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Robust Control of a Biophysical
Model of Burst Suppression
Burst suppression is a phenomenon in which the electroencephalogram (EEG) of a
pharmacologically sedated patient alternates between higher frequency and amplitude
bursting to lower frequency and amplitude suppression. The level of sedation can be quan-
tified by the burst suppression ratio (BSR), which is defined as the amount of time that an
EEG is suppressed over the amount of time measured. Maintaining a stable BSR in patients
is an important clinical problem, which has led to an interest in the development of BSR-
based closed-loop pharmacological control systems. Methods to address the problem typ-
ically involve pharmacokinetic (PK) modeling that describes the dynamics of drug infusion
in the body as well as signal processing methods for estimating burst suppression from EEG
measurements. In this regard, simulations, physiological modeling, and control design can
play a key role in producing a solution. This paper seeks to add to prior work by incorpo-
rating a Schnider PK model with the Wilson–Cowan neural mass model to use as a basis for
robust control design of biophysical burst suppression dynamics. We add to this framework
actuator modeling, real-time burst suppression estimation, and uncertainty modeling in
both the patient’s physical characteristics and neurological phenomena to form a closed-
loop system. Using the Ziegler–Nichols tuning method for proportional-integral-derivative
(PID) control, we were able to control this system at multiple BSR set points over a simula-
tion time of 18 h in both nominal, patient varied with noise added and with reduced perfor-
mance due to BSR bounding when including patient variation and noise as well as
neurological uncertainty. [DOI: 10.1115/1.4054387]
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1 Introduction
Burst suppression is a brain electrical phenomenon measured on

the electroencephalogram (EEG) that is typically associated with a
state of general anesthesia [1], as well as cooling [2] and certain
types of coma [3]. It is characterized by bi-phasic dynamics when
electrical activity alternates between high voltage activity (bursts)
and low voltage activity (suppression). When burst suppression
occurs, the suppression intervals are largely devoid of frequency
content, while bursts often manifest physiologically meaningful
oscillatory power in the 8–30 Hz range [1]. Figures 1(B) and 1(C)
from Ref. [4] show a comparison of EEG data while a patient is
under general anesthesia but has not displayed burst suppression
(B) and then a deeper general anesthesia wherein burst suppression
has been induced (C).
A key aspect of burst suppression is that the relative proportion of

the EEG signal spent in suppression varies with respect to the depth
of anesthesia. Thus, when pharmacologically inducing burst sup-
pression, one can increase the “amount” of suppression by increas-
ing the dosage applied to the given patient. This can be visualized in
Fig. 2.
Such phenomenology is of interest clinically because burst sup-

pression is often targeted as part of a medically induced coma for
patients that have suffered brain injuries [5]. In this situation, clini-
cians often attempt to titrate to a specific burst suppression ratio
(BSR) “level.” However, such practice is often quite imprecise
since clinicians rely on visual assessments of the EEG and relatively
infrequent, bolus-type dosing of anesthetic drugs. As a result, inter-
est has grown in the use of closed-loop, continuous systems for con-
trolling BSR [6–9].
There have been many attempts at formulating a solution to this

problem [6–9]. These frameworks follow a general framework
wherein a diffusion model transforms anesthetic infusion to a
drug brain concentration variable (i.e., the pharmacokinetics

(PK)). The concentration is in turn mapped either through a static
transformation or via a probabilistic decoder, into a BSR estimate.
In the current paper, we strive to further the progress made in the
robust control of burst suppression by introducing a biophysical,
nonlinear dynamical systems model of burst suppression in place
of the latter transformation. Furthermore, we introduce actuator
dynamics into the closed-loop anesthetic delivery (CLAD)
system. In so doing, we are able to introduce uncertainty not only
in the patient’s physical characteristics (such as patient height,
weight, age, and sex) but also in the neural circuit dynamics of
the patient. Once coupled with the presence of an actuator (which
would simulate an anesthetic pump), we are able to study the
robust control design of CLAD for burst suppression.
Our basic modeling framework is built on the canonical

Wilson–Cowan neural mass model [10,11], which we have recently
augmented to model burst suppression as a result of fast–slow dyna-
mical interactions attributed to neural and metabolic processes [12].
This model provides us with a mathematical basis by which we can
study the physiological processes underlying burst suppression.
The specific contributions of this paper are as follows:

(1) Introducing a closed-loop simulation architecture with actu-
ator dynamics, pharmacokinetic dynamics, and neurological
dynamics.

Fig. 1 EEG burst suppression absence and presence
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(2) Design of a robust control law for controlling set-point BSR
levels despite parameter uncertainty in the pharmacokinetic
model and the Wilson–Cowan model.

2 Burst Suppression Ratio Modeling and Simulation
We begin by providing the model of burst suppression that we

will use in order to pursue the two specific contributions noted
above. To this end, we describe an existing dynamical systems
model from the literature, which will enable our analysis and
design.

2.1 Modeling Burst Suppression Due to Neuronal
and Metabolic Dynamics. The Wilson–Cowan equations consti-
tute a mean-field neural model that describes aggregate activity in
a large population of neurons [10,11]. The primary mechanism of
the model involves the dynamics of excitatory and inhibitory
neural populations. In Ref. [12], the basic Wilson–Cowan formula-
tion was extended to modify these equations to give them a modu-
lating input, ϕj(t), in addition to their baseline fast dynamics. Within
these modified Wilson–Cowan equations [12] there are parameters
that describe the recovery dynamics of these neurons, which govern
how quickly the neurons transfer from a suppressed state back to a
bursting state. By varying these parameters, an internal neurological
uncertainty can be created and used to increase the robustness of
burst suppression feedback control algorithms. Also within these
equations, there are various parameters that can be used to quantify
the concentration of a pharmacological substance, such as propofol,
present in the brain effect site. We can treat the concentration of pro-
pofol as the control input to increase the BSR to the desired state. It
is crucial to note that clinically, the level of concentration in the
effect site cannot be decreased except by a metabolic process.
The control input, a pharmacological drug, can only be used to
increase the ratio. Therefore, it is vital to both correctly estimate
the BSR and use a control method that does not produce high over-
shoot or steady-state error. These equations are thus presented and
described:

ėj = ωe −ej + (ke − reej)F c1ej − c2ij +
∑
k∈Nj

k fe
j ek + P + ϕj(t)

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

+We
j (t) (1)

i̇j = ωi −ij + (ki − riij)F c3ej − c4ij +
∑
k∈Nj

k fe
j ek + Q + ϕj(t)

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

+Wi
j (t) (2)

The subscript j represents the column of neuron tissue that is
being described. Additionally, the subscript k describes a column
that would be coupled with column j. This specific study seeks
only to analyze a single column of tissue and thus the equations
will be hereafter described without the additional subscript or sum-
mation for the interconnectivity between columns. Thus, the
de-coupled equations for describing neuron activity are as follows:

ė = ωe(−e + (ke − ree)F [c1ej − c2i + P + ϕ(t)]) +We(t) (3)

i̇ = ωi(−i + (ki − rii)F [c3e − c4i + Q + ϕ(t)]) +Wi(t) (4)

The function F stands for a logistic sigmoid such that is used in
the original Wilson–Cowan equations

F (x) =
1

1 + exp[−a(x − θ)]
−

1
1 + exp(aθ)

(5)

The parameters a and θ represent tuning variables that are typi-
cally used in such functions to alter the slope and midpoint of the
sigmoid. The modulating input mentioned above is described by
the following equation:

ϕ̇ = −μ1ϕ +
μ2

1 + exp ([−kϕ(M − η)])

( )
(6)

where μ1 is the time constant for the autonomous part of the dynam-
ics and μ2 is the time constants of the sigmoidal part of the dynam-
ics. kϕ is a tuning variable for the sigmoid slope shape, η represents
the midpoint of the sigmoid when the input M is zero. The input M
acts as a gating variable for ϕ. The inputM is essential in describing
the key features of this model as it attempts to accurately model the
underlying physiological events occurring. It is a function of two
variables, a consumption variable, gc, and a recovery variable, gr

Ṁ = gr(e) − gc(e) (7)

Fig. 2 Suppression correlation with dosage
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gc = kc
e2

0.01 + e2

( )
(8)

gr = krβ (9)

β̇ = −ν1β +
ν2

1 + exp ([−kβ(e − ζ)])

( )
(10)

The recovery and consumption processes are primarily a function
of the excitatory dynamics. Our main focus will be on the evolution
of the variable β, and, more specifically, how small changes in the
constants that describe its behavior are crucial in how the system as
a whole behaves.
Finally, it should be noted that the main variables e and i

should not be misunderstood as EEG activity, although there
are fundamental similarities between the two. This distinction
was made in Ref. [12] while also stating that it is a suitable var-
iable for burst–suppression type studies. Therefore, in this paper,
we will be analyzing the excitatory firing rate as a surrogate for
EEG data.
To succinctly summarize the equations, variables, and parameters

above, Tables 2 and 3 are given in the Appendix. These tables
provide descriptions of the state variables and the parameters as
well as the initial conditions and nominal values according to
Ref. [12]. Additionally, in Ref. [12], a time scale of milliseconds
was used. Since we will be studying the model in the span of
hours, we have proportionally increased the time constant and met-
abolic recovery and consumption rates in order to allow the dynam-
ics to scale properly to a timescale of seconds.
The purpose of using this model is to take advantage of its

inherent burst suppression qualities as the parameter c2 is
varied. We can use this parameter to model the effects of propofol
or other inhibitory agonists on the dynamical model. In a clinical
setting, a patient will become more sedated as the propofol infu-
sion rate is increased. Therefore, it is vital to describe bounds
with which the model will behave properly as c2 is varied. In
Ref. [12], the bounds were set by the system’s stability about
the c2 parameter. The system has a bifurcation point around the
value of 7.7 after which the system develops a stable limit
cycle envelope where burst suppression behavior occurs until a

c2 value of 69. At this value, a stable steady-state solution can
be found, and the model becomes completely suppressed. There-
fore, we wish to analyze how burst suppression emerges and
changes as the value of c2 increases from 7.7 to 69. Figures 3
and 4 give an example for how the model behaves with multiple
c2 values.
The values of c2 were chosen specifically to show how the burst-

ing amplitude changes with time. It is also notable within the spec-
trogram how when the model reaches near-complete suppression,
frequencies in the range above 8 Hz are no longer present. These
differences in the model expression will be considered when the
burst suppression estimation algorithm is presented and used in
later sections.
It is important to emphasize that our goal is not to validate the

above model since this has already been carried out in the prior lit-
erature. Rather this model forms the basis of the control analysis and
design that is our primary contribution.

2.2 Modeling Physiological Variability. In addition to
simply running a propofol (c2) increase on this model, we wish to
generate some uncertainty for different patient types. We focused
primarily on the variation of the recovery parameters, kβ, ζ, and ν
to simulate how different patients may respond to propofol as it
enters their system. Figure 5 shows the same c2 value of 30, but
with a change in these recovery parameters. The changes in these
recovery parameters cause a notable difference in the suppression
length for a given value of c2. Each simulation was performed
with each parameter changed independently, while the others
remained at their nominal value.
This shows that the system is much more sensitive to a change in

either kβ or ζ, while a significant change must be made to ν to see a
similar percent change in suppression time. This uncertainty will be
used to analyze the effectiveness of our control architecture during
the simulation results of this paper.

2.3 Characterizing Burst Suppression Ratio Versus
Modeled Inhibition. As described in the Introduction, the burst
suppression ratio quantifies the level of suppression manifest in
the EEG of a patient. It is measured as the ratio between the time

Fig. 3 Burst amplitude decrease with increasing c2
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the signal is suppressed over the total time measured. We con-
structed a method to estimate the BSR from our model output.
The algorithm uses the defining frequency characteristics of burst
suppression for BSR estimation. In the simulation studies that
follow, we set the model output sample rate (512 Hz) that would
emulate sampling commonly used for EEG processing.
The main pieces of the algorithm include a discrete time Fourier

transform (DTFT), which is filtered by a Blackman window, and a
sigmoid function to produce the suppression value of the current
time-step. Once the signal is fed through the DTFT and the Black-
man window, it is then separated into two bins corresponding to the
frequency content of the signal. We are effectively able to filter out
unwanted higher frequency data by choosing ranges that are specific
to bursting and suppression. Thus, a range of less than 8 Hz was
chosen for the suppression bin and a range between 8 Hz and
30 Hz was chosen for the bursting bin [1]. The mean of the signal
magnitudes was taken over the frequency spectrum for each bin
to act as inputs to our sigmoid (ms for the suppressed mean magni-
tude and mb for the bursting mean magnitude). Finally, the gain kb
was put on mb to place the bursting and suppressed magnitudes in a
similar value range to make both effective inputs. The sigmoid
equation below then gives an output from 0 to 1 to describe the sup-
pression at that time-step

S(n) =
dt

1 + exp (ksb(ms(n) + kbmb(n) + x0sb ))
(11)

A positive value for the exponent was chosen because with lower
ranges of c2, higher values of ms and mb are typically found, thus
giving a value of S(n) closer to zero which indicates a burst
event. In order to make S(n) suitable for a wide range of c2, ksb

was made equal to 1, x0sb was made equal to −30, and kb was
given a value of 500.
With this parameterization, a nearly sigmoidal relationship was

found between the BSR and c2. Figure 6 shows the BSR calculated
as a function of c2. This algorithm calculated a higher value for the
lower ranges of c2, specifically between 8 and 10. After a c2 value of
10, the BSR increases in a near monotonic fashion until it reaches a
near 1 BSR at a c2 value of 69.
Despite these limitations on the lower ranges of c2, the remainder

of the values with this parameterization produced results consistent

Fig. 4 Loss of high-frequency dynamics as c2 increases

Fig. 5 Suppression time with parameter variation
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with what would be expected for burst suppression as the propofol
concentration is increased. Since this is the type of physiological
behavior the model is attempting to reproduce, we can lower
bound the effective value of c2 where the BSR stops decreasing
and begins its monotonic increase to 1.

2.4 Burst Suppression Ratio Moving Average. In order to
characterize the suppression of the system over time, a running
mean of S(n) is calculated. This results in a delay before a certain
confidence level in the value can be achieved. This is useful infor-
mation from a control design perspective because these algorithms
are very nonlinear in nature and we desire to implement a linear
control method. Thus, if we can find the expected delay values
for this algorithm to converge, our control design can account for
it by using a linear approximation for the delay associated with
time to converge to a confidence level. Since we desire tight
control on our BSR to eliminate fluctuating the patient between
multiple BSR levels, a convergence value for the mean signal var-
iance was chosen to be 0.0001.
In order to design the gains for the system, a time for this algo-

rithm to converge had to be selected. Thus, the time for this algo-
rithm to converge with nominal and varied recovery parameters
of a limited subset to that of the range run in Sec. 2.1 were calcu-
lated. The results for these convergence times are shown in Fig. 7.

This variation on convergence times shows some very sharp
increases in the lower ranges of c2 but very quick convergences
for most values of c2. This is likely due to the complete absence
of higher frequency bursting data at high c2 values, which make
it much easier for the algorithm to converge given the lower fre-
quency data are more consistently defined and are more present at
these points. Nonetheless, a delay for this algorithm to be imple-
mented in linear gain design was chosen to be the average of the
values above which came out to be approximately 0.7 s.

3 Control System Architecture and Design
We now proceed to enact our actual closed-loop strategy, using

the BSR estimation procedure described above as a feedback
signal to a controller. To facilitate design, we used a classical
control system architecture designed around the Wilson–Cowan
dynamics in order to more accurately simulate a CLAD system.
All prototyping and subsequent simulations were performed in
Simulink and MATLAB 2019a. This model was used in Rapid Accel-
erator mode to be able to run 18 h of simulation in a realistic time.
For reference, a block diagram schematic is shown in Fig. 8.

3.1 Pharmacokinetic Model. The plant of this model com-
prised three main pieces. The first is called the PK model. Pharma-
cokinetics describes how an infused drug is distributed and
discarded from multiple compartments in the body. The model
we have selected for this study is the Schnider model for humans
[2,13]. It is a four-state model, each of which describes a different
compartment within the model. The main compartment, x1,
describes the concentration of the drug in the central compartment,
or the blood, of the patient. Compartments x2 and x3 describe the
fast and slow compartments, respectively. This can be easily seen
by the magnitude of the coefficients that describe the second-order
relationship between these compartments and the central compart-
ment. Finally, there is x4, or the effect-site compartment concentra-
tion. This represents the concentration of propofol in the brain,
which we can then use as an estimate for the variable, c2, which
is an input to the Wilson–Cowan equations

ẋ =

−(k10 + k12 + k13)
V2k21
V1

V3k31
V1

0

V1k12
V2

−k21 0 0

V1k13
V3

0 −k31 0

keo 0 0 −keo

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
x +

1
60V1
0
0
0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦yact

(12)

xconcen = 0 0 0 1
[ ]

x (13)

The parameters shown in Eqs. (12) and (13) above are functions
of the patient’s height, weight, age, and sex. Typically, these param-
eters are set in the time scale of 1/min, however, since we are mod-
eling delay and performing our control design in the timescale of
seconds, the parameters were scaled to be in the correct time
scale. The equations for nonstatic parameters are shown below
with the variables m, h, and a representing mass in kilograms,
height in meters, and age in years, respectively. The static parame-
ters are as follows: k13 is set to 3.3e−3, k31 is set to 5.83e−5, and keo
is set to 7.6e−3:

LBMmale = 1.1m −
128m2

h2
(14)

LBMfemale = 1.07m −
148m2

h2
(15)

V2 = 18.9 − 0.391(a − 53) (16)

Fig. 6 BSR versus c2 relationship

Fig. 7 BSR convergence times
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k10 =
1
60

( )
(.443 + 0.0107(m − 77) − 0.0159(LBM − 59)

+ 0.0062(h − 177)) (17)

k12 =
1
60

( )
(0.302 − 0.0056(a − 53)) (18)

k21 =
1
60

( )
1.29 − 0.024(a − 53)

V2

( )
(19)

3.2 Effect-Site Concentration to Modeled Inhibition.
Before we send the effect-site concentration straight to the
Wilson–Cowan equations, we must develop a relationship to
convert this parameter to the nondimensional representation that
the Wilson–Cowan equations use. Based on the relationship estab-
lished in the BSR algorithm in Fig. 8, we can use a similar relation-
ship described in Ref. [9] between effect-site concentration and
burst suppression probability (BSP) to give an approximation for
this transformation. A sigmoid model was made to approximate
the BSP versus effect-site concentration shown in Ref. [9] using
Eq. (24):

BSPapprox =
x6.64

x6.64 + 5.56.6
(20)

It is shown in Ref. [9] that this relationship holds for a certain
patient parameterization and is also used for all later experiments
run with various patients. The concentration to c2 values derived
from this method is shown in Fig. 9.

3.3 Control Resolution. These c2 values were then sent to the
Wilson–Cowan equations for the dynamics to be calculated and fed
through to the BSR estimation algorithm. The BSR estimation
algorithm here is implemented in the same way that is shown in
Eqs. (11)–(15), with the exception that a reset line has been incor-
porated for when a new c2 value is being fed through to the
Wilson–Cowan equations. This is necessary since we need to
achieve a certain confidence level for each measured BSR.
Hence, when a new value of c2 is fed through the system, the
mean and signal variance blocks must be reset. In order to determine
the c2 increments at which the delay is reset, we must look at the
performance of the control system. If the system naturally increases
c2 so quickly that the delay caused by the algorithm cannot com-
plete before a new c2 value is fed through, the system will be
caught in a state of constant delay. In this state of constant delay,
the BSR will never claim convergence at the current propofol con-
centration before the concentration changes so drastically that the
estimated BSR no longer accurately reflects the state of the
system. Hence, a control resolution can be found for BSR as a func-
tion of the c2 delay reset value. To coincide with the confidence
level we set of 0.0001 BSR variance, we set criteria for each new
c2 value that is sent into the system as described in Eq. (26):

|c2 − c2 prev |2 ≤ c2thresh (21)

To choose the threshold value, we can take a linear fit of the
sigmoid shown in Sec. 2.1 where we computed the nominal rela-
tionship between c2 and BSR. Figure 10 shows the original BSR
curve with the linear approximated plotted over it.
This linear fit shows that for every increase of 1 c2, there is an

approximate increase of 0.0143 BSR. Thus, we can use a similar
relationship that the BSR uses for convergence to calculate what
the two-norm of the difference between the next c2 value and the
previous c2 should be to reset the delay

|BSR − BSRmean|2 ≤ 0.0001

|0.0143(c2 − c2 prev )|2 ≤ 0.0001

|c2 − c2 prev |2 ≤ 0.489

(22)

3.4 Controller and Actuator Model. Prior to the plant model,
we have a second-order actuator model and our controller. For this
problem, a proportional-integral-derivative (PID) controller architec-
ture was chosen. A specific goal of this study was to minimize over-
shoot. Implementing derivative control in addition to a classic
proportional-integral (PI) controller is an excellent way to minimize
overshoot in a system as well as minimize steady-state error. The
equations which describe the controller and actuator are below.

Fig. 8 System block diagram

Fig. 9 Effect-site concentration to c2
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Controller:

�̇
e
e

[ ]
= =

0 0
0 0

[ ] �
e
e

[ ]
+

−1 0 1
0 −1 0

[ ] BSR
BṠR
BSRref

⎡
⎣

⎤
⎦ (23)

u = KI Kp
[ ] �

e
e

[ ]
+ 0 Kd 0
[ ] BSR

BṠR
BSRref

⎡
⎣

⎤
⎦ (24)

Actuator:

ẋact =
0 1

−ω2
n −2ζωn

[ ]
x +

0
ω2
n

[ ]
u (25)

y = 1 0
[ ]

x (26)

3.5 Constraints. Finally, two switches were added to disallow
unrealistic results to come from the controller or the BSR output.
First, a switch was put before the PK model that limited the input
to the system to be positive (i.e., always providing a propofol infu-
sion rate to the system). This was done because the only inputs we
can put into the system are a positive one or zero. However, a useful
quality of the PK model is that it is asymptotically stable about a
zero-concentration equilibrium point. In this way, it models the
system’s ability to effectively decay its concentration if no addi-
tional propofol is fed into the system. Second, a max block was
put at after the noise is added to the output of the BSR estimation
algorithm. This was done so that if the BSR estimation algorithm
is estimating a near-zero BSR, the noise will not allow a negative
BSR to be estimated as that is not physiologically possible.

4 Control Design, Results, and Discussion
In this section, the PID control design and actuator specs will be

discussed as well as final simulation results with the gains and actu-
ator included.

4.1 Control Law and Actuator Specifications. For our PID
controller and actuator, there were several goals that needed to be
met in order to claim the gains and actuator parameters had been suf-
ficiently designed to meet the system requirements. From a time-
domain perspective, we desired minimal overshoot, a modest rise
time, and sufficient robustness in terms of the noise added at the
input and output of the plant, as well as parameter uncertainty. In
terms of the time domain requirements, the rise time was a much
lower priority for these systems than the steady-state error or the

overshoot. This is due largely in part to the long periods of time
that the system will need to be held at a certain level. Of course, it
will have limits on how slow of a system response it can be, but it
will not be a driving requirement. Overshoot and steady-state error
on the other hand are much more important requirements for our
application. Overshoot is important because of our control system’s
lack of ability to remove any propofol from the system. It cannot
command a negative infusion rate. Therefore, if a target BSR is over-
shot, our closed-loop system must rely on the natural release of the
propofol from the effect-site compartment to get down to the
desired level. A large steady-state error is undesirable for obvious
reasons that apply to any control system, but for our application, a
large steady-state error could command a much higher propofol
dose than the patient requires and thus result in patient overdose.
We relied on frequency-domain methods to determine the robust-

ness of our system. A sure-fire way of determining the robustness of
a system is to look at the sensitivity and co-sensitivity equations.
The co-sensitivity and sensitivity functions are uniquely defined
by something known as the “waterbed effect.” This is due to their
algebraic relationship with each other, described in the equation
below:

S + T = 1 (27)

This equation tells us that the closed-loop response, T, must be
balanced with the sensitivity of the system, S. It is desirable for
our system to respond to low-frequency inputs (i.e., set-point
values or step responses in BSR) and be robust to any high-
frequency oscillations that could occur due to noise. In this way,
the magnitude of the closed-loop system, T, should be 1 for low-
frequency inputs and 0 at high-frequency inputs. The opposite
should be true for S in order to be robust to noise. An easy tuning
method to ensure this will be the case is to look at the loop gain
throughout the frequency range. The loop gain should “roll off”
at high frequencies which ensure our closed-loop system is not
responding to high-frequency input. In order to maximize gain
and phase margin, it is desirable to look at how quickly the loop
gain of the system “rolls off” at the loop gain crossover frequency.
Making this value near to −20 dB/decade ensures that we are
getting sufficient gain and phase margin for our closed-loop system.
In order to design gains that meet these requirements, we used a

Ziegler–Nichols tuning method. This method was created for
process control environments and has been refined through numer-
ous studies. It seeks to use the natural characteristics of the open-
loop process step response as a method to create gains for the
system to be controlled [14]. The equations for the tuning method
are below:

Kp =
1.2T
L

(28)

KI =
Kp

2L
(29)

Kd =
KpL

2
(30)

where the parameters T and L may be described using the step
response of the plant. As an example, the plant model with both
the PK model and the selected delay is shown in Fig. 11.
The thicker line is the step response while the thinner line is the

tangent line at the steepest point in the step response. L is the time
from 0 to the x-axis intersection with the tangent line and T is the
time from the tangent line intersection with the x-axis and the
tangent line intersection with the final value of the step response.
Using this method a value of 98.66 s was determined for L and a
value of 501.95 s was determined for T. This yielded a Kp of 6.1,
a KI of 0.31, and a Kd of 301.2. It should be noted that the step
response for this system reaches steady-state at nearly 10,000 s
which is why we do not see the step response reach its final value
in this figure.

Fig. 10 BSR versus c2 with a linear approximation for BSR
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While using these coefficients for design, we also swept the actu-
ator parameters to determine the overall closed-loop performance
from a linear perspective. A range of damping coefficients from 0
to 1 was run as well as a logarithmic range of time constants.
At each iteration, a linear closed-loop system was formed to esti-

mate the nonlinear closed-loop system that will ultimately be simu-
lated. The PK model, being linear initially, was coupled with a Pade
approximation for the delay to form the plant model. A Pade
approximation effectively desires to fit a certain equation order to
a delay in order to approximate it in a linear sense. In this way,
we can linearly approximate the effects of algorithmic delay in
the system. A third-order approximation was found to be sufficient
for our application.

The actuator and controller models were then included to form
the loop gain at the input. This is done by breaking the loop at
the input and taking the preceding systems in series until a full
loop is completed back to the original breakpoint

LuKG = −sysactuator∗syscontroller∗sys plant (31)

S =
1

1 + LuKG
(32)

T = 1 − S =
LuKG

1 + LuKG
(33)

Fig. 11 Step response with Ziegler–Nichols parameters

Fig. 12 Gain design closed-loop system performance
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This was then used to form the sensitivity and co-sensitivity
systems as shown in Eqs. (31)–(33). The co-sensitivity, T, also
being the closed-loop response, was then used to get the time
domain performance out of the system as well as gain and phase
margin. The loop gain was also taken independently, and the loop
gain crossover frequency was calculated. The slope of the loop
gain (dB/decade) was then determined at this point. Of course, if
the chosen actuator and controller destabilized the system then
the iteration would be considered a failure, and the design would
iterate to the next range of values. The stability of the system was
simply determined by taking the eigenvalues of the closed-loop
system and ensuring they were all negative, which indicates all
the poles of the system are on the left half-plane and the system
is stable. The various combinations of actuator time constant and
damping coefficient yielded a variety of results. We desired to
maintain a gain margin above 6 dB and a phase margin greater
than 45 deg in addition to minimal overshoot and a roll-off steep-
ness near −20 dB. To meet these design requirements and shape a
co-sensitivity and sensitivity maximum value that was relatively
small as well as minimize overshoot, a damping ratio of 1 and a
time constant of 91.03 s was chosen.
These actuator parameters yielded excellent gain and phase

margin results. With the Ziegler–Nichols tuning method shown in
Eq. (32), the system yielded a gain margin of 26.4 dB and a
phase margin of 160.45 deg as well as a roll-off steepness of
−21 dB at the loop gain crossover frequency. These excellent stabi-
lity margins should not be altogether surprising since our system
was already quite stable.
In addition, Fig. 12 shows the step response and sensitivity/

co-sensitivity functions. The figures show a steady-state overshoot
with a 2% steady-state error. Both functions show magnitudes over

1; however, they are relatively small and since our system has an
excessive margin, these magnitudes should not pose any stability
issues.

4.2 Simulation Test Case Results and Discussion. In order to
test the model’s ability to control the BSR of a certain patient, a
BSR trajectory was created that correlates with the values in
Table 1.
This trajectory was chosen to stress a large range of BSR values

while also allowing us to view the steady-state values at each of
these conditions by commanding the system to hold at that BSR
for an extended period of time. The first simulation done is for
the nominal recovery parameters shown in Table 2 with no noise
added and with the patient data that the controller was designed to.
The results of this simulation, in Fig. 13, show the BSR closely

tracking the step responses as they are commanded separately
throughout the trajectory. An obvious first takeaway is that
the initial BSR comes out to a value of roughly 0.15. This is
because the minimum burst suppression ratio our algorithm could
estimate while maintaining a relatively monotonic increase through-
out the range of c2 is also 0.15. Due to this, our conversion from
concentration in the effect-site compartment was limited to the
minimum c2 value that could be attained with near monotonic per-
formance. These results show that there is a steady-state error after
the system is commanded to a set point of 0.8 as well as a small
initial overshoot. This is not entirely unexpected due to the step
response results from our gain selection and actuator design in
Sec. 2.2.
The second simulation, shown in Fig. 14, was performed with a

different patient than what the gains were designed to. In order to
model what would result in less propofol infusion than what the
original patient needed in an attempt to cause the system to over-
shoot, a patient type was chosen with a female gender, age of 65,
a weight of 50 kg, and a height of 125 cm. Due to the decreased
weight and age and increased height in comparison to the original
patient, this patient requires less propofol to reach a certain effect-
site concentration.

Table 1 CLAD set-point reference commands

BSR 0.8 0.8 0.5 0.5 0.2 0.2
Time (s) 0 25,000 25,001 45,000 45,001 65,000

Fig. 13 Nominal system performance
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The thinner line in Fig. 15 represents the nominal patient concen-
tration while the thicker line shows the concentration of the patient
with added uncertainty. The main difference shown between the
two is that the system with patient uncertainty does pose a faster
rise time and higher overshoot than the original patient. However,

this overshoot is quickly dissipated, and a steady-state result like
that of the nominal case is reached quickly. Aside from this, the
closed-loop system performance shows the evident noise that was
added to the system but maintains a mean value around the com-
manded BSR.

Fig. 14 Noise and patient uncertainty system performance

Fig. 15 Effect-site concentration with patient uncertainty and noise
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Finally, a simulation with a drastically different patient and the
maximal increase in recovery parameters was run (shown in
Fig. 16) to see how the system deals with maximal uncertainty in
the system it was designed for. The maximal increase in recovery
parameters is as shown in Fig. 5. The immediate impact of this
increase is the relationship between BSR and c2 which will in turn
result in a change in the effect-site concentration required to
achieve a certain BSR. This change also increased the effective
lower bound of control due to the increased suppression that we wit-
nessed in Fig. 5 when the recovery parameters were all simulta-
neously increased. This increased suppression, coupled with the
static lower bound set on the concentration to c2 conversion, caused
the system to be unable to both attempt a lower c2 value than 10 for
thepurposeof searching for a smallerBSR tobe controlled and, there-
fore, unable to reach a BSR at the target level that we desired. The
added noise to the system resulted in similar behavior to the model
which we added patient uncertainty and noise. In addition, larger
spikes than would be expected by noise generation occurred at high
BSRs. It is likely that the algorithm had seen a c2 value or range of
c2 values that caused this jumpwhich could be unique to the recovery
parameter uncertainty that was imparted on the model.

5 Conclusion
This paper presented a control systems design for detecting and

controlling burst suppression in a low-dimensional biophysical
model [12] in conjunction with a four-dimensional pharmacokinet-
ics model. Our design employed robust control design strategies to
account for the presence of patient and neurological uncertainty.
Design goals of this system were sufficiently met in the nominal
case and the case with added noise and patient uncertainty where
the maximum observed overshoot was roughly 6% and the
system’s steady-state error was roughly 2%.

One potential caveatwith regards to our paper iswhether a detailed
model is necessary to enable our control design, which is ultimately
based on a classical PID backbone. While PID controllers do not
overtly embed a model, they nonetheless typically require tuning
to achieve satisfactory performance when deployed for a given
model. In particular, for a model with several nontrivial nonlineari-
ties such as ours, it is not obvious a priori that a generic tuning strat-
egy will work. In this regard, a systematic analysis and design
evaluation is both necessary and productive for most PID designs.
Because testing these designs on actual patients is difficult, due to
obvious safety concerns, having a plausible model upon which to
assess performance issues is a key design step. This is, ultimately,
the goal and contribution of our paper. Certainly, other robust
control strategies may also be possible and could be worth exploring
in the future, though our results suggest that a relatively interpretable
PID strategy can be effective for this application.
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Appendix: Wilson–Cowan Model State Description
and Parameterization
Table 2 provides a description for the state variables used in the

Wilson–Cowan model as described by Liu and Ching [12] and
gives the initial conditions for each state variable for the simulations
performed in this paper.
Table 3 gives the nominal parameterization of the

Wilson–Cowan model as described by Liu and Ching [12].

Fig. 16 Noise with patient and neurological uncertainty system performance
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Table 2 Wilson–Cowan state variable description

Variable Description Units Initial condition

e Excitatory firing rate Substrate/s 0.3
i Inhibitory firing rate Substrate/s 0.1
ϕ Slow process firing rate Substrate/s 0.25
M Consumption/recovery gating variable Substrate/s 10
β Recovery evolution Substrate/s 0.3

Table 3 Wilson–Cowan model parameterization

Parameter Description Units Value

ke, ki Maximal value of the excitatory and inhibitory response functions Substrate/s 1, 1
re, ri The absolute refractory period of the excitatory, inhibitory

subpopulation
Nondimensional 1, 1

ωe, ωi Wilson–Cowan time constants 1/s 500, 500
P, Q Level of background excitation in the excitatory, inhibitory

subpopulation
Substrate/s 900, 0

c1, c3 Average number of excitatory synapses per cell Nondimensional 16, 15
c2, c4 Average number of inhibitory synapses per cell Nondimensional 12, 3
θe, θi, ae, ai Maximal slope parameters of the logistic curve for the excitatory,

inhibitory subpopulation
Nondimensional 4, 3.7, 1.3,

2
μ1, μ2 Modulation time constants 1/s 2, 2
kϕ Sensitivity to the variations of the metabolic substrate 1/substrate 75
kβ Sensitivity to the variations of the neuronal activity 1/substrate 4.5
η, ζ Average number of inhibitory synapses per cell Substrate 0.25, 0.27
kr, kc Metabolic recovery and consumption rates Substrate/s 900, 700
ν1, ν2 Homeostatic autoregulation time constants 1/s 0.08, 0.08
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