thus, somewhat interestingly, this paper highlights a new corol-
lary of the fact that complex-hyperbolic geometry is special in complex dimension
two. This peculiarity, when combined with the Hitchin–Thorpe inequality, is ulti-
mately responsible for the non-existence of the complex-hyperbolic Einstein Dehn
filling in real dimension four.

We point out that most complex-hyperbolic surfaces with cusps do not satisfy
Theorem 1.1. Indeed, as proved in [DC12, Theorem A], most complex-hyperbolic
surfaces with cusps have smooth toroidal compactifications with ample canonical
divisors, and they then support Kähler–Einstein metrics thanks to the celebrated
work of Yau [Yau78]. The same is true in higher dimensions as well, in fact up to
a finite étale cover any complex hyperbolic n-manifold admits a smooth toroidal
compactification with ample canonical divisor [DCDC17, Theorem 1.3]. Again by
Yau [Yau78], the smooth toroidal compactification of the cover supports a Kähler–
Einstein metric. Remarkably, Bakker and Tsimerman [BT18] have recently shown
that any smooth toroidal compactification of a complex hyperbolic n-manifold has
ample canonical divisor if n ≥ 6. Thus, in this range of dimensions there is no
need to pass to a cover to equip a smooth toroidal compactification with a Kähler–
Einstein metric.

Organization. In Section 2 we give some further background and motivation, and
establish terminology and notation. In Section 3 we recall some background on the
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IMPOSSIBILITY OF COMPLEX-HYPERBOLIC EINSTEIN DEHN FILLING 283

Hitchin–Thorpe inequality and its logarithmic analogue. In Section 4 we give the
proof of Theorem 1.1, based on the Hitchin–Thorpe inequality, and in Section 5 we
give the proof of Theorem 1.2, based on the Dai–Wei inequality.

2. Background and motivation

Suppose that X is an n-manifold of finite type; a codimension-0 submanifold
E ⊂ X is a an end (or cusp) if:

• E is a cylinder, i.e., it is diffeomorphic to Y × [0,∞) for some closed (n−1)-
manifold Y , and

• there is a compact submanifold K ⊂ X such that E is the closure of one of
the components of X \ Int(K).

We call Y the ideal boundary of E, and the disjoint union of the ideal boundaries
of all ends of X the ideal boundary of X.

We can truncate a cusp by removing Y \ (1,∞) from E ∼= Y × [0,∞). This
produces a manifold Xtr with one less end than X and with a boundary component
diffeomorphic to Y . A cusp is toral if its ideal boundary Y is an (n − 1)-torus.
We say that it is torus-like if Y is a circle bundle over an (n − 2)-torus. If E is
torus-like, then Y is the boundary of a 2-disc bundle DE over Tn−2.

By Dehn filling along a torus-like end E of X we mean the following: first we
truncate E to obtain a boundary component of Xtr diffeomorphic to Y , and we
glue in the 2-disk bundle DE to obtain a manifold X which has one less end than
X. (Here ∂DE is Y with its orientation reversed.) Such a gluing is determined by
the choice of an orientation-reversing diffeomorphism ∂DE → ∂E. Another way of
looking at Dehn filling is to view X as the complement of an embedded (n−2)-torus
T ⊂ X (i.e., the 0-section of DE).

Broadly speaking, the question we are interested in is whether, given a geomet-
ric (e.g., hyperbolic or complex-hyperbolic) structure on X, one can find another
geometric (e.g., hyperbolic or Einstein) structure on X.

Let us first look at hyperbolic manifolds. First, recall that the ideal boundary
of a hyperbolic n-manifold is flat. If an orientable non-compact 3-manifold M
admits a complete real-hyperbolic metric of finite volume, then its ideal boundary
is a collection of tori (since tori are the only orientable flat surfaces). It is a
well-known fact that for each cusp there are at most finitely many slopes s such
that Dehn filling along s produces a manifold that has no complete hyperbolic
metric of finite volume. The proof of this theorem was outlined by Thurston in his
celebrated Princeton University notes [Thu78], and then more details were provided
by Neumann and Zagier (in the presence of an ideal triangulation) [NZ85] and by
Petronio and Porti (in the general case) [PP00].

By contrast, for n > 3, one cannot, as in the 3-dimensional case, construct
hyperbolic metrics on all but finitely many Dehn fillings of a complete, finite-volume
hyperbolic n-manifold with an (n− 1)-torus end. This is a consequence of Gromov
and Thurston’s so-called 2π Theorem ([And06, Section 2]). To see this, suppose that
X is a hyperbolic n-manifold with a complete hyperbolic metric of finite volume,
where n > 3. The 2π Theorem ensures that any sufficiently large Dehn filling
X of X admits a metric of non-positive sectional curvature in which the core T
of the filling (which is an (n − 2)-torus) is a totally geodesic submanifold. (Here
by sufficiently large we mean that the surgery geodesic σ is sufficiently long.) In
particular, π1(T ) ∼= Zn−2 injects into π1(X), which therefore contains a free Abelian

Licensed to Univ of Florida. Prepared on Fri Feb  2 11:03:10 EST 2024 for download from IP 128.227.139.91.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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subgroup of rank 2. By Preissman’s theorem [Pre42] (see also [dC92, Chapter 12]),
such Dehn-filled manifolds cannot support a real-hyperbolic metric.

With that said, it is remarkable that Anderson [And06] was able to extend
many features of Thurston’s Dehn surgery for hyperbolic 3-manifolds to higher
dimensions by softening the hyperbolicity requirement on the Dehn-filled manifold.
(Biquard [Biq07] and Bamler [Bam12] have since strengthened this construction.)
More precisely, Anderson requires the Dehn-filled manifold not to be hyperbolic, but
rather to have an Einstein metric with negative cosmological constant. Recall that
Einstein metrics are Riemannian metrics g for which the Ricci tensor is proportional
to the metric

Ricg = λg

for some constant λ ∈ R, where λ is referred to as the cosmological or Einstein
constant. We say that an Einstein manifold is negative, positive, or flat, according
to whether λ is negative, positive, or 0. In dimensions at most three, being Einstein
is equivalent to having constant sectional curvature. In higher dimensions, Einstein
metrics are usually hard to construct. However, they are a very desirable class of
metrics of interests, especially in dimension 4: for instance, they are the fixed points
of the volume-preserving Hamilton–Ricci flow, and, as pointed out in [LeB99, Sec-
tion 11], it is tantalizing to imagine that Einstein four-dimensional pieces play the
same role as hyperbolic pieces do in the case of Thurston’s geometrization conjec-
ture. We refer to the survey paper of Lott and Kleiner [KL08] on the monumental
work of Perelman resolving the Geometrization conjecture [Per02,Per03].

We now describe Anderson’s construction in some detail. One starts with any
orientable n-manifold N with cusps, equipped with a complete real-hyperbolic met-
ric g−1 of finite volume. Note that g−1 is automatically Einstein with cosmological
constant −(n − 1): Ricg

−1
= −(n − 1)g−1. The manifold N has finitely many

cusps Ends(N), and we suppose that each of them is toral. Given any subset
E ⊂ Ends(N), we can perform Dehn filling along each end in E by filling a simple
closed geodesics σE in the ideal boundary of each E ∈ E . For simplicity, let

σ̄ = (σ1, . . . , σp)

be the collection of filled simple geodesics, and we denote by Nσ̄ the corresponding
filled manifolds. Note that Nσ̄ is closed if and only if E = Ends(N), in other words
if we fill all the cusps of N . In this case, Nσ̄ is a Dehn filling compactification. As
above, we say that the Dehn filling is sufficiently large, if each geodesic σi ∈ σ̄ is
sufficiently long. Anderson’s Dehn filling theorem then tells us that, if a Dehn filling
is sufficiently large, then it admits a negative Einstein metric that is asymptotic
to the real-hyperbolic metric on the ends which are not filled. The proof of this
remarkable theorem is analytical in nature. First, one needs to construct a clever
Riemannian metric on the Dehn-filled manifold Nσ̄ which is approximately Ein-
stein. Then, a lengthy and technical argument using the implicit function theorem
produces an exact Einstein metric on Nσ̄ which is close to the original approximate
Einstein metric in some Hölder topology. We refer to [And06, Biq07, Bam12] for
further details.

Anderson’s theory produces large classes of both compact and complete Einstein
manifolds in dimensions n ≥ 4. It is tantalizing to ask to what extent this theory
could be extended by varying the geometry on the manifold that we want to fill, but
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IMPOSSIBILITY OF COMPLEX-HYPERBOLIC EINSTEIN DEHN FILLING 285

still obtaining an Anderson-type result. One of the categories that was considered
for such a construction is that of complex-hyperbolic manifolds.

Recall that a complex-hyperbolic manifold is a complex manifold, and in par-
ticular it is an n-dimensional manifold with n even. When n = 4, we speak about
complex-hyperbolic surfaces, rather than about complex-hyperbolic 4-manifolds. A
finite-volume complex-hyperbolic surface is a quotient of

B
2 := {|z1|

2 + |z2|
2 < 1, (z1, z2) ∈ C

2}(1)

equipped with the symmetric Bergman Kähler metric

ωB := 2i∂̄∂ log(1− ‖z‖2)(2)

by a torsion free non-uniform lattice Γ in PU(2, 1), which is the group of holo-
morphic isometries of (B2, ωB). It follows that any complete finite-volume quotient
Γ\B2 is Kähler–Einstein with

RicωB
= −

3

2
ωB,

where by slightly abusing notation we denote by ωB the induced Kähler metric on
the quotient Γ\B2. If now Γ is non-uniform, we then have that Γ\B2 is a non-
compact, finite-volume, complete complex-hyperbolic surface with finitely many
cuspidal ends. Each cuspidal end has an ideal boundary N , where N is a com-
pact infra-nilmanifolds, i.e., a compact orientable quotient of the 3-dimensional
Heisenberg Lie group. If all parabolic isometries in Γ have no rotational part, then
all of the N ’s are nilmanifolds. (We point out that this condition on the para-
bolic isometries, and therefore on the cross-sections of the cusps, can always be
attained by passing to a finite index normal subgroup in Γ. We point the reader
to [DCDC15, Section 1.1] for more details.)

The folklore idea concerning complex-hyperbolic Einstein Dehn filling proceeds
now in parallel with the real-hyperbolic case. Start with a complex-hyperbolic sur-
face whose cusps have nilmanifold cross sections (recall in the real-hyperbolic case
we required tori cross sections), truncate a sub-collection of these cusps, and glue
back in the associated non-trivial disk bundles over tori. Note that a 3-nilmanifold
N3 is diffeomorphic to a non-trivial S1-bundle over a torus, which in turn is deter-
mined by the Euler number of the associated D2-bundle. The complex orientation
on a complex-hyperbolic surface induces an orientation on the boundaries of the
corresponding truncated 4-manifold. With this orientation, the S1-bundles ideal
boundaries of the cusps have positive Euler number—note that these manifolds
have no orientation-reversing self-diffeomorphisms. Viewed from the perspective
of the Dehn-filled manifold X, each of the 2-tori T in the complement X \X has
negative self-intersection.

Contrarily to the real-hyperbolic case, there is no choice involved for the filling.

Proposition 2.1. There is a unique way to fill a torus-like cusp of a complex-
hyperbolic surface (as defined in (1) and (2)), up to diffeomorphism.

Proof. Recall that Dehn filling a torus-like cusp requires two steps: first we truncate
the cusp, creating a boundary component Y , and then we glue onto the resulting
boundary component a disc bundle D over T 2 whose boundary is −Y . At each
step we are making a choice, and we need to show that the diffeomorphism type of
the Dehn filling is independent of these choices.
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When we truncate the cusp, we are choosing the level at which we are truncating
the end Y × [0,∞). This choice is restricted by the complex-hyperbolic metric, so
that every two choices differ by a translation in the [0,∞)-direction. In particular,
any two choices are smoothly isotopic, and it follows that the truncated manifold
is unique up to diffeomorphism.

We now need to show that the gluing diffeomorphism does not affect the result
of the filling, either. In order to see that, we view the disc bundle D as the union
of a (fibered) neighborhood F of a fiber and its complement H. Therefore, gluing
D amounts to first gluing F and then gluing H. We view F as a 4-dimensional
2-handle: its gluing data is specified by the attaching curve (a simple closed curve
in Y ) and a framing. However, every self-diffeomorphism of a 3-dimensional nil-
manifold preserves the S1-fibration up to isotopy [Wal67,Wal68], so we can choose
the attaching curve to be a fiber. The framing, too, is determined by the fibra-
tion. Now, H is a disk bundle over a torus minus a disk, so it is a 4-dimensional
1-handlebody. Laudenbach and Poenaru have shown that each self-diffeomorphism
of the boundary of H extends to H [LP72], so the gluing diffeomorphism of Y
extends to D, as claimed. �

Given this general set-up, the hope was then to be able to at least replicate some
of Anderson’s arguments in order to produce new classes of Einstein manifolds in
dimension four. Theorems 1.1 and 1.2 show that such a plan is in general doomed
for topological reasons. With that said, such a construction is not obstructed up to
a finite cover, and it is tantalizing to ask whether a Dehn filling compactification can
be performed up to a finite cover, and if the hypothetical Einstein metric coincides
with the Kähler–Einstein metric constructed by Yau. Recall that up to a finite
cover any finite-volume complex-hyperbolic surface with cusps admits a smooth
toroidal compactification with ample canonical class, see [DC12, Theorem A].

3. Einstein metrics on 4-manifolds, Hitchin–Thorpe-type inequalities,

and L2-characteristic numbers

In this section, we recall some results concerning Einstein metrics in dimension 4
and L2-characteristic numbers. We follow the notation and curvature normalization
adopted in LeBrun’s survey paper [LeB99]. We also refer to [LeB99] as a general
reference for the geometry and topology of 4-manifolds and Einstein metrics.

The Gauss–Bonnet formula for the Euler characteristic of a closed (oriented)
4-manifold (M, g) is given by

χ(M) =
1

8π2

∫

M

(

|W+|2g + |W−|2g +
s2g
24

−
|

◦

Ric|2g
2

)

dμg,(3)

where W± are the self-dual and anti-self-dual Weyl curvatures, sg is the scalar

curvature, and
◦

Ric is the trace-free part of the Ricci tensor. Observe that g is

Einstein if and only if
◦

Ric = 0. Also, by the Hirzebruch signature theorem we can
express the signature of (M, g) as a curvature integral:

τ (M) =
1

12π2

∫

M

(

|W+|2g − |W−|2g
)

dμg.(4)

Next, we recall the Hitchin–Thorpe inequality.
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Theorem 3.1 ([Hit74]). Let (X, g) be a compact orientable Einstein 4-manifold
with signature τ and Euler characteristic χ. Then

χ ≥
3

2
|τ |.

Furthermore, if equality occurs then either X is flat or the universal cover of X is
a K3 surface (up to orientation reversal).

The proof of the inequality in Theorem 3.1 follows easily by combining Equa-
tions (3) and (4), and this was originally observed in [Tho69]. The characterization
of the equality case in such an inequality is more delicate, and we refer to [Hit74]
for a beautiful proof of this fact.

The formulas given in Equations (3) and (4) admit some interesting general-
izations to the complete finite-volume setting. These equations will be used in
Section 5, where we prove Theorem 1.2. First, Equation (3) generalizes to the
finite-volume setting with bounded curvature: this follows from the Gauss–Bonnet-
type formula due to Cheeger and Gromov [CG85] (see also Harder [Har71]):

χL2(M) :=
1

8π2

∫

M

(

|W+|2g + |W−|2g +
s2g
24

−
|

◦

Ric|2g
2

)

dμg = χ(M).(5)

In this setting, one may also consider the L2-curvature integral analogous to Equa-
tion (4):

τL2(M) =
1

12π2

∫

M

(

|W+|2g − |W−|2g
)

dμg.(6)

Despite the apparent similarity with Equation (4), this finite curvature integral has
no immediate topological interpretation in general. However, if the ideal boundary
of (M, g) is a finite collection of fibered cusps, with each fibration being a circle
bundle over a surface, we do have a topological interpretation of Equation (6) by
keeping into account the limit η-invariant of each cusp. More precisely, we have the
following formula, due to Dai and Wei (see [DW07, Page 568]):

τL2(M) = τ (M) +
∑

E∈Ends(M)

e(E)− 3 sign(e(E))

3
,(7)

where τ (M) is again the signature of M , and where e(E) is the Euler number of
the circle bundle associated to E ∈ Ends(X). Recall that in order for the signature
to be defined one just needs that M is oriented and that H2(M ;Z) is finitely
generated. (Note that H2(M ;Z) is automatically finitely generated for a complex-
hyperbolic manifold of finite volume.) Under these assumptions, H2(M ;Z)/Tor
is a free Abelian group of finite rank, and the intersection product induces on it
a (possibly degenerate) bilinear form: given two classes A,B ∈ H2(M ;Z)/Tor,
we can represent them by two transversely embedded compact surfaces, FA and
FB; the intersection QM (A,B) is the count of their intersections with the sign
determined by the orientation. Then we define τ (M) to be the signature of QM ,
i.e., the number of positive eigenvalues minus the number of negative eigenvalues
of QM . (When M is non-compact or has non-empty boundary, QM could have
non-degenerate kernel.)

By combining these formulas, we have the following generalization of the Hitchin–
Thorpe inequality.
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Theorem 3.2 ([DW07]). Let (X, g) be a non-compact, complete Einstein 4-manifold
whose ideal boundary is a finite collection of fibered cusps, with each fibration being
a circle bundle over a surface. We then have

χ(X) ≥
3

2

∣

∣

∣

∣

∣

∣

τ (X) +
∑

E∈Ends(X)

e(E)− 3 sign(e(E))

3

∣

∣

∣

∣

∣

∣

,

where, as above, e(E) is the Euler number of the circle bundle associated to E.
Moreover, equality holds if and only if (X, g) is a complete Calabi–Yau manifold.

4. Non-Einstein Dehn filling compactifications

We start by describing Hirzebruch’s example [Hir84] of a complex-hyperbolic
surface of finite volume with a smooth toroidal compactification of Kodaira dimen-
sion zero, whose cusps all have Euler number 1. We will then tinker around with
Hirzebruch’s example to produce, for each n > 0, a complex-hyperbolic surface that
has the same property, except that the cusps have all Euler number e.

4.1. Hirzebruch’s example(s). Let ζ = e
πi
3 and Eζ = C/Λζ be the elliptic curve

associated to the lattice Λζ = Z[1, ζ]. Consider the Abelian surface A = Eζ × Eζ ,
with coordinates (z, w). Since Eζ is an elliptic curve with complex multiplication,
the following four elliptic curves in A are defined:

C0 = {w = 0}, C∞ = {z = 0}, C1 = {w = z}, Cζ = {w = ζz}.(8)

The four elliptic curves in Equation (8) intersect transversely only in the point
(0, 0) ∈ A. Moreover, by adjunction we know that each of them has self-intersection
0. Blow up A at (0, 0) to obtain X, and let D be the proper transform of C0∪C∞∪
C1 ∪Cζ . we obtain a pair (X,D) where X is a blown-up Abelian surface and D is
a divisor consisting of four smooth disjoint elliptic curves, that we call D1, D2, D3,
D4.

The surface X is a smooth toroidal compactification of X \ D, which in turn
can be shown to be complex-hyperbolic by Tian and Yau’s uniformization theo-
rem [TY87]. It suffices to compare

∑

i D
2
i with 3c2(X)− c21(X), if one has equality

in the (logarithmic) Bogomolov–Miyaoka–Yau (log-BMY, for short) inequality

(9) −
∑

i

D2
i ≤ 3c2(X)− c21(X),

then X \ ∪iDi is complex-hyperbolic. In our case, the left-hand side is −4 · (−1),
while the right-hand side is 3 · 1 − (−1), so we have equality, and X \ ∪iDi is
complex-hyperbolic, as claimed. By construction, X \D has four torus-like cusps,
all with Euler number 1.

In [Hir84], Hirzebruch also consider n2-fold covers of the surface X we con-
structed above, in which he finds 4n2 elliptic curves, each of self-intersection −n2,
and one easily check that their complement again satisfies equality in Equation (9),
and thus the complement of all these curves is a complex-hyperbolic surface with
all cusps of Euler number n2.

Remark 4.1. Hirzebruch then uses these surfaces and these divisors to produce
compact complex surfaces approaching the equality in the (non-logarithmic) BMY
inequality. We will not need this part of his paper, but just the most basic example.
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4.2. Playing with Hirzebruch’s example. We want to tweak Hirzebruch’s ex-
ample from Section 4.1 to obtain, for each e > 0, a complex-hyperbolic surface
whose cusps all have Euler number e. (As mentioned above, Hirzebruch himself
had already found such examples, when e is a square.) In fact, we will construct
such examples with four cusps.

We will present a covering argument in slightly broader generality. Consider a
pair (A,C) where A is a product of two tori E ×E′ and C is the union of four tori
C1, C2, C3, C4, such that Cj · Ck �= 0 whenever j �= k.

Lemma 4.2. For each prime p there exists a p-fold étale cover π : A′ → A such
that C ′

j := π−1(Cj) is connected for j = 1, . . . , 4. For such a cover π, C ′
j · C

′
k =

p · (Cj · Ck).

Proof. Let Fp the field with p elements. Since each Cj is a torus and every two of
them intersect non-trivially, Pj := H1(Cj ;Fp) ⊂ H1(A;Fp) is a 2-plane in Fp, and
Pj ∩ Pk = {0} whenever j �= k.

In order to prove the lemma, we need to find a surjective homomorphism φ ∈
Hom(H1(A;Z),Fp) ∼= H1(A;Fp) ∼= F4

p such that kerφ∩Pj is 1-dimensional for each
j. To see that this is sufficient, fix one of the divisors, Cj . Since kerφ does not
contain all of Pj , there is a curve γ ⊂ C1 such that φ([γ]) �= 0 ∈ Fp. Since p is a
prime, φ([γ]) generates Fp, so γ lifts to a single simple closed curve in π−1(X), and
in particular π−1(Cj) is connected.

Up to scalars, a homomorphism φ : H1(A;Z) → Fp is determined by its kernel,
kerφ. Conversely, if we find a hyperplane K ⊂ H1(A;Fp) such that K ∩ Pj is
1-dimensional for each j, then there exists φK ∈ H1(A;Fp) such that kerφ = K,
which is the homomorphism we required.

Instead of exhibiting such a hyperplane K, we will non-constructively show
that there exists one by counting: we will prove that the number of hyperplanes
in H1(A;Fp) such that K ∩ Pj is not 1-dimensional for at least an index j ∈
{1, 2, 3, 4} is strictly smaller than the number of hyperplanes in H1(A;Fp). (The
total number of hyperplanes in H1(A;Fp) is the cardinality of the projective space
P(H1(A;Fp)) ∼= P3

Fp
, which is p3 + p2 + p+ 1.)

Let us now consider a hyperplane K ⊂ H1(A;Fp). Since K is a hyperplane and
Pj is a 2-plane, 1 ≤ dim(K∩Pj) ≤ 2. Moreover, since Pj∩Pk = {0} whenever j �= k,
for a given hyperplane K there is at most an index j such that dim(K ∩ Pj) = 2,
or, equivalently, such that Pj ⊂ K.

The number of hyperplanes K containing Pj for a fixed index j is p + 1: con-
taining the 2-plane Pj means imposing two linear conditions in the projective
space P(H1(A;Fp)), so the set of hyperplanes containing Pj is a projective line
in P(H1(A;Fp)), which is a subset of cardinality #P1

Fp
= p+ 1.

Therefore, there are 4(p + 1) hyperplanes containing one among P1, . . . , Pj .
Since

p3 + p2 + p+ 1− 4(p+ 1) = p3 + p2 − 3p− 3 = (p2 − 3)(p+ 1) > 0

for every p > 1, there is at least a hyperplane K in H1(A;Fp) that does not contain
any among P1, . . . , P4, so in particular dim(K ∩ Pj) = 1 for j = 1, . . . , 4, as
required.

The second part of the statement is obvious by degree considerations. �
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Corollary 4.3. For every integer e > 1 there exists an e-fold étale cover of A such
that the lifts of C1, . . . , C4 are all connected.

Proof. We argue by induction on the number of (non-distinct) prime factors of e;
the base case is when e is prime, and this was proved in Lemma 4.2. If e is not prime,
choose a prime p dividing it. By Lemma 4.2 and by the inductive assumption, there
is an e

p
-fold cover A′ of A in which C lifts to four tori C ′. Note that C ′ still satisfies

the assumptions of Lemma 4.2. By Lemma 4.2, there is a p-fold cover A′′ of A′ in
which C ′ lifts to four tori C ′′. Now (A′′, C ′′) is the required cover. �

Remark 4.4. With a little more effort one can find a cyclic cover in Corollary 4.3;
it suffices to take a e4-fold cover A′′ → A, as given by the corollary, and then
observe that this corresponds to a subgroup H ⊂ H1(X;Z) whose quotient G =
H1(X;Z)/H has order e4. Since H1(A;Z) ∼= Z4, G is generated by (at most) four
elements, one of which has to have order divisible by e. In particular, G has itself
a cyclic quotient G′ of order exactly e. Composing the maps H1(X;Z) → G → G′

gives the desired cover.

Let us now start with Hirzebruch’s four tori C0, C∞, C1, Cζ ⊂ A = Eζ×Eζ . Call
(A1, C1) := (A,C0 ∪ C∞ ∪ C1 ∪ Cζ). Fix a positive integer e. By Corollary 4.3,
there exists an e-fold étale cover π : Ae → A1 such that Ce := π−1(C1) is the union
of four elliptic curves, each with self-intersection 0, and such that each two of them
intersect pairwise e times. Moreover, since π is an étale cover, all e intersection
points are quadruple points where four distinct tori meet transversally. The 4-
manifold Ae is an étale cover of the 4-torus A1, so it is itself a 4-torus, therefore
c2(A

e) = 0 and τ (Ae) = 0. The complex surface Ae has first Chern class which is
the pull-back of c1(A

1), so c1(A
e) = π∗(c1(A

1)) = π∗(0) = 0.

Blow up at these e intersection points, to obtain Ãe. Since χ(Ae) = 0, c21(A
e) =

0, and τ (Ae) = 0, and since each blow-up increases c2 by 1, decreases c21 by 1 (see, for

instance, [BHPV04, Theorem I.9.1]) and τ by 1, we have that c2(Ã
e) = χ(Ãe) = e,

c21(Ã
e) = −e, and τ (Ãe) = −e. The proper transform De of Ce consists of four

disjoint tori De
1, . . . , D

e
4, each of self-intersection −e, and in particular:

−
∑

j

De
j ·D

e
j = 4e = 3e− (−e) = 3c2(Ã

e)− c21(Ã
e),

so Xe := Ãe\De is a complex-hyperbolic surface whose cusps all have Euler number
e.

4.3. The proof of Theorem 1.1. Proposition 4.5 directly implies Theorem 1.1.

Proposition 4.5. Fix a positive integer e. Any 4-manifold X homeomorphic to
the Dehn filling compactification Ãe of Xe violates the Hitchin–Thorpe inequality,
and in particular it carries no Einstein metric.

Proof. We compute the Euler characteristic and signature of Ãe: |τ (Ãe)| = χ(Ãe)
by the computations above, so it violates the Hitchin–Thorpe inequality. Any 4-
manifold X homeomorphic to Ãe has the same Euler characteristic and signature,
so it also violates the Hitchin–Thorpe inequality. It follows that neither carries an
Einstein metric. �

Licensed to Univ of Florida. Prepared on Fri Feb  2 11:03:10 EST 2024 for download from IP 128.227.139.91.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



IMPOSSIBILITY OF COMPLEX-HYPERBOLIC EINSTEIN DEHN FILLING 291

5. Non-Einstein non-compact Dehn fillings

Let us once again use Hirzebruch’s example as a starting point. We start with a
sequence of Abelian varieties {Ae}, e ∈ N defined as follows

Ae := C/Z[1, ζ]× C/Z[e, ζ].

Notice that for e = 1 we recover the Abelian surface considered by Hirzebruch.
Inside the Abelian surface Ae with coordinates (z, w) consider the elliptic curves

w = 0, w = z, w = ζz.

These curves meet transversally at e distinct points

(0, 0), (0, 1), . . . , (0, e− 1).(10)

Consider also e vertical elliptic curves in Ae of equations

z = 0, z = 1, . . . , z = e− 1.

(In the language of Section 4, this is an e-fold cyclic cover of Hirzebruch’s example,
but this time one of the curves has disconnected pre-image.) In other words, we
have a configuration of e+ 3 elliptic curves meeting transversally at the points by
Equations (10). We can now blow up these points to get a surface Ze birational to
Ae with χ(Xe) = e. The proper transforms of the elliptic curves in Ae described
above, we obtain e+ 3 disjoint elliptic curves

D1, D2, D3, D4, . . . , De+3,

where
D2

1 = D2
2 = D2

3 = −e, D2
4 = D2

5 = · · · = D2
e+3 = −1.

Let us denote by De the reduced divisor corresponding to the union of all of the
Dj ’s. We then compute that the self-intersection of the log-canonical divisor of the
pair (Ze, D

e) satisfy

(KZe
+De)2 = K2

Ze
− (De)2 = −e+ e+ e+ e+ 1 + · · ·+ 1 = 3e

= 3χ(Ze) = 3χ(Ze \D
e).

Thus, the pair (Ze, D
e) saturates the log-BMY inequality and as a result Ye :=

Ze \D
e is biholomorphic to a complex-hyperbolic surface with e+3 cusps, three of

which have Euler number e.
We are now in position to proving Theorem 1.2. We will prove the following,

slightly stronger statement.

Proposition 5.1. Let e be a positive integer. If e > 1, the 4-manifold obtained by
Dehn filling the three cusps of Ye with Euler number e admits no complete Einstein
metric with fibered cusp structure at infinity. If e = 1, the 4-manifold obtained by
Dehn filling the three cusps of Y1 admits no complete Einstein metric with fibered
cusp structure at infinity and with negative Einstein constant (e.g., asymptotic to
the complex-hyperbolic metric).

Proof. Since Ye is the complement of e + 3 pairwise disjoint divisors of negative
self-intersections, by Novikov additivity (see for instance [Kir89, Section II.5]) we
have

τ (Ye) = τ (Ze) + (e+ 3) = −e+ e+ 3 = 3.

If we now fill the three cusps of Ye with Euler number e, we get a manifold, call it
Y , with e cusps. Again by Novikov additivity, τ (Y ) = 0. If this is the case we can
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now obtain a contradiction if we assume we were able to Einstein Dehn fill these
three cusps.

Let us call Y the manifold obtained from (Xe, D
e) by filling the cuspsD1, D2, D3.

Then Y has e cusps with Euler number 1, χ(Y ) = e, and τ (Y ) = 0, so Y attains
equality in the Dai–Wei inequality of Theorem 3.2. In particular, by Theorem 3.2,
if it supports an Einstein metric with fibered structure at infinity, this metric is
Ricci flat.

Now, since e > 1, after filling the three cusps with Euler number e, we have
that Y has at least two ends. Given any of the two non-compact ends, we can
construct a line, i.e., a geodesic γ : (−∞,∞) → Y such that d(γ(t), γ(s)) = |t− s|
for any s, t ∈ R. By the Cheeger–Gromoll splitting theorem [CG72] such a line
splits isometrically, and as a result our partially compactified manifold should have
topological Euler characteristic equal to zero. On the other hand, χ(Ȳ ) = e and
we then get a contradiction. Finally, if e = 1, an Einstein metric asymptotic to
a complex-hyperbolic one cannot be Ricci flat: the cosmological constant of the
complex hyperbolic metric is negative and not zero as for Calabi–Yau surfaces. �

6. Final remarks and questions

We conclude with some remarks and questions concerning Theorems 1.1 and 1.2.
In light of the theorem, one is naturally lead to ask the following question.

Question 6.1. Fix an integer e > 0. Does there exist a complex-hyperbolic surface
Ze with a torus-like cusp with Euler number e such that Dehn filling of Ze does
not support an Einstein metric with fibered cusp at infinity?

A positive answer would immediately imply that there is no single cusp-filling
procedure that starts from one torus-like cusps of a complex-hyperbolic surface and
produces an Einstein metric. In this sense, Theorem 1.1 proves the impossibility
of complex-hyperbolic Dehn filling in a more constrained setting, namely when we
require the Dehn filling to produce a closed orientable manifold. On the other hand,
we could ask that the (hypothetical) metric produced by such an operation is itself
asymptotic to a standard cusp-like metric at infinity. This is indeed true of the
metrics produced by Thurston and by Anderson, where in fact the metric at the
cusp is asymptotic to the original metric, thus allowing for the construction to be
iterated [And06]. If we impose the further constraint that such an Einstein metric
is asymptotic to the initial complex-hyperbolic metric, the proof of the second
statement simplifies, and we can also produce answers to Question 6.1 whenever e
is divisible by 3. (These examples are 2-cusped, so after Dehn filling one cusp we
cannot use the splitting theorem as we do for Xe.)

As mentioned at the end of Section 2, thanks to [DC12, Theorem A] and Yau’s
celebrated result [Yau78], we know that complex-hyperbolic Kähler–Einstein Dehn
filling can be performed if we pass to a finite cover. The proof uses the ampleness of
the canonical divisor of the toroidal compactification of a (sufficiently large) finite
cover. It is interesting to ask whether such an argument holds for metric, rather
than complex-algebraic reasons, as in Anderson’s construction. More precisely, we
ask the following question.

Question 6.2. Does there exists a constant L such that, if the fiber of a torus-
like cusp c of a complex-hyperbolic surface X has length larger than L, then the
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4-manifold obtained by Dehn filling X at c supports an Einstein metric that is not
Kähler–Einstein?

This would show that, given a complex-hyperbolic surface, one could find a
finite cover in which the fiber of a cusp gets sufficiently long so as to assure that
the corresponding Dehn filling is Einstein. In a way, the choice of the cover makes
up for the lack of choice of slope of the filling. In this sense, this hypothetical
construction would resemble Fine and Premoselli’s branched covering construction
[FP20].
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