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Abstract
1. Home-range estimates are a common product of animal tracking data, as each
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ered to be sampled from a population—is also important to evaluate changes
over time, space or covariates such as habitat quality or fragmentation, and
for comparative analyses of species averages. Population-level home-range
parameters have traditionally been estimated by first assuming that the input
tracking data were sampled independently when calculating home ranges via
conventional kernel density estimation (KDE) or minimal convex polygon (MCP)
methods, and then assuming that those individual home ranges were measured
exactly when calculating the population-level estimates. This conventional ap-
proach does not account for the temporal autocorrelation that is inherent in
modern tracking data, nor for the uncertainties of each individual home-range

estimate, which are often large and heterogeneous.

. Here, we introduce a statistically and computationally efficient framework for

the population-level analysis of home-range areas, based on autocorrelated ker-
nel density estimation (AKDE), that can account for variable temporal autocor-

relation and estimation uncertainty.

. We apply our method to empirical examples on lowland tapir Tapirus terrestris,

kinkajou Potos flavus, white-nosed coati Nasua narica, white-faced capuchin
monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differ-

ences between species, environments and sexes.

. Our approach allows researchers to more accurately compare different popula-

tions with different movement behaviours or sampling schedules while retaining
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1 | INTRODUCTION

Accurately estimating species area requirements is of utmost impor-
tance for conservation (Pe'er et al., 2014; Shaffer, 1981) from the
individual to the population level, especially in light of the increas-
ing human impact on landscapes (Brashares et al., 2001; Dardanelli
et al., 2006; Larsen et al., 2008; Nagy-Reis et al., 2021). At the in-
dividual level, space-use requirements are typically described by
an animal’s home range (Burt, 1943), which is formalized by the
probability distribution of the animal’s locations (Worton, 1995).
Population-level inference on space-use parameters is also
important—both for quantifying the area requirements of a typ-
ical organism and for quantifying the effect of covariates, such
as species or taxa (Habel et al., 2019; Matley et al., 2019; Poessel
et al., 2020; Rehm et al., 2018), sex (D’haen et al., 2019; Desbiez
et al., 2019; Morato et al., 2016; Naveda-Rodriguez et al., 2018),
body size (Basi¢ et al., 2019; Desbiez et al., 2019; Naveda-Rodriguez
etal., 2018), age (Averill-Murray et al., 2020; Goldenberg et al., 2018;
Kays et al., 2020; Mirski et al., 2020), movement characteristics
(Bowman et al., 2002; Desbiez et al., 2019; Swihart et al., 1988), con-
specific density (Erlinge et al., 1990; Massei et al., 1997; Trewhella
et al.,, 1988), resource density (Herfindal et al., 2005; Loveridge
et al., 2009; Massei et al., 1997), habitat or biome (McBride Jr &
Thompson, 2019; Morato et al., 2016; Paolini et al., 2019; Tonra
et al., 2019), human influences (Hansen et al., 2020; McBride Jr &
Thompson, 2019; Rutt et al., 2020; Ullmann et al., 2020), weather
(Kay et al., 2017; Matley et al., 2019; Mirski et al., 2020) and sea-
son or time (Basi¢ et al.,, 2019; Goldenberg et al., 2018; Matley
et al.,, 2019; Roffler & Gregovich, 2018). Both the mean response
and population variation have been studied as important regressors
for biological inference (Seigle-Ferrand et al., 2021). In any case, it
has traditionally been the approach that individual home-range area
point estimates are input into conventional analyses (e.g. the sample
mean, t-test, generalized linear models, etc.) without accounting for
their associated uncertainties, likely due to the lack of a suitable al-
ternative (though see Averill-Murray et al., 2020).

Home-range estimation is subject to a number of potential,
differential biases that can challenge comparisons across species,
behaviours, sampling schedules, tracking devices or habitats; and
only recently have methods been developed to address these issues
(Fleming et al., 2015, 2018, 2019, 2020; Fleming & Calabrese, 2017;
Noonan et al., 2020). Negative biases in home-range estimation can
result from less tortuous and less spatially constrained movement
behaviours (Fleming et al., 2015; Swihart et al., 1988), finer sampling
rates (Fleming et al., 2015; Noonan, Tucker, et al., 2019; Swihart &

statistical precision and power when individual home-range uncertainties vary.
Finally, we emphasize the estimation of effect sizes when comparing popula-

tions, rather than mere significance tests.

animal movement, autocorrelation, home range, population ecology

Slade, 1985), shorter sampling periods (Fleming et al., 2019; Noonan,
Tucker, et al., 2019), larger body size (Noonan et al., 2020) and es-
timating an inappropriate target distribution (Fleming et al., 2015,
2016; Horne et al., 2020). On the other hand, positive biases in
home-range estimation can result from over-smoothing of the den-
sity function (Fleming & Calabrese, 2017; Worton, 1995) and loca-
tion error (Fleming et al., 2020; Moser & Garton, 2007; Thomson
et al., 2017). These individual-level biases can differ between groups
being compared and are expected to propagate into population-level
biases if not dealt with. Furthermore, pragmatic adjustments, such as
standardizing the individual sampling schedules (Bérger et al., 2006)
and thresholding the ‘dilution of precision’ (DOP) values or location
classes (Bjgrneraas et al., 2010), will not necessarily avoid differential
biases, because home-range estimation biases are a product of both
the sampling schedule (or location error) and the movement process.
Standardization strategies, therefore, rely on the implicit assumption
of the sampled individuals and their tracking devices behaving sim-
ilarly enough that their biases can be matched by discarding poten-
tially informative data (Winner et al., 2018). This can be acceptable
in some cases, but cannot be relied on as a general solution. Instead,
statistically efficient estimators that can handle these factors and
best use all of the data, are necessary to ensure reliable comparisons
(Fleming et al., 2020; Fleming & Calabrese, 2017).

To make population-level inferences, researchers and managers
traditionally take differentially biased KDE and MCP home-ranged
estimates and feed them into general purpose statistical analyses,
which assumes that the individual home-range areas are measured
exactly (see Signer & Fieberg, 2021, for a thorough description). For
instance, a single population would be described by its sample mean,
and two populations would be compared with a t-test (e.g. Kays &
Gittleman, 2001). While the biases of conventional home-range esti-
mators have been studied and more statistically efficient estimators
are now available (Fleming et al., 2020; Noonan, Tucker, et al., 2019),
and while variation in individuals and their behaviours has also been
considered (e.g. Gutowsky et al., 2015), the impact of ignoring home-
range estimation uncertainty on population-level estimates and in-
ferences has not been investigated. More simply, the sample mean
of unbiased individual estimates produces an unbiased population-
mean estimate, but the sample mean will not achieve minimal
variance among all possible population-mean estimators. A more
statistically efficient population-mean estimator will down-weight
uncertain estimates relative to more certain estimates in such a way
that the estimated mean has a smaller variance. Researchers are thus
not faced with the dilemma of deciding whether or not to include
less precisely sampled individuals when calculating a population
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average. Furthermore, ignoring the individual sampling variances
will necessarily lead to overestimated population variances, by an
amount comparable to the neglected uncertainties. Indeed, it has
historically been the case that home-range uncertainties have not
been quantified at all, let alone leveraged in downstream analyses,
whereas here we rely on the uncertainty estimates of Fleming and
Calabrese (2017).

In this work, we set out to achieve three major goals related to

the task of population-level inference on animal home ranges:

1. We demonstrate with empirical data that differentially biased in-
dividual home-range estimates propagate into differentially biased
population-mean home-range estimates, which is the case for
conventional methods that do not account for autocorrelation.
In most situations, this bias is negative and sampling dependent,
meaning that conventional methods tend to underestimate mean
home-range areas (Noonan, Tucker, et al., 2019).

2. We introduce a novel hierarchical modelling framework for
population-level home-range estimation and show that it outper-
forms existing methods, even in best-case scenarios for the ap-
plication of conventional methods.

3. We show the problems associated with traditional significance
testing on population differences and argue for the estimation
of meaningful effect sizes (Sullivan & Feinn, 2012), which we
facilitate with a statistically efficient estimator for comparing
population home-range areas. Effect sizes provide more informa-
tion than significant tests and are important for reproducibility
(Halsey et al., 2015).

Finally, we conclude with a demonstrative example on multiple fru-
givore species in the same environment. We implement the introduced
methods in the ctmm R package meta command (version 0.6.0 and
later, Fleming & Calabrese, 2015; Calabrese et al., 2016).

2 | THEORY AND METHODS

2.1 | Effective sample sizes
The effective sample size, N, of an individual home-range estimate
is the equivalent number of independent and identically distrib-
uted (IID) sampled locations required to produce the same quality
estimate (Fleming et al., 2019). Biologically speaking, N can also be
thought of as the number of observed home-range crossings, as
N = O(T /z), which means that N is ‘on the order of T / r, where T is
the total sampling period and 7 is the mean-reversion or home-range
crossing time-scale. When t is large relative to the sampling interval
and tracking data are strongly autocorrelated, the effective sample
size of a home-range estimate, N, can be much smaller than the nom-
inal sample size, n, which is the raw number of locations sampled.
As an example, if a tapir crosses its home range twice per day, for
the purposes of home-range estimation, 12 days of tracking data will
be approximately worth as much as 24 independently sampled loca-
tions, even if fixes were obtained every second, and over a million

locations were recorded. The effective sample sizes of individual
home-range estimates can often be small. Even with modern track-
ing data, Noonan, Tucker, et al. (2019), in a study of 369 individuals
from 27 species, noted that 30% of animal tracking datasets had an
effective sample size of <30—meaning that many large GPS location
datasets were worth <30 independently sampled datapoints for the
purpose of home-range estimation. Conventional home-range esti-
mators that assume independently sampled data require hundreds
to thousands of observed home-range crossings to produce accu-
rate home-range estimates (Noonan, Tucker, et al., 2019). Moreover,
when effective sample sizes are small, home-range estimate uncer-
tainties are large, which are also not accounted for in conventional
population-level analyses.

The bias and variance of a home-range estimator is largely a func-
tion of the effective sample size, N (Noonan, Tucker, et al., 2019). At
small-to-moderate effective sample sizes, the most accurate home-
range estimators, at present, are based on autocorrelated kernel
density estimation, which conditions bandwidth optimization on a
fitted autocorrelation model (Fleming et al., 2015). In terms of the
autocorrelation estimates, which are the dominant source of bias at
small N, conventional maximum likelihood and conventional Bayesian
methods produce a downward © (1 / N) bias, while residual maximum
likelihood (REML)-based estimators and the parametric bootstrap
can reduce the order of bias to © (1/N2)and © (1/N?), respectively
(Fleming et al., 2019). Therefore, to obtain a bias as small as 5%,
maximum likelihood and Bayesian methods require on the order of
20 observed range crossings, REML-based methods require on the
order of 4-5 observed range crossings, and bootstrapped REML-
based methods require on the order of 2-3 observed range cross-
ings. The other important sample size for population estimates is the
number of tracked individuals, m, and we are also interested in the

impact of small m.

2.2 | Hierarchical models

Hierarchical models have long been recognized as providing a
natural framework for population-level inference on animal track-
ing data (Hooten et al., 2016; Jonsen et al., 2003), and here we
use them to appropriately weight individual home-range esti-
mates, according to their associated uncertainties, in estimating
population-level parameters. Most simply, when modelling the av-
erage home-range area of a certain population, it is natural to both
consider the individual animal locations to be distributed accord-
ing to the animal’s home range and to further consider the animals’
home ranges to be randomly distributed according to their popula-
tion (Figure 1). Hierarchical model estimation largely falls into two
categories—either fitting the population model to the entire data-
set or first calculating the individual statistics, @, and then fitting
the population model to the set of individual statistics. The former
is common to Bayesian analyses, while the latter is common to
conventional analyses and meta-analyses (Viechtbauer, 2009).
Importantly, if dis a sufficient statistic—meaning that there is no
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FIGURE 1 General structure of hierarchical movement models,
whereby location data of individual i are sparse and erroneous
samples of the individual’s unknown trajectory, r;, which is itself the
realization of the stochastic process model p(r;|@), parameterized
by movement characteristics 0;, distributed according to the
population model, such as home-range area, mean speed and
diffusion rate. These movement characteristics are, in turn,
distributed according to the population model p(6,©), which is
described by the population parameters ©, such as the population
mean of all individual home ranges

additional information in the data beyond 0 regarding 6—and
the exact sampling distribution of 0 is leveraged, then there is
no approximation invoked by the meta-analysis of said statistics
(Fisher, 1922). Such is the case with 1ID Gaussian area estimates
when leveraging their ? sampling distribution. Even when D is not
a sufficient statistic, maximum-likelihood and Bayesian analyses
that fit the population model to the entire collection of tracking
data are not exact per se, and will generally exhibit both ©(1/N)
and @ (1/m) biases.

2.2.1 | Hierarchical model estimators

In this work, we examine the performance of four methods for es-
timating population-level parameters on animal home ranges—a
conventional sample-mean analysis and three proposed alternatives
that account for individual uncertainties, including a conventional

(normal) meta-analysis, a conventional Bayesian analysis and a novel
;(2 inverse-Gaussian (;(Z—IG) meta-analysis. Importantly, the latter
three methods all account for the uncertainties in individual home-
range estimates by treating the home-range areas as unknown la-
tent variables within a hierarchical model (Figure 1). All published
analyses that we are aware of either neglect home-range uncertain-
ties and reduce to the sample mean in the absence of covariates, or
do not estimate a mean home-range area. So, while we refer to the
normal meta-analysis and Bayesian analysis as being ‘conventional’,
we are not aware of any pre-existing application or examination of
these methods for the task of mean home-range area estimation.
Finally, in all four cases, we model the population distribution as
either Gaussian or inverse-Gaussian (IG), as these distributions can
produce unbiased and asymptotically consistent population-mean

estimates even when the population distribution is mis-specified.

Sample-mean analysis

In the conventional sample-mean analysis, we summarize popula-
tions by the sample mean of home-range area point estimates, which
assumes both large N and large m. As the sample mean is unbiased,
unbiased individual home-range area estimates will be propagated
into unbiased population-mean estimates, and vice versa. On the
other hand, because the sample mean is unweighted, home-range
estimates with higher uncertainty are not down-weighted relative
to those with lower uncertainty. As a result, the variance of the
population estimate is not minimized when individual uncertain-
ties are heterogeneous. This leaves researchers with the potential
dilemma that imperfectly tracked individuals should be omitted
from population-level analyses, without clear guidelines on what the
threshold of omission should be. In contrast, an optimally weighted
mean will produce lower variance population parameter estimates
without guesswork, by down-weighting the (small-N) uncertain indi-
vidual estimates. Moreover, because individual home-range area un-
certainties are ignored in the sample mean, estimates of population
variation will be substantially biased when the number of observed
home-range crossings (N) is small.

Normal-normal meta-analysis

In the conventional meta-analysis, the individual home-range area
estimates are modelled as having a normal sampling distribution
and the population of home-range areas is also modelled as having a
normal distribution. We consider a conventional meta-analysis, be-
cause it proposes an easy solution to the challenge of incorporating
uncertainties, and is as simple as passing the home-range area point
estimates and sampling variance estimates to a single function in R
(e.g. metafor, Viechtbauer, 2009). The normal-normal meta-analytic
model is at least somewhat problematic here, as both individual
home-range areas and mean home-range areas are positive quanti-
ties, which the normal distribution does not respect. A link function
could be employed to fix the lower bound, but that approach has
two key disadvantages here. First, a link function would not directly
produce a mean-area estimate, which is our main focus in this work.

Second, a link function would give up the unbiased and ‘best linear
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unbiased estimator’ (BLUE) properties of the normal-normal meta-
analysis, whereby unbiased input home-range area estimates will
yield unbiased output mean-area estimates, if the input uncertain-

ties are correctly specified.

Bayesian analysis

In the traditional Bayesian analysis, we consider the marginal likeli-
hood of the entire dataset, given the population model parameters
(Figure 1), with a very weakly informative prior. The conventional
Bayesian modelling framework requires us to specify a generative
model, but it does not require us to explicitly solve said model, in
terms of optimization, integration or density function normalization.
Because our likelihood function includes the same conditional den-
sity used in the biased maximum likelihood estimation of individuals,
we know that these methods will produce large @ (1/N) biases, at
small N, that we want to avoid, for both their posterior predictions
of individual @ and their population-level parameters, ©. To see this,
consider the limiting case of a flat (non-informative) population dis-
tribution, p (80), and the opposing case of a singular population dis-
tribution. It is then straightforward to show that both cases produce
biased predictions and estimates when employing maximum a pos-
teriori (MAP) estimation, which is the statistically efficient Bayesian
analog to maximum likelihood estimation. Moreover, unless all in-
dividuals share the same mean location, increasing the number of
individuals, m, does not mitigate the small-N bias, because increasing

m only pools a larger number of biased likelihoods.

X*-1G meta-analysis

Finally, we consider a novel meta-analysis framework whereby the
individual home-range area estimates are modelled as having a ;(2
sampling distribution, and the population of home-range areas is
modelled as having an inverse-Gaussian distribution (Figure 2).
Given the derivations in Appendix A and included software im-
plementation, this analysis is as simple as feeding our home-range
estimates into a single R function. However, the distributional
assumptions here are far more reasonable than the conventional
meta-analysis. In the case of an IID isotropic Gaussian stochastic
process, home-range area estimates are sufficient statistics with
a ;(2 sampling distribution, and there is no approximation in per-
forming any ;{2-based meta-analysis (versus fitting the population
model to the entire dataset). We also find the »? distribution to
be a good approximation more generally, for autocorrelated data,
which gives the ;(z—based meta-analysis good statistical efficiency
when the number of observed home-range crossings (N) is small.

The choice of an inverse-Gaussian (IG) population distribution will

FIGURE 2 General description of our hierarchical modelling
framework, as demonstrated with error-calibrated tracking data
on 29 lowland tapir Tapirus terrestris from the Pantanal region of
Brazil. First, animal tracking data (a) are used to calculate individual
home-range areas (b), which are, in turn, fed to our;(z—IG meta-
analysis, here producing a forest plot with the mean home-range
area estimate depicted in black (c)
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be shown to facilitate good statistical efficiency when the number

of sampled individuals (m) is small.

2.2.2 | Statistical inefficiency of the sample mean

Here we provide some general results on the inefficiency of con-
ventional sample-mean analysis versus any ;(Z—based meta-analysis
with appropriate limits, in the case of low population variation.
Again, ;(2-based meta-analyses achieve increased efficiency over
the sample mean by down-weighting uncertain estimates relative to
more certain estimates. First, we note that both the sample-mean
estimate, i;, of the mean home-range area, X, and the )(Z—based
meta-analytic estimate, ilz, are unbiased if the input home-range
area estimates, &, are unbiased. The variances of these estimators

are then straightforwardly calculated to be

m
- 1 232 N 2x?
VAR [):] =Y 222 var [z ] = , (1)
5 ; m2 v; x ;‘11 v

where v;represents the degrees of freedom of the ith home-range area
estimate &;, which is given by v; = 2N,; for two-dimensional area esti-
mates with effective samples sizes of N;. Next we represent the two
sampling variances

1 232 2)

VAR[S,] = = 25 -

=1 2%y [i ]

HM[ m s
where HM[ - 1denotes the harmonic mean and AM[ - | denotes the arith-
metic mean. Pythagorean means are well studied and these two means
obey the inequality

HM[v] <AM[v], (3)

with equality only in the case where all v; are equal. Therefore, we have
the statistical efficiency inequality

VAR[E;| > VAR[E .., (@)

with equality only in the case where all v; are equal.

For example, if v={1,2,3, ..., 10}, then the y*based VAR [izz]
is only 62% of the sample-mean VAR [ié] indicating that the sample
mean is only 62% efficient for IID Gaussian data, where the)(z—based
estimate is 100% efficient. Moreover, in this case, if the worst two
observations are omitted, then the sample mean’s efficiency actu-
ally improves from 62% to 81%, whereas the ;(z-based efficiency
degrades from 100% to 95%. When using the conventional sam-
ple mean, it can be advantageous to discard the worst estimates,
whereas in an appropriately weighted analysis, it is advantageous
to use all of the data. Finally, we note that there is no importance,
in this example, on min(v) = 1. The exact same result follows from
v=1{10,20,30, ...,100}. It is the relative differences in individual

Relative efficiency
06 0.7 09 10

0.5
|

T T T T T 1
0 20 40 60 80 100

Niax/Nenin

FIGURE 3 Relative statistical efficiency of the conventional
sample mean in comparison to an appropriately weighted mean,
when estimating the mean home-range area of a population, and
where the effective sample sizes (N) of each home-range area
estimate are uniformly distributed between N,,;, and N, All else
being equal, the statistical efficiency of the sample mean is worse
when there is more variability in the individual effective sample
sizes. In general, the unweighted sample mean has a larger variance,
which leads to lower statistical power when testing for differences
between populations

effective sample sizes that lowers the relative efficiency of the sam-

ple mean (Figure 3).

2.2.3 | Theinverse-Gaussian population model
While a ;(Z-based meta-analysis can provide good statistical effi-
ciency for small v or N, the choice of population model and estima-
tors can have a large impact on the statistical efficiency for small m,
which we now turn our attention to. The mathematically convenient
population distribution for a ;(2 sampling distribution is the inverse-
gamma distribution, as it is a conjugate prior—meaning that the pos-
terior distribution can be calculated in closed form with relative ease.
However, the inverse-gamma population distribution is not ensured
to produce population mean estimates that fall within the range of
the data, and, moreover, produces infinite bias when the shape pa-
rameter’s sampling distribution has any support below 1. In contrast,
the inverse-Gaussian (IG) distribution has a number of important
properties that allow us to derive statistically efficient population-
level estimates. Notably, in the absence of a hierarchical model, the
inverse-Gaussian distribution’s maximum likelihood mean parameter
estimate is the sample mean, which is minimum variance unbiased
(MVU) (Folks & Chhikara, 1978), as well as unbiased and asymptoti-
cally consistent even if the |G population model is mis-specified.

In Appendix A we derive a suite of tools for population-level
home-range area analysis with a ;(2 sampling distribution and
inverse-Gaussian population distribution (;(Z—IG), including debiased
estimators for the population mean area, £ =E[cs], inverse pop-
ulation mean area, 1/X=1/E[c] and square coefficient of
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variation, CoV [¢]?> = VAR [s] /E [¢]% where & denotes a random in-
dividual home-range area. We note that having both debiased mean
and inverse-mean estimates is important because, as we will discuss, a
natural effect size for comparing the home-range areas of populations
land Jis the ratio R, = X, / £, which is the product of Z;and 1 /Z .

2.3 | Relevant effect sizes

In the conventional comparative analysis on two populations, [ and J,
all individual home-range estimates are calculated; each population
is summarized by the sample mean of their individual home-range
point estimates, i, and fj; and a t-test then determines the statistical
significance of any difference in the sample means, f, - f, (e.g. Kays
& Gittleman, 2001). Here we discourage the overreliance on such
p-values for several reasons (for further discussion, see Sullivan &
Feinn, 2012). Any real pair of different populations will undoubtedly
have different mean home-range areas, and the p-value is a com-
bined measure of how different two populations are and how much
data has been analysed. As we will show with real data, mean home-
range area uncertainties are often relatively large and statistically
insignificant p-values often do not rule out substantial differences.
In their place, we encourage the estimation of relevant effect sizes
with confidence intervals. Effect sizes provide more information
than p-values, are more intuitive and are important for reproduc-
ibility (Halsey et al., 2015).

While the difference between two population-mean home-
range areas, X, — X, is an effect size, it in itself is not informative
without the context of what constitutes a large difference. Instead,
we consider the ratio

Ry= 5 (5)

which has a simple biological interpretation that does not require a ref-
erence scale to compare to, and also admits unbiased estimators and a
relatively simple sampling distribution.

Without loss of generality, let us assume that %, is greater than
%,. If the (two-sided) @ confidence interval for ﬁ,j contains 1, then
the difference between X, and X, is not statistically significant at
p = a /2. However, the difference cannot necessarily be said to be
insubstantial unless the confidence interval also does not contain
substantial ratios, such as 1.5 or 2. On the other hand, the differ-
ence can only be said to be substantial if the confidence intervals do
not contain any insubstantial ratios, such as 1.05. What constitutes
a substantial effect size is still somewhat subjective, but in reporting
effect sizes we avoid conflating data quality with importance.

3 | EXAMPLES

Our examples include three estimator performance comparisons

and an empirical analysis demonstration. In our first comparison, we

demonstrate with empirical data that the conventional method of
taking the sample average of differentially biased individual home-
range area estimatesresultsin differentially biased population-mean
home-range area estimates. In our second comparison, we con-
trast the conventional sample mean, conventional normal-normal
meta-analysis, and our ;(z-IG meta-analysis on simulated data that
are ideal for the sample mean, to demonstrate other advantages
of the 4?-IG framework and serious issues with the conventional
meta-analysis (sans link function). In our third comparison, we pit a
conventional Bayesian analysis against our ;(Z-IG meta-analysis on
simulated data, to examine the small-N and small-m biases of a con-
ventional Bayesian hierarchical estimator. Finally, in our empirical
demonstration, we summarize and compare populations (by effect

size) in a similar environment, across species and sex.

3.1 | Estimator performance comparisons

3.1.1 | Meta-analytic tapir cross-validation

For our empirical performance comparisons, we chose to cross-validate
lowland tapir because of the abundance of their data and because they
have relatively stable home-range areas (Fleming et al., 2019), which
are necessary properties to empirically validate across a wide range of
effective sample sizes. The Instituto Chico Mendes de Conservacao
da Biodiversidade (ICMBIO) provided the required annual permits for
the capture and immobilization of tapirs and collection of biological
samples (SISBIO 14603). The Comissdo Técnico-Cientifica (COTEC)
do Instituto Florestal do Estado de Sdo Paulo (IF-SP) provided the re-
quired permit to carry out research in Morro do Diabo State Park (SMA
40624/1996). All protocols for the capture, anaesthesia, handling and
sampling of tapirs have been reviewed and approved by the Veterinary
Advisors of the Association of Zoos and Aquariums (AZA)—Tapir Taxon
Advisory Group (TAG) and the Veterinary Committee of the [IUCN SSC
Tapir Specialist Group (TSG).

Using our largest dataset of 29 Pantanal lowland tapir
(Medici, 2022) with median(ﬁ) =386, we performed an empirical
cross-validation analysis to demonstrate the differential bias of con-
ventional population-parameter estimation—whereby biased KDE
estimates were fed into the sample mean and compared to more ef-
ficient pHREML-AKDE_ home-range estimates (Fleming et al., 2019;
Fleming & Calabrese, 2017) fed into our »%-IG estimator. To examine
the small-m bias, we used the entire tracks, where median(ﬁ) =386, and
took random samples of tapir, from 2 to 20 individuals. To examine
the small-N bias, we used the entire sample of Pantanal tapir (m = 29)
and incremented the sampling period from 2 to 10 days, with ran-
dom segments of time sampled from the datasets. Following Fleming
et al. (2019), one day of lowland tapir sampling approximately cor-
responds to an effective sample size of N ~ 2, and, therefore, 2 to
10 days corresponds approximately to effective sample sizes ranging
from 4 to 20.

Given the results of Noonan, Tucker, et al. (2019), we expected
the conventional population-mean (X) estimates (conditioned on
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REML-KDE_) to increase with increasing N and slowly approach the
more accurate pHREML-AKDE_ estimates for very large N. Following
Fleming et al. (2019) and Noonan, Tucker, et al. (2019), we expected
the pHREML-AKDE-based results to be only slightly underesti-
mated at N ~ 4 (2 days sampling), where they could be improved
by bootstrapping (Fleming et al., 2019), which would be too slow
for this number of simulations. We expected the reciprocal-mean
(1/%) estimates to exhibit the opposite biases, relative to those of
the respective X estimates. We expected the conventional popula-
tion variance estimates to exhibit positive biases that decrease with
increasing N, as a result of conflation with unaccounted uncertainty.

3.1.2 | Meta-analytic simulations

We compared the population parameter estimates of three condi-
tional estimation methods—(a) averaging the point estimates as if
they were exact (sample-mean), (b) averaging the estimates with a
conventional meta-analytic hierarchical model, which assumes a nor-
mal sampling distribution and normal population distribution (normal-
normal), and (c) averaging the estimates with our ;(2—IG meta-analytic
framework. In our first set of simulations, we incremented the number
of observed home-range crossings (N) from 1 to 20, with the number
of individuals (m) set to 100. In our second set of simulations, we in-
cremented the number of individuals from 2 to 20, with the number
of observed home-range crossings set to 100. To isolate the biases of
the conditional estimators, in all cases we used IID simulated track-
ing data and Gaussian home-range area estimates, which have ideal
statistical efficiency. Furthermore, in each individual meta-analysis, N
was held constant so that the conventional sample mean would have
its highest efficiency, and other biases could be explored. The popula-
tion coefficient of variation for the distribution of home ranges was
set to one, which is considered to be an intermediate value and was
consistent with most of our empirical examples. We performed this
analysis both with an inverse-Gaussian population distribution, where
our;(z-IG model is exact, and again with a log-normal population dis-

tribution, where our;(Z—IG model is mis-specified.

3.1.3 | Bayesian simulations

We compared the population parameter estimates of a general-
purpose Bayesian estimator to those of our ;(Z—IG meta-analytic es-
timator, when using unbiased REML Gaussian area estimates. We
simulated IG distributed home-range areas, and then conditional on
those home-range areas, we simulated 1ID movement processes.
The IID tracking data were sampled daily, and would approximate
a small canid or deer. The population coefficient of variation for the
distribution of home ranges was set to one, which is considered to be
an intermediate value and was consistent with most of our empiri-
cal examples. We provided our Bayesian estimator with very weak
priors that were centred on the truth (Appendix B), and for output
point estimates we considered the mode, median, and mean of the

marginal posterior, p (£). For our Bayesian estimates, we only consid-
ered the integrated hierarchical model, with individual movements
conditional on movement characteristics sampled from respective
population distributions, and performed a single analysis on all indi-
viduals simultaneously, per simulation. In one set of simulations, we
incremented the number of observed home-range crossings (N) from
2 to 20, with the number of individuals (m) set to 100. In a second
set of simulations, we incremented the number of individuals from
2 to 20, with the number of range crossings set to 100. In this way,
we could examine the small sample size biases for both m and N.
For our meta-analytic simulations, we computed 10,000 replicates,
while for the much slower Bayesian simulations we computed 1,500
replicates with each having 1,500 draws from the posterior after
1,500 discarded ‘burn-in’ points, after checking for convergence in

a number of samples.

3.2 | Analysis demonstration

3.2.1 | Barro Colorado Island frugivore case study
For our analysis demonstration, we considered frugivore home-
range estimates from Barro Colorado Island (Alavi et al., 2022).
Fieldwork was carried out under IACUC protocol numbers 2014-
1001-2017, 2017-0912-2020 and 2017-0605-2020 from STRI, and
UC Davis IACUC protocol number 18239.

We compared the home-range areas of four species of
frugivores—all located on Barro Colorado Island, Panama (Alavi
et al,, 2022)—including 12 kinkajou Potos flavus, with median(N) =324,
16 white-nosed coati Nasua narica, with median(ﬁ) =371, 8 white-
faced capuchin monkey Cebus capucinus, with median(ﬂ) =193,
and 8 spider monkey Ateles geoffroyi, with median(ﬁ) =134, We ex-
plored two issues in terms of effect sizes: how home-range areas dif-
fered among species and how home-range areas differed between
sexes within each species. In all cases, we conditioned our;(z-IG meta-
analysis on 95% error-informed pHREML AKDE . home-range area esti-
mates (Calabrese et al., 2016; Fleming et al., 2019; Fleming et al., 2020;
Fleming & Calabrese, 2017). Sex differences have been observed for
spider monkeys (Campbell, 2008), with male home-range areas being
larger than those of females, which might also be the case for kinkajous
(Kays & Gittleman, 2001). Sex differences have not been observed for
coatis (Gompper, 1997), and are not expected for capuchins, because

male and female capuchins move together in a social group.

4 | RESULTS
4.1 | Estimator performance comparisons
41.1 | Meta-analytic tapir cross-validation

We summarize our lowland tapir cross validation in Figure 4. We
emphasize that these are real data with unknown true parameters,
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FIGURE 4 Lowland tapir cross-validation results evaluating two methods for estimating population parameters from tracking data:
Ignoring individual home-range uncertainties and temporal autocorrelation with sample means of KDE areas (®), versus our -G estimators
conditional on AKDE home-range areas (l). On each row of panels, a different population parameter is estimated—the mean home-range
area (a), its reciprocal (b) and the coefficient of variation (c). In the first column, the sampling period is manipulated with all individuals
utilized, with the effective sample size (N) being approximately twice the number of days sampled. The error bars denote the 95%
confidence intervals on the mean point estimates, with 1,000 samples computed. In the second column, the number of individuals (m) is
manipulated with the full tracks utilized. For reference, the horizontal lines depict the respective point estimates when using all of the data.
Overall, the conventional sample-mean KDE estimates were very sensitive to the sampling period and slightly sensitive to the number of

individuals sampled

and so we can only assess consistency under resampling. When esti-
mating mean home-range areas (%), the conventional KDE estimates
increased substantially with increasing sampling period, but did not
asymptote enough to match the more accurate AKDE estimates,
even when using all of the data. This is more than likely due to many
tapir not having the requisite effective sample size necessary for
REML-KDE_.. to exhibit asymptotically efficiency (Noonan, Tucker,
et al., 2019). We note that, among home-range estimators that as-
sume independently sampled location data, REML-KDE_. is relatively
efficient, and other conventional home-range estimators can pro-
duce relative biases that are an order of magnitude worse than that
of KDE_, let alone AKDE. (Noonan, Tucker, et al., 2019). In contrast,
when only 2-3 days (N = 4-6) were sampled, the pHREML-AKDE_
mean home-range estimates had only a slight, negative bias, which
could be remedied by bootstrapping (Fleming et al., 2019). However,

the bootstrap itself requires repeated simulations, and is too com-
putationally costly to be included in this analysis. As expected, the
reciprocal mean area (1 /%) estimates, which are necessary for eas-
ily comparing populations, exhibited biases opposite to those of .
Finally, both estimators reported extra variation at shorter sampling
periods, though this sensitivity was much larger with the conven-

tional estimate.

4.1.2 | Meta-analytic simulations

We summarize our meta-analytic simulation comparisons in Figure 5.
Again, these simulations were constructed to be ideal for the con-
ventional sample mean, as in each meta-analysis the number of ob-

served home-range crossings (N) was held fixed, which makes the
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FIGURE 5 Simulation results evaluating three methods for estimating population parameters from unbiased area estimates: Ignoring
individual home-range uncertainties with sample means (¢), using a conventional normal-normal meta-analytic model to propagate
uncertainties (@), and our;(z—IG conditional estimator (Hl). On each row of panels, a different population parameter is estimated—the mean
home-range area (a), its reciprocal (b) and the coefficient of variation (c). In the first column, the number of observed home-range crossings
(N) is manipulated, while the number of individuals (m) is set to 100. In the second column, the number of individuals is manipulated, while
the number of observed home-range crossings is set to 100. In general, our y?-1G conditional estimators were unbiased, while the other two
methods exhibited moderate to severe bias, depending on sample sizes and parameter of interest

sample mean’s uniform weighting more efficient. Generally speak-
ing, our ;(2—IG conditional estimation framework provided unbiased
estimates for all parameters of interest; as expected, the conven-
tional sample mean provided unbiased population mean estimates,
but moderately biased estimates of other population parameters;
and the conventional normal-normal meta-analysis performed much
worse than anticipated, with severe bias at small values of N. In our
second simulation analysis, with a mis-specified log-normal popula-
tion distribution, the results were almost indistinguishable from the
inverse-Gaussian case.

We were initially surprised by the poor performance of the con-
ventional normal-normal meta-analytic model, as this method pro-
vides approximately ‘best linear unbiased estimates’ (BLUEs) that
are exactly BLUE if the sampling variances are correctly specified.
However, in retrospect, the variances of a ;(2 process are never ex-

actly known, but are estimated to be proportional to the square

of the point estimate. This association causes smaller estimates to
be over-weighted and larger estimates to be under-weighted in a
normal-normal analysis, which causes the extreme biases depicted
in Figure 5.

Results for m= 2,3 in column 2 of Figure 5 are not displayed,
as they are very much contingent on the chosen model selection
criterion and its outcome. If the population variance parameter is
supported by model selection, then all ;(Z—IG parameter estimates
remain relatively unbiased. However, if the population variance pa-
rameter is not supported, then the coefficient of variation is taken
to be zero and the inverse mean is moderately overestimated. Some
degree of model selection is necessary, as the point estimate of the
population variance parameter can be in the neighbourhood of zero,
which would not be selected by any standard model selection crite-
rion, and would cause divergences in both the estimated sampling
variances and in the debiased point estimates if retained.
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4.1.3 | Bayesian simulations

We summarize our Bayesian simulation comparison in Figure 6.
Generally speaking, our ;{2-IG conditional estimation framework
provided unbiased mean area estimates when conditioned on un-
biased individual area estimates, as in the previous simulations. In
contrast, our Bayesian estimates were far more biased than we an-
ticipated. In terms of observed home-range crossings, we found the
small-N bias of our Bayesian averages of the anticipated magnitude
but in the opposite direction of individual-level maximum likelihood
biases. On the other hand, in terms of the number of individuals sam-
pled, we found the small-m bias of our Bayesian averages to have
an extremely large, positive bias, such that to achieve a reasonable
amount of bias, our Bayesian estimator would require more indi-
viduals tracked than present in most studies. We tested whether or
not this bias was due to a lack of identifiability with the spread of
the home-range centres, but this was not the case. Instead, we only
found that the small-m bias was very similar in scale to the spread of
our prior on X, even though it was centred on the truth and specified

independently of other parameters.

4.2 | Analysis demonstration

4.2.1 | Barro Colorado Island frugivore case study

We summarize the results of our Barro Colorado Island (BCI) frugi-
vores in Table 1. We found spider monkeys to have the largest home
ranges and kinkajou to have the smallest home ranges of the four
species, on average, with their mean 95% home-range areas esti-
mated to be 5.3 (95% Cl: 2.6-9.7) km? and 0.3 (0.2-0.4) km?, respec-

tively. We could not statistically discriminate the coati and capuchin

monkey, and estimated the coati/capuchin ratio of mean home-
range areas to be 1.2 (0.8-1.7), which does not rule out a substantial
difference. Only in the kinkajou did we find a statistically significant
difference between the sexes, where we estimated the male/female
ratio of mean home-range areas to be 2.3 (1.5-3.5), which excludes
1, and is both significant and substantial. This test remained statis-
tically significant even if applying the Sidak correction for multiple
comparisons. Substantial differences between the sexes could not

be ruled out in the other BCl species, due to large uncertainties.

5 | DISCUSSION

We have introduced a computationally and statistically efficient hier-
archical modelling framework for summarizing and comparing popu-
lation home-range areas. While we strongly recommend designing
studies with larger sample sizes when possible, this framework facili-
tates population-level inference with as few as 2-3 observed home-
range crossings per individual and with a similarly small number of
representative individuals. Representative samples of individuals
can be obtained, for instance, by independently sampling a fixed
proportion of individuals from areas that are sampled uniformly in
space. Importantly, the methods that we have introduced avoid the
differential biases inherent in conventional analyses and allow re-
searchers to gain statistical efficiency in using all of their data. In
contrast, conventional home-range estimators exhibit downward
biases with high sampling rates (Noonan et al., 2020), and even care-
fully performed data thinning can fail to match these biases across
populations (Fleming & Calabrese, 2017). Indeed, data with such high
sampling rates require autocorrelation-informed home-range esti-
mators like AKDE. For example, if comparing tapir and jaguar species

in the same biome, daily tapir data are more comparable to weekly
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TABLE 1 Results of our Barro Colorado Island frugivore analysis,
including the mean home-range area and coefficient of variation
(CoV). For reference, a CoV of 1 is considered to be intermediate
among distributions on the positive real numbers

Mean (km?) CoV
Spider monkey 5.3(2.6-9.7) 1.0(0.4-1.6)
Male 6.6 (4.7-9.0) 0.3(0.1-0.6)*
Female 4.5(1.6-10.3) 1.2(0.3-2.1)
Coati 1.4(1.0-1.8) 0.6 (0.4-0.8)
Male 1.3(0.8-1.9) 0.6 (0.3-1.0)
Female 1.4(1.0-2.0) 0.6 (0.3-0.8)
Capuchin monkey 1.1 (0.9-1.5) 0.3(0.2-0.5)
Male 1.3(0.8-2.1) 0.5(0.1-0.8)
Female 1.0(0.8-1.3) 0.3(0.1-0.5)
Kinkajou 0.3(0.2-0.4) 0.6 (0.3-0.9)
Male 0.4 (0.3-0.6) 0.4 (0.1-0.6)
Female 0.2 (0.1-0.3) 0.4 (0.2-0.6)

“The coefficient of variation for the male spider monkeys was not
supported by AIC_, due to a small sample size (m = 3) and relatively
large home-range uncertainties, and is, therefore, expected to be
underestimated.

or monthly jaguar data for the purpose of home-range estimation
(Fleming et al., 2019; Morato et al., 2016), and matching the sampling
schedules of these two species can produce wildly different biases
from conventional home-range estimators. Here we have pointed
out and demonstrated that these individual-level biases propagate
forward into population-level analyses (Winner et al., 2018).

We have demonstrated that conventional population-level esti-
mators present a second data thinning dilemma to researchers, even
when using accurate individual home-range estimates. Conventional
population-level estimators perform better when omitting less
well-tracked individuals, because certain and uncertain estimates
are weighted equally in the sample mean, and because unmodeled
individual uncertainties produce positive bias in the population
variance estimate. Indeed, choosing to omit less well-tracked indi-
viduals is an extreme form of subjective down-weighting that is not
optimized in practice, and would still be outperformed by an appro-
priately weighted method even if it was (Section 2.2.2). An appro-
priately weighted analysis—where uncertain individual home-range
estimates are down-weighted relative to more certain estimates—is
necessary to produce the best quality population estimates. Our)(z—
|G framework provides said weighting via a hierarchical model.

We recommend that researchers comparing populations do so
by way of relevant effect sizes, provided with confidence intervals,
rather than p-values, which are more variable and less reproducible.
As we have demonstrated, insignificant differences do not imply in-
substantial differences (Section 4.2.1). A ratio of mean home-range
areas Cl of (0.9-2.1) contains 1, which implies an insignificant differ-
ence, but it also contains 2, which implies that we are not confident
that the difference is insubstantial. On the other hand, a ratio Cl of
(1.01-1.02) does not contain 1, which implies a significant difference,

but it does not contain any substantial difference and we are there-
fore confident that the difference is insubstantial. Effect-size Cls
provide a more thorough and meaningful comparison than p-values,
as with insufficient data, substantial differences can be insignificant,
and with abundant data, insubstantial differences can be significant.

5.1 | Comparison to other hierarchical methods

While we also considered a conventional (normal) meta-analysis and
Bayesian analysis, only our novel ;(2-IG meta-analysis proved to be
generally suitable for population-level inference on home-range
areas. Conventional meta-analyses also down-weight uncertain
estimates, and we have shown here that their direct application
leads to extreme biases because of the strong association between
home-range area uncertainty estimates and home-range area
point estimates (Shuster, 2010). We considered the conventional
normal-normal meta-analysis without a link function in the hope
of obtaining approximate BLUE quality estimates and more general
asymptotic consistency. A link function could improve this method’s
performance, but at the cost of the unbiased property and more
general asymptotic consistency, and with the additional requirement
of having to back-transform the output population-parameter esti-
mates. We recommend that researchers using conventional meta-
analytic methods for regression analysis, such as in Averill-Murray
et al. (2020), also use an appropriate link function and pay careful at-
tention to their residuals. Otherwise, for the purposes demonstrated
here, there is no reason to use any of the conventional analyses over
the ;(Z-IG estimator. Finally, our Bayesian analysis produced much
larger small-m biases that we anticipated, even though we supplied
a non-informative prior similar to that suggested by Gelman (2006)
for variance parameters, and further assisted our Bayesian analysis

by fixing each prior’s mode to the truth.

5.2 | Two-stage analyses and the assumption of
range residency

Our proposed method involves a two-stage analysis, with the first
stage consisting of individual analyses that are then fed into a
second-stage meta-analysis of the population. When making good
distributional assumptions and propagating uncertainties appropri-
ately, two-stage analyses such as this offer a promising approach for
implementing hierarchical models on ‘big data’ (Muff et al., 2020).
In addition to delivering large improvements in computation time,
individual-based workflows are only minimally increased, as the
first stage of analysis is based on existing methods and software.
However, because we focus on the second stage meta-analysis, we
have not considered existing challenges in the first stage of home-
range estimation that relate to individual variation. Populations can
express considerable variance in their individual movement be-
haviours (van de Kerk et al., 2021), and AKDE is a general enough
method to formally accommodate this variation.



FLEMING ET AL.

Methods in Ecology and Evolution 1039

5.3 | Future analyses

While our ;(Z—IG hierarchical model was designed for home-range
analysis, it would also provide a natural model for population-level
inference on diffusion rates, as they also have an approximately ;(2
conditional sampling distribution. Mean speeds and travelled dis-
tances, however, would be better modelled as y-1G (Noonan, Fleming,
et al., 2019). Moreover, it would be useful to model both fixed and
random effects, especially if the same individuals are being grouped
in different populations (e.g. pre- and post-treatment). Fixed effects
might be incorporated via standard 1G-regression models (Folks &
Davis, 1981), but random effects would require more effort to retain
efficiency. For the time being, regression analyses should be per-
formed with conventional meta-analysis regression methods, and

with a carefully selected link function.

6 | CONCLUSIONS

We have shown that accurate population-level home-range estima-
tion requires (a) accurate individual home-range estimates to be fed
into (b) an appropriate statistical framework. At present, the most
accurate nonparametric home-range estimator is AKDE (Noonan,
Tucker, et al., 2019), which has an associated R package (ctmm,
Calabrese et al., 2016; Fleming & Calabrese, 2015) and graphical user
interface (ctmmweb, Calabrese et al., 2021; Dong et al., 2017). Upon
calculating individual AKDEs, the ;(Z—IG meta-analysis that we have
introduced here can be evaluated with a single function call, via the
meta command (Fleming & Calabrese, 2015; Calabrese et al., 2016),
which is complete with documentation, help (meta), and example
code, example (meta). These combined methods—pHREML auto-
correlation estimation (Fleming et al., 2019), AKDE_ density function
estimation (Fleming & Calabrese, 2017), and ;(Z—IG meta-analysis—
allow researchers to reap the benefits of using all of their data, avoid
differential biases and achieve greater statistical efficiency than has
been possible. Future work will extend these methods to diffusion
rates, speeds and complete movement models, which are a neces-
sary ingredient in the estimation of statistically efficient population

density estimates, as well as extended regression analyses.
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