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ABSTRACT

Digging informative knowledge and analyzing contents from the
internet is a challenging task as web data may contain new concepts
that are lack of sufficient labeled data as well as could be multimodal.
Few-shot learning (FSL) has attracted significant research attention
for dealing with scarcely labeled concepts. However, existing FSL al-
gorithms have assumed a uniform task setting such that all samples
in a few-shot task share a common feature space. Yet in the real web
applications, it is usually the case that a task may involve multiple
input feature spaces due to the heterogeneity of source data, that
is, the few labeled samples in a task may be further divided and
belong to different feature spaces, namely hybrid few-shot learning
(hFSL). The hFSL setting results in a hybrid number of shots per
class in each space and aggravates the data scarcity challenge as the
number of training samples per class in each space is reduced. To al-
leviate these challenges, we propose the Task-adaptive Topological
Transduction Network, namely TopoNet, which trains a hetero-
geneous graph-based transductive meta-learner that can combine
information from both labeled and unlabeled data to enrich the
knowledge about the task-specific data distribution and multi-space
relationships. Specifically, we model the underlying data relation-
ships of the few-shot task in a node-heterogeneous multi-relation
graph, and then the meta-learner adapts to each task’s multi-space
relationships as well as its inter- and intra-class data relationships,
through an edge-enhanced heterogeneous graph neural network.
Our experiments compared with existing approaches demonstrate
the effectiveness of our method.
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1 INTRODUCTION

With the rapid growth of the World Wide Web, data over the inter-
net is enormous and will continue to increase. Manually analyzing
and fetching relevant information from such massive data is not
only time consuming but also impossible, which makes it impera-
tive to develop intelligent Web mining and Web content analysis
using machine learning and deep learning techniques [2, 14, 16].
However, applying machine learning to analyze data and mine in-
formative knowledge from the internet is a challenging task. One
of challenges is that some concepts on the internet may not have
enough labeled data. For example, due to the succeeding evolution
of the Web, new concepts appear frequently day by day (e.g., new
restaurants, new techniques or tools, and newly discovered animals)
but may not have sufficient annotations. Since the success of deep
learning-based web mining highly relies on large amounts of la-
beled data and exhaustive training, the lack of sufficient annotations
makes it difficult to learn from scarcely labeled web concepts.

Few-shot learning (FSL) has recently received much attention
due to its appealing ability of learning from few labeled data [8,
18, 21, 22, 22, 28, 29, 32, 43], which has potentials to improve web
content analysis, especially for scarcely labeled contents without
much annotations. The main purpose of FSL is to quickly learn new
concepts from a handful of examples by leveraging context and prior
knowledge, which simulates humans capabilities of understanding
a concept. As defined in [8], a few-shot task refers to a training-
and-testing process, aiming to learn a class distribution over the
data within this task, under the supervision of a small set of labeled
training data (support set), and then test on a set of unlabeled testing
data (query set). Figure 1(a) illustrates an example of an N-way
K-shot classification task, where there are N classes needed to learn
from the K labeled samples per class. Approaches to FSL typically
follow the meta-learning paradigm-given experiences on solving
few-shot tasks over a set of base classes, meta-learning aims to
extract domain-general information that can act as prior knowledge
(also known as meta-knowledge) to improve learning efficiency
and performance in novel concepts [12].

However, most existing FSL approaches assume a well-defined
uniform few-shot task setting, where all the samples within a task
possess identical feature space. For example, as shown in Figure
1(a), in a standard N-way K-shot single-modal classification task,
all samples’ modalities are the same and have the same feature
space. Such assumption of existing FSL methods will limit their
applicability in the web domain, where data is more complex, mul-
timodal, and non-identically distributed. Web contents delivered to
users are in different forms like videos, images, texts, audios, and
so on, and usually concepts are represented by a combination of
more than one modality. For instance, ‘cat’ can be an image, a piece
of descriptions, or a video with the caption.
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Figure 1: Comparison between uniform and hybrid FSL. Col-
ored shapes within green rectangles denote training sam-
ples. In each task, different colors indicate the different
classes (concepts). Hollow shapes within red rectangles de-
note unlabeled testing points. Note that in case-2, each of
the grey regions denotes a data sample, where a sample may
contain more than one modality.

Since web data can be heterogeneous and hybrid, the difficulty
of applying FSL on web is how to deal with the heterogeneous
information. To bridge the gap, this paper defines and studies a
novel hybrid few-shot learning (hFSL) problem neglected by previ-
ous literature, which is the opposite of uniform FSL. In hFSL, we
consider that a concept can be represented by different types of
data or different combinations of modalities. That is, the samples in
a few-shot task can be further divided and distributed in separate
feature spaces. Figure 1(b) shows two examples of hybrid 5-way
1-shot classification tasks, where samples may be diverged from
each other in terms of their feature spaces. The hybrid FSL could
be an inevitable problem in the web domain. Web data may be
frequently absent or inaccessible, thus uniform multimodal FSL
usually turns into hFSL as some modalities may be missing under
the web scenarios. The multimodal few-shot tasks with irregularly
missing modalities can be typical hybrid few-shot tasks.

A key property of hFSL is the heterogeneity of data due to the
existence of multiple input feature spaces, which leads to two chal-
lenges. First, compared with uniform FSL, the data scarcity prob-
lem would be escalated in hFSL. Specifically, since the few labeled
samples per class may be spread in different feature spaces, in each
space, there would be less labeled data per class (i.e., less shots)
or even no training data available in some classes (i.e., zero shot).
That is, the number of training samples in each space may be re-
duced. For example, consider the task shown in Figure 1(b) case-1,
there is no modality-one training data in class-2, thus the class-2
for modality-one is a zero-shot case. Second, for a hybrid K-shot
classification task, the uneven split of K examples per class would
result in a hybrid number of labeled samples per class (i.e., hybrid
shots) in each space. Typically, a model is designed for training
and testing data that has the same input space. However, the de-
creased and hybrid number of training examples in each space may
bring difficulties to the model training. Although one may consider
training an alignment function to unify the training data from het-
erogeneous spaces, the accuracy of such a task-specific alignment
function still relies on the limited number of support examples in
each input space.
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To alleviate the data-scarcity and hybrid-shot problems of hFSL,
we propose to formulate the hybrid few-shot task as a transductive
learning task, which maximally leverages available information in
the task to enrich our knowledge about the target concepts, while
learning the potential relationships between heterogeneous data.
Transductive inference for few-shot learning typically utilizes the
query samples to improve the task-specific knowledge distillation
[20, 25, 45]. Inspired by this, we propose a transductive meta-learner
which can incorporate some unlabeled data containing informa-
tion that is not possessed in the labeled samples. Intuitively, our
key idea is to jointly learn all the samples in the task with het-
erogeneous spaces so that the model can obtain extra information
(from unlabeled data) about the relationships between spaces and
the data distribution to make better predictions. In particular, we
aim to learn the task-specific relationships 1) between heteroge-
neous input spaces and 2) between samples within the same class
(intra-class samples) or belonging to different classes (inter-class
samples), where the underlying data relationships within a task are
complicated and hard to be learned due to data heterogeneity.

To achieve these goals, we propose Task-adaptive Topological
Transduction Network (TopoNet), a graph neural network-based
transductive few-shot learning framework for hFSL. Basically, we
introduce a topological transductive meta-learner, which can learn
the task’s class distribution by simultaneously exploring relation-
ships between concepts as well as relationships between the het-
erogeneous feature spaces of data. We explicitly model a graph
structure to connect all the samples in a task to perform the trans-
duction; edges expressively connect inter- and intra-class samples
as well as bridge heterogeneous samples, which helps to leverage
multi-space relationships and data semantic similarities. To capture
both the multi-space relationships and the inter- and intra-class
data relationships, we first construct a node-heterogeneous multi-
relation graph from the original multi-space features, and then we
propose the edge-enhanced heterogeneous graph neural network to
alternatively update edge and node features layer by layer, where
heterogeneous input spaces are gradually unified while leveraging
the edge features to incorporate inter- and intra-class relationships.
Our contributions are summarized as follows.

e We study a novel hybrid few-shot learning problem, where
a task involves multiple feature spaces and contains a hybrid
number of shots per class in each space. As far as we know,
we are the first to consider the data heterogeneity issue under
few labeled situations and aim at learning new concepts from
scarcely labeled and heterogeneous web contents.

e We propose TopoNet to overcome the data-scarcity and
hybrid-shot challenges in hFSL by modeling a learnable and
generalizable topological structure.

o The experimental results on both uniform and hybrid few-
shot tasks demonstrate that our framework is superior to
existing approaches.

2 RELATED WORK

Meta-Learning for Few-shot Classification. Recent meta-learning
approaches can be divided into two categories: inductive and trans-
ductive few-shot classification. Inductive few-shot learning has been
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more widely studied than transductive few-shot learning. Induc-
tive methods mainly includes metric-based and optimization-based
algorithms. Metric-based approaches learn an embedding metric
space shared by all tasks, on which data samples of different classes
can distinguish with each other based on distance measurements
[22, 28, 29, 32]. Optimization-based approaches train a meta-learner
as an optimizer to fine-tune the meta-prior, thus adapt the class dis-
tribution to each specific task [8, 18, 21, 43]. Further, several works
[22, 33, 41] improved the metric- or optimization-based methods
in terms of task adaptability. While these approaches presume the
samples in a task share a uniform input space, we assume a hybrid
task setting involving a mixture of different input spaces. Some
recent works studied multimodal few-shot learning [4, 23, 39]. Al-
though we also use multimodal few-shot datasets, we allow for the
frequent occurrence and different conditions of missing modalities
in real-world multimodal few labeled data scenarios.

Transductive Inference. Transductive learning was first intro-
duced in [30]. A family of transductive methods were built upon
graph learning frameworks, such as graph propagation [35] and
graph neural networks (GNN) [3, 36].

Transductive inference has been recently used to solve few-shot
tasks, which has shown substantial improvements over inductive
counterparts as it utilizes unlabeled query data to obtain more rep-
resentative class distribution. Based on how the model incorporates
unlabeled data, existing transductive approaches can be separated
into implicit and explicit methods. Implicit transductive methods
directly use the entire unlabeled feature information to enhance the
classification boundaries [1, 6, 21, 25]. While implicit methods do
not leverage data relationships during transduction, explicit trans-
ductive methods measures the underlying relationships between
data to enrich class features [11, 13, 15, 20, 26, 45] Our method
follows the explicit transductive paradigm in the sense that we also
explore data relationships during within-task transductive adap-
tion. However, existing transductive methods rely on a common
metric space to measure data relationships. Yet this assumption
does not hold in the hybrid few-shot setting with heterogeneous
input spaces. This paper mainly deals with the difficulties from the
division of samples (data heterogeneity), where the relationships
between data could be more complicated and unclear.

Meta-learning for Graphs. Our framework utilizes Graph Neu-
ral Networks (GNNs) [36, 37] for solving hybrid few-shot tasks. Yet
we focus on jointly learning the graph structure and node repre-
sentations, as well as how to generalize and adapt the learnable
structure over tasks. Some works [10, 46] proposed techniques for
optimizing graph structures together with GNN parameters using
meta-gradients, reinforcement learning, or discrete edge probabili-
ties, but studied different problems (e.g., completing corrupted edges
and adversarial attacks) on a single large-scale graph. Recent works
incorporated graph structured data into meta-learning [5, 40, 42, 44].
We also formulate our problem as graph-structured semi-supervised
node classification tasks plugged into meta-learning. However,
these methods assume a single large-scale graph whose structure
is given. In contrast, the graph structure of our task is not given,
and moreover, we generalize the graph structure knowledge across
unlimited graphs and adapt the graph learning procedure over
different tasks.
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3 PROBLEM FORMULATION

A few-shot learning task 7 = {S¢, Q7 } consists of a small task-
level training (support) dataset Sg-and a testing (query) dataset Qq-.
As for classification problems, a task 7~ aims to learn a task-specific
class distribution over the data within this task, supervised by the
few labeled examples in Sg-.

Existing FSL approaches [8, 9] mainly assume identically dis-
tributed data, called uniform few-shot learning (uFSL). As defined
in these algorithms, a standard uniform N-way K-shot classification
task 7~ = {Sq, Qg} contains the support set S5 = {(x1,y1), (x2,y2),
wees (X NxK> YNxK )} that includes K labeled samples from each of the
N classes, and the query set Q7 = {(x7, y7), (x5, y3), ..., (X7 y7)}
that includes T different samples from the same N classes: The uni-
formity of a task refers to the consistency of input feature spaces
of each sample Vx; in 7, that is, the input samples in a task share
a common feature space. In particular, as for single-modal few-shot
learning (SFSL) where data is collected from one type of sensor, each
sample is a single modality x; € R?, where d denotes the dimen-
sion of the shared input feature space. In multimodal applications,
uniform multimodal few-shot learning (uMFSL) assumes the data
of all modalities are available for each sample, that is, each sample
consists of a set of M modalities x; = (x; m € RYm lm=1,2,....M).
Here x; ,, denotes the mth-modality in the tuple x;, and dy;, is the
dimension of modality-m’s feature space. Since the input modality
set is complete, all samples Vx; in 7 share a composite space-a
combination of M feature subspaces.

3.1 Hybrid Few-shot Learning

We define a non-uniform and more complex FSL setting, namely
hybrid few-shot learning (hFSL). hFSL specifies a real-world case
where the support/query samples of a concept in the task are sep-
arated in different feature spaces while remaining semantic-level
similarities.

DEFINITION 1 (Hybrid Few-shot Classification). Different from uni-
form few-shot classification, each input sample x; in a hybrid task
7 is associated with an additional indicator B; to specify its fea-
ture space. The support and query sets of a hybrid N-way K-shot
classification task are defined as

Sz ={(x1,y1, B1), ..., (XN xK, YNxK» BNxK)} (1)
Qg = {(x], 97> BY)s s (X3, Y7, B}
Assume there is a finite number (U) of input spaces over the task
domain, and suppose each u € {1,2--- U} indicates a specific space.
We are given a heuristic function ptr(-) to recognize the space
u; = ptr(B;) of each sample x; by B;.

In this paper, we particularly focus on the hFSL in multimodal
domain. In contrast to uMFSL, we consider that collecting a com-
plete set of all modalities for each sample, especially in low-data
scenarios where data is more expensive, could be difficult [24].
Hence even the samples in the same task may have irregular miss-
ing modalities. Specifically, suppose the original data is collected
from M modalities, an input sample of a uMFSL task consists of a
set of obtainable modalities denoted by B;,

xi = (xi,m € R |m € B; C B), )

where B = {1, ..., M} signifies a complete modality set, and the
subset B; C B indicates the x;’s feature space by specifying the
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attainability of each modality. Therefore, each input feature space-

u refers to a specific combination of M subspaces, with a total of
M M

U=(7)+(3)+ <d

Each task have spaces Uy < U spaces. Note that if B; = 8 for all

V8; in 7, the hybrid task becomes uniform.

+ (ﬁ) = 2M — 1 spaces over the task domain.

3.2 Meta-Learning

We consider a task distribution P(7") over few-shot learning tasks.
Our meta-objective is to train a meta-learner pg to adapt to P(7),
i.e., the meta-learner should be able to solve any few-shot task
T ~ P(7) supervised by the few labeled samples in 7°. In most
of existing inductive FSL frameworks, the meta-learner adapts
to each task 7 relying on the knowledge from the support set
po(y*|x*; S). In practice, we are given a set of meta-training few-
shot tasks .‘D;’;Zﬁ = {71, 72, - - IN,,, } With a set of base classes
Ctrain, where each meta-training task 7~ ~ P(7") learns from a
subset of N-way classes sampled from C;,q4in with a few labeled
samples per class. The meta-learner is trained from D;’;Zﬁﬁ to be
able to fast adapt to new tasks whose classes are held out (unseen)

during meta-training.

4 METHODOLOGY

In a hybrid few-shot classification task, as defined in Eq.(1), data
are heterogeneous in terms of the inconsistent feature spaces of
data. That is, the limited labeled samples per class (i.e., K shots) can
be further partitioned by the different feature spaces. Therefore,
each space u only contains partial labeled samples for each class,
which leads to two subproblems: 1) the data-scarcity problem is
aggravated such that the number of training samples per class in
each space is reduced to less shots or zero shot; 2) the hybrid-shot
problem, where different classes have different number of training
samples in each space u, as the K examples per class have been
unevenly split.

To overcome these challenges, we propose to employ the trans-
ductive inference for task adaption. We aim to train a transductive
meta-learner that jointly considers the knowledge about heteroge-
neous data in both S7- and Qg

po(y*lx*, S, Q7 \ Yo, ), ®3)

where Yo, denotes the ground-truth labels of query samples in 77,
which means the labels of query set are not required for solving
each task, which is the truth in reality. An assumption underlying
Eq. (3) is that we know partial testing (query) samples for solving
a task. This assumption yet holds in meta-learning framework as
DI"eld contains the query data of each task to enable the training
of meta-learner.

Intuitively, during the transductive task adaption, we incorpo-
rate unlabeled samples and jointly learn all the samples in the task
with heterogeneous spaces, so that the meta-learner can obtain
extra information about the task-specific data distribution and the
relationships between spaces to make better predictions. In this sec-
tion, we will introduce the proposed the Task-adaptive Topological
Transduction Network (TopoNet), whose overview is in Figure 2.
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4.1 Feature Embedding

A feature embedding network f,(-; 8¢) is used to extract features of
an input x;, where 6, indicates its parameters. Suppose there are
M modalities, f, contains M paralleled modality-specific subnet-
works fl, f2, ..., fM. Each existing (not missing) modality x; , of
a sample x; is embedded independently through the subnetwork

em(';egn)s
Zim = fIM(Xim; 07 € RE, (4)

where F is the dimension of each modality’s embedding. Hence,
each sample x; is embedded as a tuple containing |8;| modality-
specific embeddings, z; = (z;, m|m € B;). With the transductive
inference that jointly learns support and query data in task 7,
we will obtain an embedded feature set for all support and query
samples within the task, i.e., Z = {z;|Vx; € S+ Qq}. Note that
for uniform multimodal FSL, f, will generate a feature set with fixed
number of embeddings per sample so that Z = Z € ROVK+T)xMF

4.2 Topological Transductive Learning

To overcome the hybrid-shot and data-scarcity dilemma of hFSL,
our key idea is to build connections and unify all different types of
samples in a task during model training. Therefore, we consider the
transductive inference (as in Eq. (3)) that can jointly learn support
and query samples from multiple input spaces. In this transductive
framework, we focus on solving two subproblems: 1) how to explore
the relationships between multiple input spaces so that samples
can be aligned in a uniform semantic space; 2) how to discover the
inter- and intra-class data relationships and then utilize them to
improve the representativeness of the learned class distribution.
To facilitate the exploration of data and multi-space relationships
within the transductive learning framework, we propose to explic-
itly model a learnable graph structure to connect all the samples in
a task. We consider the input set of a task is believed to have some
geometric structure, and the edges (topology) of a graph structure
can naturally connect different input spaces, as well as leverage the
potential inter- and intra-class data relations of the task. Therefore,
given a task 7, our goal is to learn its underlying topological graph
G = (V,E;T), which represents the relations among the support

and query samples within the task. V = {v; }f\i Il( *T denotes the ver-
NK+T

i,j=1
is the edge set which connects each pair of samples from différent
classes and different input spaces. Each node v; is associated with
a node feature h;, and each edge e;; is also associated with an edge
feature/weight e; ; which is relevant to node relationships.
Solving an hFSL task can be viewed as learning the node and
edge features of graph G = (V, &E; 7). We formulate such graph
learning task as a semi-supervised node classification task, supervised
by the |Sy| labeled nodes. In this section, we will first construct
a multi-relation graph with its initialized node and edge features,
and then, edge and node features are refined step-by-step via an
edge-enhanced heterogeneous graph neural network.

tex set combining support and query samples, and & = {e;;}

4.2.1 Graph Construction with Multi-space Nodes. From the
multi-space feature set Z produced by the feature embedding net-
work, we can construct a graph G = (V, E; T) with initial node
features H(®) and initial edge features E©.
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Figure 2: The proposed TopoNet framework.

The initial feature of each node v; is the concatenation of avail-

able modalities of the sample, i.e., hgo) = |lmes, zi,m, where ||

denotes concatenation. The initial node feature set H®) = {hEO) €
RIB:IF }{i If +T g heterogeneous as different nodes (samples) have
different combinations of modalities. Note that if two nodes hEO)
and h\") with B; = {1,2} and B; = {2,3}, although both are 2F-
dimensional (i.e., |B;| = |B;| = 2), they still belong to different
feature spaces.

Edge features leverage data relationships. However, it is unfeasi-
ble to directly measure the similarity between a pair of heteroge-
neous nodes; also, some pairs of nodes may not contain common
modalities, such as node 8; = {1} and node B; = {2, 3}, but belong
to the same class and should be connected. Considering these dif-
ficulties, we initialize an multi-relation graph where each edge
measures multiple views of node relationships: 1) each modality-m
can provide a view of node relations by comparing the mth modal-
ity (if available); 2) the given labels of support samples can provide
an additional view of class similarities. We obtain an edge-feature
tensor E©) € RP*DX(M+1) where D = NK +T. Each (i, j, m)-entry
of E©) is calculated as

£O) B U(fgm(A;Z., 6g") ifme B; N B
Eijomem = 0.5 ifm¢ B;N B,
0 1 ify; = yj and v;,vj € S7 (5)
5,;,M+1 =<0 if y; *Yj and Vi, Vj €Sy
0.5 ifv; € Qg orv; € Qr,
where AT, = |zim — zj,ml; fgm( 9”’) is the metric function for

modahty m, a stacked Multilayer Perceptron network with param-
eter 9;”, and o is sigmoid function. The edge feature (relationship)
between a pair of nodes is an (M + 1)-dimensional vector, con-
structed by measuring each view’s similarity scores. Note that for
some pairs of samples without common views but belong to similar
classes, they should have high similarity scores in some missing
views but the missing views’ similarity scores cannot be calculated;
we use 0.5 to account for these uncertain views.

4.2.2 Transductive Learning with Edge-enhanced Hetero-
geneous Graph Neural Network. An hFSL classification task
has been converted into a node-heterogeneous and multi-relation
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graph G = (V,&; 7). In the proposed topological transduction
framework, solving an hFSL classification task can be formulated
as the semi-supervised node classification task on G, supervised by
the training nodes Sq-. Yet the difficulty here is the complexity of
learning a graph with several types of nodes and multi-view node
connections. Therefore, we employ the power of Graph Neural
Networks (GNNs) to facilitate transductive learning on G.

Given the initial heterogeneous node features H ©) and multi-
relation edge features E© the edge and node features are updated
iteratively layer by layer through a stacked edge-enhanced hetero-
geneous graph neural network (EHGNN):

) rl -1 1-1). gl
HD =fl (H( ), gU-1), gnode) ©
ED = fl (H(l) E(l 1. 91 )’
where 9;[0 4 and Gé dae 2re the node and edge updating parameters

at layer [, respectively. Basically, nodes from multiple spaces are
aligned into a unified semantic space along the procedure; edge
features are directly encoded in the node updating model so that
multi-view similarity scores can be incorporated to improve node
representativeness.

A. Heterogeneous Space Alignment via Node Update. At the
first layer, we are give the initial heterogeneous node features H ©),
Each node feature hg.l) is updated by aggregating its one-hop neigh-
borhoods from each feature space

2, 2 F

ueUy jeN(i,u)

hgl) ||M+l A(O) W(l) h(o)

ijr . ™)
where || is concatenation operation, U7 denotes a set of input
spaces in 7, and N(i,u) denotes a set of neighboring nodes for
v; on the input-space u. W) = {W(r{L eRFFulr < M+ 1ue
Uq} are parameters of node encoders for nodes in each feature
space and each view of relationship, where F,, is the dimension of
feature space u, and F; is the dimension of node encoders’ outputs.
Edge features are incorporated into the neighborhood aggregation,
where each view of the multi-relation edge features generates a
new node feature which is then concatenated with other views’
new features. To avoid increasing the scale of output features by
multiplication, we normalized edge features over the neighborhood
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(0)

7(0) E; jr . .

E;;. = —"—5 . Then, at layers [ > 1, we simplify
T Skent) B,

the aggregation process for training efficiency as node features

are early homogenized in an F;(M + 1)-dimensional space. Given

features obtained in the last layer HU=D e RPXFi-1 and E-Y €
RDxD

of v;, that is,

) _ =Dy, (1) (I=1)
h = o Z E}; w )hj , (8)
JEN()
-1 E¢Y
where EE._) = ——, and w e RFXFi-1 denotes the
J Zkent) Eix

layer-I node encoder shared by each sample.

B. Edge Update. Edge feature update is done by measuring the
relationships of current node features. The goal of edge update is
to modify the previous representations for inter- and intra- class
relationships, making the topological structure more relevant to
the specific task. To simplify and reduce the parameter size, the
dimensions of edge features after the first layer are reduced to 1.
Therefore, at the first edge updating layer, the initial (M + 1)-view
edge features are compressed into a single view

W 1 M+1 ©

y_ 1 0

By = ZH %ij,rEijrs ©)
1 _ gl (1) p(1), g1 :

where @, = fedge,r(hi ,hj ,GEdge’r) is a scalar that measures

the relationship between h(l.l) and h;l) , which can be calculated
using any metric or attention function (e.g., additive attention, dot-
product, multiplicative attention) [31]. Then, at layers [ > 1, to
simplify the calculation, edge features are updated directly using
the attention scores over current node features,
EE’? = feldge(h(il)’ h;l); G(Iedge)' (10)
To summarize, the information aggregation through edges takes
into account the current edge features, thus automatically lever-
aging the current learned inter- and intra-class relationships and
achieving. The information exchange among support and query
samples jointly models different types spaces, where each space
could incorporate extra information from other spaces. This process
implicitly achieves multi-space alignment so that could alleviate
the hybrid-shot and data-scarcity challenges.

4.2.3 Generalization and Task Adaptiveness of Topology. Meta

learning explores the transferable knowledge across tasks. In To-
poNet, we aim to generalize the underlying topological structure
over different hFSL tasks, including the multi-space alignment pa-
rameters and the parameters used in modeling intra- and inter-class
data relationships. Despite the globally shared structural knowl-
edge, there is also specific knowledge about underlying topological
structure for each task. For example, the importance of each modal-
ity may vary between different tasks. Therefore, following [22], we
build a task modulation network g(-; ¢) to condition the topological
transductive learning module, which utilizes external task-level
information to slightly adjust the prior knowledge for each task,
may be better suited for finding correct underlying task-specific
class distribution.
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Algorithm 1 Training Procedure of TopoNet

1: Requires: Distribution of hybrid few-shot tasks P(7")

2: Requires: Learning rates «, f; GNN layer number L

3: Randomly initialize task network 6 and meta-network ¢.
4: while not done do

5. Sample batches of tasks 77 ~ P(7")

6. foralltdo
7: Obtain data {S7;, Qg; } for each task 7;.
8 Initialize task network 6; = 6y, and replace ¢o using o, ;.
9 Calculate embedded multi-space feature set Z;.
10: Construct graph G; and initialize Hgo) and E(to).
11: Update node and edge features via EHGNN; obtain H;L).
12: Obtain predictions Mgﬂ for support set, compute adapted

internal parameters with a fixed number of steps w.r.t. the
NK examples from S7; as in Eq.(12).

13: Evaluate £;(f(x; 07, $),y"; Qg,) w.rt. T samples of Q.

14:  end for

15:  Update initialization of task network 6y as Eq.(13).

16:  Update meta-network ¢ as Eq.(14).

17: end while

18: return: 6y and ¢

4.3 Optimization

Task Objective. In our framework, a hybrid N-way K-shot clas-
sification task is converted into a semi-supervised N-way K-shot
node classification task with heterogeneous nodes. After obtaining
node features HL) € RP*FL at the last GNN layer L, we use a
nonlinear classifier p(-; 0) followed by a softmax layer to make
class predictions for each node. The predictions are compared with
ground-truth labels to calculate cross-entropy losses. The inner-
loop optimization is supervised by the support labels, by minimizing
the cross-entropy loss defined as follows:

Lr;=- Y yi-logsoftmax(p(h”:6,)). (1)

Yi eys,,t
where Y, denotes the NK labels in the support set Sg; . Note that

the final-layer node representation h(iL) of v; has aggregated the
data information from both S7; \ ¥s,. and Q7; \ Yo, through
GNNs. With the supervision of the support labels, the topologi-
cal structure learned by the topological learning network can be
relevant to true class distribution of the specific task.

Meta-objective. We train TopoNet following the optimization-
based meta-learning paradigm, such as the model-agnostic meta-
learning [8], which solves a bilevel optimization problem to find a
prior 0 as the meta-learner’s parameters. The parameters of our
three-module networkis 6 = {0, ¥/, 0 }, where = {0y, 0110de- Ocage }
is the topological transduction module. The meta-objective is to
obtain a set of meta-initialization parameters 6y, an appropriate
generalization of prior knowledge for all tasks, plus the parameters
of the external task-modulation meta-network ¢ [22].

Bilevel optimization. Formally, let 0] signify 6 for task 7; dur-
ing the inner-loop optimization, and let the initial §; = 6. In the
inner-loop adaption, during each gradient update, we compute

0f <07 — aV, Lg;(f(x;:07.4).y:S7,). (12)
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where f(-) is the forward function of TopoNet, and L, (-; Sg;) is
the loss on the support set of 7; as in Eq.(11).

Separately for each task, after a fixed number of inner-loop up-
dates, we obtain the adapted parameter (), which is dependent
on meta-initialization 6y. Then, the outer-loop optimization updates
0o and ¢ over a batch of task instances:

60 —0— BV, ), Lr(Fx":6/(60).4).y":Q7)  (13)
Ti~p(T)

$—¢-PVy Y, Lr(fx0/60.9).y:Q7).  (14)
Te~p(T)
where L7, (-; Qg; ) is the loss on the query set of task 7;. The overall
training procedure of TopoNet is in Algorithm 1.

5 EXPERIMENTS

We evaluate TopoNet on N-way K-shot classification tasks with
both uniform and hybrid few-shot settings.

5.1 Dataset

We first evaluated our model under the normal uniform FSL setting,
using five standard few-shot classification datasets: 1) three datasets
were used for single-modal (image) few-shot classification, includ-
ing minilmageNet [27] (having 100 classes split as |Crrqin| = 62,
[Crest| = 30, and |C,, 41| = 8), omniglot [17] (having 1623 classes
split as |Crrain| = 1150, |Crest| = 423, and |Cyq;| = 50), and
CUB-200 [34] (containing 200 bird species split as |Ctrqin| = 100,
[Ctest] = 50, |Cypqrl = 50); 2) two datasets were used to simulate the
uniform multimodal few-shot scenarios, including the CUB-200
(image+text) [34] originated from CUB-200, where each image is
annotated with a 312-dimensional text (attribute) modality, and the
3D-object recognition dataset miniModel40 (view1+view2) con-
structed from the ModelNet40 [38], which contains 3D CAD objects
covering 40 common categories (split as |Ctrain| = 25, |Crest| = 9,
and |C, 41| = 6) and each object is marked by two views of feature
representations as in [7].

In addition, to simulate the web application scenarios where
concepts are scarcely labeled and data is heterogeneous, we con-
structed two hybrid few-shot classification datasets, as hFSL was
never studied before and we cannot find existing datasets available.
The two datasets are constructed from each of the uniform multi-
modal datasets: h-CUB-200 and h-miniModel40, which contain
hybrid combinations of modalities. Specifically, in order to simulate
the irregular and frequent occurrence of missing modality in the
real-world web applications, each uniform task in the source dataset
was turned into the hybrid task by randomly deleting modalities
from randomly picked samples. The deletion process is as follows.
For each task, we first union the support and query set, and shuffle
the instances. Then, we separate the combined set, which contains
(NK + T) instances, into 2M — 1 disjoint subsets (groups): given the
hybrid ratio 0 < p < 1, the first group has (1 — p)(NK + T) samples,
and the other groups has p(NK + T)/(2M — 2) samples. Each group
except the first one is a proper subset of {1, ..., M} indicating the
modality availability, and for all the samples in the same group, we
remove the absent modalities from the original multimodal data.
Finally, in the first group, we picked p percentage of samples, and
from each picked sample, we randomly deleted one of modalities.
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minilmageNet CUB200 omniglot

Method

5-way  5-way 5-way 20-way

1-shot  5-shot 1-shot 1-shot
MAML 49.61 65.72 74.25 95.83
ProtoNet 46.14 65.77 73.99 96.00
RelationNet 51.38 67.07 76.58 97.60
GNN 52.91 68.23 73.76 97.40
TPN 59.46 75.64 75.20 -
TransductiveTuning  62.35  74.53 73.46 -
LaplacianShot 72.11 8231 80.96 -
TopoNet-U 72.45  83.22 81.13 99.62

Table 1: Average accuracy (%) on single-modal few-shot clas-
sification datasets.

5.2 Baseline Methods

We compared TopoNet with three families of existing FSL ap-
proaches: 1) supervised learning approaches with inductive in-
ference: ProtoNet [28], RelationNet [29], and MAML [11]; 2)
semi-supervised learning approaches with transductive inference:
GNN [11], TPN [19], TransductiveTuning [6] and Laplacian-
Shot [45]; 3) while the previous two families are single-modal
baselines, we also consider recent works on multimodal domain:
AM3 [39] and MultiProtoNet [23].

When testing the single-modal baselines (e.g., MAML, ProtoNet,
RelationNet, LaplacianShot, etc.) under uniform multimodal low-
data conditions, we concatenated all the modalities after the feature
embedding network, converting multimodal data to single-modal
data by linearly combining the multimodal feature embeddings. In
addition, when testing the single-modal baseline methods on the
hybrid multimodal dataset, we imputed the missing modalities by
zeros on the input before concatenating all the original/imputed
modalities. Baseline results on single-modal classification datasets
are mostly retrieved from their papers.

5.3 Results

We implemented two versions of TopoNet: TopoNet-U for uniform
tasks and TopoNet-H for hybrid tasks. The configurations of our
model and baselines, hyperparameters, and experimental setups
can be found in Appendix A.2. We fix the number of inner-loop
gradient updates to 10 steps in all experiments, and the batch size
for updating the meta-learner was fixed to 4 tasks each step.

5.3.1 Uniform Few-shot Classification. We evaluated our model
(version TopoNet-U) in the standard single-modal scenarios in Table
1. We can observe that TopoNet-U and existing transductive meth-
ods generally outperform inductive methods as unlabeled data was
incorporated into task adaptation. The performance of TopoNet-U
is comparative to existing transductive methods, so that TopoNet
could work for both uniform and hybrid few-shot learning. In Table
2, we evaluated our model under the uniform multimodal scenarios,
where all modalities are available all the time. The M modalities are
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CUB-200 miniModel40

Method 5-way 5-way 5-way 10-way
1-shot 5-shot 1-shot 1-shot
MAML 75.78 80.31 82.45 71.46
ProtoNet 67.32 73.74 74.91 62.27
RelationNet 78.22  83.26  85.84  73.62
GNN 72.98 77.75 78.35 68.54
TPN 7723  81.67  84.28 72.39
TransductiveTuning 7531  84.28  82.75 72.82
LaplacianShot 81.36  87.76  89.91 78.48
AM3-ProtoNet++ 76.60 82.9 83.24 71.71
AM3-TADAM 77.16 82.7 84.10 72.94
MultiProtoNet 7721 8329 8434  73.89

TopoNet-U (Ours) 81.75 88.12 91.23  79.17

Table 2: Average accuracy (%) on uniform multimodal few-
shot classification datasets.

h-CUB-200  h-miniModel40
Method 5-way 5-way 5-way 10-way
1-shot 5-shot 1-shot  1-shot
MAML 69.45 74.26 77.83 67.54
ProtoNet 62.44 68.5 69.30 57.10
RelationNet 73.90 78.72 80.45 67.4
GNN 6741 7234 7345 62.58
TPN 71.17 76.38 79.83 66.05
TransductiveTuning  69.73  68.62  76.15 68.10
LaplacianShot 78.06  82.37  84.63 74.43
AM3-ProtoNet++ 72.46 76.55 78.68 67.18
AM3-TADAM 73.15  77.28  79.54 68.72
MultiProtoNet 71.34 77.44 79.71 69.44

TopoNet-H (Ours)  80.23 83.11 86.46 77.15

Table 3: Average accuracy (%) on hybrid few-shot classifica-
tion datasets with hybrid ratio p = 0.5.

concatenated in both baselines and our model. Our model TopoNet-
U achieved slightly better performance rather that baselines as we
constructed a multi-relation graph where edge features were more
complex than baselines, and then learned the data relationships
through the graph neural network by incorporating multi-view
edge features.

5.3.2  Hybrid Few-shot Classification. Table 3 reports the results
on the created hybrid few-shot datasets with p = 0.5. These results
compare our method TopoNet-H, which directly learned with the
original heterogeneous data, against the baselines (designed for
uniform tasks), which used zeros to impute missing modalities so
that hybrid tasks were converted into uniform tasks. From uniform
settings (Table 2) to hybrid counterparts, although our models were
relevantly influenced by the missing modalities, we can observe
that the performance of baselines drops more dramatically than
our model. The reason might be that the zero imputation brought
some extra noise to the baselines. In contrast, our model, which
directly learn from present data from multiple feature spaces, can
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avoid such noise. This concludes that the imputation strategy is
not recommended in few-shot situations, and that TopoNet is an
useful tool for hybrid FSL rather than existing uniform algorithms.
Also, the effectiveness of our methods demonstrated our heteroge-
neous neighborhood aggregation can comprehensively utilize other
samples’ information to alleviate the impact of missing information.

5.3.3 Impact of Hybrid Levels. In Table 4, from column 2 to 4,
we increase the hybrid ratio of tasks over the dataset. The larger
p implies more missing modalities and a larger number of input
feature spaces. The last column shows the result with dynamic
hybrid ratios, where for each task, the value of p was not given
but randomly chosen, thus different tasks have different hybrid
levels. As the hybrid ratio increases, the less change on TopoNet-H’s
performance rather than baselines demonstrates the effectiveness
of our method to handle multiple spaces.

Method p=03 p=05 p=0.7 dynamicp
TPN 73.29 71.33 66.23 67.42
AM3-TADAM 75.54 73.15 67.91 66.73
MultiProtoNet 73.67 71.34 64.78 69.72
LaplacianShot ~ 80.31 78.06 72.01 75.13
TopoNet-H'T‘ 71.20 69.18 63.89 69.93
TopoNet-HT 80.16 68.50 69.82 77.34

TopoNet-H 81.67 80.23 75.13 74.96

Table 4: Ablation study on hybrid 5-way 1-shot h-CUB-200.

5.3.4 Ablation Study. In Table 4, we evaluate the influence of each
component in our model. The TopoNet-H' model replaces the graph
construction module with a non-parameter metric kernel (i.e., dot-
product similarity) and removes missing-view connections. The
TopoNe’[—Hi deletes the GNN-based node and edge updating mecha-
nism, and replaces it with the non-parameterised Label Propagation
[19] strategy. TopoNet-H outperform TopoNet-H' and TopoNet-H*.
Also, as the hybrid ratio increased, the performance of TopoNet-
H' and TopoNet-H* dropped more dramatically than TopoNet-H.
These proved the ability of heterogeneous GNN in multi-space align-
ment, and the ability of the topology learning module to generalize
reliable inter- and intra-class data relationships across tasks.

6 CONCLUSION

Web data may contain new concepts that are lack of sufficient
supervision as well as could be multimodal, heterogeneous, and
hybrid, thus may bring challenges to machine learning or deep
learning-based web content analysis and web mining that relies on
large-scale data. Therefore, in this paper, we studied a novel hybrid
few-shot learning (hFSL) problem to employ FSL in such web scenar-
ios. We proposed a task-adaptive topological tansduction network
(TopoNet) to solve hFSL, which trained a heterogeneous graph-
based transductive meta-learner to handle the special few-shot
tasks with multiple input spaces. Our experimental results demon-
strated that TopoNet successfully generalized the meta-knowledge
about data and multi-space relationships over tasks, and could fast
adapt to real tasks with different levels of hybrid settings.
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