
Topological Transduction for Hybrid Few-shot Learning
Jiayi Chen

University of Virginia

Charlottesville, Virginia, USA

jc4td@virginia.edu

Aidong Zhang

University of Virginia

Charlottesville, Virginia, USA

aidong@virginia.edu

ABSTRACT
Digging informative knowledge and analyzing contents from the

internet is a challenging task as web data may contain new concepts

that are lack of sufficient labeled data as well as could bemultimodal.

Few-shot learning (FSL) has attracted significant research attention

for dealing with scarcely labeled concepts. However, existing FSL al-

gorithms have assumed a uniform task setting such that all samples

in a few-shot task share a common feature space. Yet in the real web

applications, it is usually the case that a task may involve multiple

input feature spaces due to the heterogeneity of source data, that

is, the few labeled samples in a task may be further divided and

belong to different feature spaces, namely hybrid few-shot learning

(hFSL). The hFSL setting results in a hybrid number of shots per

class in each space and aggravates the data scarcity challenge as the

number of training samples per class in each space is reduced. To al-

leviate these challenges, we propose the Task-adaptive Topological

Transduction Network, namely TopoNet, which trains a hetero-

geneous graph-based transductive meta-learner that can combine

information from both labeled and unlabeled data to enrich the

knowledge about the task-specific data distribution and multi-space

relationships. Specifically, we model the underlying data relation-

ships of the few-shot task in a node-heterogeneous multi-relation

graph, and then the meta-learner adapts to each task’s multi-space

relationships as well as its inter- and intra-class data relationships,

through an edge-enhanced heterogeneous graph neural network.

Our experiments compared with existing approaches demonstrate

the effectiveness of our method.
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1 INTRODUCTION
With the rapid growth of the World Wide Web, data over the inter-

net is enormous and will continue to increase. Manually analyzing

and fetching relevant information from such massive data is not

only time consuming but also impossible, which makes it impera-

tive to develop intelligent Web mining and Web content analysis

using machine learning and deep learning techniques [2, 14, 16].

However, applying machine learning to analyze data and mine in-

formative knowledge from the internet is a challenging task. One

of challenges is that some concepts on the internet may not have

enough labeled data. For example, due to the succeeding evolution

of the Web, new concepts appear frequently day by day (e.g., new

restaurants, new techniques or tools, and newly discovered animals)

but may not have sufficient annotations. Since the success of deep

learning-based web mining highly relies on large amounts of la-

beled data and exhaustive training, the lack of sufficient annotations

makes it difficult to learn from scarcely labeled web concepts.

Few-shot learning (FSL) has recently received much attention

due to its appealing ability of learning from few labeled data [8,

18, 21, 22, 22, 28, 29, 32, 43], which has potentials to improve web

content analysis, especially for scarcely labeled contents without

much annotations. The main purpose of FSL is to quickly learn new

concepts from a handful of examples by leveraging context and prior

knowledge, which simulates humans capabilities of understanding

a concept. As defined in [8], a few-shot task refers to a training-

and-testing process, aiming to learn a class distribution over the

data within this task, under the supervision of a small set of labeled
training data (support set), and then test on a set of unlabeled testing

data (query set). Figure 1(a) illustrates an example of an N -way

K-shot classification task, where there are N classes needed to learn

from the K labeled samples per class. Approaches to FSL typically

follow the meta-learning paradigm–given experiences on solving

few-shot tasks over a set of base classes, meta-learning aims to

extract domain-general information that can act as prior knowledge
(also known as meta-knowledge) to improve learning efficiency

and performance in novel concepts [12].

However, most existing FSL approaches assume a well-defined

uniform few-shot task setting, where all the samples within a task

possess identical feature space. For example, as shown in Figure

1(a), in a standard N -way K-shot single-modal classification task,

all samples’ modalities are the same and have the same feature

space. Such assumption of existing FSL methods will limit their

applicability in the web domain, where data is more complex, mul-

timodal, and non-identically distributed. Web contents delivered to

users are in different forms like videos, images, texts, audios, and

so on, and usually concepts are represented by a combination of

more than one modality. For instance, ‘cat’ can be an image, a piece

of descriptions, or a video with the caption.
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Figure 1: Comparison between uniform and hybrid FSL. Col-
ored shapes within green rectangles denote training sam-
ples. In each task, different colors indicate the different
classes (concepts). Hollow shapes within red rectangles de-
note unlabeled testing points. Note that in case-2, each of
the grey regions denotes a data sample, where a sample may
contain more than one modality.

Since web data can be heterogeneous and hybrid, the difficulty

of applying FSL on web is how to deal with the heterogeneous

information. To bridge the gap, this paper defines and studies a

novel hybrid few-shot learning (hFSL) problem neglected by previ-

ous literature, which is the opposite of uniform FSL. In hFSL, we

consider that a concept can be represented by different types of

data or different combinations of modalities. That is, the samples in

a few-shot task can be further divided and distributed in separate

feature spaces. Figure 1(b) shows two examples of hybrid 5-way

1-shot classification tasks, where samples may be diverged from

each other in terms of their feature spaces. The hybrid FSL could

be an inevitable problem in the web domain. Web data may be

frequently absent or inaccessible, thus uniform multimodal FSL

usually turns into hFSL as some modalities may be missing under

the web scenarios. The multimodal few-shot tasks with irregularly

missing modalities can be typical hybrid few-shot tasks.

A key property of hFSL is the heterogeneity of data due to the

existence of multiple input feature spaces, which leads to two chal-

lenges. First, compared with uniform FSL, the data scarcity prob-

lem would be escalated in hFSL. Specifically, since the few labeled

samples per class may be spread in different feature spaces, in each
space, there would be less labeled data per class (i.e., less shots)
or even no training data available in some classes (i.e., zero shot).
That is, the number of training samples in each space may be re-

duced. For example, consider the task shown in Figure 1(b) case-1,

there is no modality-one training data in class-2, thus the class-2

for modality-one is a zero-shot case. Second, for a hybrid K-shot
classification task, the uneven split of K examples per class would

result in a hybrid number of labeled samples per class (i.e., hybrid
shots) in each space. Typically, a model is designed for training

and testing data that has the same input space. However, the de-

creased and hybrid number of training examples in each space may

bring difficulties to the model training. Although one may consider

training an alignment function to unify the training data from het-

erogeneous spaces, the accuracy of such a task-specific alignment

function still relies on the limited number of support examples in

each input space.

To alleviate the data-scarcity and hybrid-shot problems of hFSL,

we propose to formulate the hybrid few-shot task as a transductive

learning task, which maximally leverages available information in

the task to enrich our knowledge about the target concepts, while

learning the potential relationships between heterogeneous data.

Transductive inference for few-shot learning typically utilizes the

query samples to improve the task-specific knowledge distillation

[20, 25, 45]. Inspired by this, we propose a transductive meta-learner

which can incorporate some unlabeled data containing informa-

tion that is not possessed in the labeled samples. Intuitively, our

key idea is to jointly learn all the samples in the task with het-

erogeneous spaces so that the model can obtain extra information

(from unlabeled data) about the relationships between spaces and

the data distribution to make better predictions. In particular, we

aim to learn the task-specific relationships 1) between heteroge-

neous input spaces and 2) between samples within the same class

(intra-class samples) or belonging to different classes (inter-class

samples), where the underlying data relationships within a task are

complicated and hard to be learned due to data heterogeneity.

To achieve these goals, we propose Task-adaptive Topological
Transduction Network (TopoNet), a graph neural network-based

transductive few-shot learning framework for hFSL. Basically, we

introduce a topological transductive meta-learner, which can learn

the task’s class distribution by simultaneously exploring relation-

ships between concepts as well as relationships between the het-

erogeneous feature spaces of data. We explicitly model a graph

structure to connect all the samples in a task to perform the trans-

duction; edges expressively connect inter- and intra-class samples

as well as bridge heterogeneous samples, which helps to leverage

multi-space relationships and data semantic similarities. To capture

both the multi-space relationships and the inter- and intra-class

data relationships, we first construct a node-heterogeneous multi-
relation graph from the original multi-space features, and then we

propose the edge-enhanced heterogeneous graph neural network to

alternatively update edge and node features layer by layer, where

heterogeneous input spaces are gradually unified while leveraging

the edge features to incorporate inter- and intra-class relationships.

Our contributions are summarized as follows.

• We study a novel hybrid few-shot learning problem, where

a task involves multiple feature spaces and contains a hybrid

number of shots per class in each space. As far as we know,

we are the first to consider the data heterogeneity issue under

few labeled situations and aim at learning new concepts from

scarcely labeled and heterogeneous web contents.

• We propose TopoNet to overcome the data-scarcity and

hybrid-shot challenges in hFSL by modeling a learnable and

generalizable topological structure.

• The experimental results on both uniform and hybrid few-

shot tasks demonstrate that our framework is superior to

existing approaches.

2 RELATEDWORK
Meta-Learning for Few-shotClassification.Recentmeta-learning

approaches can be divided into two categories: inductive and trans-
ductive few-shot classification. Inductive few-shot learning has been
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more widely studied than transductive few-shot learning. Induc-

tive methods mainly includes metric-based and optimization-based

algorithms. Metric-based approaches learn an embedding metric

space shared by all tasks, on which data samples of different classes

can distinguish with each other based on distance measurements

[22, 28, 29, 32]. Optimization-based approaches train a meta-learner

as an optimizer to fine-tune the meta-prior, thus adapt the class dis-

tribution to each specific task [8, 18, 21, 43]. Further, several works

[22, 33, 41] improved the metric- or optimization-based methods

in terms of task adaptability. While these approaches presume the

samples in a task share a uniform input space, we assume a hybrid

task setting involving a mixture of different input spaces. Some

recent works studied multimodal few-shot learning [4, 23, 39]. Al-
though we also use multimodal few-shot datasets, we allow for the

frequent occurrence and different conditions of missing modalities

in real-world multimodal few labeled data scenarios.

Transductive Inference. Transductive learning was first intro-
duced in [30]. A family of transductive methods were built upon

graph learning frameworks, such as graph propagation [35] and

graph neural networks (GNN) [3, 36].

Transductive inference has been recently used to solve few-shot

tasks, which has shown substantial improvements over inductive

counterparts as it utilizes unlabeled query data to obtain more rep-

resentative class distribution. Based on how the model incorporates

unlabeled data, existing transductive approaches can be separated

into implicit and explicit methods. Implicit transductive methods

directly use the entire unlabeled feature information to enhance the

classification boundaries [1, 6, 21, 25]. While implicit methods do

not leverage data relationships during transduction, explicit trans-
ductive methods measures the underlying relationships between

data to enrich class features [11, 13, 15, 20, 26, 45] Our method

follows the explicit transductive paradigm in the sense that we also

explore data relationships during within-task transductive adap-

tion. However, existing transductive methods rely on a common

metric space to measure data relationships. Yet this assumption

does not hold in the hybrid few-shot setting with heterogeneous

input spaces. This paper mainly deals with the difficulties from the

division of samples (data heterogeneity), where the relationships

between data could be more complicated and unclear.

Meta-learning forGraphs.Our framework utilizes GraphNeu-

ral Networks (GNNs) [36, 37] for solving hybrid few-shot tasks. Yet

we focus on jointly learning the graph structure and node repre-

sentations, as well as how to generalize and adapt the learnable

structure over tasks. Some works [10, 46] proposed techniques for

optimizing graph structures together with GNN parameters using

meta-gradients, reinforcement learning, or discrete edge probabili-

ties, but studied different problems (e.g., completing corrupted edges

and adversarial attacks) on a single large-scale graph. Recent works

incorporated graph structured data intometa-learning [5, 40, 42, 44].

We also formulate our problem as graph-structured semi-supervised

node classification tasks plugged into meta-learning. However,

these methods assume a single large-scale graph whose structure

is given. In contrast, the graph structure of our task is not given,

and moreover, we generalize the graph structure knowledge across

unlimited graphs and adapt the graph learning procedure over

different tasks.

3 PROBLEM FORMULATION
A few-shot learning task T = {ST ,QT } consists of a small task-

level training (support) datasetST and a testing (query) dataset QT .

As for classification problems, a task T aims to learn a task-specific

class distribution over the data within this task, supervised by the

few labeled examples in ST .

Existing FSL approaches [8, 9] mainly assume identically dis-

tributed data, called uniform few-shot learning (uFSL). As defined

in these algorithms, a standard uniformN -wayK-shot classification
taskT = {ST ,QT } contains the support set ST = {(x1,y1), (x2,y2),
..., (xN×K ,yN×K )} that includesK labeled samples from each of the

N classes, and the query set QT = {(x∗1,y
∗
1
), (x∗

2
,y∗

2
), ..., (x∗T ,y

∗
T )}

that includesT different samples from the same N classes: The uni-
formity of a task refers to the consistency of input feature spaces

of each sample ∀x i in T , that is, the input samples in a task share

a common feature space. In particular, as for single-modal few-shot
learning (SFSL) where data is collected from one type of sensor, each

sample is a single modality x i ∈ Rd , where d denotes the dimen-

sion of the shared input feature space. In multimodal applications,

uniform multimodal few-shot learning (uMFSL) assumes the data

of all modalities are available for each sample, that is, each sample

consists of a set ofM modalities x i = (x i,m ∈ Rdm |m = 1, 2, ...,M).
Here x i,m denotes themth-modality in the tuple x i , and dm is the

dimension of modality-m’s feature space. Since the input modality

set is complete, all samples ∀x i in T share a composite space–a

combination ofM feature subspaces.

3.1 Hybrid Few-shot Learning
We define a non-uniform and more complex FSL setting, namely

hybrid few-shot learning (hFSL). hFSL specifies a real-world case

where the support/query samples of a concept in the task are sep-

arated in different feature spaces while remaining semantic-level

similarities.

Definition 1 (Hybrid Few-shot Classification). Different fromuni-

form few-shot classification, each input sample x i in a hybrid task

T is associated with an additional indicator Bi to specify its fea-

ture space. The support and query sets of a hybrid N -way K-shot
classification task are defined as

ST = {(x1,y1,B1), ..., (xN×K ,yN×K ,BN×K )}
QT = {(x

∗
1
,y∗

1
,B∗

1
), ..., (x∗T ,y

∗
T ,B

∗
T )}.

(1)

Assume there is a finite number (U ) of input spaces over the task

domain, and suppose eachu ∈ {1, 2 · · ·U } indicates a specific space.
We are given a heuristic function ptr (·) to recognize the space

ui = ptr (Bi ) of each sample x i by Bi .
In this paper, we particularly focus on the hFSL in multimodal

domain. In contrast to uMFSL, we consider that collecting a com-

plete set of all modalities for each sample, especially in low-data

scenarios where data is more expensive, could be difficult [24].

Hence even the samples in the same task may have irregular miss-

ing modalities. Specifically, suppose the original data is collected

fromM modalities, an input sample of a uMFSL task consists of a

set of obtainable modalities denoted by Bi ,

x i = (x i,m ∈ R
dm |m ∈ Bi ⊆ B), (2)

where B = {1, ...,M} signifies a complete modality set, and the

subset Bi ⊆ B indicates the x i ’s feature space by specifying the
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attainability of each modality. Therefore, each input feature space-

u refers to a specific combination of M subspaces, with a total of

U =
(M
1

)
+
(M
2

)
+ · · · +

(M
M
)
= 2

M − 1 spaces over the task domain.

Each task have spacesUT ≤ U spaces. Note that if Bi = B for all

∀Bi in T , the hybrid task becomes uniform.

3.2 Meta-Learning
We consider a task distribution P(T ) over few-shot learning tasks.

Our meta-objective is to train a meta-learner pθ to adapt to P(T ),
i.e., the meta-learner should be able to solve any few-shot task

T ∼ P(T ) supervised by the few labeled samples in T . In most

of existing inductive FSL frameworks, the meta-learner adapts

to each task T relying on the knowledge from the support set

pθ (y
∗ |x∗;ST ). In practice, we are given a set of meta-training few-

shot tasks Dmeta
train = {T1,T2, · · · TNtrn } with a set of base classes

Ctrain , where each meta-training task T ∼ P(T ) learns from a

subset of N -way classes sampled from Ctrain with a few labeled

samples per class. The meta-learner is trained from Dmeta
train to be

able to fast adapt to new tasks whose classes are held out (unseen)

during meta-training.

4 METHODOLOGY
In a hybrid few-shot classification task, as defined in Eq.(1), data

are heterogeneous in terms of the inconsistent feature spaces of

data. That is, the limited labeled samples per class (i.e., K shots) can

be further partitioned by the different feature spaces. Therefore,

each space u only contains partial labeled samples for each class,

which leads to two subproblems: 1) the data-scarcity problem is

aggravated such that the number of training samples per class in

each space is reduced to less shots or zero shot; 2) the hybrid-shot
problem, where different classes have different number of training

samples in each space u, as the K examples per class have been

unevenly split.

To overcome these challenges, we propose to employ the trans-

ductive inference for task adaption. We aim to train a transductive
meta-learner that jointly considers the knowledge about heteroge-

neous data in both ST and QT :

pθ (y
∗ |x∗,ST ,QT \ YQT ), (3)

where YQT denotes the ground-truth labels of query samples in T ,

which means the labels of query set are not required for solving

each task, which is the truth in reality. An assumption underlying

Eq. (3) is that we know partial testing (query) samples for solving

a task. This assumption yet holds in meta-learning framework as

Dmeta
train contains the query data of each task to enable the training

of meta-learner.

Intuitively, during the transductive task adaption, we incorpo-

rate unlabeled samples and jointly learn all the samples in the task

with heterogeneous spaces, so that the meta-learner can obtain

extra information about the task-specific data distribution and the

relationships between spaces to make better predictions. In this sec-

tion, we will introduce the proposed the Task-adaptive Topological

Transduction Network (TopoNet), whose overview is in Figure 2.

4.1 Feature Embedding
A feature embedding network fe (·;θe ) is used to extract features of
an input x i , where θe indicates its parameters. Suppose there are

M modalities, fe contains M paralleled modality-specific subnet-

works f 1e , f
2

e , ..., f
M
e . Each existing (not missing) modality x i,m of

a sample x i is embedded independently through the subnetwork

fme (·;θ
m
e ),

zi,m = fme (x i,m ;θme ) ∈ R
F , (4)

where F is the dimension of each modality’s embedding. Hence,

each sample x i is embedded as a tuple containing |Bi | modality-

specific embeddings, zi = (zi,m |m ∈ Bi ). With the transductive

inference that jointly learns support and query data in task T ,

we will obtain an embedded feature set for all support and query

samples within the task, i.e.,Z = {zi |∀x i ∈ ST ⋃QT }. Note that
for uniformmultimodal FSL, fe will generate a feature set with fixed

number of embeddings per sample so thatZ = Z ∈ R(NK+T )×MF
.

4.2 Topological Transductive Learning
To overcome the hybrid-shot and data-scarcity dilemma of hFSL,

our key idea is to build connections and unify all different types of

samples in a task during model training. Therefore, we consider the

transductive inference (as in Eq. (3)) that can jointly learn support

and query samples from multiple input spaces. In this transductive

framework, we focus on solving two subproblems: 1) how to explore

the relationships between multiple input spaces so that samples

can be aligned in a uniform semantic space; 2) how to discover the

inter- and intra-class data relationships and then utilize them to

improve the representativeness of the learned class distribution.

To facilitate the exploration of data and multi-space relationships

within the transductive learning framework, we propose to explic-

itly model a learnable graph structure to connect all the samples in

a task. We consider the input set of a task is believed to have some

geometric structure, and the edges (topology) of a graph structure

can naturally connect different input spaces, as well as leverage the

potential inter- and intra-class data relations of the task. Therefore,

given a task T , our goal is to learn its underlying topological graph
G = (V, E;T), which represents the relations among the support

and query samples within the task.V = {vi }
NK+T
i=1 denotes the ver-

tex set combining support and query samples, and E = {ei j }
NK+T
i, j=1

is the edge set which connects each pair of samples from different

classes and different input spaces. Each node vi is associated with

a node feature hi , and each edge ei j is also associated with an edge

feature/weight ei, j which is relevant to node relationships.

Solving an hFSL task can be viewed as learning the node and

edge features of graph G = (V, E;T). We formulate such graph

learning task as a semi-supervised node classification task, supervised
by the |ST | labeled nodes. In this section, we will first construct

a multi-relation graph with its initialized node and edge features,

and then, edge and node features are refined step-by-step via an

edge-enhanced heterogeneous graph neural network.

4.2.1 Graph ConstructionwithMulti-space Nodes. From the

multi-space feature setZ produced by the feature embedding net-

work, we can construct a graph G = (V, E;T) with initial node

features H (0) and initial edge features E(0).
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Figure 2: The proposed TopoNet framework.

The initial feature of each node vi is the concatenation of avail-

able modalities of the sample, i.e., h(0)i = | |m∈Bi zi,m , where | |

denotes concatenation. The initial node feature set H (0) = {h(0)i ∈

R |Bi |F }NK+T
i=1 is heterogeneous as different nodes (samples) have

different combinations of modalities. Note that if two nodes h(0)i
and h(0)j with Bi = {1, 2} and Bi = {2, 3}, although both are 2F -

dimensional (i.e., |Bi | = |Bj | = 2), they still belong to different

feature spaces.

Edge features leverage data relationships. However, it is unfeasi-

ble to directly measure the similarity between a pair of heteroge-

neous nodes; also, some pairs of nodes may not contain common

modalities, such as node Bi = {1} and node Bj = {2, 3}, but belong

to the same class and should be connected. Considering these dif-

ficulties, we initialize anmulti-relation graph where each edge

measures multiple views of node relationships: 1) each modality-m
can provide a view of node relations by comparing themth modal-

ity (if available); 2) the given labels of support samples can provide

an additional view of class similarities. We obtain an edge-feature

tensor E(0) ∈ RD×D×(M+1), where D = NK +T . Each (i, j,m)-entry

of E(0) is calculated as

E
(0)

i, j,m≤M =

{
σ (fmд (∆

m
i, j ;θ

m
д )) ifm ∈ Bi

⋂
Bj

0.5 ifm < Bi
⋂
Bj ,

E
(0)

i, j,M+1 =


1 if yi = yj and vi ,vj ∈ ST
0 if yi , yj and vi ,vj ∈ ST
0.5 if vi ∈ QT or vj ∈ QT ,

(5)

where ∆mi, j = |zi,m − z j,m |; f
m
д (·;θ

m
д ) is the metric function for

modality-m, a stacked Multilayer Perceptron network with param-

eter θmд ; and σ is sigmoid function. The edge feature (relationship)

between a pair of nodes is an (M + 1)-dimensional vector, con-

structed by measuring each view’s similarity scores. Note that for

some pairs of samples without common views but belong to similar

classes, they should have high similarity scores in some missing

views but the missing views’ similarity scores cannot be calculated;

we use 0.5 to account for these uncertain views.

4.2.2 Transductive Learning with Edge-enhanced Hetero-
geneous Graph Neural Network. An hFSL classification task

has been converted into a node-heterogeneous and multi-relation

graph G = (V, E;T). In the proposed topological transduction

framework, solving an hFSL classification task can be formulated

as the semi-supervised node classification task on G, supervised by

the training nodes ST . Yet the difficulty here is the complexity of

learning a graph with several types of nodes and multi-view node

connections. Therefore, we employ the power of Graph Neural

Networks (GNNs) to facilitate transductive learning on G.

Given the initial heterogeneous node features H (0) and multi-

relation edge features E(0), the edge and node features are updated

iteratively layer by layer through a stacked edge-enhanced hetero-

geneous graph neural network (EHGNN):

H (l ) = f lnode (H
(l−1),E(l−1);θ lnode )

E(l ) = f ledдe (H
(l ),E(l−1);θ ledдe ),

(6)

where θ lnode and θ
l
edдe are the node and edge updating parameters

at layer l , respectively. Basically, nodes from multiple spaces are

aligned into a unified semantic space along the procedure; edge

features are directly encoded in the node updating model so that

multi-view similarity scores can be incorporated to improve node

representativeness.

A. Heterogeneous Space Alignment via Node Update. At the
first layer, we are give the initial heterogeneous node features H (0).

Each node feature h(1)i is updated by aggregating its one-hop neigh-

borhoods from each feature space

h(1)i =∥
M+1
r=1 σ

©­«
∑

u ∈UT

∑
j ∈N(i,u)

Ê
(0)

i jrW
(1)
r,uh

(0)

j
ª®¬
 , (7)

where | | is concatenation operation, UT denotes a set of input

spaces in T , and N(i,u) denotes a set of neighboring nodes for

vi on the input-space u.W (1) = {W (1)r,u ∈ R
F1×Fu |r ≤ M + 1,u ∈

UT } are parameters of node encoders for nodes in each feature

space and each view of relationship, where Fu is the dimension of

feature space u, and F1 is the dimension of node encoders’ outputs.

Edge features are incorporated into the neighborhood aggregation,

where each view of the multi-relation edge features generates a

new node feature which is then concatenated with other views’

new features. To avoid increasing the scale of output features by

multiplication, we normalized edge features over the neighborhood
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of vi , that is, Ê
(0)

i jr =
E (0)i jr∑

k∈N(i ) E
(0)

ikr

. Then, at layers l > 1, we simplify

the aggregation process for training efficiency as node features

are early homogenized in an F1(M + 1)-dimensional space. Given

features obtained in the last layer H (l−1) ∈ RD×Fl−1 and E(l−1) ∈
RD×D ,

h(l )i = σ


∑

j ∈N(i)

Ê
(l−1)
i j W (l )h(l−1)j

 , (8)

where Ê
(l−1)
i j =

E (l−1)i j∑
k∈N(i ) E

(l−1)
ik

, and W (l ) ∈ RFl×Fl−1 denotes the

layer-l node encoder shared by each sample.

B. Edge Update. Edge feature update is done by measuring the

relationships of current node features. The goal of edge update is

to modify the previous representations for inter- and intra- class

relationships, making the topological structure more relevant to

the specific task. To simplify and reduce the parameter size, the

dimensions of edge features after the first layer are reduced to 1.

Therefore, at the first edge updating layer, the initial (M + 1)-view
edge features are compressed into a single view

E
(1)

i j =
1

M + 1

M+1∑
r=1

α1i j,rE
(0)

i jr , (9)

where α1i j,r = f ledдe,r (h
(1)

i ,h
(1)

j ;θ1edдe,r ) is a scalar that measures

the relationship between h(l )i and h(l )j , which can be calculated

using any metric or attention function (e.g., additive attention, dot-

product, multiplicative attention) [31]. Then, at layers l > 1, to

simplify the calculation, edge features are updated directly using

the attention scores over current node features,

E
(l )
i j = f ledдe (h

(l )
i ,h

(l )
j ;θ ledдe ). (10)

To summarize, the information aggregation through edges takes

into account the current edge features, thus automatically lever-

aging the current learned inter- and intra-class relationships and

achieving. The information exchange among support and query

samples jointly models different types spaces, where each space

could incorporate extra information from other spaces. This process

implicitly achieves multi-space alignment so that could alleviate

the hybrid-shot and data-scarcity challenges.

4.2.3 Generalization andTaskAdaptiveness of Topology. Meta

learning explores the transferable knowledge across tasks. In To-

poNet, we aim to generalize the underlying topological structure

over different hFSL tasks, including the multi-space alignment pa-

rameters and the parameters used in modeling intra- and inter-class

data relationships. Despite the globally shared structural knowl-

edge, there is also specific knowledge about underlying topological

structure for each task. For example, the importance of each modal-

ity may vary between different tasks. Therefore, following [22], we

build a task modulation network д(·;ϕ) to condition the topological

transductive learning module, which utilizes external task-level

information to slightly adjust the prior knowledge for each task,

may be better suited for finding correct underlying task-specific

class distribution.

Algorithm 1 Training Procedure of TopoNet

1: Requires: Distribution of hybrid few-shot tasks P(T )
2: Requires: Learning rates α , β ; GNN layer number L
3: Randomly initialize task network θ and meta-network ϕ.
4: while not done do
5: Sample batches of tasks Tt ∼ P(T )
6: for all t do
7: Obtain data {STt ,QTt } for each task Tt .

8: Initialize task network θ ′t = θ0, and replace ϕ0 using ϕ0,t .
9: Calculate embedded multi-space feature setZt .

10: Construct graph Gt and initialize H
(0)
t and E

(0)
t .

11: Update node and edge features via EHGNN; obtain H
(L)
t .

12: Obtain predictionsYSTt
for support set, compute adapted

internal parameters with a fixed number of steps w.r.t. the

NK examples from STt as in Eq.(12).

13: Evaluate Lt (f (x ;θ ′t ,ϕ),y
∗
;QTt ) w.r.t. T samples of QTt .

14: end for
15: Update initialization of task network θ0 as Eq.(13).
16: Update meta-network ϕ as Eq.(14).

17: end while
18: return: θ0 and ϕ

4.3 Optimization
Task Objective. In our framework, a hybrid N -way K-shot clas-
sification task is converted into a semi-supervised N -way K-shot
node classification task with heterogeneous nodes. After obtaining

node features H (L) ∈ RD×FL at the last GNN layer L, we use a

nonlinear classifier p(·;θp ) followed by a softmax layer to make

class predictions for each node. The predictions are compared with

ground-truth labels to calculate cross-entropy losses. The inner-

loop optimization is supervised by the support labels, byminimizing

the cross-entropy loss defined as follows:

LTt = −
∑

yi ∈YSTt

yi · log(softmax(p(h(L)i ;θp ))), (11)

whereYSTt
denotes the NK labels in the support set STt . Note that

the final-layer node representation h(L)i of vi has aggregated the

data information from both STt \ YSTt
and QTt \ YQTT through

GNNs. With the supervision of the support labels, the topologi-

cal structure learned by the topological learning network can be

relevant to true class distribution of the specific task.

Meta-objective. We train TopoNet following the optimization-

based meta-learning paradigm, such as the model-agnostic meta-

learning [8], which solves a bilevel optimization problem to find a

prior θ as the meta-learner’s parameters. The parameters of our

three-module network isθ = {θe ,ψ ,θp }, whereψ = {θд ,θnode ,θedдe }
is the topological transduction module. The meta-objective is to

obtain a set of meta-initialization parameters θ0, an appropriate

generalization of prior knowledge for all tasks, plus the parameters

of the external task-modulation meta-network ϕ [22].

Bilevel optimization. Formally, let θ ′t signify θ for task Tt dur-

ing the inner-loop optimization, and let the initial θ ′t = θ0. In the

inner-loop adaption, during each gradient update, we compute

θ ′t ←− θ
′
t − α∇θ ′tLTt (f (x ;θ

′
t ,ϕ),y;STt ), (12)
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where f (·) is the forward function of TopoNet, and LTt (·;STt ) is

the loss on the support set of Tt as in Eq.(11).

Separately for each task, after a fixed number of inner-loop up-

dates, we obtain the adapted parameter θ ′i (θ0), which is dependent

onmeta-initialization θ0. Then, the outer-loop optimization updates

θ0 and ϕ over a batch of task instances:

θ0 ←− θ0 − β∇θ0

∑
Tt∼p(T̂)

LTt (f (x
∗
;θ ′i (θ0),ϕ),y

∗
;QTt ) (13)

ϕ ←− ϕ − β∇ϕ
∑
Tt∼p(T̂)

LTt (f (x
∗
;θ ′i (θ0),ϕ),y

∗
;QTt ), (14)

where LTt (·;QTt ) is the loss on the query set of task Tt . The overall

training procedure of TopoNet is in Algorithm 1.

5 EXPERIMENTS
We evaluate TopoNet on N -way K-shot classification tasks with

both uniform and hybrid few-shot settings.

5.1 Dataset
We first evaluated our model under the normal uniform FSL setting,

using five standard few-shot classification datasets: 1) three datasets
were used for single-modal (image) few-shot classification, includ-

ing miniImageNet [27] (having 100 classes split as |Ctrain | = 62,

|Ctest | = 30, and |Cval | = 8), omniglot [17] (having 1623 classes
split as |Ctrain | = 1150, |Ctest | = 423, and |Cval | = 50), and

CUB-200 [34] (containing 200 bird species split as |Ctrain | = 100,

|Ctest | = 50, |Cval | = 50); 2) two datasets were used to simulate the

uniform multimodal few-shot scenarios, including the CUB-200
(image+text) [34] originated from CUB-200, where each image is

annotated with a 312-dimensional text (attribute) modality, and the

3D-object recognition dataset miniModel40 (view1+view2) con-
structed from the ModelNet40 [38], which contains 3D CAD objects

covering 40 common categories (split as |Ctrain | = 25, |Ctest | = 9,

and |Cval | = 6) and each object is marked by two views of feature

representations as in [7].

In addition, to simulate the web application scenarios where

concepts are scarcely labeled and data is heterogeneous, we con-

structed two hybrid few-shot classification datasets, as hFSL was

never studied before and we cannot find existing datasets available.

The two datasets are constructed from each of the uniform multi-

modal datasets: h-CUB-200 and h-miniModel40, which contain

hybrid combinations of modalities. Specifically, in order to simulate

the irregular and frequent occurrence of missing modality in the

real-world web applications, each uniform task in the source dataset

was turned into the hybrid task by randomly deleting modalities

from randomly picked samples. The deletion process is as follows.

For each task, we first union the support and query set, and shuffle

the instances. Then, we separate the combined set, which contains

(NK +T ) instances, into 2M − 1 disjoint subsets (groups): given the

hybrid ratio 0 < ρ < 1, the first group has (1− ρ)(NK +T ) samples,

and the other groups has ρ(NK +T )/(2M − 2) samples. Each group

except the first one is a proper subset of {1, ...,M} indicating the
modality availability, and for all the samples in the same group, we

remove the absent modalities from the original multimodal data.

Finally, in the first group, we picked ρ percentage of samples, and

from each picked sample, we randomly deleted one of modalities.

Method

miniImageNet CUB200 omniglot

5-way 5-way 5-way 20-way

1-shot 5-shot 1-shot 1-shot

MAML 49.61 65.72 74.25 95.83

ProtoNet 46.14 65.77 73.99 96.00

RelationNet 51.38 67.07 76.58 97.60

GNN 52.91 68.23 73.76 97.40

TPN 59.46 75.64 75.20 -

TransductiveTuning 62.35 74.53 73.46 -

LaplacianShot 72.11 82.31 80.96 -

TopoNet-U 72.45 83.22 81.13 99.62

Table 1: Average accuracy (%) on single-modal few-shot clas-
sification datasets.

5.2 Baseline Methods
We compared TopoNet with three families of existing FSL ap-

proaches: 1) supervised learning approaches with inductive in-

ference: ProtoNet [28], RelationNet [29], and MAML [11]; 2)

semi-supervised learning approaches with transductive inference:

GNN [11], TPN [19], TransductiveTuning [6] and Laplacian-
Shot [45]; 3) while the previous two families are single-modal

baselines, we also consider recent works on multimodal domain:

AM3 [39] andMultiProtoNet [23].
When testing the single-modal baselines (e.g., MAML, ProtoNet,

RelationNet, LaplacianShot, etc.) under uniform multimodal low-

data conditions, we concatenated all the modalities after the feature

embedding network, converting multimodal data to single-modal

data by linearly combining the multimodal feature embeddings. In

addition, when testing the single-modal baseline methods on the

hybrid multimodal dataset, we imputed the missing modalities by

zeros on the input before concatenating all the original/imputed

modalities. Baseline results on single-modal classification datasets

are mostly retrieved from their papers.

5.3 Results
We implemented two versions of TopoNet: TopoNet-U for uniform

tasks and TopoNet-H for hybrid tasks. The configurations of our

model and baselines, hyperparameters, and experimental setups

can be found in Appendix A.2. We fix the number of inner-loop

gradient updates to 10 steps in all experiments, and the batch size

for updating the meta-learner was fixed to 4 tasks each step.

5.3.1 Uniform Few-shot Classification. We evaluated our model

(version TopoNet-U) in the standard single-modal scenarios in Table

1. We can observe that TopoNet-U and existing transductive meth-

ods generally outperform inductive methods as unlabeled data was

incorporated into task adaptation. The performance of TopoNet-U

is comparative to existing transductive methods, so that TopoNet

could work for both uniform and hybrid few-shot learning. In Table

2, we evaluated our model under the uniform multimodal scenarios,

where all modalities are available all the time. TheM modalities are
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Method

CUB-200 miniModel40

5-way 5-way 5-way 10-way

1-shot 5-shot 1-shot 1-shot

MAML 75.78 80.31 82.45 71.46

ProtoNet 67.32 73.74 74.91 62.27

RelationNet 78.22 83.26 85.84 73.62

GNN 72.98 77.75 78.35 68.54

TPN 77.23 81.67 84.28 72.39

TransductiveTuning 75.31 84.28 82.75 72.82

LaplacianShot 81.36 87.76 89.91 78.48

AM3-ProtoNet++ 76.60 82.9 83.24 71.71

AM3-TADAM 77.16 82.7 84.10 72.94

MultiProtoNet 77.21 83.29 84.34 73.89

TopoNet-U (Ours) 81.75 88.12 91.23 79.17

Table 2: Average accuracy (%) on uniform multimodal few-
shot classification datasets.

Method

h-CUB-200 h-miniModel40

5-way 5-way 5-way 10-way

1-shot 5-shot 1-shot 1-shot

MAML 69.45 74.26 77.83 67.54

ProtoNet 62.44 68.5 69.30 57.10

RelationNet 73.90 78.72 80.45 67.4

GNN 67.41 72.34 73.45 62.58

TPN 71.17 76.38 79.83 66.05

TransductiveTuning 69.73 68.62 76.15 68.10

LaplacianShot 78.06 82.37 84.63 74.43

AM3-ProtoNet++ 72.46 76.55 78.68 67.18

AM3-TADAM 73.15 77.28 79.54 68.72

MultiProtoNet 71.34 77.44 79.71 69.44

TopoNet-H (Ours) 80.23 83.11 86.46 77.15

Table 3: Average accuracy (%) on hybrid few-shot classifica-
tion datasets with hybrid ratio ρ = 0.5.

concatenated in both baselines and our model. Our model TopoNet-

U achieved slightly better performance rather that baselines as we

constructed a multi-relation graph where edge features were more

complex than baselines, and then learned the data relationships

through the graph neural network by incorporating multi-view

edge features.

5.3.2 Hybrid Few-shot Classification. Table 3 reports the results
on the created hybrid few-shot datasets with ρ = 0.5. These results

compare our method TopoNet-H, which directly learned with the

original heterogeneous data, against the baselines (designed for

uniform tasks), which used zeros to impute missing modalities so

that hybrid tasks were converted into uniform tasks. From uniform

settings (Table 2) to hybrid counterparts, although our models were

relevantly influenced by the missing modalities, we can observe

that the performance of baselines drops more dramatically than

our model. The reason might be that the zero imputation brought

some extra noise to the baselines. In contrast, our model, which

directly learn from present data from multiple feature spaces, can

avoid such noise. This concludes that the imputation strategy is

not recommended in few-shot situations, and that TopoNet is an

useful tool for hybrid FSL rather than existing uniform algorithms.

Also, the effectiveness of our methods demonstrated our heteroge-

neous neighborhood aggregation can comprehensively utilize other

samples’ information to alleviate the impact of missing information.

5.3.3 Impact of Hybrid Levels. In Table 4, from column 2 to 4,

we increase the hybrid ratio of tasks over the dataset. The larger

ρ implies more missing modalities and a larger number of input

feature spaces. The last column shows the result with dynamic

hybrid ratios, where for each task, the value of ρ was not given

but randomly chosen, thus different tasks have different hybrid

levels. As the hybrid ratio increases, the less change on TopoNet-H’s

performance rather than baselines demonstrates the effectiveness

of our method to handle multiple spaces.

Method ρ = 0.3 ρ = 0.5 ρ = 0.7 dynamic ρ

TPN 73.29 71.33 66.23 67.42

AM3-TADAM 75.54 73.15 67.91 66.73

MultiProtoNet 73.67 71.34 64.78 69.72

LaplacianShot 80.31 78.06 72.01 75.13

TopoNet-H‡ 71.20 69.18 63.89 69.93

TopoNet-H† 80.16 68.50 69.82 77.34

TopoNet-H 81.67 80.23 75.13 74.96

Table 4: Ablation study on hybrid 5-way 1-shot h-CUB-200.

5.3.4 Ablation Study. In Table 4, we evaluate the influence of each

component in ourmodel. The TopoNet-H
†
model replaces the graph

construction module with a non-parameter metric kernel (i.e., dot-

product similarity) and removes missing-view connections. The

TopoNet-H
‡
deletes the GNN-based node and edge updating mecha-

nism, and replaces it with the non-parameterised Label Propagation

[19] strategy. TopoNet-H outperform TopoNet-H
†
and TopoNet-H

‡
.

Also, as the hybrid ratio increased, the performance of TopoNet-

H
†
and TopoNet-H

‡
dropped more dramatically than TopoNet-H.

These proved the ability of heterogeneous GNN inmulti-space align-

ment, and the ability of the topology learning module to generalize

reliable inter- and intra-class data relationships across tasks.

6 CONCLUSION
Web data may contain new concepts that are lack of sufficient

supervision as well as could be multimodal, heterogeneous, and

hybrid, thus may bring challenges to machine learning or deep

learning-based web content analysis and web mining that relies on

large-scale data. Therefore, in this paper, we studied a novel hybrid

few-shot learning (hFSL) problem to employ FSL in suchweb scenar-

ios. We proposed a task-adaptive topological tansduction network

(TopoNet) to solve hFSL, which trained a heterogeneous graph-

based transductive meta-learner to handle the special few-shot

tasks with multiple input spaces. Our experimental results demon-

strated that TopoNet successfully generalized the meta-knowledge

about data and multi-space relationships over tasks, and could fast

adapt to real tasks with different levels of hybrid settings.
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