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2
-BETTI NUMBERS AND CONVERGENCE OF

NORMALIZED HODGE NUMBERS VIA THE WEAK

GENERIC NAKANO VANISHING THEOREM

by Luca F. DI CERBO & Luigi LOMBARDI (*)

Abstract. Ů We study the rate of growth of normalized Hodge numbers along
a tower of abelian covers of a smooth projective variety with semismall Albanese
map. These bounds are in some cases optimal. Moreover, we compute the L2-
Betti numbers of irregular varieties that satisfy the weak generic Nakano vanishing
theorem (e.g., varieties with semismall Albanese map). Finally, we study the con-
vergence of normalized plurigenera along towers of abelian covers of any irregular
variety. As an application, we extend a result of Kollár concerning the multiplica-
tivity of higher plurigenera of a smooth projective variety of general type, to a
wider class of varieties. In the Appendix, we study irregular varieties for which the
Ąrst Betti number diverges along a tower of abelian covers induced by the Albanese
variety.

Résumé. Ů Nous étudions le taux de croissance des nombres de Hodge nor-
malisés le long dŠune tour de revêtement abéliennes dŠune variété projective lisse
avec lŠapplication dŠAlbanese semi-petite. Ces bornes sont dans certains cas op-
timales. De plus, nous calculons les nombres de Betti L2 des variétés irrégulières
qui satisfont le théorème dŠannulation générique faible de Nakano (e.g., variétés
avec lŠapplication dŠAlbanese semi-petite). EnĄn, nous étudions la convergence de
plurigenres normalisés le long de tours de revêtement abéliennes de toute variété
irrégulière. On applique ça à lŠextension dŠun résultat de Kollár concernant la mul-
tiplicativité des plurigenres supérieurs dŠune variété projective lisse de type général,
à une classe plus large de variétés. En annexe, nous étudions les variétés irrégulières
pour lesquelles le premier nombre de Betti diverge le long dŠune tour de revêtement
abéliennes induite par la variété dŠAlbanese.
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1. Introduction and Main Results

In this paper, we study the asymptotic behavior of Hodge and Betti num-

bers of sequences of coverings of complex projective varieties with semismall

Albanese map. Similar problems have attracted considerable interest over

the last four decades, and they have been extensively studied in a vari-

ety of different geometric contexts. For instance, in [9] and [10], DeGeorge

and Wallach study the asymptotic behavior of limit multiplicities of repre-

sentations in L2 of discrete co-compact lattices of isometries of symmetric

varieties. In cohomological terms, they study the asymptotic behavior of

Betti numbers on regular coverings of compact locally symmetric spaces of

non-compact type (e.g., compact real and complex hyperbolic manifolds).

The problem addressed in [9, 10] is natural for researchers interested in the

cohomology of locally symmetric varieties, and it can be easily described.

In what follows, we rephrase the main result in [9, 10] in terms of normal-

ized Betti numbers. We refer to page 714 in the introduction of [2], or to

Chapter 5 in the book [31], for more details concerning the connections

between the representation theoretic results of DeGeorge and Wallach, and

the asymptotic properties of the cohomology of compact locally symmetric

varieties.

Given a torsion free lattice Γ acting co-compactly on a symmetric space

of non-compact type, say G/K, a sequence of nested, normal, Ąnite index

subgroups ¶Γi♢ of Γ is a coĄnal Ąltration of Γ if ∩iΓi is the identity element.

DeĄne πi : Xi → X as the Ąnite index regular cover of X
def
= Γ\(G/K)

associated to Γi. The main result of [9] implies that

lim
i→∞

bk(Xi)

deg πi
= 0 for any k ̸=

1

2
dim(G/K),

where bk(Xi) denotes the k-th Betti number of Xi. We refer to the ratio

bk(Xi)/ deg πi as the normalized k-Betti number of the cover πi : Xi →

X. Thus, for k different from the middle dimension, the growth of Betti

numbers in a tower of coverings associated to a coĄnal Ąltration has sub-

degree (or sub-volume) growth, and the normalized Betti numbers converge

to zero.

The study of Betti numbers in a sequence of coverings continues to fas-

cinate many mathematicians; see for example the recent work of Abert

et al. [2]. In this remarkable paper, the authors extend the results of

DeGeorgeŰWallach to sequences of compact locally symmetric varieties

which BenjaminiŰSchramm converge to their universal covers. We refer

to [2] for the precise deĄnition of this notion of convergence; here we
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simply remark that a tower of coverings associated to a coĄnal Ąltration

does indeed BenjaminiŰSchramm converge. The techniques employed both

in [9, 10] and [2] are based on representation theory, and they do not imme-

diately generalize to non-symmetric varieties. Nevertheless, there is a large

and growing literature concerning these kind of problems outside the lo-

cally symmetric context; see for example [1], [12], [42] and the bibliography

therein. These papers employ geometric analysis techniques, and they ex-

tend much of the DeGeorgeŰWallach theory to negatively curved compact

Riemannian manifolds which are not locally symmetric.

Here we contribute to this circle of ideas by studying the cohomology

of complex projective varieties with semismall Albanese map, a further in-

stance of varieties of non-locally symmetric type. Our approach is based

on tools of Algebraic Geometry and Hodge Theory, and it employs sheaf-

theoretic techniques speciĄc to this class of varieties. As an important in-

gredient, we employ the generic vanishing theory of bundles of holomorphic

p-forms developed by Popa and Schnell in [34] via SaitoŠs theory of mixed

Hodge modules.

We now turn to details and present our main results. Let X be an irreg-

ular smooth projective complex variety of dimension n, and let aX : X →

Alb(X) be its Albanese map. The Albanese torus Alb(X) is an abelian va-

riety of dimension g = h1,0(X) (we recall that the variety X is irregular if

g > 0). We say that the Albanese map aX is semismall if for every integer

k > 0 the following inequalities hold

(1.1) codim
{

x ∈ aX(X)
∣∣ dim

(
a−1

X (x)
)
⩾ k

}
⩾ 2k.

In particular, if aX is semismall, then aX is generically Ąnite onto its image,

but the converse does not hold in general. For instance, the Albanese map of

the blow-up of an abelian variety along a smooth subvariety of codimension

c is semismall if and only if c ⩽ 2. Next, let

µd : Alb(X) → Alb(X), µd(x) = dx =

d-times︷ ︸︸ ︷
x + · · · + x, d ⩾ 1

be the multiplication maps on Alb(X), and deĄne the varieties Xd via the

Ąber product diagrams

(1.2)

Xd

φd

��

ad
// Alb(X)

µd

��

X
aX

// Alb(X).

TOME 0 (0), FASCICULE 0
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Our Ąrst result controls the rate of growth of the Hodge numbers of Xd

with respect to the degrees of the covers φd : Xd → X. We refer to the

ratios hp,q(Xd)/ deg φd as the normalized (p, q)-Hodge numbers. The fol-

lowing theorem provides an effective estimate for the rate of convergence

of the normalized Hodge numbers, and it also yields the optimal rate of

convergence of one of them.

Theorem 1.1. Ů Let X be a smooth projective variety of complex

dimension n, and let φd : Xd → X be the étale covers deĄned in (1.2). If the

Albanese map aX is semismall, then for any pair of integers (p, q) ∈ [0, n]2

there exists a positive constant B(p, q) such that

(1.3)
hp,q(Xd)

deg φd
⩽ B(p, q) d −2♣n−p−q♣ for all d ⩾ 1.

Moreover, we have

(1.4) lim
d→∞

hp,q(Xd)

deg φd
= (−1)q χ(Ωp

X) if p + q = n.

Conversely, if X is a smooth projective variety of dimension n that satisĄes

both dim Alb(X) > n and the bounds in (1.3) for all pairs of indexes

(p, q) ∈ [0, n]2, then the Albanese map aX is semismall.

In order to prove the previous theorem, in Section 3 we develop a general

machinery that establishes the convergence of the normalized cohomology

ranks hq(Xd, φ∗
dF)/ deg φd of a coherent sheaf F on X subject to certain

cohomological conditions (cf. Theorem 3.6). In particular, Theorem 1.1

corresponds to the case of bundles of holomorphic p-forms F = Ωp
X . In

Section 5, we apply this machinery to the case of pluricanonical bundles

F = ω⊗m
X for m ⩾ 1. We refer to Section 4 for the details of the proof

of Theorem 1.1, and to a generalization that takes into account all val-

ues of the defect of semismallness of the Albanese map (cf. Theorem 4.3

and (2.1)). Finally, Theorem 1.1 implies the following statement regarding

the normalized Betti numbers.

Corollary 1.2. Ů Let X be a smooth projective variety of dimension

n such that the Albanese map aX is semismall. Then for any integer k ̸= n

there exists a positive constant C(k) such that

bk(Xd)

deg φd
⩽ C(k) d −2♣n−k♣ for all d ⩾ 1.

Furthermore, we have

lim
d→∞

bn(Xd)

deg φd
= (−1)n χtop(X).
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When combined with LückŠs Approximation Theorem (cf. [30, Main The-

orem]), Theorem 1.1 can be used to compute the L2-Betti numbers of the

Albanese universal cover π : X → X, when the Albanese map of X is semis-

mall. Throughout the paper, the Albanese universal cover is deĄned as the

pullback of aX via the universal topological cover π of Alb(X):

(1.5)

X

π

��

a
// Cg

π

��

X
aX

// Alb(X),

where g = h1,0(X) = dim Alb(X) ̸= 0. Notice that, up to a Ąnite cover,

the Albanese universal cover coincides with the universal abelian cover.

Indeed, these inĄnite covers are equal if and only if H1(X,Z) is torsion

free. We refer to Section 6 for the formal deĄnition of L2-Betti numbers of

any inĄnite G-covering map X ′ → X ′/G. It turns out that our calculation

of L2-Betti numbers holds for a more general class of smooth irregular

projective varieties, which we now deĄne. We say that X satisĄes the weak

generic Nakano vanishing theorem if for any pair of integers (p, q) ∈ [0, n]2

such that p + q ̸= n we have

Hq
(
X, Ωp

X ⊗ αp,q

)
= 0

for at least one topologically trivial line bundle αp,q ∈ Pic0(X). Instances

of varieties that satisfy this property are varieties with semismall Albanese

map (cf. Theorem 2.6), and varieties that admit one holomorphic 1-form

such that its zero-set is either Ąnite of empty (cf. Theorem 2.7). We refer

to [13] and [27, Introduction, Sections 3.1 and 3.2] for examples and basic

properties of this class of varieties.

Theorem 1.3. Ů Let X be a smooth projective variety of complex

dimension n and let X be the universal Albanese cover. If X satisĄes the

weak generic Nakano vanishing theorem, then the L2-Betti numbers of X

are:

b
(2)
k (X) =

{
(−1)nχtop(X) if k = n

0 if k ̸= n.

It is tantalizing to compare Theorem 1.3 with an old conjecture of Singer

concerning the L2-Betti numbers of the universal covering space of an as-

pherical manifold.

TOME 0 (0), FASCICULE 0
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Conjecture 1.4 (Singer Conjecture). Ů If X is a closed aspherical

manifold of real dimension 2n, then

b
(2)
k (X̃) =

{
(−1)nχtop(X) if k = n

0 if k ̸= n,

where π : X̃ → X is the topological universal cover of X.

Interestingly, Theorem 1.3 provides a vanishing theorem analogous to

SingerŠs conjecture when the L2-Betti numbers are computed with respect

to the Albanese universal cover. It seems worth asking whether Theorem 1.3

holds when the L2-Betti numbers are computed with respect to the topo-

logical universal cover, and more generally, if SingerŠs conjecture can be

extended meaningfully outside the class of aspherical manifolds, at least

within the class of projective varieties.

We point out that in [20, Theorem 3(i)] Jost and Zuo prove, among

other things, a special case of Theorem 1.3. More speciĄcally, they prove

Theorem 1.3 in the case of smooth projective varieties whose Albanese map

aX : X → Alb(X) is an immersion. The techniques used by Jost and Zuo

rely on analytical arguments introduced by Gromov in [16], where the au-

thor conĄrms SingerŠs conjecture for Kähler hyperbolic manifolds. These

manifolds include Kähler manifolds with negative and pinched sectional

curvature, and do not contain any rational curve. On the contrary, vari-

eties with Albanese map semismall may contain rational curves. Finally,

we remark that in [25] the semismallness condition of the Albanese map is

studied by means of topological generic vanishing theory. Via the general

strategy of [26, Theorem 2.28], it is possible that the techniques of [25,

Theorem 1.2] suffice to give an alternative proof of Theorem 1.3 in the

case of varieties with semismall Albanese map; however we do not pursue

this direction in this paper. Finally, we also point out the related work of

Budur [6], where the author shows polynomial periodicity of the Hodge

numbers of congruence covers.

In Section 5, we apply the techniques of Section 3 to prove a version of

Theorem 1.1 for pluricanonical bundles ω⊗m
X with m ⩾ 2. More precisely,

we compute the following limits

(1.6) P̃ m(X)
def
= lim

d→∞

Pm(Xd)

deg φd
= lim

d→∞

h0(Xd, ω⊗m
Xd

)

deg φd
, m ⩾ 2

of normalized plurigenera (whenever they exist). Let I : X → Z be a

smooth representative of the Iitaka Ąbration, and let q(I) = q(X) − q(Z)

be the difference of the irregularities. In Proposition 5.2, we prove that the

ANNALES DE LŠINSTITUT FOURIER
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limits in (1.6) exist and are computed by:

(1.7) P̃ m(X) =

{
Pm(X) if q(I) = 0,

0 if q(I) > 0.

We recall that if X is of general type (hence satisfying q(I) = 0), then a

classical result of Kollár [22, Proposition 9.4] (cf. also [24, Theorem 11.2.23])

ensures that its higher plurigenera are multiplicative with respect to any

étale cover. As suggested by (1.7), we extend this property to smooth pro-

jective varieties satisfying q(I) = 0, when the étale covers are induced

by the Albanese variety via base change. Also, as a by-product, we show

that [22, Proposition 9.4] cannot be extended to varieties with q(I) > 0. We

refer to Section 5 for the proof of Theorem 5.4, and examples of varieties

with q(I) = 0 that are not of general type.

In the Appendix (Section A), we discuss the irregular varieties for which

the Ąrst Betti number b1 goes to inĄnity along the unramiĄed covers in-

duced by the multiplication maps on the Albanese variety (regardless of the

semismallness of the Albanese map). Building upon results of Beauville [3],

we prove that if this is the case, then the base variety must be Ąbered over

a curve having either genus at least two, or genus equal to one and the

Ąbration admits two multiple Ąbers whose multiplicities are not coprime.

Moreover, if the group H2(X,Z) is torsion free, then the converse of this

result holds as well (cf. Theorem A.1). We remark that, in many interesting

cases, the converse can be used to deduce that the Ąrst Betti number is in-

deed uniformly bounded on these abelian covers. Very recently, Stover [40]

and Vidussi [41] study the boundedness of the Ąrst Betti number of abelian

covers of the CartwrightŰSteger surface [8]. While our analysis does not

fully recover their theorems, it has the advantage to put in perspective

their results in the framework of higher-dimensional varieties.
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2. Weak GV -Sheaves

In this section, we recall a few basic results from generic vanishing theory.

The following presentation is tailored to our purposes; we refer to [13, 14,

33, 38] for a comprehensive introduction.

Let X be a smooth projective complex variety of dimension n, and let

f : X → A be a morphism to an abelian variety of dimension g. The non-

vanishing loci attached to a coherent sheaf F on X relative to f : X → A

are deĄned as

V i(F) =
{

α ∈ Â
∣∣ Hi(X, F ⊗ f∗α) ̸= 0

}
(i ⩾ 0)

(in the notation V i(F) we omit the reference to the morphism f). Here

Â ≃ Pic0(A) denotes the dual torus of A, which parameterizes isomor-

phism classes of holomorphic line bundles with trivial Ąrst Chern class.

By the Semicontinuity Theorem [19, Theorem III.12.8], the loci V i(F) are

algebraic closed subsets of Â.

Definition 2.1. Ů The sheaf F satisĄes GV (or the generic vanishing

property) if codim
Â

V i(F) ⩾ i for all i > 0.

A fundamental result of Green and Lazarsfeld proves that if the Albanese

map aX : X → Alb(X) is generically Ąnite onto its image, then the canon-

ical bundle ωX satisĄes GV . Moreover, the loci V i(ωX) are torsion linear

varieties for all i ⩾ 0 regardless the Albanese dimension of X, i.e. every irre-

ducible component T ⊂ V i(ωX) is of type β+T0 where β ∈ Pic0(Alb(X)) ≃

Pic0(X) is an element of Ąnite order, and T0 ⊂ Pic0(X) is a subtorus (cf.

[14, Theorem 0.1], [39] and [38, Corollary 19.2]). For the purposes of this

paper, we will consider the following weaker notion of generic vanishing.

Definition 2.2. Ů The sheaf F satisĄes weak GV with index p if

V i(F) ⊊ Â for all i ̸= p.

Obviously, GV -sheaves satisfy weak GV with index 0. We conclude this

subsection with a useful result which we will use in Section 5. The Euler

characteristic of a sheaf F is deĄned as χ(F) =
∑

i⩾0(−1)ihi(X, F).

ANNALES DE LŠINSTITUT FOURIER
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Lemma 2.3. Ů If F is a weak GV -sheaf with index p, then

χ(F) = (−1)p hp(X, F ⊗ f∗α)

for a generic element α ∈ Â. In particular, χ(F) = 0 if F is a weak GV -

sheaf with respect to two distinct indexes.

Proof. Ů If α ∈ Â is generic, then the cohomology groups Hi(X, F ⊗

f∗α) vanish for all i ̸= p. Since χ(F) is invariant under twists with line

bundles in Pic0(X), we Ąnd χ(F) = χ(F ⊗ f∗α) = (−1)php(X, F ⊗ f∗α).

Moreover, if F is a weak GV -sheaf with respect to two distinct indexes,

then all the loci V i(F) are proper subset of Â, hence χ(F) = 0. □

2.1. (Weak) Generic Nakano Vanishing Theorem

Let X be a smooth projective variety of dimension n, and let aX : X →

Alb(X) be its Albanese map. Moreover, denote by Ωp
X

def
= ∧pΩX the bundle

of holomorphic p-forms on X. Following [34, DeĄnition 12.1], we say that X

satisĄes the generic Nakano vanishing theorem if codimPic0(X) V q(Ωp
X) ⩾

♣p + q − n♣ for all indexes p and q. In this paper, we consider varieties that

satisfy a weaker vanishing condition.

Definition 2.4. Ů The variety X satisĄes the weak generic Nakano

vanishing theorem if Ωp
X is a weak GV -sheaf with index n − p for all p =

0, . . . , n.

It turns out that X satisĄes the generic Nakano vanishing theorem if and

only if it satisĄes a condition on the dimension of the Ąbers of the Albanese

map. This goes as follows. Set Vl
def
= ¶y ∈ Alb(X) ♣ dim a−1

X (y) ⩾ l♢ and

deĄne the defect of semismallness of aX as:

(2.1) δ(aX) = max
l∈N

¶2l − n + dim Vl♢.

Definition 2.5. Ů We say that aX is semismall if δ(aX) = 0. Equiva-

lently, aX is semismall if the inequalities of (1.1) are satisĄed for all k ⩾ 1.

Theorem 2.6 (PopaŰSchnell). Ů If X is a smooth projective variety of

dimension n, then

codimPic0(X) V q(Ωp
X) ⩾ ♣p + q − n♣ − δ(aX)

for all p ⩾ 0 and q ⩾ 0. Moreover, there exists a pair (p, q) for which the

equality is attained. In particular, if aX is semismall, then X satisĄes the

generic Nakano vanishing theorem.

TOME 0 (0), FASCICULE 0
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The previous theorem appears in [34, Theorem 3.2], and it is proved by

means of SaitoŠs theory of mixed Hodge modules and the FourierŰMukai

transform. Besides varieties with semismall Albanese map, another class of

varieties that satisĄes DeĄnition 2.4 is provided by the following result of

Green and Lazarsfeld [13, Theorem 3.1].

Theorem 2.7 (GreenŰLazarsfeld). Ů Let X be a smooth projective va-

riety. If X carries a holomorphic 1-form such that its zero-set is either Ąnite

or empty, then X satisĄes the weak generic Nakano vanishing theorem.

The previous theorem relies on the deformation theory of the derivative

complexes associated to Ωp
X . A natural question is the characterization

of varieties that satisfy DeĄnition 2.4. Here we note that a variety that

satisĄes the weak generic Nakano vanishing theorem does not necessarily

carry a holomorphic 1-form whose zero-set is either Ąnite or empty. For

instance, consider a smooth projective variety Y of general type such that

its Albanese map is an immersion and codimAlb(Y ) Y = 2 (for instance a

genus 3 curve in its Jacobian). Then the blow-up Z of Alb(Y ) along Y

is the counterexample we are looking for. In fact, by [35, Theorem 2.1],

any holomorphic 1-form on Y has at least one zero, and its pull-back to

Z vanishes along some curves in the exceptional divisor. Moreover, all 1-

forms of Z are obtained in this way as H0(Z, ΩZ) = H0(Alb(Y ), ΩAlb(Y )) =

H0(Y, ΩY ). On the other hand, the Albanese map of Z is semismall so that

Z satisĄes the generic Nakano vanishing theorem.

3. Limits of Normalized Cohomology Ranks

Let X be a smooth projective variety of complex dimension n, and

f : X → A be a morphism to an abelian variety, as in Section 2. Given any

integer d ⩾ 1, we denote by µd : A → A the multiplication map µd(x) = dx.

Furthermore, by means of the Ąber product construction, we deĄne the va-

rieties Xd as follows:

(3.1)

Xd

φd

��

fd
// A

µd

��

X
f

// A.

In general the varieties Xd may be disconnected, but if f = aX is the

Albanese map they are irreducible. Finally, we set Fd
def
= φ∗

dF if F is

ANNALES DE LŠINSTITUT FOURIER
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a coherent sheaf on X. In this section we aim to calculate the following

limits of normalized cohomology ranks:

lim inf
d→∞

hp(Xd, Fd)

deg φd
and lim sup

d→∞

hp(Xd, Fd)

deg φd
.

To this end, we introduce Ąrst some notation. We denote by ri the number

of irreducible components of V i(F), and by vi the maximum dimension of

an irreducible component of V i(F). Moreover, we set:

Mi = max
{

hi(X, F ⊗ f∗α) ♣ α ∈ V i(F)
}

mi = min
{

hi(X, F ⊗ f∗α) ♣ α ∈ V i(F)
}

.

Finally, we denote by T i
d the set of d-torsion points of V i(F), and by τ i

d =∣∣T i
d

∣∣ its cardinality. We use the following lemma in order to bound τ i
d.

Lemma 3.1. Ů Let V be a complex torus and S = p0 +B be a translate

of a subtorus B ⊂ V , and let d ⩾ 1 be an integer. If the set of d-torsion

points of S is not empty, then it consists of exactly d2 dim B elements.

Proof. Ů Denote by νd(x) = dx the multiplication map on B. We notice

that if y = p0 +x ∈ S = p0 +B is a d-torsion point, then dx = −dp0. Hence

x is an element of the Ąber ν−1
d (−dp0) which consists of exactly d2 dim B

elements. Conversely, if x ∈ ν−1
d (−dp0), then y = p0 + x belongs to S and

it is trivially a d-torsion point. □

Definition 3.2. Ů The locus V i(F) is said linear (resp. torsion linear)

if it consists of a Ąnite union of translates (resp. torsion translates) of

subtori of Â.

Proposition 3.3. Ů If V i(F) is linear, then for all d ⩾ 1 the following

inequalities hold:

(i) τ i
d ⩽ ri d2vi ,

(ii)
∑

α∈T i
d

hi(X, F ⊗ f∗α) ⩽ Mi ri d2vi .

Proof. Ů The proposition follows by Lemma 3.1 and the following in-

equalities

□(3.2) mi τ i
d ⩽

∑

α∈T i
d

hi(X, F ⊗ f∗α) ⩽ Mi τ i
d.

Proposition 3.4. Ů If V i(F) is torsion linear and vi > 0, then τ i
d ⩾

d2vi and
∑

α∈T i
d

hi(X, F ⊗ f∗α) ⩾ mid
2vi

i for inĄnitely many d ⩾ 1.

Proof. Ů If S is a component of dimension vi, then it contains d-torsion

points for inĄnitely many d ⩾ 1. The result follows by Lemma 3.1

and (3.2). □
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There exist upper bounds on the cardinalities τ i
d even if V i(F) is not

linear.

Proposition 3.5. Ů There are positive constants a1, a2 such that for

all d ⩾ 1 we have:

(i) τ i
d ⩽ a1 d2vi ,

(ii)
∑

α∈T i
d

hi(X, F ⊗ f∗α) ⩽ a2 d2vi .

Proof. Ů We employ the following theorem of Raynaud [37, p. 327]. Let

Y be a closed integral subscheme of a complex abelian variety V , and let

T ⊂ V be the set of torsion points. If T ∩ Y is dense in Y with respect to

the Zariski topology, then Y is a translate of an abelian subvariety by a

point of Ąnite order.

Take now the Zariski closure of all the torsion points in V i(F). This is a

Ąnite union of irreducible closed subvarieties where in each component the

torsion points are dense. Hence, by RaynaudŠs Theorem, each component

is a translate of an abelian subvariety of dimension at most vi by a torsion

point. □

The following theorem is the main result of this section. The equa-

tion (3.3) is a generalization of [43, Theorem 4.1] in which the author

studies the particular case of the structure sheaf of a smooth projective

variety with respect to the Albanese map.

Theorem 3.6. Ů If V i(F) is a proper subset of Â, then we have

(3.3) lim
d→∞

hi(Xd, Fd)

deg φd
= 0.

Moreover, if F satisĄes weak GV with index p, then we have

lim
d→∞

hp(Xd, Fd)

deg φd
= (−1)pχ(F).

Proof. Ů Denote by Sd the set of all d-torsion points of Â so that

µd∗OA ≃
⊕

α∈Sd

α

(cf. [43, Proof of Theorem 4.1]). As both µd and φd are étale morphisms,

there are isomorphisms of complexes Rµd∗OA ≃ µd∗OA and Rφd∗OXd
≃

φd∗OXd
. Hence, by performing the base change of [5, Lemma 1.3] along

f : X → A, we obtain a further decomposition:

φd∗OXd
≃

⊕

α∈Sd

f∗α.
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Finally, by the projection formula of [19, Example 8.3], we obtain the fol-

lowing isomorphisms

φd∗Fd ≃ F ⊗ φd∗OXd
≃

⊕

α∈Sd

(
F ⊗ f∗α

)
,

so that

(3.4) hi(Xd, Fd) = hi(X, φd∗Fd) =
∑

α∈Sd

hi(X, F ⊗ f∗α).

Hence, if V i(F) = ∅, then all summands in the right hand side of (3.4) are

equal to zero. On the other hand, if V i(F) ̸= ∅, then Proposition 3.5 yields
∑

α∈Sd

hi(X, F ⊗ f∗α) ⩽ ai d2vi

for some positive constants ai which are independent of d. This proves the

Ąrst claim as deg φd = deg µd = d2g and vi < g.

In order to prove the second claim, we recall that the Euler character-

istic χ(F) is multiplicative under étale covers [23, Proposition 1.1.28], i.e.,

χ(Fd) = (deg φd) χ(F). Therefore an application of (3.3) gives

χ(F) = lim
d→∞

χ(Fd)

deg φd
= lim

d→∞
(−1)p hp(Xd, Fd)

deg φd
. □

Remark 3.7. Ů By Corollary 2.3, the Euler characteristic of a weak GV -

sheaf with index p satisĄes χ(F) = (−1)php(X, F ⊗ f∗α), for some line

bundle α generic in Â. Therefore, if hp(X, F) assumes the least (or generic)

value in the set ¶hp(X, F ⊗ f∗α) ♣ α ∈ Â♢, then the computation of χ(F)

simpliĄes to

χ(F) = (−1)p hp(X, F).

This is the case if the sheaf F satisĄes the Index Theorem with index p

(or I.T. for short), namely that V i(F) = ∅ for all i ̸= p. In fact, by the

invariance of the Euler characteristic, it follows that hp(X, F ⊗ f∗α) is

independent on α and V p(F) = Â.

Example 3.8. Ů By MumfordŠs Index Theorem [32, Section 16], any non-

degenerate line bundle L on A satisĄes the Index Theorem with index p,

for some p ∈ [0, g = dim A] (see Remark 3.7; moreover note that p = 0 if

and only if L is ample). Therefore, by taking f = idA, we have

lim
d→∞

hp(A, Ld)

deg µd
= (−1)pχ(L) = (−1)p

(
Lg

)

g!
.

There are examples of higher rank vector bundles that satisfy the I.T.

condition as well, for instance, the class of non-degenerate simple semi-

homogeneous vector bundles on an abelian variety (cf. [15, Proposition 2.1]).
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4. Limits of Normalized Hodge and Betti Numbers

We denote by

hp,q(X) = dimC Hq(X, Ωp
X)

the Hodge numbers of a smooth projective variety X, and by

(4.1) bk(X) =
∑

p+q=k

hp,q(X)

its Betti numbers.

Proposition 4.1. Ů Let X be a smooth projective variety of dimension

n that satisĄes the weak generic Nakano vanishing theorem. Then we have

lim
d→∞

hp,q(Xd)

deg φd
=

{
(−1)qχ(Ωp

X) if p + q = n

0 if p + q ̸= n

and

lim
d→∞

bk(Xd)

deg φd
=

{
(−1)nχtop(X) if k = n

0 if k ̸= n.

Proof. Ů Since hp,q(Xd) = hq(Xd, Ωp
Xd

) = hq(Xd, φ∗
dΩp

X), the Ąrst state-

ment is an application of Theorem 3.6. For k ̸= n, the second statement

follows by the Ąrst statement and the equations (4.1). For k = n, we further

observe that
n∑

p=0

(−1)n−pχ(Ωp
X) = (−1)nχtop(X). □

Remark 4.2. Ů Proposition 4.1 may fail if the Albanese map is only

generically Ąnite onto its image, but not semismall (cf. [20, Remark on

p. 6]). A counterexample is provided by the construction in [13, Section 3]

(or [38, Example 9.1]) which we here brieĆy recall. Let A be an abelian

variety of dimension four and let aX : X → A be the blowup of A along a

smooth curve C ⊂ A of genus g(C) ⩾ 2 with exceptional divisor E. Hence

aX is the Albanese map of X and δ(aX) = 1 (see [34, Example 12.3]). By

means of the exact sequence 0 → a∗
XΩA → ΩX → ΩE/C → 0 and the Leray

spectral sequence, we deduce that

V i(ΩX) = ¶OX♢, V 2(ΩX) = Â, V 3(ΩX) ⊆ ¶OX♢, i = 0, 1, 4.

Hence ΩX satisĄes weak GV with index 2, and, by Theorem 3.6, we Ąnd

lim
d→∞

h1,2(Xd)

deg φd
= χ(ΩX) = χ(ΩE/C) = g(C) − 1 ̸= 0.
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Moreover, as the loci V 3(OX) ≃ V 0(Ω3
X) ≃ V 1(ωX) are of codimension

at least one (see [13, Theorem 1]), by Theorem 3.6 we have that also the

following limit

lim
d→∞

b3(Xd)

deg φd
= lim

d→∞

∑
p+q=3 hp,q(Xd)

deg φd
= 2 lim

d→∞

h1,2(Xd)

deg φd
= 2g(C) − 2

is non-zero.

Now we prove Theorem 1.1 of the Introduction. The theorem is a special

case of the following more general result, where all the values of the defect

of semismallness of the Albanese map δ(aX) are taken in consideration

(see (2.1)). Theorem 1.1 is the case δ(aX) = 0. First of all, we note that

the limits (1.4) are peculiar to the case δ(aX) = 0, and they have been

essentially proved in Proposition 4.1.

Theorem 4.3. Ů Let X be a smooth projective variety of complex

dimension n, and let φd : Xd → X be the étale covers deĄned in (1.2).

If the defect of semismallness of the Albanese map satisĄes δ(aX) ⩽ N ,

then for any pair of integers (p, q) ∈ [0, n]2 there exists a positive constant

B(p, q) such that

(4.2)
hp,q(Xd)

deg φd
⩽ B(p, q) d −2(♣n−p−q♣−N) for all d ⩾ 1.

Conversely, if N ⩾ 0 is an integer and X is a smooth projective variety of

dimension n that satisĄes both dim Alb(X) > n and the bounds in (4.2) for

all pairs of indexes (p, q) ∈ [0, n]2, then the defect of semismallness satisĄes

δ(aX) ⩽ N .

Proof. Ů Let Sd denote the set of d-torsion points on Alb(X). As in (3.4),

we have for all p and q the following equalities

hp,q(Xd) =
∑

α∈Sd

hq(X, Ωp
X ⊗ α).

By Proposition 3.3, there exist positive constants B = B(p, q) such that

hp,q(Xd)

deg φd
⩽ B d2(dim V q(Ωp

X
)−g)

where g = dim Alb(X). Moreover, by Theorem 2.6, we have dim V q(Ωp
X) ⩽

g − ♣p + q − n♣ + δ(aX) and

hp,q(Xd)

deg φd
⩽ B d−2(♣p+q−n♣−δ(aX ))

for all d ⩾ 1. This shows one implication.
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Assume now that dim Alb(X) > n and that the bounds (4.2) hold. More-

over, assume by contradiction that δ(aX) ⩾ N + 1. By Theorem 2.6, there

exists a pair (p0, q0) ∈ [0, n]2 such that codim V q0(Ωp0

X ) = ♣n − p0 − q0♣ −

δ(aX). Then dim V q0(Ωp0

X ) = dim Alb(X) − ♣n − p0 − q0♣ + δ(aX) > 0, and

by Proposition 3.4 we have

hp0,q0(Xd)

deg φd
⩾ A d−2(♣n−p0−q0♣−δ(aX )) for inĄnitely many d ⩾ 1

for some positive constant A independent of d (note that the loci V q(Ωp
X)

are torsion linear by [38, Corollary 19.2]). For d ≫ 0, this contradicts the

bounds (4.2) when (p, q) = (p0, q0). □

Proof of Corollary 1.2. The Ąrst statement of the corollary is an appli-

cation of Theorem 1.1 and (4.1). On the other hand, the second point is

again Proposition 4.1. □

5. Limits of Normalized Plurigenera

In this subsection, we apply Theorem 3.6 to the pluricanonical bundles

ω⊗m
X (m ⩾ 1) of a smooth projective variety X. We set pg(X) = P1(X) =

h0(X, ωX) for the geometric genus of X, and

Pm(X) = h0(X, ω⊗m
X ), m ⩾ 2,

for the plurigenera.

In the following proposition we Ąx a morphism f : X → A to an abelian

variety.

Proposition 5.1. Ů Let Xd be the Ąber product between f : X → A

and µd as in the commutative diagram (3.1). Then for any integer m ⩾ 1

we have

(5.1) lim
d→∞

Pm(Xd)

deg φd
= χ(f∗ω⊗m

X ).

Moreover, if f : X → A is generically Ąnite onto its image, then

lim
d→∞

pg(Xd)

deg φd
= χ(ωX).

Proof. Ů By [36, Theorem 1.10] the sheaves f∗ω⊗m
X satisfy GV for all

m ⩾ 1. Hence, by Theorem 3.6, we have

lim
d→∞

h0(A, µ∗
df∗ω⊗m

X )

deg φd
= χ(f∗ω⊗m

X ).
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We observe that by base change, together with the fact that h0(A, fd∗G) =

h0(Xd, G) for any coherent sheaf G on Xd, we have the equalities

h0(Xd, ω⊗m
Xd

) = h0(Xd, φ∗
dω⊗m

X ) = h0(A, fd∗φ∗
dω⊗m

X ) = h0(A, µ∗
df∗ω⊗m

X ).

The second claimed limit follows by the GrauertŰRiemenschneider Van-

ishing [23, Theorem 4.3.9], which yields χ(f∗ωX) = χ(ωX) if f is generically

Ąnite onto its image. □

For m ⩾ 2 there are two cases where one can improve the results of

Proposition 5.1. The Ąrst is the case of smooth projective varieties of general

type. Indeed, Kollár in [22, Proposition 9.4] shows the multiplicativity of

the higher plurigenera under any étale map, so that Pm(Xd)
deg φd

are constants

and trivially

lim
d→∞

Pm(Xd)

deg φd
= Pm(X) for all m ⩾ 2.

The second is the case of the Albanese map f = aX : X → Alb(X). With

a slight abuse of notation, we denote by I : X → Z a non-singular repre-

sentative of the Iitaka Ąbration of X. Moreover, we set

q(I) = q(X) − q(Z) = h0(X, ΩX) − h0(Z, ΩZ)

for the difference of the irregularities.

Proposition 5.2. Ů Let Xd be the Ąber product between aX and µd

as in (1.2), and Ąx an integer m ⩾ 2. Then there exists a positive constant

M such that

Pm(Xd)

deg φd
⩽ M d−2 q(I) for all d ⩾ 1.

Moreover we have

lim
d→∞

Pm(Xd)

deg φd
=

{
Pm(X) if q(I) = 0

0 if q(I) > 0.

Proof. Ů By [18, Theorem 11.2(b)], for each m ⩾ 2 there exist line

bundles α1, . . . , αt ∈ Pic0(X) of Ąnite order such that

V 0(ω⊗m
X ) =

t⋃

j=1

(
αj + Pic0(Z)

)
.

Hence we have dim V 0(ω⊗m
X ) = q(Z). Moreover, as

Pm(Xd) =
∑

α∈Sd

h0(X, ω⊗m
X ⊗ α)
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(where Sd is the set of d-torsion points on Alb(X)), by Proposition 3.3

there exists a positive constant M > 0 such that the Ąrst claim holds. This

also shows that the limit limd→∞
Pm(Xd)
deg φd

vanishes for q(I) > 0. In order to

complete the proof, thanks to Proposition 5.1, we only need to calculate the

Euler characteristic χ(aX∗ω⊗m
X ). As aX∗ω⊗m

X satisĄes GV , by Lemma 2.3

we Ąnd that

(5.2) χ(aX∗ω⊗m
X ) = h0(Alb(X), aX∗ω⊗m

X ⊗ α) = h0(X, ω⊗m
X ⊗ α)

for a generic element α ∈ Pic0(Alb(X)) ≃ Pic0(X). However, if q(I) = 0,

then by [18, Theorem 11.2(a)] we have V 0(ω⊗m
X ) = Pic0(X) and moreover

the quantities h0(X, ω⊗m
X ⊗ α) are independent of α. □

Remark 5.3. Ů Smooth projective varieties of general type fall within

the class q(I) = 0. Instances of varieties with q(I) = 0, but which are

not of general type, are provided by non-isotrivial elliptic surfaces Ąbered

over smooth projective curves Σg of genus g ⩾ 2. Indeed, given an ellip-

tic surface p : X → Σg, one can show that the corresponding morphism

P : Alb(X) → Alb(Σg) is an isomorphism if and only if the elliptic Ą-

bration is not isotrivial. For more details, we refer to [4, Chapter IX].

Higher-dimensional examples may be constructed in the same fashion.

In analogy to KollárŠs result [22, Proposition 9.4], the previous proposi-

tion suggests that the higher plurigenera ought to be multiplicative under

étale morphisms also in the more general case q(I) = 0. We conĄrm this

expectation for the étale covers induced via base change by the isogenies of

Alb(X). In [29, Corollary 12.2], the reader may notice a further property

that shows how varieties with q(I) = 0 behave like varieties of general type.

Indeed, the sheaves aX∗ω⊗m
X satisfy I.T. with index 0 for all m ⩾ 2 as soon

as q(I) = 0 (cf. Remark 3.7).

Theorem 5.4. Ů Let X be a smooth projective variety with q(I) = 0,

and let Y be the Ąber product between aX and an isogeny µ : B → Alb(X),

as in the following cartesian diagram:

Y
ã

//

φ

��

B

µ

��

X
aX

// Alb(X).

Then for all d ⩾ 1 and m ⩾ 2 we have Pm(Y ) = (deg φ)Pm(X).
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Proof. Ů The proof follows the general strategy of [18, Theorem 11.2]

and [24, Theorem 11.2.23]. This goes as follows. As in the proof of Proposi-

tion 5.2, the Iitaka Ąbration I induces a surjective morphism aI : Alb(X) →

Alb(Z) with connected Ąbers such that the diagram

X
aX

//

I

��

Alb(X)

aI

��

Z
aZ

// Alb(Z)

commutes (cf. [17, Proposition 2.1]). Therefore aI is an isomorphism as

q(I) = 0. Fix now an integer m ⩾ 2 and let I
(
∥ω

⊗(m−1)
X ∥

)
be the asymp-

totic multiplier ideal sheaf as deĄned in [24, DeĄnition 11.1.2]. Moreover

set g = aI ◦ aX and deĄne the sheaf

H = g∗


ω⊗m

X ⊗ I
(
∥ω

⊗(m−1)
X ∥

)
.

Since g factors though I, we have a linear equivalence relation tKX ∼

g∗H + E where H is an ample divisor on Alb(Z), E is an effective divisor,

and t ≫ 0 is a sufficiently large integer. This implies, as proved in the

course of the proof of [18, Theorem 11.2], that

H0(Alb(Z), H) = H0(X, ω⊗m
X ) and Hi(Alb(Z), H) = 0 for all i > 0.

Thus we have Pm(X) = χ(H).

Now, consider the Stein factorization s : Y → S of the composition I ◦

φ : Y → Z. As the general Ąber of s has Kodaira dimension equal to zero,

by [23, Remark 2.1.35] s factors through a non-singular representative of

the Iitaka Ąbration of Y , which, with a slight abuse of notation, we denote

it by IY : Y → W . DeĄne g̃ = aI ◦ µ ◦ ã. As g̃ factors though IY , we can

write

(5.3) t̃KY ∼ g̃∗H̃ + Ẽ

for some ample line bundle H̃ on Alb(Z), effective divisor Ẽ on Y , and

large integer t̃ ≫ 0. By deĄning the sheaves

G̃ = g̃∗


ω⊗m

Y ⊗ I
(
∥ω

⊗(m−1)
Y ∥

)
, H̃ = ã∗


ω⊗m

Y ⊗ I
(
∥ω

⊗(m−1)
Y ∥

)
,

the relation (5.3) ensures that

(5.4) H0
(
Alb(Z), G̃

)
= H0

(
Y, ω⊗m

Y

)
and Hi

(
Alb(Z), G̃

)
= 0 for i > 0,
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again as shown in the argument of the proof of [18, Theorem 11.2].(1) We

conclude that Pm(Y ) = χ(G̃) = χ(H̃) as in addition there are isomorphisms

Hi(B, H̃) ≃ Hi(Alb(Z), G̃) for all i ⩾ 0 (recall that µ is étale). Finally,

we note that χ(H̃) = χ
(
µ∗

(
a−1

I

)
∗
H

)
. Indeed, by base change and [24,

Theorem 11.2.16], we obtain the following isomorphisms

H̃ ≃ ã∗φ∗


ω⊗m
X ⊗ I

(
∥ω

⊗(m−1)
X ∥

)
≃ µ∗

(
a−1

I

)
∗
H.

To conclude, we note that

χ


µ∗
(
a−1

I

)
∗
H


= (deg µ) χ

(
a−1

I

)
∗
H


= (deg µ) χ(H)

as aI : Alb(X) → Alb(Z) is an isomorphism. □

Remark 5.5 (Higher direct images and multiplier ideal sheaves). Ů One

can apply Theorem 3.6 to other classes of sheaves that satisfy the generic

vanishing condition of DeĄnition 2.1. In this direction, the paper [33] con-

tains several examples of GV -sheaves. As an example, by keeping the no-

tation of (3.1), Theorem 3.6 and [33, Theorem 5.8] give

lim
d→∞

h0(A, Rifd∗ωXd
)

deg µd
= χ(Rif∗ωX) for any i ⩾ 0.

Moreover, Theorem 3.6 in combination with [33, Corollary 5.2] give the

following statement. Suppose that the Albanese map aX : X → Alb(X)

is generically Ąnite onto its image, and let L be a line bundle with non-

negative Kodaira dimension. With notation as in (1.2), we have

lim
d→∞

h0
(
Xd, ωXd

⊗ Ld ⊗ I
(
∥Ld∥

))

deg φd
= χ

(
ωX ⊗ L ⊗ I

(
∥L∥

))
.

6. Applications to L2-Cohomology

In order to deĄne L2-Betti numbers we follow the reference [31]. Let G

be a discrete group, and let M be a co-compact free proper G-manifold

without boundary endowed with a G-invariant Riemannian metric. DeĄne

the space of smooth L2-integrable harmonic k-forms

Hk
(2)(M) =


ω ∈ Ωk(M)

∣∣∣∣ ∆dω = 0,

∫

M

ω ∧ ∗ω < ∞



(1) Even if not explicitly stated, the proof of [18, Theorem 11.2] actually proves the
isomorphism and vanishings in (5.4) for any morphism from Y to an abelian variety
that factors through the Iitaka Ąbration of Y .
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where ∗ is the Hodge star operator and ∆d = dd∗ + d∗d is the Hodge-

Laplacian operator. By [31, Section 1.3.2], the spaces Hk
(2)(M) are Ąnitely

generated Hilbert modules over the von Neumann algebra N (G) of G. We

deĄne the L2-Betti numbers b
(2)
k

(
M ; N (G)

)
of (M, G) as the von Neumann

dimension of the N (G)-modules Hk
(2)(M):

b
(2)
k

(
M ; N (G)

) def
= dimN (G) Hk

(2)(M).

The L2-Betti numbers assume values in the extended interval [0, ∞] of the

real numbers, and b
(2)
k

(
M, N (G)

)
∈ [0, ∞) if the action of G is co-compact.

Finally, in order to deĄne the L2-Hodge numbers h
(2)
p,q

(
M ; N (G)

)
of

(M, G), we deĄne

Hp,q
(2)(M) =


ω ∈ Ωp,q(M)

∣∣∣∣ ∆∂ω = 0,

∫

M

ω ∧ ∗ω < ∞


,

where ∆∂ = ∂ ∂∗ + ∂∗ ∂ is the ∂-Laplacian, and set

h(2)
p,q

(
M ; N (G)

) def
= dimN (G) Hp,q

(2)(M).

By [31, Chapter 11], there is a L2-Hodge decomposition which gives

(6.1) b
(2)
k

(
M ; N (G)

)
=

∑

p+q=k

h(2)
p,q

(
M ; N (G)

)
.

6.1. (Non-)Vanishing of L2-Betti numbers

Let X be a smooth projective variety of dimension n, and let aX : X →

Alb(X) be the Albanese map. Moreover set g = dim Alb(X). The univer-

sal Albanese cover π : X → X is deĄned as the pullback of aX via the

topological universal cover Cg → Alb(X) (cf. [11, Section 3.2]). We set

Γ = π1(X), Γ = π1(X), G = Γ/Γ and A = Alb(X).

Theorem 6.1. Ů If X satisĄes the weak generic Nakano vanishing the-

orem, then the L2-Betti numbers of X are

b
(2)
k

(
X; N (G)

)
=

{
(−1)nχtop(X) if k = n

0 if k ̸= n.

In particular, we have Hp,q
(2)(X) = 0 if p + q ̸= n.
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Proof. Ů Consider the following cartesian diagram induced inductively

by the multiplication maps µd via the base change:

· · · // Yd+1
//

��

Yd

��

// Yd−1
//

��

· · · // Y2

��

// X

aX

��

· · · // A
µd+1

// A
µd

// A
µd−1

// · · · // A
µ2

// A.

By using the notation of the commutative diagram (3.1), we immediately

realize that Yd ≃ Xd!. We set Γd = π1(Yd). By [11, Section 3.1], together

with the proof of [11, Lemma 3.2], the homomorphism aX# : π1(X) →

π1(A) is surjective and the varieties Yd satisfy

ker
(
aX# : π1(X) → π1(A)

)
=

∞⋂

d=1

Γd

(i.e., in the terminology of [11, Lemma 3.2], the isogenies ri can be cho-

sen as the multiplication maps µd). Moreover, the universal Albanese cover

π : X → X is identiĄed to the regular cover associated to the normal sep-

arable subgroup ker(aX#). Therefore Γ = ker(aX#) and there are isomor-

phisms

Yd ≃ X
/

Gd where Gd
def
= Γd /Γ .

As the sequence ¶Gd♢d⩾1 is an inverse system of normal subgroups such

that
⋂

d⩾1 Gd = ¶1♢, LückŠs Approximation Theorem [31, Theorem 13.3]

and [31, Example 1.32] yield

b
(2)
k

(
X; N (G)

)
= lim

d→∞
b

(2)
k

(
Yd; N (G/Gd)

)
= lim

d→∞

bk(Yd)

[Γ : Γd]
= lim

d→∞

bk(Xd!)

deg µd!
.

At this point, the Ąrst statement of the theorem is an application of Propo-

sition 4.1. On the other hand, the second follows by the fact that the von

Neumann dimension of a Hilbert module is zero if and only if the module

itself is trivial (see [31, Theorem 1.12(1)]), and the L2-Hodge decomposi-

tion (6.1). □

The following non-vanishing result was proved by Gromov in the case

of topological universal covers of Kähler hyperbolic manifolds (cf. [16, Sec-

tion 2] and [31, Theorem 11.35]).

Corollary 6.2. Ů Let X be as in Theorem 6.1. If χ(Ωp
X) ̸= 0, then

we have

Hp,n−p
(2) (X) ̸= 0.

Moreover, if χ(ωX) ̸= 0, then there exists a nontrivial holomorphic L2-

integrable n-form on the universal Albanese cover X.
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Proof. Ů We use the notation of the previous proof. First of all we ob-

serve that by Proposition 4.1 we have the inequalities

lim sup
d→∞

hp,n−p(Yd)

deg µd!
⩾ lim

d→∞

hp,n−p(Xd!)

deg µd!
= (−1)n−pχ(Ωp

X) > 0

Thus the result follows by KazhdanŠs inequality [21, Theorem 2] (cf. also [20,

p. 6Ű7]):

h
(2)
p,n−p

(
X, N (G)

)
⩾ lim sup

d→∞

hp,n−p(Yd)

deg µd!
.

The second statement is proved as in [31, Corollary 11.36]. In other words,

if we have a non-zero form ω ∈ Hn,0
(2) (X), then ∆∂ω = 0 and ∂ω = 0. This

means that ω is holomorphic. □

Appendix A. Coverings of Varieties with Unbounded
Irregularity

Let Y be a smooth projective variety satisfying q(Y ) = h1,0(Y ) =

dim Alb(Y ) > 0 and H2(Y,Z)tor = 0. We provide sufficient and neces-

sary conditions for the irregularities Q = ¶q(Yi)♢
∞
i=1 of a series of coverings

πi : Yi → Y induced by the multiplication maps on Alb(Y ) to diverge

as deg πi → ∞. This problem has been already addressed in the liter-

ature. For instance, by the recent work of Vidussi [41, Lemma 1.3] and

Stover [40, Theorem 3], the irregularity of any unramiĄed abelian cover of

the CartwrightŰSteger surface(2) is equal to one. On the other hand, it is

very easy to construct towers of coverings with unbounded irregularities.

Turning to details, let X be a smooth projective variety of dimension

n and aX : X → Alb(X) be the Albanese map. The multiplication maps

µd : Alb(X) → Alb(X), µd(x) = dx induce via base-change unramiĄed

covers ad : Xd → X. We use the term Ąbration to mean a surjective mor-

phism of varieties with connected Ąbers. The following result builds upon [3,

Corollaire 2.3].

Theorem A.1. Ů Suppose that lim supd→∞ q(Xd) = ∞. Then X ad-

mits a Ąbration p : X → C onto a smooth curve of genus g such that either

g ⩾ 2, or g = 1 and the Ąbration admits two multiple Ąbers whose multi-

plicities are not coprime. If in addition H2(X,Z)tor = 0, then the converse

holds.

(2) The CartwrightŰSteger surface S is a complex hyperbolic surface with minimal Euler
characteristic χ(S) = 3, and non-trivial Ąrst Betti number. It was computationally
discovered in [8] during the classiĄcation of fake projective planes. We refer to [7] for an
in depth study of its geometry.
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Proof. Ů Let Sd be the set of d-torsion points of Pic0(X). The irregu-

larity q(Xd) = h1(Xd, OXd
) can be computed with the techniques of The-

orem 3.6:

(A.1) q(Xd) = q(X) +
∑

α∈Sd, α ̸=OX

h1(X, α).

First of all we prove that lim supd→∞ q(Xd) = ∞ if and only if there exists

a positive-dimensional component of the GreenŰLazarsfeld locus

V n−1(ωX) ≃ V 1(OX)
def
=

{
α ∈ Pic0(X)

∣∣ h1(X, α) > 0
}

.

In fact, if lim supd→∞ q(Xd) = ∞, then by (A.1) there are inĄnitely many

distinct elements of V 1(OX). As V 1(OX) is an algebraic variety, these

elements must form one irreducible component. On the other hand, if v1 =

dim V 1(OX) > 0, then, by Proposition 3.4, V 1(OX)(3) contains at least d2v1

d-torsion points for inĄnitely many d ⩾ 1. Hence q(Xd) ⩾ q(X) + d2v1 − 1

and the claim follows.

Let now Picτ (X) be the variety that parameterizes isomorphism classes

of holomorphic line bundles on X with torsion Ąrst Chern class. By the work

of [14, Theorem 0.1] and [3, Corollaire 2.3], the irreducible components of

V n−1(ωX) are related to Ąbrations over smooth projective curves. More

precisely, any positive-dimensional irreducible component S ⊂ V n−1(ωX)

is a component of the group

Picτ (X, p)
def
= ker

(
i∗ : Picτ (X) → Picτ (F )

)

for some Ąbration p : X → C over a smooth projective curve of genus

g ⩾ 1 with general Ąber i : F ↪→ X. It follows that dim S = g. Moreover,

if g = 1, then by[3, Corollaire 2.3] we have S ̸= p∗ Pic0(C). Therefore,

by [3, Remarque 2.4], p must posses at least two multiple Ąbers whose

multiplicities are not coprime (cf. also [38, Exercise 10.3]). This proves one

of the implications.

Let now p : X → C be a Ąbration onto a smooth projective curve of

genus g ⩾ 1. For the other direction, we note that if g ⩾ 2, then, by

pulling-back line bundles from Pic0(C) = V 0(ωC), the Ąbration p gives rise

to an irreducible component of V n−1(ωX) (cf. [28, Lemma 6.3]). We now

prove that we reach the same conclusion even if g = 1, H2(X,Z)tor = 0, and

the condition on the multiple Ąbers is veriĄed. In fact, the condition on the

multiple Ąbers implies that the group Γτ (p) ≃ Picτ (X, p)/p∗ Pic0(C) of the

connected components of Picτ (X, p) is non-trivial (cf. [3, Proposition 1.5,

(3) By [38, Corollary 19.2], the locus V 1(OX) is a Ąnite union of torsion translates of
abelian subvarieties of Pic0(X).
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Remarque 2.4] and [38, Exercise 10.3]). By [3, Section 1.6], as H2(X,Z)tor =

0, the group Γτ (p) is identiĄed with the group Γ0(p) of the connected

components of the following group

Pic0(X, p)
def
= Picτ (X, p) ∩ Pic0(X).

Therefore Pic0(X, p) contains a connected component different from the

neutral component p∗ Pic0(C), which, again by [3, Corollaire 2.3], it is

contained in V n−1(ωX). □

Remark A.2. Ů Let S be the CartwrightŰSteger surface. It follows

from [8] that H1(S,Z) is torsion free. By the universal coefficient theo-

rem, we know that H2(S,Z)tor = 0. Moreover, the Albanese map has no

multiple Ąbers (cf. [7, Main Theorem]). Then Theorem A.1 implies that

the unramiĄed abelian covers of S have bounded irregularities (however

much more is true for the surface S, cf. again [41] and [40] for optimal

statements).

The argument of Proposition A.1 extends, in a weaker form, to all Hodge

numbers of type hn,i(X) with i > 0.

Proposition A.3. Ů If lim supd→∞ hn,i(Xd) = ∞, then there exists a

Ąbration of X onto a normal projective variety Y of dimension 0 < dim Y ⩽

n − i such that any smooth model of Y is of maximal Albanese dimension.

Proof. Ů Thanks to a calculation similar to (A.1), we can construct an

irreducible component S ⊂ V i(ωX) of positive dimension. By [14, Theo-

rem 0.1], this component induces a Ąbration of X onto a variety with the

desired properties. □

BIBLIOGRAPHY

[1] M. Abert, N. Bergeron, I. Biringer & T. Gelander, ŞConvergence of normal-
ized Betti numbers in nonpositive curvatureŤ, https://arxiv.org/abs/1811.02520,
2018.

[2] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault
& I. Samet, ŞOn the growth of L2-invariants for sequences of lattices in Lie groupsŤ,
Ann. Math. 185 (2017), no. 3, p. 711-790.

[3] A. Beauville, ŞAnnulation du H1 pour les Ąbrés en droites platsŤ, in Complex alge-
braic varieties (Bayreuth, 1990), Lecture Notes in Mathematics, vol. 1507, Springer,
1992, p. 1-15.

[4] ŮŮŮ , Complex algebraic surfaces, 2nd ed., London Mathematical Society Student
Texts, vol. 34, Cambridge University Press, 1996, translated from the 1978 French
original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid,
x+132 pages.

[5] A. Bondal & D. Orlov, ŞSemiorthogonal decomposition for algebraic varietiesŤ,
https://arxiv.org/abs/alg-geom/9506012, 1995.

TOME 0 (0), FASCICULE 0



26 Luca F. DI CERBO & Luigi LOMBARDI

[6] N. Budur, ŞUnitary local systems, multiplier ideals, and polynomial periodicity of
Hodge numbersŤ, Adv. Math. 221 (2009), no. 1, p. 217-250.

[7] D. I. Cartwright, V. Koziarz & S.-K. Yeung, ŞOn the Cartwright-Steger sur-
faceŤ, J. Algebr. Geom. 26 (2017), no. 4, p. 655-689.

[8] D. I. Cartwright & T. Steger, ŞEnumeration of the 50 fake projective planesŤ,
C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, p. 11-13.

[9] D. L. DeGeorge & N. R. Wallach, ŞLimit formulas for multiplicities in L2(Γ\G)Ť,
Ann. Math. 107 (1978), no. 1, p. 133-150.

[10] ŮŮŮ , ŞLimit formulas for multiplicities in L2(Γ\G). II. The tempered spectrumŤ,
Ann. Math. 109 (1979), no. 3, p. 477-495.

[11] L. F. Di Cerbo & L. Lombardi, ŞMoving Seshadri constants, and coverings of
varieties of maximal Albanese dimensionŤ, Asian J. Math. 25 (2021), no. 2, p. 305-
320.

[12] L. F. Di Cerbo & M. Stern, ŞPrice inequalities and Betti number growth on
manifolds without conjugate pointsŤ, to appear in Commun. Anal. Geom., https:
//arxiv.org/abs/1704.06354, 2017.

[13] M. Green & R. Lazarsfeld, ŞDeformation theory, generic vanishing theorems, and
some conjectures of Enriques, Catanese and BeauvilleŤ, Invent. Math. 90 (1987),
no. 2, p. 389-407.

[14] ŮŮŮ , ŞHigher obstructions to deforming cohomology groups of line bundlesŤ, J.
Am. Math. Soc. 4 (1991), no. 1, p. 87-103.

[15] N. Grieve, ŞIndex conditions and cup-product maps on Abelian varietiesŤ, Int. J.
Math. 25 (2014), no. 4, article no. 1450036 (31 pages).

[16] M. Gromov, ŞKähler hyperbolicity and L2-Hodge theoryŤ, J. Differ. Geom. 33

(1991), no. 1, p. 263-292.

[17] C. Hacon & R. Pardini, ŞOn the birational geometry of varieties of maximal
Albanese dimensionŤ, J. Reine Angew. Math. 546 (2002), p. 177-199.

[18] C. Hacon, M. Popa & C. Schnell, ŞAlgebraic Ąber spaces over abelian varieties:
around a recent theorem by Cao and PăunŤ, in Local and global methods in al-
gebraic geometry, Contemporary Mathematics, vol. 712, American Mathematical
Society, 2018, p. 143-195.

[19] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52,
Springer, 1977, xvi+496 pages.

[20] J. Jost & K. Zuo, ŞVanishing theorems for L2-cohomology on inĄnite coverings
of compact Kähler manifolds and applications in algebraic geometryŤ, Commun.
Anal. Geom. 8 (2000), no. 1, p. 1-30.

[21] D. A. Kajdan, ŞOn arithmetic varietiesŤ, in Lie groups and their representations
(Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 1975, p. 151-217.

[22] J. Kollár, ŞShafarevich maps and plurigenera of algebraic varietiesŤ, Invent. Math.
113 (1993), no. 1, p. 177-215.

[23] R. Lazarsfeld, Positivity in algebraic geometry I. Classical setting: line bundles
and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge,
vol. 48, Springer, 2004, xviii+387 pages.

[24] ŮŮŮ , Positivity in algebraic geometry II. Positivity for vector bundles, and mul-
tiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 49,
Springer, 2004, xviii+385 pages.

[25] Y. Liu, L. Maxim & B. Wang, ŞGeneric vanishing for semi-abelian varieties and
integral Alexander modulesŤ, Math. Z. 293 (2019), no. 1-2, p. 629-645.

[26] ŮŮŮ , ŞTopology of subvarieties of complex semi-abelian varietiesŤ, Int. Math.
Res. Not. (2021), no. 14, p. 11169-11208.

ANNALES DE LŠINSTITUT FOURIER



L2-BETTI NUMBERS AND NORMALIZED HODGE NUMBERS 27

[27] L. Lombardi, ŞInequalities for the Hodge numbers of irregular compact Kähler
manifoldsŤ, Int. Math. Res. Not. (2013), no. 1, p. 63-83.

[28] ŮŮŮ , ŞDerived invariants of irregular varieties and Hochschild homologyŤ, Alge-
bra Number Theory 8 (2014), no. 3, p. 513-542.

[29] L. Lombardi, M. Popa & C. Schnell, ŞPushforwards of pluricanonical bundles
under morphisms to abelian varietiesŤ, J. Eur. Math. Soc. 22 (2020), no. 8, p. 2511-
2536.

[30] W. Lück, ŞApproximating L2-invariants by their Ąnite-dimensional analoguesŤ,
Geom. Funct. Anal. 4 (1994), no. 4, p. 455-481.

[31] ŮŮŮ , L2-invariants: theory and applications to geometry and K-theory, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 44, Springer, 2002,
xvi+595 pages.

[32] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies
in Mathematics, vol. 5, Tata Institute of Fundamental Research; Hindustan Book
Agency, 2008, with appendices by C. P. Ramanujam and Yuri Manin, Corrected
reprint of the second (1974) edition, xii+263 pages.

[33] G. Pareschi & M. Popa, ŞGV-sheaves, Fourier-Mukai transform, and generic van-
ishingŤ, Am. J. Math. 133 (2011), no. 1, p. 235-271.

[34] M. Popa & C. Schnell, ŞGeneric vanishing theory via mixed Hodge modulesŤ,
Forum Math. Sigma 1 (2013), article no. e1 (60 pages).

[35] ŮŮŮ , ŞKodaira dimension and zeros of holomorphic one-formsŤ, Ann. Math. 179

(2014), no. 3, p. 1109-1120.

[36] ŮŮŮ , ŞOn direct images of pluricanonical bundlesŤ, Algebra Number Theory 8

(2014), no. 9, p. 2273-2295.

[37] M. Raynaud, ŞSous-variétés dŠune variété abélienne et points de torsionŤ, in Arith-
metic and geometry, Vol. I, Progress in Mathematics, vol. 35, Birkhäuser, 1983,
p. 327-352.

[38] C. Schnell, ŞNotes on generic vanishingŤ, available on the authorŠs webpage, 2013.

[39] C. Simpson, ŞSubspaces of moduli spaces of rank one local systemsŤ, Ann. Sci. Éc.
Norm. Supér. 26 (1993), no. 3, p. 361-401.

[40] M. Stover, ŞOn general type surfaces with q = 1 and c2 = 3pgŤ, Manuscr. Math.
159 (2019), no. 1-2, p. 171-182.

[41] S. Vidussi, ŞThe slope of surfaces with Albanese dimension oneŤ, Math. Proc.
Camb. Philos. Soc. 167 (2019), no. 2, p. 355-360.

[42] S.-K. Yeung, ŞBetti numbers on a tower of coveringsŤ, Duke Math. J. 73 (1994),
no. 1, p. 201-226.

[43] T. Zhang, ŞSeveri inequality for varieties of maximal Albanese dimensionŤ, Math.
Ann. 359 (2014), no. 3-4, p. 1097-1114.

Manuscrit reçu le 26 juin 2020,
révisé le 9 décembre 2021,
accepté le 17 février 2022.

Luca F. DI CERBO
University of Florida (USA)

ldicerbo@uĆ.edu

Luigi LOMBARDI
University of Milan (Italy)

luigi.lombardi@unimi.it

TOME 0 (0), FASCICULE 0


	1. Introduction and Main Results
	Acknowledgments

	2. Weak GV-Sheaves
	2.1. (Weak) Generic Nakano Vanishing Theorem

	3. Limits of Normalized Cohomology Ranks
	4. Limits of Normalized Hodge and Betti Numbers
	5. Limits of Normalized Plurigenera
	6. Applications to L2-Cohomology
	6.1. (Non-)Vanishing of L2-Betti numbers

	Appendix A. Coverings of Varieties with Unbounded Irregularity
	References

