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We present a general approach to derive Lindblad master equations for a subsystem whose dynamics is cou-
pled to dissipative bosonic modes. The derivation relies on a Schrieffer-Wolff transformation which allows to
eliminate the bosonic degrees of freedom after self-consistently determining their state as a function of the cou-
pled quantum system. We apply this formalism to the dissipative Dicke model and derive a Lindblad master
equation for the atomic spins, which includes the coherent and dissipative interactions mediated by the bosonic
mode. This master equation accurately predicts the Dicke phase transition and gives the correct steady state. In
addition, we compare the dynamics using exact diagonalization and numerical integration of the master equa-
tion with the predictions of semiclassical trajectories. We finally test the performance of our formalism by
studying the relaxation of a NOON state and show that the dynamics captures quantum metastability beyond
the mean-field approximation.

Introduction.— The description of open many-body quan-
tum systems dynamics is a formidable challenge for mod-
ern experimental and theoretical physics. A typical out-of-
equilibrium scenario is theoretically described by a quantum
system (QS) which interacts with an environment composed
of bosonic modes (BM) [1] [see Fig. 1(a)]. This is the com-
mon setup of quantum electrodynamics, where the BM are
the electromagnetic field [2, 3]. Furthermore, it is also at
the basis of prominent implementations of quantum simula-
tors because it allows one to tailor the interactions between
the constituents of the QS [4–7]. Examples include quantum
gases in optical cavities [7–11], optomechanical arrays [12],
phonon-mediated interactions of trapped ions [4–6, 13], po-
laritons or nitrogen-vancancy centers in diamond coupled to
microcavities or mechanical elements [14–16], and photonic
crystals [17].

A powerful theoretical tool to analyze open many-body QS
is provided by the Keldysh approach [18, 19], which uses the
toolbox of modern quantum field theory to obtain numerical
and analytical results. These methods are very successful in
predicting the asymptotic behavior of the open QS. The de-
scription of dynamics and metastability is instead accessed by
full simulations or so-called effective master equations. The
latter dispose of a large part of the Hilbert space by elimi-
nating the BM’s degrees of freedom [20–23] and include the
interactions, noise, and dissipation mediated by them. The
derivation of effective master equations are an active research
field [24] with a variety of emphases, such as high-precision
metrology [25, 26], exact solutions [27–29], multi-mode con-
figurations [30–33], and dynamics of coherent many-body
systems [21–23].

Recently, in the field of cavity many-body quantum elec-
trodynamics, effective Redfield master equations have been
derived [21, 22]. While describing the correct low-frequency
behavior they are not necessarily completely positive. At-
tempts to make these master equations positive, e.g., by bring-
ing them into Lindblad form, resulted in predictions of the in-

FIG. 1. (a) The general model includes coupled dissipative bosonic
modes âk interacting with a quantum system described by ĤS . (b)
Example: a dissipative optical cavity mode couples to a cloud of
driven atoms.

correct asymptotic behavior. Other approaches use effective
descriptions by adding fluctuations around a mean-field treat-
ment of the cavity field [23]. Here, the problem of positive-
ness was resolved by making a thermalization assumption for
the QS which is questionable regarding the possibility of non-
thermal metastable states on intermediate timescales [34].
These attempts highlight the need to identify general effec-
tive descriptions that preserve the positivity. With such ef-
fective and positive descriptions one could for instance de-
termine the spectrum of the open system or simulate the
master equation using a quantum state diffusion model [35].
This can then be used to analyze the critical properties of
driven-dissipative QS [36–38], to study prethermalization and
metastability [34, 39], and to shed light on several aspects of
the dynamics that cannot be accessed easily otherwise, includ-
ing measurement-induced phase transitions [40–42].

In this Letter, we identify a general procedure which allows
derivation of effective master equations for an arbitrary QS
that is coupled to dissipative BM. We use a specific type of
Schrieffer-Wolff transformation [43] to reduce the coupling
between the QS and the BM such that we can eliminate the
latter. This transformation is a displacement that depends, in
general, on the eigenstates and eigenenergies of the decou-
pled QS to be analyzed. The resulting master equation has the
Lindblad form, which guarantees positivity if the jump opera-
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tors are bounded, and the specific procedure allows us to sys-
tematically include the effects of retardation between the QS
and BM. As an example, we derive an effective, atom-only
Lindblad master equation for the dissipative Dicke model and
benchmark our results by comparing the spectrum and dynam-
ics with the one of the composite system.

Derivation of the effective master equation.— We start
by considering a set of BM, described by the an-
nihilation (creation) operators âk (â†k), with eigenener-
gies ωk, that thermalize rapidly at the finite rate κk
with an external bath with inverse temperature β. The
dynamics for the density matrix ρ̂ is described by
Ldρ̂ =

∑
k{κk(nk + 1)D[âk]ρ̂+ κknkD[â†k]ρ̂}, where we

introduced D[Ô]ρ̂ = 2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô. In this Let-
ter, we consider the case where nk = [exp(βωk) − 1]−1 ≈
0, which is usually valid if the ωk are optical frequencies.
Throughout this work we use ~ = 1. On a timescale that is
longer than 1/κk, the BM couple coherently to a QS described
by the Hamiltonian

Ĥ = ĤS +
∑
k

(∑
k′

â†k′Ω̂
k′,k
S âk + â†kŜk + Ŝ†kâk

)
. (1)

The Hamiltonian in absence of the BM is denoted by ĤS . The
term proportional to Ω̂k

′,k
S = (Ω̂k,k

′

S )† denotes the frequencies
and mode-mode coupling that may depend on the QS’s de-
grees of freedom. The last term, â†kŜk + Ŝ†kâk, represents the
driving of the BM, which may likewise include QS operators,
described by Ŝk and Ŝ†k. The dynamics of the density matrix ρ̂
for the combination of both the BM and QS is then described
by the master equation

∂ρ̂

∂t
= Lρ̂ := −i[Ĥ, ρ̂] + Ldρ̂. (2)

We want to eliminate the BM degrees of freedom and de-
rive an effective master equation that describes the dynam-
ics of the QS. The steps for the derivation are as follows: (i)
We first derive the master equation for ρ̃ = D̂†ρ̂D̂ where
D̂ = exp[

∑
k(â†kα̂k − α̂†kâk)] is the displacement operator

that weakly correlates the BM âk to the QS by establishing an
effective-field operator α̂k. We assume that ‖α̂k‖ ∼ ε � 1,
therefore, we can apply a perturbation theory where we dis-
card all terms that are of third order in ε or higher. (ii) In the
displaced picture, we project the BM onto the thermal state
that is in our parameter regime essentially the vacuum state
|vac〉 and define ρ̂sys = 〈vac|ρ̃|vac〉. We systematically in-
clude the coupling of ρ̂sys to higher Fock states in the dis-
placed BM and optimize the operators α̂k, that we denote as
effective fields, such that ρ̂sys is decoupled up to third order in
ε. This decoupling procedure is reminiscent to a Schrieffer-
Wolf transformation. In the Supplemental Material (SM) [44]
we show that these steps result in solving

∂α̂k
∂t

= −i[ĤS , α̂k]− i
∑
k′

Ω̂k,k
′

S α̂k′ − iŜk − κkα̂k. (3)

With the solution α̂k of the above equation, we obtain a master
equation for the density matrix ρ̂sys that reads

∂ρ̂sys

∂t
= Leffρ̂sys := −i[Ĥeff, ρ̂sys] +

∑
k

κkD[α̂k]ρ̂sys (4)

and the effective Hamiltonian

Ĥeff = ĤS +
1

2

∑
k

(α̂†kŜk + Ŝ†kα̂k). (5)

This master equation is the main result of this Letter that we
now discuss in greater depth. We first observe that this effec-
tive master equation is of the Lindblad form, thereby preserv-
ing the positivity if the α̂k are bounded operators. Although
this derivation was performed for the multimode case, below
we mostly focus on the single-mode case [45]. The terms pro-
portional to κ and Ω̂S in Eq. (3) describe the relaxation of the
BM to the thermal state in absence of Ŝ. During this relax-
ation, the QS is evolving according to ĤS such that the BM
sees a retardation effect determined by [ĤS , α̂]. This term is
a principal finding because it shows that the BM carries in-
formation about the evolution of the QS which is here deter-
mined by ĤS . In fact, solving Eq. (3) for the steady state,
assuming that [ĤS , α̂] can be ignored, results in the adiabatic
elimination [46–48] given by α̂ = −iŜ/(iΩ̂S + κ). This in-
cludes quantum fluctuations of the field due to κ, visible by
the proportional incoherent part in Eq. (32). With this, it also
correctly recovers the dispersive limit, ‖Ω̂S‖ � κ, where the
dynamics of the QS, described solely by Ĥeff , evolves coher-
ently. Using Eqs. (3) and (32), we can now systematically take
retardation and noise effects into account by treating [ĤS , α̂]
and κ either in arbitrary order, or as a perturbation. We re-
mark here, that first-order perturbative expansions in retarda-
tion effects have been studied in semiclassical descriptions,
giving rise to collective cavity cooling and dissipation-assisted
prethermalization [20, 32–34, 49, 50]. However, the effective
master equation (32) is a full quantum description and there-
fore complementary to the results of Refs. [21–23] that derive
effective quantum descriptions. Similar to Ref. [23] we use
a displacement operation to eliminate the BM, now, however,
this “displacement” is not based on an underlying mean-field
assumption, but instead “α̂” is an operator that intrinsically
includes fluctuations. Our approach requires thermalization
of the BM, while we do not require thermalization of the QS
which allows Eq. (32) to describe metastable dynamics. To
show the potential of Eqs. (3) and (32) we will now analyze a
particular example, namely the dissipative Dicke model.

Application to the dissipative Dicke model.— The dissipa-
tive Dicke model describes the quantum dynamics of a single
mode coupled to N two-level atoms. It can be experimentally
realized with driven atoms interacting with an optical cavity
mode [8, 51] [see Fig. 1(b)]. We therefore denote the QS by
the atoms and the BM by the cavity mode. With our defi-
nitions in Eq. (1) we use ĤS = ω0Ŝ

z , the cavity frequency
Ω̂S = ωc, and coupling Ŝ = 2gŜx/

√
N . We have introduced

the collective spin operators Ŝa =
∑N
j=1 σ̂

a
j /2 with a ∈
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{x, y, z} and where σ̂aj denote the Pauli matrices of the jth
atom. The dissipative Dicke model exhibits a phase transition
in the thermodynamic limit N → ∞ from a normal (g < gc)
to a superradiant phase (g > gc) [18, 51–53], where the criti-
cal value gc is given by g2

c = ω0(ω2
c + κ2)/(4ωc). In contrast

to the quantum phase transition of the Dicke model [52, 53],
the dissipative Dicke model exhibits different critical expo-
nents and a damping rate at steady state [18, 54, 55]. There-
fore, it provides an important check as to whether Eq. (32) can
predict the correct dynamics and steady state.

In Ref. [21], it was shown that an atom-only Redfield mas-
ter equation gives the correct low-frequency behavior of the
dissipative Dicke model. In addition, it was demonstrated that
this cannot be achieved using an adiabatic elimination or a
secularized Linblad master equation. The latter is obtained
by dropping the co-rotating and off-resonant â†Ŝ+ and âŜ−

terms (Ŝ± = Ŝx± iŜy). Based on that analysis it was conjec-
tured that correct, atom-only master equations for the dissipa-
tive Dicke model require a non-Lindblad form. We will now
show that the Lindblad master equation (32) goes beyond the
adiabatic and secularization approximation and is a counter
example for this conjecture.

We first determine α̂ using the commutation relation
[Ŝa, Ŝb] = i

∑
c∈{x,y,z} εabcŜ

c, where εabc is the Levi-Civita
symbol. The steady state of Eq. (3) is given by

α̂ = α+Ŝ
+ + α−Ŝ

−, (6)

with α± = −g/[
√
N(ωc ± ω0 − iκ)]. As a result of the

commutator term [ĤS , α̂] we find that the effective cavity field
α̂ has two sidebands shifted by ±ω0 from ωc that correspond
to the excitation or de-excitation of the atoms. If we impose
ω0 = 0 in Eq. (6) we recover the adiabatic elimination as
in Ref. [21]. In addition, using Eq. (6) in Eq. (32) we also
find co-rotating terms [Ŝ±]2, dropping the latter would result
in the secularization approximation of Ref. [21]. As a first
check, we now compare the spectrum of the effective master
equation (32) with the one of the full master equation (2) for
small atom numbersN . To do this, we diagonalize L and Leff

using the symmetric atomic states |m〉, with Ŝz|m〉 = m|m〉
for m = −N/2,−N/2 + 1, . . . , N/2, as a basis.

In Fig. 2, we show the complex eigenvalues λ of L and Leff
as gray circles and black crosses, respectively. Figure 2(a)
represents a parameter choice below threshold, g < gc. In
this case, the cavity field is to good approximation in the vac-
uum state and we find excellent agreement of the full and ef-
fective descriptions for the eigenvalues with the largest real
parts. This emphasizes that the effective master equation cor-
rectly describes long timescales and discards faster timescales
with Re(λ) < −κ, thereby describing the dynamics of the
metastable states. Figure 2(b) shows the spectrum for large
coupling g > gc, in the superradiant phase. Again, we find
very good agreement between the full and effective descrip-
tions, which is remarkable since the gap between the “cor-
rectly” described modes and Re(λ) ≈ −κ is much smaller.
Nevertheless, the effective master equation still correctly de-
scribe the metastable dynamics. This direct comparison sug-

FIG. 2. Eigenvalues λ in units of κ for the master equation (2) (gray
“o”) and effective master equation (32) (black “x”) for the dissipative
Dicke model. The parameters are N = 10, ωc = κ, ω0 = 0.1κ, and
(a) g = 0.5gc, (b) g = 2gc.

gests that the effective description is valid across the phase
transition point of the dissipative Dicke model.

To further support this claim, we now use Eq. (32) to make
analytical predictions in the limit ωc, κ � ω0, i.e., the limit
when the cavity evolves much faster than the atoms [21]. For
this case, the commutator term [ĤS , α̂̂] can be treated pertur-
batively and the coefficients in Eq. (6) can be expanded ac-
cording to α± = −g/[

√
N(ωc− iκ)]±gω0/[

√
N(ωc− iκ)2].

In the large N limit, we can derive mean-field equations for
Sa = 〈Ŝa〉with a ∈ {x, y, z} that are reported in the SM [44].
We show that the resulting equations are the same as the ones
given in Ref. [21]. Consequently, we find the same threshold
and the correct oscillation and damping rates in the thermody-
namic limit. In addition, we also find the correct critical expo-
nents of the dissipative Dicke model (see SM [44] for details).
The steady-state values of I = 〈â†â〉 and Sz in the thermody-
namic limit are given by I0 = 0 and Sz0 = −N/2 for g < gc
and I0 = Ng2(1−g4

c/g
4)/(ω2

c +κ2) and Sz0 = −Ng2
c/(2g

2)
for g > gc. In Fig. 3(a) and (b), we show these analytical re-
sults of I0 and Sz0 as functions of g as black dashed lines.
Furthermore, we present the values I and 〈Ŝz〉 by numeri-
cally finding the steady state of Eq. (32) and then calculating
〈â†â〉 = Tr[α̂†α̂ρ̂sys] and 〈Ŝz〉 = Tr[Ŝz ρ̂sys]. Since the ef-
fective master equation does not include the cavity degrees
of freedom, we are able to diagonalize the Lindbladian for
much larger atom numbers. As can be seen in Fig. 3(a) and
(b), the analytical result and the numerical results are in bet-
ter agreement for larger atom numbers N . For N = 40, we
were also able to find the steady state of the full master equa-
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FIG. 3. (a) Photon number 〈â†â〉 and (b) inversion 〈Ŝz〉 as a func-
tion of g in units of the critical coupling strength gc. Dashed lines
are the mean-field results forN → ∞ and solid lines are obtained by
finding the steady-state of Eq. (32) for the dissipative Dicke model
with various atom numbers N (see inset). Red crosses are obtained
by finding the steady state of the full master equation (2) forN = 40.
The remaining parameters are ωc = κ, ω0 = 0.1κ.

tion (2), depicted for two values of g/gc as red crosses. Again,
there is excellent agreement with the effective method, indi-
cating that it is also valid for finite atom numbers. Altogether,
these results show that the effective master equation predicts
the correct steady state and low-frequency oscillations, damp-
ing rates, and critical exponents.

In the last part of this Letter, we focus on the out-of-
equilibrium dynamics, i.e., a scenario where the system is ini-
tialized “far” away from the steady state. The dynamics and
relaxation in such a situation require the correct description
of high and low frequency excitations and metastable states.
Since it is difficult to simulate the full master equation (2)
for large atom numbers, we employ a semiclassical stochas-
tic method to compare with our simulations of the effective
master equation (32). The stochastic method simulates the
coupled dynamics of the c-number equivalents of spin com-
ponents Sx, Sy , and Sz coupled to the noisy real part x and
imaginary part p of the field amplitude. Details are reported
in the SM [44]. In a first benchmark, we initialize the system
with all atoms in the ground state, corresponding to a fully po-
larized state with 〈Ŝz〉 = −N/2, and evolve this state accord-
ing to Eq. (32). Figure 4(a) and (b) show the time evolution of
〈[Ŝx]2〉 for g = 0.5gc and g = 2gc, respectively, for N = 50
(gray) and N = 200 (black). These numerical simulations
are compared with the stochastic simulations visible as red
dashed (N = 50) and yellow dashed-dotted (N = 200) lines.
We find excellent agreement. Since the stochastic simulations
evolve the coupled atom-cavity dynamics on equal footing, we
conclude that Eq. (32) incorporates the correct retarded inter-
action between atoms and cavity, and is therefore well suited
for the description of out-of-equilibrium dynamics.

Finally, we want to analyze a scenario with quantum fea-
tures that cannot be described by the semiclassical stochastic
methods [44]. To achieve this we first analyze the spectrum
of the Eq. (32) for g = 2gc, which is shown in Fig. 4(c) for

FIG. 4. The value of 〈[Ŝx]2〉 as function of time in units of 1/κ
for (a) g = 0.5gc and (b) g = 2gc. The gray (black) lines are
obtained by simulating the effective master equation (32) with N =
50 (N = 200). The red dashed (yellow dashed-dotted) lines are
simulated with the stochastic method reported in the SM [44] and
averaged over 20000 simulations with N = 50 (N = 200). (c)
Eigenvalues λ in units of κ of Eq. (32) for N = 25 (“x”), N = 50
(“+”), and N = 100 (“o”). The red symbols mark the eigenvalues
discussed in the text. (d) Fidelity F = 〈Ψ|ρ̂sys(t)|Ψ〉 as function of
time in units of 1/κ simulated using Eq. (32) initialized with the state
|Ψ〉 discussed in the text for N = 25 (light gray dashed), N = 50
(gray dashed-dotted), and N = 100 (black solid) with ωc = κ,
ω0 = 0.1κ.

N = 25 (“x”), N = 50 (“+”), and N = 100 (“o”). Here,
we find a mode with a growing imaginary part for increasing
N (marked red). The underlying mode is related to the coher-
ence ĉ = |N/2〉〈−N/2| and ĉ† that oscillate with a frequency
∼ Nω0. Remarkably, the frequency of this mode exceeds
the cavity resonance and linewidth while its damping is far
less than the cavity linewidth. Therefore, it can be seen as
a metastable high-frequency oscillation with a number of co-
herent periods that diverges for increasing atom number. To
find this oscillation dynamically, we initialize the system in
the NOON state |Ψ〉 = (|N/2〉+ | −N/2〉)/

√
2 such that the

coherence ĉ is present at t = 0. We then evolve |Ψ〉 accord-
ing to the effective master equation (32) and calculate the fi-
delity F = 〈Ψ|ρ̂sys(t)|Ψ〉 visible in Fig. 4(d). We show F for
N = 25 (light gray dashed), N = 50 (gray dashed-dotted),
and N = 100 (black solid) and find an oscillation frequency
that increases with N . At the same time, the relaxation seems
to be nearly independent of the particle number, in agreement
with Fig. 4(c), where we saw an increasing imaginary part but
a nearly constant real part of the red-marked modes. Since the
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initial state and its dynamics is beyond the mean-field approx-
imation, this further highlights the ability of Eq. (32) to de-
scribe out-of-equilibrium situations with entangled quantum
states.

Conclusion.—We have developed a formalism for the
derivation of effective master equations that describe the re-
duced dynamics of a quantum system coupled to dissipative
bosonic modes. This effective master equation is of the Lind-
blad form, thereby ensuring that the positivity is preserved.
Furthermore, our approach includes the retarded interaction
between the quantum system and the bosonic modes and
therefore goes beyond the often considered adiabatic elimi-
nation. We demonstrated this by applying the formalism to
the dissipative Dicke model, where it was shown to describe
the correct steady state and dynamics for small as well as large
atom numbers.

We believe that the method presented here may be extended
to the regime where the thermal occupation of the bosonic
modes is not negligible. In addition, we expect that it will
be possible to generalize this method to include higher cou-
pling strengths, for instance, by modifying the displacement
transformation. This might be interesting for systems with a
vanishing gap, e.g., atom-cavity systems with a U(1) symme-
try [22] where it was shown that the Redfield master equation
is inaccurate. In future, it will be interesting to apply the ef-
fective master equation also to multi-mode systems to study
many-body cooling, the formation of coherent structures in
the presence of dissipation, as well as reservoir and interac-
tion engineering.
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Supplemental Material: Lindblad master equations for quantum systems coupled to dissipative
bosonic modes

DISPLACED MASTER EQUATION

In this section, we present some details on the displacement
transformation used in the Letter to describe the dynamics of
ρ̃. The displacement operator in this transformation, which
can be consider as generalization of the Polaron transforma-
tion [56], is defined as

D̂ = exp

{∑
k

[â†kα̂k(t)− α̂†k(t)âk]

}
, (S1)

where for every bosonic mode (BM) the operator α̂k(t) acts
on the quantum system (QS). We will now apply this displace-
ment operator to the coupled QS-BM master equation, given
by L in the main text. The density matrix in the displaced
picture then has the form

ρ̃ = D̂†ρ̂D̂. (S2)

We assume that the driving Ŝk is sufficiently small, such
that also the displacements α̂k are sufficiently small. More
precisely, we will neglect third-order terms in Ŝk and α̂k,

such that α̂k1 α̂k2 α̂k3 ≈ 0 for all possible combinations of
k1, k2, k3.

The dynamics of the density operator (S2) is determined
by the master equation in the displaced picture, which can be
written as

∂ρ̃

∂t
= Laρ̃+ Lbρ̃, (S3)

where the first term,

Laρ̃ =
∂D̂†

∂t
D̂ρ̃+ ρ̃D̂†

∂D̂

∂t
, (S4)

originates from a possible explicit time dependence of α̂k.
The second term,

Lbρ̃ = D̂†
∂ρ̂

∂t
D̂ = −i[D̂†ĤD̂, ρ̃] +

∑
k

κkD̃[âk]ρ̃, (S5)

on the other hand, describes the time evolution in the dis-
placed picture in absence of an explicit time dependence.
Here, D̂†ĤD̂ is the Hamiltonian in the displaced frame,
whereas D̃[âk]ρ̃ = D̂†(D[âk]ρ̂)D̂ represents the displaced
dissipator. In the following, we will derive the explicit form
of La and Lb.

Calculation of La

We want to derive the explicit form of La. In order to do so, we use D̂†D̂ = 1 to establish

∂D̂†

∂t
D̂ = −D̂† ∂D̂

∂t
. (S6)

As a first step, we want to obtain an expression for the time derivative of the displacement operator. To this end, we write

∂D̂

∂t
=

∂

∂t
exp(r̂) =

∞∑
n=0

1

n!

n−1∑
m=0

r̂m
∂r̂

∂t
r̂n−m−1, (S7)

where we have defined the anti-Hermitian generator r̂ =
∑
k(â†kα̂k − α̂

†
kâk). The inner time derivative simply reads

∂r̂

∂t
=
∑
k

(
â†k
∂α̂k
∂t
−
∂α̂†k
∂t

âk

)
(S8)

and can be used to obtain

r̂m
∂r̂

∂t
r̂n−m−1 =

∑
k

(
â†k
∂α̂k
∂t

r̂n−1 +

[
r̂m, â†k

∂α̂k
∂t

]
r̂n−m−1 − r̂n−1 ∂α̂

†
k

∂t
âk − r̂m

[
∂α̂†k
∂t

âk, r̂
n−m−1

])
. (S9)

The summation over m in Eq. (S7) then results in

n−1∑
m=0

r̂m
∂r̂

∂t
r̂n−m−1 = n

∑
k

(
â†k
∂α̂k
∂t

r̂n−1 − r̂n−1 ∂α̂
†
k

∂t
âk

)
+
∑
k

n−1∑
m=0

([
r̂m, â†k

∂α̂k
∂t

]
r̂n−m−1 − r̂m

[
∂α̂†k
∂t

âk, r̂
n−m−1

])
(S10)
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and enables us to partly carry out the remaining sum over n in Eq. (S7), yielding

∂D̂

∂t
=
∑
k

(
â†k
∂α̂k
∂t

D̂ − D̂
∂α̂†k
∂t

âk

)
+
∑
k

∞∑
n=0

1

n!

n−1∑
m=0

([
r̂m, â†k

∂α̂k
∂t

]
r̂n−m−1 − r̂n−m−1

[
∂α̂†k
∂t

âk, r̂
m

])
, (S11)

where we have changed the summation in the very last term according to m↔ n−m− 1.
We are interested in a theory that is valid up to second order. Therefore, we will systematically neglect higher-order terms. It

is useful to write down general expressions for the displaced BM using the Baker-Campbell-Hausdorff relation

D̂†âkD̂ =
∞∑
l=0

1

l!

[∑
k′

(α̂†k′ âk′ − â
†
k′ α̂k′), âk

]
l

≈ âk + α̂k +
1

2

∑
k′

([α̂†k′ , α̂k]âk′ − â†k′ [α̂k′ , α̂k]), (S12)

where [·, ·]l denotes the lth nested commutator. In the same manner, for an arbitrary system operator Ô one finds

D̂†ÔD̂ ≈Ô +
∑
k

([α̂†k, Ô]âk + â†k[Ô, α̂k]) +
1

2

∑
k

([α̂†k, Ô]α̂k + α̂†k[Ô, α̂k])

+
1

2

∑
k,k′

([α̂†k′ âk′ − â
†
k′ α̂k′ , [α̂

†
k, Ô]]âk + â†k[α̂†k′ âk′ − â

†
k′ α̂k′ , [Ô, α̂k]]). (S13)

Applying D† from the left to the first term of Eq. (S11) and using the above second-order approximations yields

D̂†
∑
k

(
â†k
∂α̂k
∂t

D̂ − D̂
∂α̂†k
∂t

âk

)
≈
∑
k

(
â†k
∂α̂k
∂t
−
∂α̂†k
∂t

âk

)
+
∑
k

(
α̂†k
∂α̂k
∂t
− â†k

[
r̂,
∂α̂k
∂t

])
. (S14)

We now turn to the second term of Eq. (S11). We emphasize that r̂ itself is of first order and ∂α̂/∂t is likewise of first order.
Since the term with m = 0 vanishes, the only remaining term is m = 1 and therefore n = 2. For the second term in Eq. (S11)
we thereby find

D̂†
∑
k

∞∑
n=0

1

n!

n−1∑
m=0

[
r̂m, â†k

∂α̂k
∂t

]
r̂n−m−1 ≈ 1

2

∑
k

[
r̂, â†k

∂α̂k
∂t

]
=

1

2

∑
k

(
â†k

[
r̂,
∂α̂k
∂t

]
− α̂†k

∂α̂k
∂t

)
, (S15)

D̂†
∑
k

∞∑
n=0

1

n!

n−1∑
m=0

r̂n−m−1

[
∂α̂†k
∂t

âk, r̂
m

]
≈ 1

2

∑
k

[
∂α̂†k
∂t

âk, r̂

]
=

1

2

∑
k

([
∂α̂†k
∂t

, r̂

]
âk +

∂α̂†k
∂t

α̂k

)
. (S16)

By combining all these terms we finally find

Laρ̃ = −i
[
− iD̂† ∂D̂

∂t
, ρ̃

]
(S17)

with

D̂†
∂D̂

∂t
=
∑
k

(
â†k
∂α̂k
∂t
−
∂α̂†k
∂t

âk

)
+

1

2

∑
k

(
α̂†k
∂α̂k
∂t
−
∂α̂†k
∂t

α̂k −
[
∂α̂†k
∂t

, r̂

]
âk − â†k

[
r̂,
∂α̂k
∂t

])
. (S18)

Calculation of Lb

We now turn our attention to Lb. This term, as visible in Eq. (S5), has a Hamiltonian and a dissipative part. We start with the
displaced Hamiltonian that we rewrite as

D̂†ĤD̂ ≈ Ã+ B̃ + C̃. (S19)

In the following, we give the explicit forms of Ã, B̃, and C̃ up to second order in the operators α̂k and Ŝk. The first term is the
displaced QS Hamiltonian HS and takes the form

Ã = D̂†ĤSD̂ ≈ĤS +
∑
k

([α̂†k, ĤS ]âk + â†k[ĤS , α̂k]) +
1

2

∑
k

([α̂†k, ĤS ]α̂k + α̂†k[ĤS , α̂k])

+
1

2

∑
k,k′

([α̂†k′ âk′ − â
†
k′ α̂k′ , [α̂

†
k, ĤS ]]âk + â†k[α̂†k′ âk′ − â

†
k′ α̂k′ , [ĤS , α̂k]]). (S20)
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The next term is given by the displaced BM Hamiltonian

B̃ =
∑
k,k′

D̂†â†k′Ω̂
k′,k
S âkD̂ ≈

∑
k,k′

(
â†k′Ω̂

k′,k
S âk + α̂†k′Ω̂

k′,k
S âk + â†k′Ω̂

k′,k
S α̂k + α̂†k′Ω̂

k′,k
S α̂k

)
+
∑
k,k′,q

â†k′
([
α̂†q, Ω̂

k′,k
S

]
âq + â†q

[
Ω̂k

′,k
S , α̂q

])
âk +

1

2

∑
k,k′,q

â†k′
([
α̂†q, Ω̂

k′,k
S

]
α̂q + α̂†q

[
Ω̂k

′,k
S , α̂q

])
âk

+
∑
k,k′,q

α̂†k′
([
α̂†q, Ω̂

k′,k
S

]
âq + â†q

[
Ω̂k

′,k
S , α̂q

])
âk +

1

2

∑
k,k′,q

(â†q[α̂
†
k′ , α̂q]− [α̂†k′ , α̂

†
q]âq)Ω̂

k′,k
S âk

+
∑
k,k′,q

â†k′
([
α̂†q, Ω̂

k′,k
S

]
âq + â†q

[
Ω̂k

′,k
S , α̂q

])
α̂k +

1

2

∑
k,k′,q

â†k′Ω̂
k′,k
S ([α̂†q, α̂k]âq − â†q[α̂q, α̂k])

+
1

2

∑
k,k′,q,q′

â†k′
([
α̂†q′ âq′ − â

†
q′ α̂q′ ,

[
α̂†q, Ω̂

k′,k
S

]]
âq + â†q

[
α̂†q′ âq′ − â

†
q′ α̂q′ ,

[
Ω̂k

′,k
S , α̂q

]])
âk. (S21)

We will now explicitly use the fact that the term proportional to Ŝk is already of higher order. Consequently, for the third term,
representing the displaced driving, we find

C̃ =
∑
k

D̂†[â†kŜk + Ŝ†kâk]D̂ ≈
∑
k

(â†kŜk + Ŝ†kâk + α̂†kŜk + Ŝ†kα̂k)

+
∑
k,k′

â†k([α̂†k′ , Ŝk]âk′ + â†k′ [Ŝk, α̂k′ ]) +
∑
k,k′

([α̂†k′ , Ŝ
†
k]âk′ + â†k′ [Ŝ

†
k, α̂k′ ])âk. (S22)

Lastly, the form of the displaced master equation in Eq. (S5) also requires the explicit expressions for the displaced dissipator,
which takes the form

D̃[âk]ρ̃ =D̂†(2âkρ̂â
†
k − â

†
kâkρ̂− ρ̂â

†
kâk)D̂

≈(2âkρ̃â
†
k − â

†
kâkρ̃− ρ̃â

†
kâk) + (2âkρ̃α̂

†
k − α̂

†
kâkρ̃− ρ̃α̂

†
kâk) + (2α̂kρ̃â

†
k − â

†
kα̂kρ̃− ρ̃â

†
kα̂k)

+ (2α̂kρ̃α̂
†
k − α̂

†
kα̂kρ̃− ρ̃α̂

†
kα̂k) +

∑
k′

{([α̂†k′ , α̂k]âk′ − â†k′ [α̂k′ , α̂k])ρ̃â†k + H.c.}

− 1

2

∑
k′

{â†k([α̂†k′ , α̂k]âk′ − â†k′ [α̂k′ , α̂k])ρ̃+ H.c.} − 1

2

∑
k′

{ρ̃â†k([α̂†k′ , α̂k]âk′ − â†k′ [α̂k′ , α̂k]) + H.c.}. (S23)

This concludes the derivation of the displaced master equation up to second order in the coupling and α̂k.

DERIVATION OF THE EFFECTIVE MASTER EQUATION

In this section, we report details on the derivation of the
effective master equation, shown in Eq. (5) of the main text.

Elimination of the bosonic modes

We first introduce the projection P onto the BM vacuum
|vac〉, with P ρ̃ = |vac〉〈vac|ρ̃|vac〉〈vac|, and define the pro-
jector onto the orthogonal subspace, given by Q = I − P ,
where I is the identity superoperator. We now write down
the coupled differential equations for the time evolution of
v̂ = P ρ̃ and ŵ = Qρ̃ that can be written

∂v̂

∂t
= P (L0 + L1 + L2) v̂ + P (L0 + L1 + L2) ŵ, (S24)

∂ŵ

∂t
= Q (L0 + L1 + L2) ŵ +Q (L1 + L2) v̂, (S25)

where the superoperators Li include driving due to Ŝk and
displacements α̂k (α̂†k) up to the ith order. Due to this hi-
erarchy and the results of the previous section, we find the
coupling between v̂ and ŵ to be at least of first order, result-
ing in QL0v̂ = 0. However, there is a first-order contribution
coupling the dynamics of v̂ and ŵ that is mediated by the BM
raising operators â†k. This term is given by

QL1v̂ =
∑
k

Êk|1k〉〈vac|ρ̂sys + H.c., (S26)

in which |1k〉 = â†k|vac〉 represents the state where the kth
BM carries one excitation and all remaining BM are in the
vacuum. Here, we have introduced ρ̂sys = 〈vac|ρ̃|vac〉 and the
explicit form of Êk reads

Êk = −∂α̂k
∂t
− i[ĤS , α̂k]− i

∑
k′

Ω̂k,k
′

S α̂k′ − iŜk − κkα̂k.

(S27)
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Since we have not yet specified the actual form of the α̂k, we
can simply impose the condition

Êk = 0. (S28)

for every k. We remark that in the no-driving case, Ŝk = 0,
one solution of this equation is simply α̂k = 0, which is,
therefore, consistent with the fact that the BM degrees of free-
dom relax to the vacuum state. Enforcing these conditions in
Eq. (S28) results in

QL1v̂ = 0. (S29)

This means the contribution of v̂ to ŵ is at least of second
order. Consequently, we find that the only contribution of ŵ
to v̂ is due to the coupling

PL0ŵ = 2
∑
k

κk|vac〉〈1k|ŵ|1k〉〈vac|. (S30)

However, there is no second order term that couples the vac-
uum state to |1k〉〈1k| in the dynamics of ŵ. Therefore, this
term is at least of third order and thus negligible.

Hence, we have shown that with our specific choice of α̂k,
determined by Eqs. (S27) and (S28), we have decoupled v̂
and ŵ up to third-order corrections. The master equation can
thereby be written as

∂v̂

∂t
= PL0v̂ + PL1v̂ + PL2v̂, (S31)

and the BM are effectively eliminated. The effective QS mas-
ter equation can now be obtained by tracing out the BM de-
grees of freedom.

Effective master equation for the atoms

Applying the partial trace over the BM degrees of freedom,
TrBM, onto Eq. (S31), we find that the effective master equa-
tion for ρ̂sys is given by

∂ρ̂sys

∂t
= −i[Ĥeff, ρ̂sys] +

∑
k

κkD[α̂k]ρ̂sys (S32)

with the effective Hamiltonian

Ĥeff = ĤS −
i

2

∑
k

(
α̂†k
∂α̂k
∂t
−
∂α̂†k
∂t

α̂k

)

+
∑
k

(
[α̂†k, ĤS ]α̂k + α̂†k[ĤS , α̂k]

2

+
∑
k′

α̂†kΩ̂k,k
′

S α̂k′ + α̂†kŜk + Ŝ†kα̂k

)
. (S33)

Now, using the elimination condition (S28) in the form

∂α̂k
∂t

= −i[ĤS , α̂k]− i
∑
k′

Ω̂k,k
′

S α̂k′ − iŜk − κkα̂k (S34)

as well as its Hermitian-conjugate version, the effective
Hamiltonian above can be rewritten as

Ĥeff = ĤS +
1

2

∑
k

(α̂†kŜk + Ŝ†kα̂k). (S35)

ATOM-ONLY MEAN-FIELD DESCRIPTION

In this section, we derive the atom-only mean-field descrip-
tion of the dynamics for the dissipative Dicke model. As men-
tioned in the main text, we use we use ĤS = ω0Ŝ

z and de-
scribe the coupling by Ω̂S = ωc and Ŝ = 2gŜx/

√
N . We then

rewrite the explicit form of α± in an alternative form given by

α̂ ≈ − 2gŜx√
N(ωc − iκ)

+
2igω0Ŝ

y

√
N(ωc − iκ)2

. (S36)

The effective Hamiltonian, as given in Eq. (S35), then reads

Ĥeff =ω0Ŝ
z − 4ωcg

2

N(ω2
c + κ2)

[Ŝx]2 − 4ωcκω0g
2

N(ω2
c + κ2)2

{Ŝx, Ŝy}

− 2g2ω0(ω2
c − κ2)

N(ω2
c + κ2)2

Ŝz. (S37)

For the remainder of this section, we will focus on the limit
where N →∞. In this case, the three terms in the first line of
Eq. (S37) scale asN while the term in the second line scales as
1 and is therefore negligible. Using the effective Hamiltonian
and the effective dissipator in this limit results in the equations

dŜx

dt
= i[Ĥeff, Ŝ

x] + κ(α̂†[Ŝx, α̂] + [α̂†, Ŝx]α̂) ≈ −ω0Ŝ
y,

(S38)

dŜy

dt
≈ ω0Ŝ

x +
2V0

N
{Ŝx, Ŝz}+

2V1

N
{Ŝy, Ŝz}, (S39)

dŜz

dt
≈ −2V0

N
{Ŝx, Ŝy} − 4V1

N
ŜyŜy, (S40)

with V0 = 2ωcg
2/(ω2

c +κ2) and V1 = 4ωcκω0g
2/(ω2

c +κ2)2.
We now take the expectation value 〈 · 〉 and make a mean-field
approximation where we factorize second moments 〈ŜaŜb〉 =
〈Ŝa〉〈Ŝb〉. Then, we replace the operators by their c-number
equivalents Sa = 〈Ŝa〉, which obey the coupled non-linear
differential equations given by

dSx

dt
= −ω0S

y,

dSy

dt
= ω0S

x +
4V0

N
SxSz +

4V1

N
SySz,

dSz

dt
= −4V0

N
SxSy − 4V1

N
SySy. (S41)

These equations are the same as the ones reported in Eq. (35)
of Ref. [21] and, therefore, give rise to the same steady state
and the same oscillation as well as damping rates.
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DYNAMICAL CRITICAL EXPONENT

In this section, we show that the mean-field equations pro-
vide the correct critical exponents. For this, we assume
that the system is in a stable stationary state with Sy = 0,
Sx = Nx/2, and Sz = −Nz/2, where x2 + z2 = 1. Below
threshold, g < gc, we have z = 1, whereas above thresh-
old, g > gc, we have z = ω0/2V0 (see, e.g., Ref. [21]). We
now study the dynamics of fluctuations δSx, δSy , and δSz

to determine the stability and relaxation of this configuration.
Defining δ = (δSx, δSy, δSz)T we obtain

dδ

dt
= Mδ (S42)

with

M =

 0 −ω0 0
ω0 − 2V0z −2V1z +2V0x

0 −2V0x 0

 . (S43)

Below threshold, g < gc and x = 0, the eigenvalues are the
solutions of

λ(λ+ 2V1) + ω0(ω0 − 2V0) = 0, (S44)

which are given by

λ = −V1 ±
√
V 2

1 − ω0(ω0 − 2V0). (S45)

Since ω0−2V0 ∝ gc−g this gives the critical exponent ν = 1
with λ ∝ |gc−g|ν for non-vanishing V1. On the other hand, if
V1 = 0 we obtain the critical exponent ν = 0.5 that is known
from the Dicke quantum phase transition.

Above threshold, g > gc, we need to solve

λ(λ+ 2V1z) + 4V 2
0 x

2 = 0 (S46)

and the solutions are given by

λ = −V1z ±
√
V 2

1 z
2 − 4V 2

0 x
2. (S47)

Since z ≈ 1 at the critical point and x = ±(g4−g4
c )1/2/g2 ∝

|g − gc|1/2, we obtain λ ∝ |gc − g|ν with a critical exponent
ν = 1 for non-vanishing V1 and an exponent ν = 0.5 for
V1 = 0.

This calculation shows that the mean-field equations de-
rived from the effective Lindblad master eqauation give the
correct dynamical critical exponent ν = 1 of the dissipative
Dicke model [18, 54, 55] and also includes the correct expo-
nent ν = 0.5 in absence of dissipation, i.e., V1 = 0.

STOCHASTIC SIMULATION OF THE DISSIPATIVE DICKE
MODEL

The purpose of this section is to give the explicit form of the
stochastic differential equation that we compare with the sim-
ulation of the effective master equation. We first start by writ-
ing down the Heisenberg-Langevin equations that are given

by

dâ

dt
= −κâ− iωcâ− i2

g√
N
Ŝx +

√
2κâin(t), (S48)

dŜx

dt
= −ω0Ŝ

y, (S49)

dŜy

dt
= ω0Ŝ

x − 2
g√
N

(â+ â†)Ŝz, (S50)

dŜz

dt
= 2

g√
N

(â+ â†)Ŝy. (S51)

Here, we have introduced the noise operators âin with
〈âin〉 = 0 and the second moments 〈âin(t)âin(t′)〉 = 0 =

〈â†in(t)âin(t′)〉 as well as 〈âin(t)â†in(t′)〉 = δ(t− t′). The aver-
age is here taken over the modes external to the cavity mode.

We now define the two quadrature operators x̂ = â† + â
and p̂ = i(â† − â) and write down the equations of motion,
which have the form

dx̂

dt
= −κx̂+ ωcp̂+

√
2κN̂ x(t), (S52)

dp̂

dt
= −κp̂− ωcx̂− 4

g√
N
Ŝx +

√
2κN̂ p(t), (S53)

dŜx

dt
= −ω0Ŝ

y, (S54)

dŜy

dt
= ω0Ŝ

x − 2
g(t)√
N
x̂Ŝz, (S55)

dŜz

dt
= 2

g√
N
x̂Ŝy, (S56)

with N̂ x = (âin(t) + â†in(t)) and N̂ p = −i(âin(t) − â†in(t)).
The stochastic differential equations are now derived by re-
placing the quantum operators with c-numbers with symmet-
ric ordering and the quantum noise with classical noise having
the correct second moments [57]. The result reads

dx

dt
= −κx+ ωcp+

√
2κN x(t), (S57)

dp

dt
= −κp− ωcx− 4

g√
N
Sx +

√
2κN p(t), (S58)

dSx

dt
= −ω0S

y, (S59)

dSy

dt
= ω0S

x − 2
g√
N
xSz, (S60)

dSz

dt
= 2

g√
N
xSy, (S61)

with the classical noise N a fulfilling 〈N a〉 = 0 and
〈N a(t)N b(t′)〉 = δ(t− t′).

Z-polarized State

In the Letter, we show the dynamics of the dissipative
Dicke model with stochastic differential equations when all
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FIG. S1. Dynamics of 〈[Ŝx]2〉 (a) and 〈Ŝz〉 (b) for g = 2gc when
the atoms are initialized in the NOON state. The black lines are
obtained by simulating the effective master equation (S32) withN =
100. The red dashed lines are simulated with the stochastic method,
averaged over 20000 simulations with N = 100. The remaining
parameters are ωc = κ, ω0 = 0.1κ.

atoms are initialized in the atomic ground state. This state
is |Ψ〉 = | − N/2〉. For this, in the thermodynamic limit
N → ∞, the correct description is Sz(t = 0) = −N/2 and
Sx(0) and Sy(0) are independent random variables that are
sampled from a Gaussian with zero mean and variance N/2.

Notice that this fulfills

〈[Ŝx]2 + [Ŝy]2 + [Ŝz]2〉 =
N

2

(
N

2
+ 1

)
. (S62)

The field is initialized in its vacuum state. In the stochastic
equation, this is realized by sampling x and p from indepen-
dent Gaussian distributions with zero mean and unit variance.

NOON State

In the Letter, we also study the dynamics of the NOON
state |Ψ〉 = (| − N/2〉 + |N/2〉)/

√
2. In order to sample

this state we initialize, as for the polarized state, Sx(0) and
Sy(0) as independent random variables with zero mean and
variance N/2. Since 〈Ŝz(0)〉 = 0 but 〈[Ŝz]2(0)〉 = N2/4,
we also sample Sz from a distribution with zero mean and
varianceN2/4. This distribution is chosen to have two “delta”
peaks at m = −N/2 and m = N/2 states. At this point, we
mention that this cannot be distinguished from the mixed state
ρ̂sys(0) = |N/2〉〈N/2|/2 + | − N/2〉〈−N/2|/2, which does
not include the coherences ĉ that are mentioned in the Letter.
Using this initial condition together with the vacuum state of
the cavity, we can now evolve the system.

The red dashed lines in Fig. S1 show the results of this sim-
ulation. In addition, we also plot the simulation of the effec-
tive master equation visible as black lines. Both numerical
simulations are in excellent agreement. We remark that the
stochastic simulation is able to predict the correct moments
for the Ŝa spin operators, however, it is not able to predict the
fast oscillations visible in Fig. 4 of the Letter.
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