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Abstract
1.	 Home-range estimates are a common product of animal tracking data, as each 

range represents the area needed by a given individual. Population-level infer-
ence of home-range areas—where multiple individual home ranges are consid-
ered to be sampled from a population—is also important to evaluate changes 
over time, space or covariates such as habitat quality or fragmentation, and 
for comparative analyses of species averages. Population-level home-range 
parameters have traditionally been estimated by first assuming that the input 
tracking data were sampled independently when calculating home ranges via 
conventional kernel density estimation (KDE) or minimal convex polygon (MCP) 
methods, and then assuming that those individual home ranges were measured 
exactly when calculating the population-level estimates. This conventional ap-
proach does not account for the temporal autocorrelation that is inherent in 
modern tracking data, nor for the uncertainties of each individual home-range 
estimate, which are often large and heterogeneous.

2.	 Here, we introduce a statistically and computationally efficient framework for 
the population-level analysis of home-range areas, based on autocorrelated ker-
nel density estimation (AKDE), that can account for variable temporal autocor-
relation and estimation uncertainty.

3.	 We apply our method to empirical examples on lowland tapir Tapirus terrestris, 
kinkajou Potos flavus, white-nosed coati Nasua narica, white-faced capuchin 
monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differ-
ences between species, environments and sexes.

4.	 Our approach allows researchers to more accurately compare different popula-
tions with different movement behaviours or sampling schedules while retaining 
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1  |  INTRODUC TION

Accurately estimating species area requirements is of utmost impor-
tance for conservation (Pe'er et al.,  2014; Shaffer,  1981) from the 
individual to the population level, especially in light of the increas-
ing human impact on landscapes (Brashares et al., 2001; Dardanelli 
et al., 2006; Larsen et al., 2008; Nagy-Reis et al., 2021). At the in-
dividual level, space-use requirements are typically described by 
an animal’s home range (Burt,  1943), which is formalized by the 
probability distribution of the animal’s locations (Worton,  1995). 
Population-level inference on space-use parameters is also 
important—both for quantifying the area requirements of a typ-
ical organism and for quantifying the effect of covariates, such 
as species or taxa (Habel et al., 2019; Matley et al., 2019; Poessel 
et al.,  2020; Rehm et al.,  2018), sex (D’haen et al.,  2019; Desbiez 
et al.,  2019; Morato et al.,  2016; Naveda-Rodríguez et al.,  2018), 
body size (Bašić et al., 2019; Desbiez et al., 2019; Naveda-Rodríguez 
et al., 2018), age (Averill-Murray et al., 2020; Goldenberg et al., 2018; 
Kays et al.,  2020; Mirski et al.,  2020), movement characteristics 
(Bowman et al., 2002; Desbiez et al., 2019; Swihart et al., 1988), con-
specific density (Erlinge et al., 1990; Massei et al., 1997; Trewhella 
et al.,  1988), resource density (Herfindal et al.,  2005; Loveridge 
et al.,  2009; Massei et al.,  1997), habitat or biome (McBride Jr & 
Thompson,  2019; Morato et al.,  2016; Paolini et al.,  2019; Tonra 
et al., 2019), human influences (Hansen et al., 2020; McBride Jr & 
Thompson, 2019; Rutt et al., 2020; Ullmann et al., 2020), weather 
(Kay et al., 2017; Matley et al., 2019; Mirski et al., 2020) and sea-
son or time (Bašić et al.,  2019; Goldenberg et al.,  2018; Matley 
et al.,  2019; Roffler & Gregovich,  2018). Both the mean response 
and population variation have been studied as important regressors 
for biological inference (Seigle-Ferrand et al., 2021). In any case, it 
has traditionally been the approach that individual home-range area 
point estimates are input into conventional analyses (e.g. the sample 
mean, t-test, generalized linear models, etc.) without accounting for 
their associated uncertainties, likely due to the lack of a suitable al-
ternative (though see Averill-Murray et al., 2020).

Home-range estimation is subject to a number of potential, 
differential biases that can challenge comparisons across species, 
behaviours, sampling schedules, tracking devices or habitats; and 
only recently have methods been developed to address these issues 
(Fleming et al., 2015, 2018, 2019, 2020; Fleming & Calabrese, 2017; 
Noonan et al., 2020). Negative biases in home-range estimation can 
result from less tortuous and less spatially constrained movement 
behaviours (Fleming et al., 2015; Swihart et al., 1988), finer sampling 
rates (Fleming et al., 2015; Noonan, Tucker, et al., 2019; Swihart & 

Slade, 1985), shorter sampling periods (Fleming et al., 2019; Noonan, 
Tucker, et al., 2019), larger body size (Noonan et al., 2020) and es-
timating an inappropriate target distribution (Fleming et al.,  2015, 
2016; Horne et al.,  2020). On the other hand, positive biases in 
home-range estimation can result from over-smoothing of the den-
sity function (Fleming & Calabrese, 2017; Worton, 1995) and loca-
tion error (Fleming et al.,  2020; Moser & Garton,  2007; Thomson 
et al., 2017). These individual-level biases can differ between groups 
being compared and are expected to propagate into population-level 
biases if not dealt with. Furthermore, pragmatic adjustments, such as 
standardizing the individual sampling schedules (Börger et al., 2006) 
and thresholding the ‘dilution of precision’ (DOP) values or location 
classes (Bjørneraas et al., 2010), will not necessarily avoid differential 
biases, because home-range estimation biases are a product of both 
the sampling schedule (or location error) and the movement process. 
Standardization strategies, therefore, rely on the implicit assumption 
of the sampled individuals and their tracking devices behaving sim-
ilarly enough that their biases can be matched by discarding poten-
tially informative data (Winner et al., 2018). This can be acceptable 
in some cases, but cannot be relied on as a general solution. Instead, 
statistically efficient estimators that can handle these factors and 
best use all of the data, are necessary to ensure reliable comparisons 
(Fleming et al., 2020; Fleming & Calabrese, 2017).

To make population-level inferences, researchers and managers 
traditionally take differentially biased KDE and MCP home-ranged 
estimates and feed them into general purpose statistical analyses, 
which assumes that the individual home-range areas are measured 
exactly (see Signer & Fieberg, 2021, for a thorough description). For 
instance, a single population would be described by its sample mean, 
and two populations would be compared with a t-test (e.g. Kays & 
Gittleman, 2001). While the biases of conventional home-range esti-
mators have been studied and more statistically efficient estimators 
are now available (Fleming et al., 2020; Noonan, Tucker, et al., 2019), 
and while variation in individuals and their behaviours has also been 
considered (e.g. Gutowsky et al., 2015), the impact of ignoring home-
range estimation uncertainty on population-level estimates and in-
ferences has not been investigated. More simply, the sample mean 
of unbiased individual estimates produces an unbiased population-
mean estimate, but the sample mean will not achieve minimal 
variance among all possible population-mean estimators. A more 
statistically efficient population-mean estimator will down-weight 
uncertain estimates relative to more certain estimates in such a way 
that the estimated mean has a smaller variance. Researchers are thus 
not faced with the dilemma of deciding whether or not to include 
less precisely sampled individuals when calculating a population 

statistical precision and power when individual home-range uncertainties vary. 
Finally, we emphasize the estimation of effect sizes when comparing popula-
tions, rather than mere significance tests.

K E Y W O R D S
animal movement, autocorrelation, home range, population ecology
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average. Furthermore, ignoring the individual sampling variances 
will necessarily lead to overestimated population variances, by an 
amount comparable to the neglected uncertainties. Indeed, it has 
historically been the case that home-range uncertainties have not 
been quantified at all, let alone leveraged in downstream analyses, 
whereas here we rely on the uncertainty estimates of Fleming and 
Calabrese (2017).

In this work, we set out to achieve three major goals related to 
the task of population-level inference on animal home ranges:

1.	 We demonstrate with empirical data that differentially biased in-
dividual home-range estimates propagate into differentially biased 
population-mean home-range estimates, which is the case for 
conventional methods that do not account for autocorrelation. 
In most situations, this bias is negative and sampling dependent, 
meaning that conventional methods tend to underestimate mean 
home-range areas (Noonan, Tucker, et al.,  2019).

2.	 We introduce a novel hierarchical modelling framework for 
population-level home-range estimation and show that it outper-
forms existing methods, even in best-case scenarios for the ap-
plication of conventional methods.

3.	 We show the problems associated with traditional significance 
testing on population differences and argue for the estimation 
of meaningful effect sizes (Sullivan & Feinn,  2012), which we 
facilitate with a statistically efficient estimator for comparing 
population home-range areas. Effect sizes provide more informa-
tion than significant tests and are important for reproducibility 
(Halsey et al., 2015).
Finally, we conclude with a demonstrative example on multiple fru-

givore species in the same environment. We implement the introduced 
methods in the ctmm R package meta command (version 0.6.0 and 
later, Fleming & Calabrese, 2015; Calabrese et al., 2016).

2  |  THEORY AND METHODS

2.1  |  Effective sample sizes

The effective sample size, N, of an individual home-range estimate 
is the equivalent number of independent and identically distrib-
uted (IID) sampled locations required to produce the same quality 
estimate (Fleming et al., 2019). Biologically speaking, N can also be 
thought of as the number of observed home-range crossings, as 
N =  (T ∕ ), which means that N is ‘on the order of’ T ∕ , where T is 
the total sampling period and τ is the mean-reversion or home-range 
crossing time-scale. When τ is large relative to the sampling interval 
and tracking data are strongly autocorrelated, the effective sample 
size of a home-range estimate, N, can be much smaller than the nom-
inal sample size, n, which is the raw number of locations sampled.

As an example, if a tapir crosses its home range twice per day, for 
the purposes of home-range estimation, 12 days of tracking data will 
be approximately worth as much as 24 independently sampled loca-
tions, even if fixes were obtained every second, and over a million 

locations were recorded. The effective sample sizes of individual 
home-range estimates can often be small. Even with modern track-
ing data, Noonan, Tucker, et al. (2019), in a study of 369 individuals 
from 27 species, noted that 30% of animal tracking datasets had an 
effective sample size of <30—meaning that many large GPS location 
datasets were worth <30 independently sampled datapoints for the 
purpose of home-range estimation. Conventional home-range esti-
mators that assume independently sampled data require hundreds 
to thousands of observed home-range crossings to produce accu-
rate home-range estimates (Noonan, Tucker, et al., 2019). Moreover, 
when effective sample sizes are small, home-range estimate uncer-
tainties are large, which are also not accounted for in conventional 
population-level analyses.

The bias and variance of a home-range estimator is largely a func-
tion of the effective sample size, N (Noonan, Tucker, et al., 2019). At 
small-to-moderate effective sample sizes, the most accurate home-
range estimators, at present, are based on autocorrelated kernel 
density estimation, which conditions bandwidth optimization on a 
fitted autocorrelation model (Fleming et al., 2015). In terms of the 
autocorrelation estimates, which are the dominant source of bias at 
small N, conventional maximum likelihood and conventional Bayesian 
methods produce a downward  (1∕N) bias, while residual maximum 
likelihood (REML)-based estimators and the parametric bootstrap 
can reduce the order of bias to  1∕N2  and  1∕N3 , respectively 
(Fleming et al.,  2019). Therefore, to obtain a bias as small as 5%, 
maximum likelihood and Bayesian methods require on the order of 
20 observed range crossings, REML-based methods require on the 
order of 4–5 observed range crossings, and bootstrapped REML-
based methods require on the order of 2–3 observed range cross-
ings. The other important sample size for population estimates is the 
number of tracked individuals, m, and we are also interested in the 
impact of small m.

2.2  |  Hierarchical models

Hierarchical models have long been recognized as providing a 
natural framework for population-level inference on animal track-
ing data (Hooten et al.,  2016; Jonsen et al.,  2003), and here we 
use them to appropriately weight individual home-range esti-
mates, according to their associated uncertainties, in estimating 
population-level parameters. Most simply, when modelling the av-
erage home-range area of a certain population, it is natural to both 
consider the individual animal locations to be distributed accord-
ing to the animal’s home range and to further consider the animals’ 
home ranges to be randomly distributed according to their popula-
tion (Figure 1). Hierarchical model estimation largely falls into two 
categories—either fitting the population model to the entire data-
set or first calculating the individual statistics, , and then fitting 
the population model to the set of individual statistics. The former 
is common to Bayesian analyses, while the latter is common to 
conventional analyses and meta-analyses (Viechtbauer,  2009). 
Importantly, if  is a sufficient statistic—meaning that there is no 
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additional information in the data beyond  regarding —and 
the exact sampling distribution of  is leveraged, then there is 
no approximation invoked by the meta-analysis of said statistics 
(Fisher, 1922). Such is the case with IID Gaussian area estimates 
when leveraging their χ2 sampling distribution. Even when  is not 
a sufficient statistic, maximum-likelihood and Bayesian analyses 
that fit the population model to the entire collection of tracking 
data are not exact per se, and will generally exhibit both  (1∕N) 
and  (1∕m) biases.

2.2.1  |  Hierarchical model estimators

In this work, we examine the performance of four methods for es-
timating population-level parameters on animal home ranges—a 
conventional sample-mean analysis and three proposed alternatives 
that account for individual uncertainties, including a conventional 

(normal) meta-analysis, a conventional Bayesian analysis and a novel 
χ2 inverse-Gaussian (χ2-IG) meta-analysis. Importantly, the latter 
three methods all account for the uncertainties in individual home-
range estimates by treating the home-range areas as unknown la-
tent variables within a hierarchical model (Figure  1). All published 
analyses that we are aware of either neglect home-range uncertain-
ties and reduce to the sample mean in the absence of covariates, or 
do not estimate a mean home-range area. So, while we refer to the 
normal meta-analysis and Bayesian analysis as being ‘conventional’, 
we are not aware of any pre-existing application or examination of 
these methods for the task of mean home-range area estimation. 
Finally, in all four cases, we model the population distribution as 
either Gaussian or inverse-Gaussian (IG), as these distributions can 
produce unbiased and asymptotically consistent population-mean 
estimates even when the population distribution is mis-specified.

Sample-mean analysis
In the conventional sample-mean analysis, we summarize popula-
tions by the sample mean of home-range area point estimates, which 
assumes both large N and large m. As the sample mean is unbiased, 
unbiased individual home-range area estimates will be propagated 
into unbiased population-mean estimates, and vice versa. On the 
other hand, because the sample mean is unweighted, home-range 
estimates with higher uncertainty are not down-weighted relative 
to those with lower uncertainty. As a result, the variance of the 
population estimate is not minimized when individual uncertain-
ties are heterogeneous. This leaves researchers with the potential 
dilemma that imperfectly tracked individuals should be omitted 
from population-level analyses, without clear guidelines on what the 
threshold of omission should be. In contrast, an optimally weighted 
mean will produce lower variance population parameter estimates 
without guesswork, by down-weighting the (small-N) uncertain indi-
vidual estimates. Moreover, because individual home-range area un-
certainties are ignored in the sample mean, estimates of population 
variation will be substantially biased when the number of observed 
home-range crossings (N) is small.

Normal–normal meta-analysis
In the conventional meta-analysis, the individual home-range area 
estimates are modelled as having a normal sampling distribution 
and the population of home-range areas is also modelled as having a 
normal distribution. We consider a conventional meta-analysis, be-
cause it proposes an easy solution to the challenge of incorporating 
uncertainties, and is as simple as passing the home-range area point 
estimates and sampling variance estimates to a single function in R 
(e.g. metafor, Viechtbauer, 2009). The normal–normal meta-analytic 
model is at least somewhat problematic here, as both individual 
home-range areas and mean home-range areas are positive quanti-
ties, which the normal distribution does not respect. A link function 
could be employed to fix the lower bound, but that approach has 
two key disadvantages here. First, a link function would not directly 
produce a mean-area estimate, which is our main focus in this work. 
Second, a link function would give up the unbiased and ‘best linear 

F I G U R E  1  General structure of hierarchical movement models, 
whereby location data of individual i are sparse and erroneous 
samples of the individual’s unknown trajectory, ri, which is itself the 
realization of the stochastic process model p( i| i), parameterized 
by movement characteristics i, distributed according to the 
population model, such as home-range area, mean speed and 
diffusion rate. These movement characteristics are, in turn, 
distributed according to the population model p( i| ), which is 
described by the population parameters , such as the population 
mean of all individual home ranges
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unbiased estimator’ (BLUE) properties of the normal–normal meta-
analysis, whereby unbiased input home-range area estimates will 
yield unbiased output mean-area estimates, if the input uncertain-
ties are correctly specified.

Bayesian analysis
In the traditional Bayesian analysis, we consider the marginal likeli-
hood of the entire dataset, given the population model parameters 
(Figure  1), with a very weakly informative prior. The conventional 
Bayesian modelling framework requires us to specify a generative 
model, but it does not require us to explicitly solve said model, in 
terms of optimization, integration or density function normalization. 
Because our likelihood function includes the same conditional den-
sity used in the biased maximum likelihood estimation of individuals, 
we know that these methods will produce large  (1∕N) biases, at 
small N, that we want to avoid, for both their posterior predictions 
of individual  and their population-level parameters, Θ. To see this, 
consider the limiting case of a flat (non-informative) population dis-
tribution, p ( Θ), and the opposing case of a singular population dis-
tribution. It is then straightforward to show that both cases produce 
biased predictions and estimates when employing maximum a pos-
teriori (MAP) estimation, which is the statistically efficient Bayesian 
analog to maximum likelihood estimation. Moreover, unless all in-
dividuals share the same mean location, increasing the number of 
individuals, m, does not mitigate the small-N bias, because increasing 
m only pools a larger number of biased likelihoods.

χ2-IG meta-analysis
Finally, we consider a novel meta-analysis framework whereby the 
individual home-range area estimates are modelled as having a χ2 
sampling distribution, and the population of home-range areas is 
modelled as having an inverse-Gaussian distribution (Figure  2). 
Given the derivations in Appendix A and included software im-
plementation, this analysis is as simple as feeding our home-range 
estimates into a single R function. However, the distributional 
assumptions here are far more reasonable than the conventional 
meta-analysis. In the case of an IID isotropic Gaussian stochastic 
process, home-range area estimates are sufficient statistics with 
a χ2 sampling distribution, and there is no approximation in per-
forming any χ2-based meta-analysis (versus fitting the population 
model to the entire dataset). We also find the χ2 distribution to 
be a good approximation more generally, for autocorrelated data, 
which gives the χ2-based meta-analysis good statistical efficiency 
when the number of observed home-range crossings (N) is small. 
The choice of an inverse-Gaussian (IG) population distribution will 

F I G U R E  2  General description of our hierarchical modelling 
framework, as demonstrated with error-calibrated tracking data 
on 29 lowland tapir Tapirus terrestris from the Pantanal region of 
Brazil. First, animal tracking data (a) are used to calculate individual 
home-range areas (b), which are, in turn, fed to our χ2-IG meta-
analysis, here producing a forest plot with the mean home-range 
area estimate depicted in black (c)
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be shown to facilitate good statistical efficiency when the number 
of sampled individuals (m) is small.

2.2.2  |  Statistical inefficiency of the sample mean

Here we provide some general results on the inefficiency of con-
ventional sample-mean analysis versus any χ2-based meta-analysis 
with appropriate limits, in the case of low population variation. 
Again, χ2-based meta-analyses achieve increased efficiency over 
the sample mean by down-weighting uncertain estimates relative to 
more certain estimates. First, we note that both the sample-mean 
estimate, Σ , of the mean home-range area, Σ, and the χ2-based 
meta-analytic estimate, Σ 2, are unbiased if the input home-range 
area estimates,  , are unbiased. The variances of these estimators 
are then straightforwardly calculated to be

where i represents the degrees of freedom of the ith home-range area 
estimate i, which is given by i = 2Ni for two-dimensional area esti-
mates with effective samples sizes of Ni. Next we represent the two 
sampling variances

where HM[ ⋅ ] denotes the harmonic mean and AM[ ⋅ ] denotes the arith-
metic mean. Pythagorean means are well studied and these two means 
obey the inequality

with equality only in the case where all i are equal. Therefore, we have 
the statistical efficiency inequality

with equality only in the case where all i are equal.
For example, if = {1, 2, 3, … , 10}, then the χ2-based VAR Σ 2  

is only 62% of the sample-mean VAR Σ , indicating that the sample 
mean is only 62% efficient for IID Gaussian data, where the χ2-based 
estimate is 100% efficient. Moreover, in this case, if the worst two 
observations are omitted, then the sample mean’s efficiency actu-
ally improves from 62% to 81%, whereas the χ2-based efficiency 
degrades from 100% to 95%. When using the conventional sam-
ple mean, it can be advantageous to discard the worst estimates, 
whereas in an appropriately weighted analysis, it is advantageous 
to use all of the data. Finally, we note that there is no importance, 
in this example, on min ( ) = 1. The exact same result follows from 
= {10, 20, 30, … , 100}. It is the relative differences in individual 

effective sample sizes that lowers the relative efficiency of the sam-
ple mean (Figure 3).

2.2.3  |  The inverse-Gaussian population model

While a χ2-based meta-analysis can provide good statistical effi-
ciency for small  or N, the choice of population model and estima-
tors can have a large impact on the statistical efficiency for small m, 
which we now turn our attention to. The mathematically convenient 
population distribution for a χ2 sampling distribution is the inverse-
gamma distribution, as it is a conjugate prior—meaning that the pos-
terior distribution can be calculated in closed form with relative ease. 
However, the inverse-gamma population distribution is not ensured 
to produce population mean estimates that fall within the range of 
the data, and, moreover, produces infinite bias when the shape pa-
rameter’s sampling distribution has any support below 1. In contrast, 
the inverse-Gaussian (IG) distribution has a number of important 
properties that allow us to derive statistically efficient population-
level estimates. Notably, in the absence of a hierarchical model, the 
inverse-Gaussian distribution’s maximum likelihood mean parameter 
estimate is the sample mean, which is minimum variance unbiased 
(MVU) (Folks & Chhikara, 1978), as well as unbiased and asymptoti-
cally consistent even if the IG population model is mis-specified.

In Appendix A we derive a suite of tools for population-level 
home-range area analysis with a χ2 sampling distribution and 
inverse-Gaussian population distribution (χ2-IG), including debiased 
estimators for the population mean area, Σ = E [ ], inverse pop-
ulation mean area, 1∕Σ = 1∕E [ ] and square coefficient of 
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variation, CoV [ ]2 = VAR [ ] ∕E [ ]2, where  denotes a random in-
dividual home-range area. We note that having both debiased mean 
and inverse-mean estimates is important because, as we will discuss, a 
natural effect size for comparing the home-range areas of populations 
I and J is the ratio RIJ = ΣI ∕ΣJ, which is the product of ΣI and 1∕ΣJ.

2.3  |  Relevant effect sizes

In the conventional comparative analysis on two populations, I and J, 
all individual home-range estimates are calculated; each population 
is summarized by the sample mean of their individual home-range 
point estimates, ΣI and ΣJ; and a t-test then determines the statistical 
significance of any difference in the sample means, ΣI − ΣJ (e.g. Kays 
& Gittleman, 2001). Here we discourage the overreliance on such 
p-values for several reasons (for further discussion, see Sullivan & 
Feinn, 2012). Any real pair of different populations will undoubtedly 
have different mean home-range areas, and the p-value is a com-
bined measure of how different two populations are and how much 
data has been analysed. As we will show with real data, mean home-
range area uncertainties are often relatively large and statistically 
insignificant p-values often do not rule out substantial differences. 
In their place, we encourage the estimation of relevant effect sizes 
with confidence intervals. Effect sizes provide more information 
than p-values, are more intuitive and are important for reproduc-
ibility (Halsey et al., 2015).

While the difference between two population-mean home-
range areas, ΣI − ΣJ, is an effect size, it in itself is not informative 
without the context of what constitutes a large difference. Instead, 
we consider the ratio

which has a simple biological interpretation that does not require a ref-
erence scale to compare to, and also admits unbiased estimators and a 
relatively simple sampling distribution.

Without loss of generality, let us assume that ΣI is greater than 
ΣJ . If the (two-sided)  confidence interval for RIJ contains 1, then 
the difference between ΣI and ΣJ is not statistically significant at 
p = ∕2 . However, the difference cannot necessarily be said to be 
insubstantial unless the confidence interval also does not contain 
substantial ratios, such as 1.5 or 2. On the other hand, the differ-
ence can only be said to be substantial if the confidence intervals do 
not contain any insubstantial ratios, such as 1.05. What constitutes 
a substantial effect size is still somewhat subjective, but in reporting 
effect sizes we avoid conflating data quality with importance.

3  |  E X AMPLES

Our examples include three estimator performance comparisons 
and an empirical analysis demonstration. In our first comparison, we 

demonstrate with empirical data that the conventional method of 
taking the sample average of differentially biased individual home-
range area estimates results in differentially biased population-mean 
home-range area estimates. In our second comparison, we con-
trast the conventional sample mean, conventional normal–normal 
meta-analysis, and our χ2-IG meta-analysis on simulated data that 
are ideal for the sample mean, to demonstrate other advantages 
of the χ2-IG framework and serious issues with the conventional 
meta-analysis (sans link function). In our third comparison, we pit a 
conventional Bayesian analysis against our χ2-IG meta-analysis on 
simulated data, to examine the small-N and small-m biases of a con-
ventional Bayesian hierarchical estimator. Finally, in our empirical 
demonstration, we summarize and compare populations (by effect 
size) in a similar environment, across species and sex.

3.1  |  Estimator performance comparisons

3.1.1  |  Meta-analytic tapir cross-validation

For our empirical performance comparisons, we chose to cross-validate 
lowland tapir because of the abundance of their data and because they 
have relatively stable home-range areas (Fleming et al., 2019), which 
are necessary properties to empirically validate across a wide range of 
effective sample sizes. The Instituto Chico Mendes de Conservação 
da Biodiversidade (ICMBIO) provided the required annual permits for 
the capture and immobilization of tapirs and collection of biological 
samples (SISBIO 14603). The Comissão Técnico-Científica (COTEC) 
do Instituto Florestal do Estado de São Paulo (IF-SP) provided the re-
quired permit to carry out research in Morro do Diabo State Park (SMA 
40624/1996). All protocols for the capture, anaesthesia, handling and 
sampling of tapirs have been reviewed and approved by the Veterinary 
Advisors of the Association of Zoos and Aquariums (AZA)—Tapir Taxon 
Advisory Group (TAG) and the Veterinary Committee of the IUCN SSC 
Tapir Specialist Group (TSG).

Using our largest dataset of 29 Pantanal lowland tapir 
(Medici,  2022) with median N = 386, we performed an empirical 
cross-validation analysis to demonstrate the differential bias of con-
ventional population-parameter estimation—whereby biased KDE 
estimates were fed into the sample mean and compared to more ef-
ficient pHREML-AKDEC home-range estimates (Fleming et al., 2019; 
Fleming & Calabrese, 2017) fed into our χ2-IG estimator. To examine 
the small-m bias, we used the entire tracks, where median N = 386, and 
took random samples of tapir, from 2 to 20 individuals. To examine 
the small-N bias, we used the entire sample of Pantanal tapir (m = 29)  
and incremented the sampling period from 2 to 10 days, with ran-
dom segments of time sampled from the datasets. Following Fleming 
et al.  (2019), one day of lowland tapir sampling approximately cor-
responds to an effective sample size of N ≈ 2 , and, therefore, 2 to 
10 days corresponds approximately to effective sample sizes ranging 
from 4 to 20.

Given the results of Noonan, Tucker, et al. (2019), we expected 
the conventional population-mean (Σ) estimates (conditioned on 

(5)RIJ =
ΣI

ΣJ
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REML-KDEC) to increase with increasing N and slowly approach the 
more accurate pHREML-AKDEC estimates for very large N. Following 
Fleming et al. (2019) and Noonan, Tucker, et al. (2019), we expected 
the pHREML-AKDEC-based results to be only slightly underesti-
mated at N ∼ 4 (2  days sampling), where they could be improved 
by bootstrapping (Fleming et al.,  2019), which would be too slow 
for this number of simulations. We expected the reciprocal-mean 
(1∕Σ ) estimates to exhibit the opposite biases, relative to those of 
the respective Σ estimates. We expected the conventional popula-
tion variance estimates to exhibit positive biases that decrease with 
increasing N, as a result of conflation with unaccounted uncertainty.

3.1.2  |  Meta-analytic simulations

We compared the population parameter estimates of three condi-
tional estimation methods—(a) averaging the point estimates as if 
they were exact (sample-mean), (b) averaging the estimates with a 
conventional meta-analytic hierarchical model, which assumes a nor-
mal sampling distribution and normal population distribution (normal–
normal), and (c) averaging the estimates with our χ2-IG meta-analytic 
framework. In our first set of simulations, we incremented the number 
of observed home-range crossings (N) from 1 to 20, with the number 
of individuals (m) set to 100. In our second set of simulations, we in-
cremented the number of individuals from 2 to 20, with the number 
of observed home-range crossings set to 100. To isolate the biases of 
the conditional estimators, in all cases we used IID simulated track-
ing data and Gaussian home-range area estimates, which have ideal 
statistical efficiency. Furthermore, in each individual meta-analysis, N 
was held constant so that the conventional sample mean would have 
its highest efficiency, and other biases could be explored. The popula-
tion coefficient of variation for the distribution of home ranges was 
set to one, which is considered to be an intermediate value and was 
consistent with most of our empirical examples. We performed this 
analysis both with an inverse-Gaussian population distribution, where 
our χ2-IG model is exact, and again with a log-normal population dis-
tribution, where our χ2-IG model is mis-specified.

3.1.3  |  Bayesian simulations

We compared the population parameter estimates of a general-
purpose Bayesian estimator to those of our χ2-IG meta-analytic es-
timator, when using unbiased REML Gaussian area estimates. We 
simulated IG distributed home-range areas, and then conditional on 
those home-range areas, we simulated IID movement processes. 
The IID tracking data were sampled daily, and would approximate 
a small canid or deer. The population coefficient of variation for the 
distribution of home ranges was set to one, which is considered to be 
an intermediate value and was consistent with most of our empiri-
cal examples. We provided our Bayesian estimator with very weak 
priors that were centred on the truth (Appendix B), and for output 
point estimates we considered the mode, median, and mean of the 

marginal posterior, p (Σ). For our Bayesian estimates, we only consid-
ered the integrated hierarchical model, with individual movements 
conditional on movement characteristics sampled from respective 
population distributions, and performed a single analysis on all indi-
viduals simultaneously, per simulation. In one set of simulations, we 
incremented the number of observed home-range crossings (N) from 
2 to 20, with the number of individuals (m) set to 100. In a second 
set of simulations, we incremented the number of individuals from 
2 to 20, with the number of range crossings set to 100. In this way, 
we could examine the small sample size biases for both m and N. 
For our meta-analytic simulations, we computed 10,000 replicates, 
while for the much slower Bayesian simulations we computed 1,500 
replicates with each having 1,500 draws from the posterior after 
1,500 discarded ‘burn-in’ points, after checking for convergence in 
a number of samples.

3.2  |  Analysis demonstration

3.2.1  |  Barro Colorado Island frugivore case study

For our analysis demonstration, we considered frugivore home-
range estimates from Barro Colorado Island (Alavi et al.,  2022). 
Fieldwork was carried out under IACUC protocol numbers 2014–
1001-2017, 2017–0912-2020 and 2017–0605-2020 from STRI, and 
UC Davis IACUC protocol number 18239.

We compared the home-range areas of four species of 
frugivores—all located on Barro Colorado Island, Panama (Alavi 
et al.,  2022)—including 12 kinkajou Potos flavus, with median N = 324,  
16 white-nosed coati Nasua narica, with median N = 371, 8 white-
faced capuchin monkey Cebus capucinus, with median N = 193,  
and 8 spider monkey Ateles geoffroyi, with median N = 134. We ex-
plored two issues in terms of effect sizes: how home-range areas dif-
fered among species and how home-range areas differed between 
sexes within each species. In all cases, we conditioned our χ2-IG meta-
analysis on 95% error-informed pHREML AKDEC home-range area esti-
mates (Calabrese et al., 2016; Fleming et al., 2019; Fleming et al., 2020; 
Fleming & Calabrese, 2017). Sex differences have been observed for 
spider monkeys (Campbell, 2008), with male home-range areas being 
larger than those of females, which might also be the case for kinkajous 
(Kays & Gittleman, 2001). Sex differences have not been observed for 
coatis (Gompper, 1997), and are not expected for capuchins, because 
male and female capuchins move together in a social group.

4  |  RESULTS

4.1  |  Estimator performance comparisons

4.1.1  |  Meta-analytic tapir cross-validation

We summarize our lowland tapir cross validation in Figure  4. We 
emphasize that these are real data with unknown true parameters, 
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and so we can only assess consistency under resampling. When esti-
mating mean home-range areas (Σ), the conventional KDE estimates 
increased substantially with increasing sampling period, but did not 
asymptote enough to match the more accurate AKDE estimates, 
even when using all of the data. This is more than likely due to many 
tapir not having the requisite effective sample size necessary for 
REML-KDEC to exhibit asymptotically efficiency (Noonan, Tucker, 
et al., 2019). We note that, among home-range estimators that as-
sume independently sampled location data, REML-KDEC is relatively 
efficient, and other conventional home-range estimators can pro-
duce relative biases that are an order of magnitude worse than that 
of KDEC, let alone AKDEC (Noonan, Tucker, et al., 2019). In contrast, 
when only 2–3 days (N ≈ 4–6) were sampled, the pHREML-AKDEC 
mean home-range estimates had only a slight, negative bias, which 
could be remedied by bootstrapping (Fleming et al., 2019). However, 

the bootstrap itself requires repeated simulations, and is too com-
putationally costly to be included in this analysis. As expected, the 
reciprocal mean area (1∕Σ) estimates, which are necessary for eas-
ily comparing populations, exhibited biases opposite to those of Σ. 
Finally, both estimators reported extra variation at shorter sampling 
periods, though this sensitivity was much larger with the conven-
tional estimate.

4.1.2  |  Meta-analytic simulations

We summarize our meta-analytic simulation comparisons in Figure 5. 
Again, these simulations were constructed to be ideal for the con-
ventional sample mean, as in each meta-analysis the number of ob-
served home-range crossings (N) was held fixed, which makes the 

F I G U R E  4  Lowland tapir cross-validation results evaluating two methods for estimating population parameters from tracking data: 
Ignoring individual home-range uncertainties and temporal autocorrelation with sample means of KDE areas ( ), versus our χ2-IG estimators 
conditional on AKDE home-range areas ( ). On each row of panels, a different population parameter is estimated—the mean home-range 
area (a), its reciprocal (b) and the coefficient of variation (c). In the first column, the sampling period is manipulated with all individuals 
utilized, with the effective sample size (N) being approximately twice the number of days sampled. The error bars denote the 95% 
confidence intervals on the mean point estimates, with 1,000 samples computed. In the second column, the number of individuals (m) is 
manipulated with the full tracks utilized. For reference, the horizontal lines depict the respective point estimates when using all of the data. 
Overall, the conventional sample-mean KDE estimates were very sensitive to the sampling period and slightly sensitive to the number of 
individuals sampled
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sample mean’s uniform weighting more efficient. Generally speak-
ing, our χ2-IG conditional estimation framework provided unbiased 
estimates for all parameters of interest; as expected, the conven-
tional sample mean provided unbiased population mean estimates, 
but moderately biased estimates of other population parameters; 
and the conventional normal–normal meta-analysis performed much 
worse than anticipated, with severe bias at small values of N. In our 
second simulation analysis, with a mis-specified log-normal popula-
tion distribution, the results were almost indistinguishable from the 
inverse-Gaussian case.

We were initially surprised by the poor performance of the con-
ventional normal–normal meta-analytic model, as this method pro-
vides approximately ‘best linear unbiased estimates’ (BLUEs) that 
are exactly BLUE if the sampling variances are correctly specified. 
However, in retrospect, the variances of a χ2 process are never ex-
actly known, but are estimated to be proportional to the square 

of the point estimate. This association causes smaller estimates to 
be over-weighted and larger estimates to be under-weighted in a 
normal–normal analysis, which causes the extreme biases depicted 
in Figure 5.

Results for m = 2, 3 in column 2 of Figure  5 are not displayed, 
as they are very much contingent on the chosen model selection 
criterion and its outcome. If the population variance parameter is 
supported by model selection, then all χ2-IG parameter estimates 
remain relatively unbiased. However, if the population variance pa-
rameter is not supported, then the coefficient of variation is taken 
to be zero and the inverse mean is moderately overestimated. Some 
degree of model selection is necessary, as the point estimate of the 
population variance parameter can be in the neighbourhood of zero, 
which would not be selected by any standard model selection crite-
rion, and would cause divergences in both the estimated sampling 
variances and in the debiased point estimates if retained.

F I G U R E  5  Simulation results evaluating three methods for estimating population parameters from unbiased area estimates: Ignoring 
individual home-range uncertainties with sample means ( ), using a conventional normal–normal meta-analytic model to propagate 
uncertainties ( ), and our χ2-IG conditional estimator ( ). On each row of panels, a different population parameter is estimated—the mean 
home-range area (a), its reciprocal (b) and the coefficient of variation (c). In the first column, the number of observed home-range crossings 
(N) is manipulated, while the number of individuals (m) is set to 100. In the second column, the number of individuals is manipulated, while 
the number of observed home-range crossings is set to 100. In general, our χ2-IG conditional estimators were unbiased, while the other two 
methods exhibited moderate to severe bias, depending on sample sizes and parameter of interest
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4.1.3  |  Bayesian simulations

We summarize our Bayesian simulation comparison in Figure  6. 
Generally speaking, our χ2-IG conditional estimation framework 
provided unbiased mean area estimates when conditioned on un-
biased individual area estimates, as in the previous simulations. In 
contrast, our Bayesian estimates were far more biased than we an-
ticipated. In terms of observed home-range crossings, we found the 
small-N bias of our Bayesian averages of the anticipated magnitude 
but in the opposite direction of individual-level maximum likelihood 
biases. On the other hand, in terms of the number of individuals sam-
pled, we found the small-m bias of our Bayesian averages to have 
an extremely large, positive bias, such that to achieve a reasonable 
amount of bias, our Bayesian estimator would require more indi-
viduals tracked than present in most studies. We tested whether or 
not this bias was due to a lack of identifiability with the spread of 
the home-range centres, but this was not the case. Instead, we only 
found that the small-m bias was very similar in scale to the spread of 
our prior on Σ, even though it was centred on the truth and specified 
independently of other parameters.

4.2  |  Analysis demonstration

4.2.1  |  Barro Colorado Island frugivore case study

We summarize the results of our Barro Colorado Island (BCI) frugi-
vores in Table 1. We found spider monkeys to have the largest home 
ranges and kinkajou to have the smallest home ranges of the four 
species, on average, with their mean 95% home-range areas esti-
mated to be 5.3 (95% CI: 2.6–9.7) km2 and 0.3 (0.2–0.4) km2, respec-
tively. We could not statistically discriminate the coati and capuchin 

monkey, and estimated the coati/capuchin ratio of mean home-
range areas to be 1.2 (0.8–1.7), which does not rule out a substantial 
difference. Only in the kinkajou did we find a statistically significant 
difference between the sexes, where we estimated the male/female 
ratio of mean home-range areas to be 2.3 (1.5–3.5), which excludes 
1, and is both significant and substantial. This test remained statis-
tically significant even if applying the Šidák correction for multiple 
comparisons. Substantial differences between the sexes could not 
be ruled out in the other BCI species, due to large uncertainties.

5  |  DISCUSSION

We have introduced a computationally and statistically efficient hier-
archical modelling framework for summarizing and comparing popu-
lation home-range areas. While we strongly recommend designing 
studies with larger sample sizes when possible, this framework facili-
tates population-level inference with as few as 2–3 observed home-
range crossings per individual and with a similarly small number of 
representative individuals. Representative samples of individuals 
can be obtained, for instance, by independently sampling a fixed 
proportion of individuals from areas that are sampled uniformly in 
space. Importantly, the methods that we have introduced avoid the 
differential biases inherent in conventional analyses and allow re-
searchers to gain statistical efficiency in using all of their data. In 
contrast, conventional home-range estimators exhibit downward 
biases with high sampling rates (Noonan et al., 2020), and even care-
fully performed data thinning can fail to match these biases across 
populations (Fleming & Calabrese, 2017). Indeed, data with such high 
sampling rates require autocorrelation-informed home-range esti-
mators like AKDE. For example, if comparing tapir and jaguar species 
in the same biome, daily tapir data are more comparable to weekly 

F I G U R E  6  Mean home-range 
area estimates when using our χ2-IG 
conditional estimator on unbiased REML 
area estimates ( ), and when taking the 
mean ( ), median ( ) or mode ( ) of the 
marginal Bayesian posterior distribution. 
In the first row, the number of individuals, 
m, is 100, and the observed home-range 
crossings (N) is manipulated. In the second 
row, the observed home-range crossings 
is 100, and the number of individuals 
is manipulated. In general, our χ2-IG 
conditional estimators were unbiased 
when conditioned on unbiased home-
range area estimates, while our Bayesian 
posteriors were much further from the 
truth than anticipated
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or monthly jaguar data for the purpose of home-range estimation 
(Fleming et al., 2019; Morato et al., 2016), and matching the sampling 
schedules of these two species can produce wildly different biases 
from conventional home-range estimators. Here we have pointed 
out and demonstrated that these individual-level biases propagate 
forward into population-level analyses (Winner et al., 2018).

We have demonstrated that conventional population-level esti-
mators present a second data thinning dilemma to researchers, even 
when using accurate individual home-range estimates. Conventional 
population-level estimators perform better when omitting less 
well-tracked individuals, because certain and uncertain estimates 
are weighted equally in the sample mean, and because unmodeled 
individual uncertainties produce positive bias in the population 
variance estimate. Indeed, choosing to omit less well-tracked indi-
viduals is an extreme form of subjective down-weighting that is not 
optimized in practice, and would still be outperformed by an appro-
priately weighted method even if it was (Section 2.2.2). An appro-
priately weighted analysis—where uncertain individual home-range 
estimates are down-weighted relative to more certain estimates—is 
necessary to produce the best quality population estimates. Our χ2-
IG framework provides said weighting via a hierarchical model.

We recommend that researchers comparing populations do so 
by way of relevant effect sizes, provided with confidence intervals, 
rather than p-values, which are more variable and less reproducible. 
As we have demonstrated, insignificant differences do not imply in-
substantial differences (Section 4.2.1). A ratio of mean home-range 
areas CI of (0.9–2.1) contains 1, which implies an insignificant differ-
ence, but it also contains 2, which implies that we are not confident 
that the difference is insubstantial. On the other hand, a ratio CI of 
(1.01–1.02) does not contain 1, which implies a significant difference, 

but it does not contain any substantial difference and we are there-
fore confident that the difference is insubstantial. Effect-size CIs 
provide a more thorough and meaningful comparison than p-values, 
as with insufficient data, substantial differences can be insignificant, 
and with abundant data, insubstantial differences can be significant.

5.1  |  Comparison to other hierarchical methods

While we also considered a conventional (normal) meta-analysis and 
Bayesian analysis, only our novel χ2-IG meta-analysis proved to be 
generally suitable for population-level inference on home-range 
areas. Conventional meta-analyses also down-weight uncertain 
estimates, and we have shown here that their direct application 
leads to extreme biases because of the strong association between 
home-range area uncertainty estimates and home-range area 
point estimates (Shuster,  2010). We considered the conventional 
normal–normal meta-analysis without a link function in the hope 
of obtaining approximate BLUE quality estimates and more general 
asymptotic consistency. A link function could improve this method’s 
performance, but at the cost of the unbiased property and more 
general asymptotic consistency, and with the additional requirement 
of having to back-transform the output population-parameter esti-
mates. We recommend that researchers using conventional meta-
analytic methods for regression analysis, such as in Averill-Murray 
et al. (2020), also use an appropriate link function and pay careful at-
tention to their residuals. Otherwise, for the purposes demonstrated 
here, there is no reason to use any of the conventional analyses over 
the χ2-IG estimator. Finally, our Bayesian analysis produced much 
larger small-m biases that we anticipated, even though we supplied 
a non-informative prior similar to that suggested by Gelman (2006) 
for variance parameters, and further assisted our Bayesian analysis 
by fixing each prior’s mode to the truth.

5.2  |  Two-stage analyses and the assumption of 
range residency

Our proposed method involves a two-stage analysis, with the first 
stage consisting of individual analyses that are then fed into a 
second-stage meta-analysis of the population. When making good 
distributional assumptions and propagating uncertainties appropri-
ately, two-stage analyses such as this offer a promising approach for 
implementing hierarchical models on ‘big data’ (Muff et al., 2020). 
In addition to delivering large improvements in computation time, 
individual-based workflows are only minimally increased, as the 
first stage of analysis is based on existing methods and software. 
However, because we focus on the second stage meta-analysis, we 
have not considered existing challenges in the first stage of home-
range estimation that relate to individual variation. Populations can 
express considerable variance in their individual movement be-
haviours (van de Kerk et al., 2021), and AKDE is a general enough 
method to formally accommodate this variation.

TA B L E  1  Results of our Barro Colorado Island frugivore analysis, 
including the mean home-range area and coefficient of variation 
(CoV). For reference, a CoV of 1 is considered to be intermediate 
among distributions on the positive real numbers

Mean (km2) CoV

Spider monkey 5.3 (2.6–9.7) 1.0 (0.4–1.6)

Male 6.6 (4.7–9.0) 0.3 (0.1–0.6)a

Female 4.5 (1.6–10.3) 1.2 (0.3–2.1)

Coati 1.4 (1.0–1.8) 0.6 (0.4–0.8)

Male 1.3 (0.8–1.9) 0.6 (0.3–1.0)

Female 1.4 (1.0–2.0) 0.6 (0.3–0.8)

Capuchin monkey 1.1 (0.9–1.5) 0.3 (0.2–0.5)

Male 1.3 (0.8–2.1) 0.5 (0.1–0.8)

Female 1.0 (0.8–1.3) 0.3 (0.1–0.5)

Kinkajou 0.3 (0.2–0.4) 0.6 (0.3–0.9)

Male 0.4 (0.3–0.6) 0.4 (0.1–0.6)

Female 0.2 (0.1–0.3) 0.4 (0.2–0.6)

aThe coefficient of variation for the male spider monkeys was not 
supported by AICC, due to a small sample size (m = 3) and relatively 
large home-range uncertainties, and is, therefore, expected to be 
underestimated.
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5.3  |  Future analyses

While our χ2-IG hierarchical model was designed for home-range 
analysis, it would also provide a natural model for population-level 
inference on diffusion rates, as they also have an approximately χ2 
conditional sampling distribution. Mean speeds and travelled dis-
tances, however, would be better modelled as χ-IG (Noonan, Fleming, 
et al., 2019). Moreover, it would be useful to model both fixed and 
random effects, especially if the same individuals are being grouped 
in different populations (e.g. pre- and post-treatment). Fixed effects 
might be incorporated via standard IG-regression models (Folks & 
Davis, 1981), but random effects would require more effort to retain 
efficiency. For the time being, regression analyses should be per-
formed with conventional meta-analysis regression methods, and 
with a carefully selected link function.

6  |  CONCLUSIONS

We have shown that accurate population-level home-range estima-
tion requires (a) accurate individual home-range estimates to be fed 
into (b) an appropriate statistical framework. At present, the most 
accurate nonparametric home-range estimator is AKDE (Noonan, 
Tucker, et al.,  2019), which has an associated R package (ctmm, 
Calabrese et al., 2016; Fleming & Calabrese, 2015) and graphical user 
interface (ctmmweb, Calabrese et al., 2021; Dong et al., 2017). Upon 
calculating individual AKDEs, the χ2-IG meta-analysis that we have 
introduced here can be evaluated with a single function call, via the 
meta command (Fleming & Calabrese, 2015; Calabrese et al., 2016), 
which is complete with documentation, help(meta), and example 
code, example(meta). These combined methods—pHREML auto-
correlation estimation (Fleming et al., 2019), AKDEC density function 
estimation (Fleming & Calabrese,  2017), and χ2-IG meta-analysis—
allow researchers to reap the benefits of using all of their data, avoid 
differential biases and achieve greater statistical efficiency than has 
been possible. Future work will extend these methods to diffusion 
rates, speeds and complete movement models, which are a neces-
sary ingredient in the estimation of statistically efficient population 
density estimates, as well as extended regression analyses.
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