

1 **FULL TITLE: Seasonal strategies differ between tropical and extratropical herbivores**

2

3 **AUTHORS:** Joel O. Abraham^{1*}, Gareth P. Hempson², J. Tyler Faith^{3,4,5}, and A. Carla Staver⁶

4

5 **AFFILIATIONS:**

6 ¹ Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

7 ² Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University
8 of the Witwatersrand, Wits, 2050, South Africa

9 ³ Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA

10 ⁴ Department of Anthropology, University of Utah, Salt Lake City, UT, USA

11 ⁵ Origins Centre, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South
12 Africa

13 ⁶ Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA

14

15 *Correspondence: Email: joeloa@princeton.edu, phone: +1 (609) 258-5810, mailing address:
16 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544

17

18 **STATEMENT OF AUTHORSHIP**

19 JOA conceived of the study. ACS and JOA designed analyses, with significant contribution from
20 GPH. JOA compiled data, led analyses, and wrote the manuscript. GPH and JTF contributed to
21 study design and manuscript development. All authors discussed ideas and provided manuscript
22 feedback.

23

24 **DATA ACCESSIBILITY STATEMENT**

25 All data compiled for this study are published alongside the paper in Supporting Information.

26 **RUNNING TITLE:** Herbivore seasonal strategies

27 **KEYWORDS:** Herbivore impacts, seasonality, latitude, migration, dietary shifts, global change

28 **TYPE OF ARTICLE:** Synthesis

29

30 Abstract word count: 201

31 Main text word count: 6,136

32 Number of references: 62

33 Number of figures, tables, and textboxes: 1 table, 5 figures, 0 textboxes

34 **ABSTRACT**

35 Seasonal diet shifts and migration are key components of large herbivore population dynamics,
36 but we lack a systematic understanding of how these behaviors are distributed on a
37 macroecological scale. The prevalence of seasonal strategies is likely related to herbivore body
38 size and feeding guild, and may also be influenced by properties of the environment, such as soil
39 nutrient availability and climate seasonality. We evaluated the distribution of seasonal dietary
40 shifts and migration across large-bodied mammalian herbivores and determined how these
41 behaviors related to diet, body size, and environment. We found that herbivore strategies were
42 consistently correlated with their traits: seasonal diet shifts were most prevalent among mixed
43 feeding herbivores and migration among grazers and larger herbivores. Seasonality also played a
44 role, particularly for migration, which was more common at higher latitudes. Both dietary shifts
45 and migration were more widespread among extratropical herbivores, which also exhibited more
46 intermediate diets and body sizes. Our findings suggest that strong seasonality in extratropical
47 systems imposes pressure on herbivores, necessitating widespread behavioral responses to
48 navigate seasonal resource bottlenecks. It follows that tropical and extratropical herbivores may
49 have divergent responses to global change, with intensifying herbivore pressure in extratropical
50 systems contrasting with diminishing herbivore pressure in tropical systems.

51 INTRODUCTION

52 Herbivore population sizes determine the magnitude of their ecological impacts, their
53 own conservation status, and their sensitivity to global change (Cardillo *et al.*, 2005; Estes *et al.*,
54 2011; Ripple *et al.*, 2015; Staver *et al.*, 2021). Two behaviors play an outsized role in allowing
55 mammalian herbivores to achieve large populations by enabling them to circumvent seasonal
56 resource bottlenecks (Illius & O'Connor, 2000): seasonal migration and seasonal dietary shifts
57 (Staver & Hempson, 2020). In the case of migration, herbivores move to track seasonally
58 fluctuating resources across the landscape (Aikens *et al.*, 2020; Fryxell & Sinclair, 1988). Large
59 mammalian herbivore migrations, which are well-documented among tropical grazers, contribute
60 to sustaining large populations in the face of seasonality (Fryxell & Sinclair, 1988; Staver &
61 Hempson, 2020). In the case of dietary shifts, herbivores instead change their diets seasonally in
62 response to local changes in resource quality and availability (Codron *et al.*, 2007; Kartzin &
63 Pringle, 2020). More limited evidence suggests that seasonal diet flexibility helps herbivores
64 resist drought-induced mortality (Abraham *et al.*, 2019) and achieve large population sizes
65 (Staver & Hempson, 2020), such that herbivores with seasonally variable diets often dominate
66 savanna communities (Staver & Hempson, 2020). Though taxon- or system-specific case studies
67 have explored the determinants of these strategies (see, *e.g.*, Abraham *et al.*, 2019; Aikens *et al.*,
68 2020; Fryxell & Sinclair, 1988; Gagnon & Chew, 2000), we lack evaluations of how these
69 seasonal strategies are distributed globally.

70 There are several competing hypotheses that could explain the distribution of seasonal
71 strategies, with varying degrees of taxon- and system-specific support. First, body size likely
72 influences both herbivore metabolic requirements (Hopcraft *et al.*, 2010; Olff *et al.*, 2002) and
73 the accessibility of seasonal strategies (Abraham *et al.*, 2019; Webber & McGuire, 2021). One

74 possibility is that larger-bodied animals may be more able to vary their food sources seasonally,
75 because they require food in large quantities rather than of high quality, and may consequently
76 tolerate a broader range of diets (Bell, 1971; Hopcraft *et al.*, 2010; Jarman, 1974; Olff *et al.*,
77 2002). Larger herbivores might also be more migratory (Webber & McGuire, 2021), as they are
78 less restricted in their landscape use by resource quality and predation (Hopcraft *et al.*, 2010;
79 Veldhuis *et al.*, 2019) and are morphologically and energetically able to travel long distances
80 (Bhat *et al.*, 2020; Hein *et al.*, 2012). An alternative possibility is that intermediate-bodied
81 herbivores may instead diet switch more, as they are comparatively free from both the quality
82 restrictions of their smaller-bodied counterparts and the quantity restrictions of large-bodied
83 herbivores, affording them greater dietary flexibility (Hopcraft *et al.*, 2010; Veldhuis *et al.*,
84 2019). Intermediate-bodied taxa may also be the most migratory (e.g., Jarman, 1974), as they are
85 more gracile and cursorial (Hopcraft *et al.*, 2015; Scott, 1985). A final alternative is that seasonal
86 diet shifts are most prevalent among small herbivores, because they require high quality
87 vegetation all year long (Olff *et al.*, 2002), and so may switch to high-quality forage reservoirs as
88 forage quality declines over the course of the growing season (Güsewell, 2004; Reich &
89 Oleksyn, 2004; Scanlon *et al.*, 2005).

90 Body size could also predict the composition of herbivore diets as well as their seasonal
91 strategies, resulting in covariation between diet composition and strategies. Metabolic scaling
92 theory suggests that large herbivores may eat more grass, due to differences in how resource
93 distributions and searching costs scale with body size (Bhat *et al.*, 2020). This pattern has been
94 noted at a number of sites (e.g., Arman & Prideaux, 2015; Bell, 1971; Gagnon & Chew, 2000;
95 Jarman, 1974) but has not been evaluated globally. If true, grass intake might mediate the effects
96 of body mass on seasonal strategies (Abraham *et al.*, 2019). Case studies from African savannas

97 do indeed suggest that migration tends to be most common among specialist grazers (Abraham *et*
98 *al.*, 2019; Fryxell & Sinclair, 1988; Jarman, 1974), whose resource base fluctuates predictably
99 with rainfall seasonality (Scanlon *et al.*, 2005). Likewise, mixed feeders, which consume
100 intermediate amounts of grass within a given season and are therefore depend in part upon
101 seasonally fluctuating grasses (Codron *et al.*, 2007), seem uniquely able to shift their diets in
102 response to declining grass biomass and nutrition (Abraham *et al.*, 2019), likely because mixed
103 feeders have broader niches (Kartzinel & Pringle, 2020) and vegetation preferences that
104 transcend plant functional types (Codron *et al.*, 2007).

105 A complementary perspective is that herbivore strategies depend on soil nutrient
106 availability in interaction with rainfall, via effects both on herbivore traits and forage quality
107 (Hempson *et al.*, 2015; Holdo *et al.*, 2009). Because large herbivores tolerate nutrient-poor
108 vegetation (Olff *et al.*, 2002), they may dominate in environments with locally low and/or
109 variable soil nutrient content (Hempson *et al.*, 2015; Hopcraft *et al.*, 2010) or high rainfall
110 (Hempson *et al.*, 2015; Olff *et al.*, 2002). Similarly, because grass might be of higher quality in
111 low rainfall, nutrient-rich habitats (Güsewell, 2004; Reich & Oleksyn, 2004; Scanlon *et al.*,
112 2005), grass-specialist herbivores might be more prevalent in such environments (Hempson *et*
113 *al.*, 2015). As such, soil nutrient availability and rainfall together might impact the spatial
114 distributions of herbivore traits, with implications for the distributions of herbivore strategies.
115 Indeed, interactions between soil nutrients and rainfall have been implicated in driving
116 migration: some herbivore migrations track opposing rainfall and soil nutrient gradients (Holdo
117 *et al.*, 2009). Diet-switching may similarly be more beneficial in nutrient-rich environments
118 (Abraham *et al.*, 2019; Staver & Hempson, 2020), as plant quality may be more variable (both
119 between plants and across seasons) (Güsewell, 2004; Reich & Oleksyn, 2004).

120 A final possibility is that seasonality shapes herbivore strategies. Because these behaviors
121 are responses to seasonal resource bottlenecks (Illius & O'Connor, 2000; Staver & Hempson,
122 2020), the strength of seasonality might determine the prevalence of strategies. In the tropics and
123 subtropics, pronounced rainfall seasonality drives predictable changes in grass biomass and
124 nutrition but more varied seasonal changes in the tree layer (Ryan *et al.*, 2017; Scanlon *et al.*,
125 2005), altogether translating into differential seasonal resource availability across plant
126 functional types. Higher latitudes are characterized instead by strong temperature and sometimes
127 also moisture seasonality, resulting in dramatic temporal variability in productivity and biomass
128 across most plants (Running *et al.*, 2004; Xu *et al.*, 2013) (see Fig 1). Thus, whereas scarcity-
129 mitigating behaviors might be restricted to a subset of herbivores in tropical regions (particularly
130 grass-dependent taxa; Abraham *et al.*, 2019; Fryxell & Sinclair, 1988; Jarman, 1974), strategies
131 for mitigating scarcity might be more widespread at higher latitudes (Aikens *et al.*, 2020; Albon
132 & Langvatn, 1992; Bolger *et al.*, 2007; Singh *et al.*, 2012). Indeed, some evidence (primarily
133 from high latitude cervids) indicates that at least migration may be more widespread across
134 species in more seasonal environments (Aikens *et al.*, 2020; Singh *et al.*, 2012), though large-
135 scale demonstrations of this pattern are also lacking.

136 Overall, we hypothesize (1) that herbivore body size and grass consumption play key
137 roles in determining herbivore seasonal strategies, but (2) that environmental characteristics,
138 particularly soil nutrient availability and the magnitude of seasonality, also influence the
139 distribution of these strategies among large-bodied mammalian herbivores. While these
140 hypotheses are longstanding, with varying degrees of site- or taxon-specific support,
141 comprehensive empirical evaluations of these patterns at macroecological scales are lacking. To
142 address this gap, here we synthesize herbivore traits and behaviors to evaluate the distribution of

143 seasonal strategies among large mammalian herbivores globally, employing model selection to
144 identify the best predictors of herbivore traits and strategies.

145

146 **METHODS AND MATERIALS**

147 *Defining large mammalian herbivores*

148 First, we generated a comprehensive list of large-bodied herbivorous mammals using the
149 EltonTraits 1.0 database, a global species-level compilation of 5,400 mammal species' foraging
150 traits (Wilman *et al.*, 2014). Data include mean adult body masses, as well as dependences on
151 broad food categories (e.g., invertebrates, vertebrate ectotherms, vertebrate endotherms, fruit,
152 seeds, leaves/other plant tissue, etc.). We filtered the database for mammals ≥ 5 kg (Kartzinel &
153 Pringle, 2020) and with diets of $\geq 70\%$ leaf material to exclude carnivores and omnivores. We
154 excluded herbivores that are extinct in the wild and herbivores categorized as arboreal, aquatic,
155 or flighted, as these modes of locomotion result in distinct physiological constraints, such that
156 generalizing across locomotor modes is not appropriate (Hein *et al.*, 2012). This resulted in a list
157 of 238 large-bodied herbivorous mammal species, including most terrestrial Artiodactyla, several
158 species from the orders Diprotodontia, Perissodactyla, Rodentia, Proboscidea, and Primates, and
159 one Carnivora species.

160

161 *Quantifying environmental drivers*

162 To compile data on the seasonality experienced by each herbivore species, we
163 downloaded expert geographic range maps from IUCN (2019). We averaged mean annual
164 precipitation, mean rainfall seasonality (Fig. 1b), mean annual temperature, and mean
165 temperature seasonality (Fig. 1c) across each herbivore's range using climatic data from

166 WorldClim 2.0 at a spatial resolution of 30 minutes (Fick & Hijmans, 2017). For all these
167 variables, we also calculated the standard deviation across an herbivore's species range (Fig.
168 1b,c) to capture spatial variation in each predictor.

169 Seasonality varied substantially across the terrestrial landmass (Running *et al.*, 2004),
170 with pronounced rainfall seasonality but low temperature seasonality in the tropics and
171 subtropics and lower rainfall seasonality but consistent temperature seasonality in the
172 extratropics (temperate, boreal, and polar regions) (Fig. 1). We therefore classified herbivores as
173 either 'tropical' or 'extratropical'. We calculated the centroid of species ranges from WGS84
174 ellipsoid areas of IUCN species range maps, excluding the introduced portions of ranges (Fig.
175 1a); herbivores were categorized as 'tropical' if their range centroids were $< 35^\circ$ N/S or
176 'extratropical' if their range centroids were $> 35^\circ$ N/S. We chose 35° N/S (the limit of the
177 subtropics) as the boundary because, during winter, regions outside of 35° N/S frequently
178 experience subzero temperatures and the regular formation of a sustained snowpack, such that
179 the severity of seasonal resource bottlenecks differs substantially across this threshold (plants not
180 only stop growing, but also become physically inaccessible; Running *et al.*, 2004; Xu *et al.*,
181 2013). However, to evaluate the sensitivity of our results to this classification criterion, we also
182 ran all comparisons between tropical and extratropical herbivores using 23.5° N/S (Tropics of
183 Cancer/Capricorn) as the boundary (see *Data analyses*). Note that results did not differ
184 qualitatively between these two different classification criteria (Table S8).

185 Direct evaluations of the role of forage quality in driving herbivore seasonal strategies
186 were not possible here, as global datasets of plant nutrient content are lacking. However, plant
187 nutrient content is influenced by both local soil nutrients and rainfall (Güsewell, 2004; Reich &
188 Oleksyn, 2004; Scanlon *et al.*, 2005). Therefore, for insight into whether forage quality may play

189 a role in influencing the distribution of seasonal strategies, we compiled soil nutrient data from
190 World Soil Information Service (WoSIS) (Batjes *et al.*, 2017). We used the raw data underlying
191 the WoSIS global soil data layer. We took all points that were above 60 cm depth, corresponding
192 to plant-available nutrients (Güsewell, 2004; Reich & Oleksyn, 2004), within each species'
193 range. We calculated the mean, standard deviation, and range for both effective cation exchange
194 capacity (CEC) and soil nitrogen content. For some herbivores (51 species), no soil data were
195 available, and these taxa were excluded from analyses involving soil nutrients (see *Data*
196 *analysis*).

197

198 *Herbivore body mass and diet traits*

199 Next, we compiled data on herbivore body mass and diet. Herbivore body mass data were
200 available from EltonTraits 1.0 (Wilman *et al.*, 2014), which are themselves compilations from
201 primary literature. Because herbivore body masses span multiple orders of magnitude (5 kg –
202 4,000 kg), body mass values were log-transformed for all analyses.

203 One of our major hypotheses was that herbivore grass dependence might explain the
204 distribution of seasonality-mitigating behaviors, particularly in the tropics (Abraham *et al.*, 2019;
205 Fryxell & Sinclair, 1988). We therefore performed a targeted literature search to determine the
206 seasonal grass dependence – defined here as dietary grass fraction averaged over a given season
207 – for each herbivore. Though there can be substantial diet variability between herbivore
208 populations (Codron *et al.*, 2007), the use of representative dietary studies can provide a general
209 and comparable metric for herbivore diets at the level of plant functional type (Gagnon & Chew,
210 2000). Thus, using Web of Science and Google Scholar, we found published studies that
211 reported seasonal herbivore diet composition at the functional level (grass vs. browse) or at finer

212 taxonomic scales. We recorded herbivore diet composition in both the growing season
213 (summer/wet season) and dormant season (winter/dry season), as reported in the same study. Our
214 search terms were 'diet' or 'diet composition' coupled with an herbivore's scientific name and/or
215 common name. We included only those studies where percentages of different plant types were
216 reported in both seasons, as determined by analysis of either herbivore gut contents or feces
217 composition. These seasonal diet data were then used to calculate seasonal diet shifts. Dietary
218 shifts were defined as the absolute value of the change in dietary grass fraction from the growing
219 to the dormant season ($|\Delta \text{ diet}_{\text{grow-dorm}}|$) and therefore take positive proportional values (0-1).
220 Herbivores without such published information (28 species) were excluded.

221 This methodology resulted in a list of 210 herbivorous mammals in 7 orders and 23
222 families distributed across the globe (Fig. 1) (see Supporting Information for a complete list of
223 herbivores included in this study and all associated data and references).

224

225 *Evaluating herbivore migration*

226 To determine the distribution of migration across herbivores, we first compiled published
227 syntheses cataloguing migratory animals (e.g., Berger, 2004; Bergesen *et al.*, 2018; Bolger *et al.*,
228 2007; Harris *et al.*, 2009). For species not included in the aforementioned syntheses, we
229 performed a literature search using Web of Science and Google Scholar to find records of
230 migration, as we did above for herbivore diet composition. We searched each herbivore's
231 scientific name and/or common name along with the search terms 'migrate', 'migratory', and/or
232 'migration' (see Supporting Material for references).

233 We reduced migration to a binary: herbivores were considered migratory (1) if there were
234 any records of them having ever exhibited migratory behavior of any sort, past or present, or

235 non-migratory (0) if there were not. We therefore coded species as migratory (1) if they were
236 shown to undergo seasonal, round-trip movements between discrete areas (Berger, 2004; Bolger
237 *et al.*, 2007) and/or if they were explicitly described as migratory in published literature
238 (including if they exhibited elevational migration). Herbivores were recorded as non-migratory
239 (0) if it was stated explicitly that they never migrate and/or if no published records of migratory
240 behavior were available. We did not restrict our definition to mass migrations, where individuals
241 of a species migrate *en masse*, as has been the case in previous cross-species syntheses (e.g.,
242 Harris *et al.*, 2009). This inclusive approach enabled us to capture any history of migration and
243 to control against the confounding influence of anthropogenic restrictions on migratory behavior
244 (Berger, 2004; Bolger *et al.*, 2007).

245

246 *Data analysis*

247 Data were analyzed in R 3.6.1 (R Core Team, 2020). We modeled traits and strategies
248 using generalized least squares regression with a phylogenetic variance-covariance matrix
249 (PGLS) via the *nlme::gls* function (Pinheiro *et al.*, 2007) to account for the phylogenetic non-
250 independence of taxa (Paradis *et al.*, 2004). Indeed, the accessibility of these strategies is thought
251 to be phylogenetically constrained (Fig. S1); rhinos and macropodids (kangaroos and relatives),
252 for example, conspicuously lack migratory behavior (Kaufmann, 1974; Walker *et al.*, 1968). We
253 therefore used a mammal-wide phylogeny constructed by Upham *et al.* (2019) pruned to the 210
254 herbivores included in our dataset (Fig. S1). Phylogenetic variance-covariance matrices were
255 calculated from the pruned herbivore-only tree using *ape::corMartins* (Paradis *et al.*, 2004).

256 First, we built global models of body mass, grass dependence, migration, dietary shifts,
257 and herbivore species range size that included all plausible predictors (see Tables S2-3). We

258 employed a binomial distribution for our global model of migration, as it was coded as a binary,
259 and Gaussian distributions for all other global models. Then, to determine which predictors best
260 explained each of these variables, we built models including all permutations of explanatory
261 variables and compared model-corrected Akaike Information Criterion (AIC_c) to assess model fit
262 (Tables S4-7). We consider all models with $\Delta\text{AIC}_c < 2$ as ‘preferred’ models and have selected
263 the simplest model within $\Delta\text{AIC}_c < 2$ as the overall ‘best’ model for the purposes of
264 interpretation. We confirmed that all ‘preferred’ models satisfied modeling assumptions by
265 inspecting model diagnostic plots.

266 We performed this model selection approach on five different data subsets (Tables S3-6):
267 (a) all herbivores for which soil nutrient data were available ($N = 159$), (b) all herbivores ($N =$
268 210) but excluding all soil nutrient variables from global models, (c) only herbivores less than
269 500 kg ($N = 192$), (d) only herbivores between 50 kg and 500 kg ($N = 81$), and (e) only ungulates
270 (herbivores in the orders Artiodactyla and Perissodactyla; $N = 175$). Results are consistent across
271 all five datasets unless otherwise noted.

272 Next, we performed a phylogenetic paired *t*-test with the *phytools*::*phyl.pairedttest*
273 function (Garland *et al.*, 1993; Lindenfors *et al.*, 2010; Revell, 2012) to compare the grass
274 dependence of herbivores between the growing season and dormant season to determine how the
275 functional composition of herbivore diets changes across seasons. We repeated this test using
276 only the subset of herbivores that exhibit any amount of seasonal diet shift ($|\Delta \text{diet}_{\text{grow-dorm}}| > 0$; N
277 = 143) to evaluate the magnitude of dietary shifts for those herbivores that exhibit any seasonal
278 diet variation at all.

279 We then performed phylogenetic analyses of variance (phylANOVA) to explicitly
280 compare traits and strategies between tropical and extratropical herbivores using

281 *phytools::phylANOVA* (Garland *et al.*, 1993; Lindenfors *et al.*, 2010; Revell, 2012). We
282 performed separate tests to evaluate if extratropical and tropical herbivores differed in their mean
283 body mass, mean dependence on grass, propensity for migration, and magnitude of seasonal diet
284 shifts. Likewise, we performed Kolmogorov–Smirnov tests (KS tests) to compare whether the
285 distributions of these traits and strategies differed between extratropical and tropical herbivores
286 using *stats::ks.test*. We did this for all five data subsets from above, and also using both 35° N/S
287 and 23.5° N/S as the boundary separating tropical and extratropical herbivores (Table S8).
288 Because results were largely the same regardless of which classification criteria was used, we
289 present only the results with 35° N/S as the boundary in *Results* (but see Supporting Material for
290 both sets of results). Also, as above, we subsetted our dataset for only herbivores that exhibit
291 some amount of seasonal dietary shifting (*i.e.*, with $|\Delta \text{ diet}_{\text{grow-dorm}}| > 0$; $N = 143$) to specifically
292 test if extratropical and tropical herbivores differed in the magnitude of seasonal diet shifts, again
293 using *phylANOVA*.

294 When 35° N/S was used as the boundary between tropical and extratropical herbivores,
295 tropical herbivores vastly outnumbered extratropical herbivores ($N_{\text{trop}} = 164$, $N_{\text{extr}} = 46$).
296 Therefore, to account for these differences in sample size, we used bootstrapping: we randomly
297 subsampled our dataset for *ca.* 30% of tropical herbivores ($N = 30$ –66) and all extratropical
298 herbivores ($N = 46$) and reran analyses on this subset 1,000 times. Here we report 95%
299 confidence intervals on observed relationships across bootstrap iterations and/or the number of
300 bootstrap iterations for which relationships were significant ($P < 0.05$). This was not necessary
301 when 23.5° N/S was used as the boundary, as the numbers of herbivores in each group were
302 more balanced ($N_{\text{trop}} = 118$, $N_{\text{extr}} = 92$).

303

304 **RESULTS**305 *Herbivore traits and strategies*

306 Herbivore body mass was not predictable from any of the environmental variables
307 included here (Table S4). The intercept-only model was the preferred model. Temperature
308 variables (both mean annual temperature and spatial variation in mean annual temperature) were
309 included in lower ranked models, as were soil nutrient variables. However, these models were
310 not preferable to the null model, indicating that temperature and possibly also soil nutrient
311 content may contribute to determining herbivore body size but seem to play only a minor role at
312 macroecological scales.

313 Grass consumption was best predicted by herbivore body mass alone (Table S5). For all
314 data subsets excepting herbivores between 50 kg and 500 kg, the best model of grass dependence
315 included body mass as the sole predictor (Table S5). In all cases, body mass had a positive effect
316 on herbivore grass consumption (Fig. 2), indicating that larger-bodied species were more grass
317 dependent. For herbivores between 50 kg and 500 kg, the best model was the intercept only
318 model, though the model with body mass as the sole predictor of grass dependence remained a
319 preferred model (Table S5). This suggested that the relationship between grass dependence and
320 body mass largely resulted from the smallest and largest herbivores, and that herbivores in this
321 intermediate body size envelope were comparatively unconstrained in their diets (Fig. 2). Results
322 were consistent whether average, growing season, or dormant season grass consumption data
323 were used.

324 Migration was best predicted by latitude, growing season grass dependence, and body
325 mass. All three variables had a positive effect on migration (Fig. 3), with larger grazers at high
326 latitudes most likely to migrate. The predictive power of body mass diminished when only

327 herbivores between 50 and 500 kg were considered, replaced instead by spatial variation in mean
328 annual temperature (Table S6). We found some support for both non-linear and linear
329 relationships between migration and body mass, though a non-linear relationship only marginally
330 improved model fit (Table S6). Also, when herbivores > 500 kg were excluded, a linear
331 relationship was preferred to a non-linear one (Table S6). As such, we interpret our analyses to
332 suggest that migration is indeed most widespread among larger-bodied taxa, rather than among
333 herbivores of intermediate size. We found that no herbivores < 20 kg were migratory (Fig. 3a),
334 possibly suggesting a morphological or energetic lower bound below which migration is
335 infeasible (Brown *et al.*, 2004; Hein *et al.*, 2012; Joly *et al.*, 2019; Kaufmann, 1974).

336 Seasonal diet shifts were best predicted by an herbivore's growing season grass
337 dependence alone (Table S7) across all data subsets, with diet shifts that peaked at intermediate
338 grass dependencies (Fig. 4); herbivores with mixed diets even in the growing season (*e.g.*,
339 herbivores that consumed both grass and browse even when resources were abundant) exhibited
340 the largest seasonal diet shifts, whereas herbivores that were specialized on either grass or
341 browse in the growing season exhibited smaller seasonal shifts in their diets.

342 Across all herbivores, diets typically shifted to incorporate more grass during the growing
343 season (Fig. S1). Herbivores consumed on average 4.6% [2.7%, 6.5%] more grass during the
344 growing season than during the dormant season (phylogenetic paired *t*-test; $df = 207$, $t = 4.801$, P
345 < 0.001), indicating a preference for grass when it is growing and comparatively nutrient-rich
346 (Scanlon *et al.*, 2005). Among herbivores that exhibited any seasonal diet variation (*i.e.*, with
347 $|\Delta\text{diet}_{\text{grow-dorm}}| > 0$), dietary grass content increased by 6.9% [4.2%, 9.6%] in the growing season
348 relative to the dormant season (phylogenetic paired *t*-test; $df = 140$, $t = 5.038$, $P < 0.001$). Thus,
349 while mean increases in growing season grass consumption were 4.6% across all herbivores, an

350 increase of 6.9% more accurately reflects the expected diet shift for an herbivore that exhibited
351 any seasonal diet variation. Still, seasonal diet shifts were much larger than this for some
352 herbivores: predicted seasonal diet shifts peaked at *ca.* 20% for herbivores with intermediate
353 diets (mixed feeders) (Fig. 4).

354

355

356 *Tropical and extratropical herbivores*

357 Extratropical and tropical herbivores did not differ in their mean body masses
358 (phylANOVA; $df = 208, F = 0.824, P = 0.591$), but the distributions of body masses differed
359 significantly (KS test; $D = 0.262, P = 0.011$), with comparatively fewer extratropical herbivores
360 at the extremes of the body size continuum (Fig. S2). Extratropical and tropical herbivores also
361 had similar grass dependencies, both in mean (phylANOVA; $df = 208, F = 0.444, P = 0.712$) and
362 in distribution (KS tests; $D = 0.184, P = 0.176$). For both extratropical and tropical herbivores,
363 diet distributions were roughly trimodal, with the largest peak corresponding to 0-20% dietary
364 grass (browsers), the next largest peak 80-100% grass (grazers), and the final peak at 40-60%
365 grass (mixed feeders) (Fig. S2). These three peaks were particularly evident during the dormant
366 season (Fig. S2).

367 In contrast, the role of body size in determining herbivore grass dependence differed
368 between tropical and extratropical herbivores. The relationship between grass dependence and
369 body mass disappeared when only extratropical herbivores were considered (PGLS; $df = 44, t =$
370 $0.696, P = 0.490$), but was robust when only tropical herbivores were considered (PGLS; df
371 $= 162, t = 3.541, P < 0.001$). Differences between tropical and extratropical herbivores were not
372 an artefact of different sample sizes; when we bootstrapped tropical herbivores to extratropical

373 sample sizes ($\times 1,000$ iterations), grass dependence consistently increased with body size (slope =
374 0.1663; 95% CI = [0.021, 0.311]).

375 Migration was more widespread among extratropical herbivores than tropical herbivores
376 (phylANOVA; $df = 207, F = 33.537, P = 0.001$). This result held regardless of whether only
377 ungulates were considered (phylANOVA; $df = 172, F = 37.108, P = 0.001$), only herbivores
378 smaller than 500 kg (phylANOVA; $df = 189, F = 36.796, P = 0.001$), or only herbivores between
379 50 kg and 500 kg (phylANOVA; $df = 78, F = 11.609, P = 0.007$), and was significant in 999 of
380 1,000 bootstrap iterations. Likewise, the distribution of migration differed substantially between
381 extratropical and tropical herbivores (KS test; $D = 0.444, P < 0.001$), being more widespread
382 across body sizes and feeding guilds among extratropical herbivores (Fig. S2). Indeed, migration
383 was nearly ubiquitous among extratropical herbivores > 20 kg (Fig. 3).

384 Finally, extratropical and tropical herbivores differed somewhat in their dietary flexibility
385 (phylANOVA; $df = 207, F = 10.115, P = 0.013$). Extratropical herbivores exhibited larger diet
386 shifts than did tropical herbivores, altering their diets on average 1.2% [1.0%, 1.4%] more
387 between seasons than tropical herbivores. When only herbivores that exhibited some amount of
388 seasonal diet shifts (*i.e.*, with $|\Delta \text{diet}_{\text{grow-dorm}}| > 0$) were considered, however, tropical and
389 extratropical herbivores did not differ in the magnitude of these seasonal diet shifts
390 (phylANOVA; $df = 140, F = 1.977, P = 0.434$). Taken together, these results suggest that the
391 difference between extratropical and tropical herbivores is in the proportion of herbivores that
392 shift their diets rather than the magnitude of the dietary shifts (Table 1). The distribution of diet
393 shifts differed somewhat between extratropical and tropical herbivores (KS test; $D = 0.364, P =$
394 0.001), though this result is likely a sample size artifact, as diet shifts were more prevalent

395 among extratropical herbivores in only 505 out of 1,000 bootstrap iterations of the tropical
396 herbivore subsets.

397

398 **DISCUSSION**

399 Altogether, our results resolve long-standing uncertainties regarding what constrains
400 herbivore strategies and demonstrate that several key hypotheses, hitherto only suggested from
401 metabolic theory and scattered case studies, scale up to explain covariation in herbivore body
402 size, diet, and seasonal strategies at macroecological scales. In particular, we found (1) that grass
403 consumption increased with body size across large-bodied mammalian herbivores, but that this
404 relationship broke down among extratropical herbivores. Also, (2) migration was more prevalent
405 among grass-dependent herbivores, at high latitudes, and among large-bodied herbivores. In
406 contrast, (3) herbivores with intermediate growing season grass dependency (*i.e.*, mixed feeders)
407 exhibited the largest seasonal diet shifts. Finally, (4) though extratropical herbivores were more
408 restricted in body size and grass dependency, they more ubiquitously employed seasonal
409 strategies.

410 First and foremost, we found support for the hypothesis that body size and grass
411 dependence influenced seasonal strategies (see also Abraham *et al.*, 2019). As predicted,
412 migration was most common among relatively large species (Webber & McGuire, 2021),
413 perhaps because, as modeling work suggests (Bhat *et al.*, 2020; Hein *et al.*, 2012), their energetic
414 costs of movement are lower. We found that no herbivores below 20 kg were migratory,
415 implying a lower bound for body size below which migration is not energetically or
416 morphologically feasible (Hein *et al.*, 2012; Scott, 1985). Indeed, such a lower bound on
417 migration has been invoked to explain the conspicuous lack of migration among extant

418 kangaroos and their relatives (Kaufmann, 1974; McGowan *et al.*, 2008), which straddle this body
419 size threshold (McGowan *et al.*, 2008).

420 Interestingly, body size did not appear to influence the distribution of seasonal diet shifts,
421 except insofar as it determined grass dependence. Larger-bodied species consumed more grass
422 (Bell, 1971; Janis, 2008; Jarman, 1974): because grass is a homogeneous and widespread forage
423 pool relative to other plant functional types (Bhat *et al.*, 2020; Toljagić *et al.*, 2018), specializing
424 on grass may allow large herbivores to minimize searching costs associated with their bulky
425 forage requirements (Bhat *et al.*, 2020; Hopcraft *et al.*, 2010) (though the mechanism
426 underpinning this relationship is not entirely resolved; Table 1). Though grass seemingly better
427 fits the energetic needs of large herbivores as compared to small herbivores (Bhat *et al.*, 2020),
428 body size explained only *ca.* 9% of the variation in grass dependence across herbivores,
429 suggesting that other factors not captured in our analyses contribute to determining herbivore
430 grass dependence (Table 1).

431 Grass dependence in turn plays a key role in promoting herbivore strategies, more even
432 than body size. Migration was most prevalent among grass-dependent herbivores, a relationship
433 that has long been noted across African savannas (Fryxell & Sinclair, 1988; Jarman, 1974), but
434 appears to hold more globally. Indeed, grass productivity is comparatively responsive to
435 seasonality relative to other plant functional types (Scanlon *et al.*, 2005), such that grass-
436 specialist herbivores seem to employ migration to navigate seasonal changes in grass availability
437 and quality (Fryxell & Sinclair, 1988). Relatedly, seasonal diet shifts were most prevalent among
438 mixed feeders, defined as herbivores that consume intermediate amounts of grass even during
439 periods of abundance. Mixed feeders have broad dietary niches that transcend plant functional
440 types (Kartzin & Pringle, 2020), and our results suggest that a wide dietary niche may be

441 crucial for allowing seasonal dietary flexibility. As such, some axis of herbivore biology clearly
442 influences the plants that herbivores utilize (Abraham *et al.*, 2019; Kartzinel & Pringle, 2020),
443 though it is unclear if dietary niche breadth is determined by physiology/morphology (specific
444 adaptations to diet; Toljagić *et al.*, 2018) or behavior (distinct preferences for vegetation types;
445 Gagnon & Chew, 2000) (Table 1).

446 Our finding that body size and grass dependence are interconnected and mediate
447 herbivore strategies, particularly migration, has intriguing implications for herbivore evolution
448 (Table 1). Other work has posited that large body sizes in mammalian herbivores may have
449 evolved with the proliferation of grasses as a result of a more homogeneous resource-scape (Bhat
450 *et al.*, 2020; Janis, 1993, 2008), and the global relationship between body size and grass
451 dependence we recover lends credence to this possibility. Still, large-bodied herbivores exist in
452 the fossil record well before the proliferation of grasses (Janis, 1993; Smith *et al.*, 2010). As
453 such, the relationship between body size and grass consumption may be an exaptation; mammals
454 may have already been large for other reasons, but then evolved to specialize on grasses with
455 their rise to dominance due to the unique nutrient profile and spatial distribution of grasses (Bhat
456 *et al.*, 2020; Janis, 2008; Scanlon *et al.*, 2005). Relatedly, migration may play a role in
457 moderating the relationship between grass consumption and body size: large herbivores may
458 have been uniquely able to migrate and could thereby track grass productivity across the
459 landscape, resultantly becoming increasingly specialized on grass (Bhat *et al.*, 2020; Fryxell &
460 Sinclair, 1988; Toljagić *et al.*, 2018). Though we find strong evidence that these three
461 phenotypes – migration, large body size, and grass dependence – are linked, the causality of
462 these relationships remains unclear. Further studies should explicitly investigate the
463 directionality of these relationships via the fossil record and/or phylogenetic analyses.

464 Our results suggest that soil nutrient levels do not play a large role in determining
465 herbivore traits or strategies, contradicting hypotheses from metabolic theory (Olff *et al.*, 2002)
466 and evidence from African ecosystems that bulk-feeders dominate in high rainfall (nutrient-poor)
467 environments (Hempson *et al.*, 2015). On the one hand, differences in forage quality between
468 plant functional types may decouple herbivores from soil nutrition (Güsewell, 2004; Reich &
469 Oleksyn, 2004). Alternatively, soils data may simply be inadequate. As such, regional studies
470 may be necessary to determine the role of soil nutrients in constraining herbivore traits and
471 strategies (see, *e.g.*, Hempson *et al.*, 2015).

472 Finally, we found that seasonality did influence herbivore body size and grass
473 dependence and also increased the incidence of seasonal strategies, in line with existing
474 hypotheses (Aikens *et al.*, 2020; Albon & Langvatn, 1992; Bolger *et al.*, 2007; Singh *et al.*,
475 2012). Seasonal strategies were more widespread among extratropical herbivores (Fig. 5),
476 especially migration, which was far likelier at higher latitudes. Seasonal forage bottlenecks may
477 be stricter at higher latitudes (as plants not only stop growing during the dormant season but can
478 also become physically inaccessible under ice/snow; Albon & Langvatn, 1992; Bolger *et al.*,
479 2007; Singh *et al.*, 2012), or temperature seasonality may simply impose seasonally harsh
480 climatic conditions (Shaw, 2016).

481 Latitudinal effects on body size and diet were more complex. Extratropical herbivores
482 tended to have intermediate phenotypes (Fig. 5); although they did not differ in average body
483 size or grass dependence from tropical herbivores, extratropical herbivores occupied a smaller
484 range of body sizes and grass dependences. They were neither especially large nor small (see
485 also Freckleton *et al.*, 2003) and consistently incorporated more mixed diets. Additionally, the
486 clear increase in grass dependence with body size observed across all and tropical herbivores

487 broke down among extratropical herbivores (Fig. 2c), perhaps because large, grass-dependent
488 herbivores are missing from the herbivore community. These results together suggest that
489 extratropical herbivores may be less able to specialize on any one plant functional type. It may
490 also be the legacy of the size-selective extinction of Pleistocene megafauna (Barnosky, 2004),
491 which was particularly severe among large-bodied grazers (Schowanek *et al.*, 2021).

492 Our results have multiple implications for herbivore ecology in a changing world. Firstly,
493 extratropical herbivores may be comparatively well-equipped to respond to global change: as
494 high latitude regions warm and seasonality in productivity potentially decreases (Xu *et al.*,
495 2013), extratropical herbivores may experience some relief from the intense competition that
496 characterizes extratropical winters (Illius & O'Connor, 2000). Indeed, ballooning ungulate
497 populations in many extratropical ecosystems around the world suggest that this may already be
498 the case (Cote *et al.*, 2017; although this pattern is certainly due in part to the extirpation of
499 natural predators, see Estes *et al.*, 2011). By contrast, tropical herbivores are experiencing
500 increasing pressure from poaching, direct land-use change, and fragmentation of remaining
501 wildland, in tandem with climate-driven physiological stress (Veldhuis *et al.*, 2019) and
502 decreases in productivity (Cardillo *et al.*, 2005). Here we find that comparatively fewer tropical
503 herbivores possess strategies for coping with variable resource availability (see also (Abraham *et*
504 *al.*, 2019), which puts tropical herbivores lacking such strategies at risk of decline. Widespread
505 population declines that have already been documented among tropical herbivores (Ripple *et al.*,
506 2015) are therefore likely to continue, with cascading effects on vegetation as plants are freed
507 from widespread herbivory pressure (Estes *et al.*, 2011; Staver *et al.*, 2021). All in all, these
508 results suggest diverging trajectories for tropical and extratropical herbivores in the face of
509 global change.

510 **CONCLUSIONS**

511 We provided the first global-scale test of longstanding hypotheses about factors
512 influencing body mass, diet, and seasonal strategies across medium to large mammalian
513 herbivores. We found that larger herbivores tended to eat more grass, and that seasonal diet shifts
514 and migration were influenced by body mass and grass dependency, as well as the seasonality of
515 their environments. Indeed, we found that these seasonal behaviors were altogether more
516 widespread among extratropical herbivores, despite their intermediate diets and body sizes.
517 Together, these results imply that extreme seasonality in extratropical systems imposes severe
518 pressures on herbivores therein. As a result of extreme resource variability, extratropical
519 herbivores occupy a more restricted phenotypic space, exhibiting more intermediate body sizes
520 and generalist diets, while simultaneously exhibiting more widespread behavioral strategies for
521 mitigating these seasonal bottlenecks (Fig. 5).

522 Our findings confirm hypotheses from scattered case studies and suggest many avenues
523 for future research (see Table 1 for a set of possibilities), with far-reaching conservation
524 implications. Most directly, these results indicate that extratropical herbivores may be well-
525 suited to navigating global change. Extratropical herbivores may be able to utilize existing
526 strategies to respond to changing productivity patterns (Xu *et al.*, 2013), which could increase
527 top-down regulation of plant communities in extratropical regions (Cote *et al.*, 2017). By
528 contrast, in the tropics, where the distribution of these behaviors is more restricted, herbivores
529 may be less able to respond to changing resource distributions (Abraham *et al.*, 2019; Cardillo *et*
530 *al.*, 2005; Ripple *et al.*, 2015). These results add to a growing body of literature emphasizing the
531 precarious position of large-bodied tropical herbivores in a human-dominated future (Abraham *et*
532 *al.*, 2019; Cardillo *et al.*, 2005; Estes *et al.*, 2011; Ripple *et al.*, 2015; Staver *et al.*, 2021).

533 Conservation efforts will therefore necessarily differ between extratropical and tropical systems
534 and must strike a difficult balance between mitigating increased herbivore impacts in
535 extratropical systems while protecting large-bodied herbivores in the tropics.

536

537 **ACKNOWLEDGEMENTS**

538 We are grateful to the Staver lab for helpful feedback on this work. JOA was supported by the
539 United States National Science Foundation Graduate Research Fellowship Program. Partial
540 support for ACS was provided by a grant from the United States National Science Foundation to
541 ACS (MSB-1802453). JTF was supported by a grant from the United States National Science
542 Foundation to JTF (CNH-1826666). GPH was partially supported by the South African National
543 Research Foundation (#118847).

544 **REFERENCES**

545 Abraham, J. O., Hempson, G. P., & Staver, A. C. (2019). Drought-response strategies of savanna
546 herbivores. *Ecology and Evolution*, 9(12), 7047–7056. <https://doi.org/10.1002/ece3.5270>

547 Aikens, E. O., Mysterud, A., Merkle, J. A., Cagnacci, F., Rivrud, I. M., Hebblewhite, M.,
548 Hurley, M. A., Peters, W., Bergen, S., De Goeve, J., Dwinnell, S. P. H., Gehr, B.,
549 Heurich, M., Hewison, A. J. M., Jarnemo, A., Kjellander, P., Kröschel, M., Licoppe, A.,
550 Linnell, J. D. C., ... Kauffman, M. J. (2020). Wave-like Patterns of Plant Phenology
551 Determine Ungulate Movement Tactics. *Current Biology*, 30(17), 3444-3449.e4.
552 <https://doi.org/10.1016/j.cub.2020.06.032>

553 Albon, S. D., & Langvatn, R. (1992). Plant Phenology and the Benefits of Migration in a
554 Temperate Ungulate. *Oikos*, 65(3), 502–513. <https://doi.org/10.2307/3545568>

555 Arman, S. D., & Prideaux, G. J. (2015). Dietary classification of extant kangaroos and their
556 relatives (Marsupialia: Macropodoidea). *Austral Ecology*, 40(8), 909–922.
557 <https://doi.org/10.1111/aec.12273>

558 Barnosky, A. D. (2004). Assessing the Causes of Late Pleistocene Extinctions on the Continents.
559 *Science*, 306(5693), 70–75. <https://doi.org/10.1126/science.1101476>

560 Batjes, N. H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., & Mendes de Jesus, J.
561 (2017). WoSIS: Providing standardised soil profile data for the world. *Earth System
562 Science Data*, 9(1), 1–14. <https://doi.org/10.5194/essd-9-1-2017>

563 Bell, R. V. (1971). A Grazing Ecosystem in the Serengeti. *Scientific American*, 225(1), 86–93.

564 Berger, J. (2004). The Last Mile: How to Sustain Long-Distance Migration in Mammals.
565 *Conservation Biology*, 18(2), 320–331.

566 Bergesen, H. O., Parmann, G., & Thommessen, Ø. B. (Eds.). (2018). Convention on the
567 Conservation of Migratory Species of Wild Animals (CMS). In H. O. Bergesen, G.
568 Parmann, & Ø. B. Thommessen, *Yearbook of International Cooperation on Environment
569 and Development 1998–99* (1st ed., pp. 154–155). Routledge.
570 <https://doi.org/10.4324/9781315066547-40>

571 Bhat, U., Kempes, C. P., & Yeakel, J. D. (2020). Scaling the risk landscape drives optimal life-
572 history strategies and the evolution of grazing. *Proceedings of the National Academy of
573 Sciences*, 117(3), 1580–1586. <https://doi.org/10.1073/pnas.1907998117>

574 Bolger, D. T., Morrison, T. A., & Doak, D. F. (2007). *The need for integrative approaches to
575 understand and conserve migratory ungulates*. 15.

576 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a
577 Metabolic Theory of Ecology. *Ecology*, 85(7), 1771–1789. [https://doi.org/10.1890/03-9000](https://doi.org/10.1890/03-
578 9000)

579 Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W.,
580 Orme, C. D. L., & Purvis, A. (2005). Multiple Causes of High Extinction Risk in Large
581 Mammal Species. *Science*, 309(5738), 1239–1241.
582 <https://doi.org/10.1126/science.1116030>

583 Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., Ruiter, D. D., Sealy, J., Grant, R., &
584 Fourie, N. (2007). Diets of savanna ungulates from stable carbon isotope composition of
585 faeces. *Journal of Zoology*, 273(1), 21–29. [https://doi.org/10.1111/j.1469-7998.2007.00292.x](https://doi.org/10.1111/j.1469-
586 7998.2007.00292.x)

587 Cote, J., Bocedi, G., Debeffe, L., Chudzińska, M. E., Weigang, H. C., Dytham, C., Gonzalez, G.,
588 Matthysen, E., Travis, J., Baguette, M., & Hewison, A. J. M. (2017). Behavioural

589 synchronization of large-scale animal movements—Disperse alone, but migrate
590 together?: Synchronization of large-scale animal movements. *Biological Reviews*, 92(3),
591 1275–1296. <https://doi.org/10.1111/brv.12279>

592 Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S.
593 R., Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J., Oksanen, L., Oksanen,
594 T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T.
595 W., ... Wardle, D. A. (2011). Trophic Downgrading of Planet Earth. *Science*, 333(6040),
596 301–306. <https://doi.org/10.1126/science.1205106>

597 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces
598 for global land areas. *International Journal of Climatology*, 37(12), 4302–4315.
599 <https://doi.org/10.1002/joc.5086>

600 Freckleton, R. P., Harvey, P. H., & Pagel, M. (2003). Bergmann's Rule and Body Size in
601 Mammals. *The American Naturalist*, 161(5), 821–825. <https://doi.org/10.1086/374346>

602 Fryxell, J. M., & Sinclair, A. R. E. (1988). Causes and consequences of migration by large
603 herbivores. *Trends in Ecology & Evolution*, 3(9), 237–241. [https://doi.org/10.1016/0169-5347\(88\)90166-8](https://doi.org/10.1016/0169-5347(88)90166-8)

604 Gagnon, M., & Chew, A. E. (2000). Dietary Preferences in Extant African Bovidae. *Journal of
605 Mammalogy*, 81(2), 490–511. [https://doi.org/10.1644/1545-1542\(2000\)081<0490:DPIEAB>2.0.CO;2](https://doi.org/10.1644/1545-1542(2000)081<0490:DPIEAB>2.0.CO;2)

606 Garland, T., Jr., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic Analysis of
607 Covariance by Computer Simulation. *Systematic Biology*, 42(3), 265–292.
608 <https://doi.org/10.1093/sysbio/42.3.265>

611 Güsewell, S. (2004). N: P ratios in terrestrial plants: variation and functional significance. *New*
612 *Phyto**logist*, 164(2), 243–266. <https://doi.org/10.1111/j.1469-8137.2004.01192.x>

613 Harris, G., Thirgood, S., Hopcraft, J. G. C., Crome, J. P. G. M., & Berger, J. (2009). Global
614 decline in aggregated migrations of large terrestrial mammals. *Endangered Species*
615 *Research*, 7(1), 55–76. <https://doi.org/10.3354/esr00173>

616 Hein, A. M., Hou, C., & Gillooly, J. F. (2012). Energetic and biomechanical constraints on
617 animal migration distance. *Ecology Letters*, 15(2), 104–110.
618 <https://doi.org/10.1111/j.1461-0248.2011.01714.x>

619 Hempson, G. P., Archibald, S., & Bond, W. J. (2015). A continent-wide assessment of the form
620 and intensity of large mammal herbivory in Africa. *Science*, 350(6264), 1056–1061.
621 <https://doi.org/10.1126/science.aac7978>

622 Holdo, R. M., Holt, R. D., & Fryxell, J. M. (2009). Opposing Rainfall and Plant Nutritional
623 Gradients Best Explain the Wildebeest Migration in the Serengeti. *The American*
624 *Naturalist*, 173(4), 431–445. <https://doi.org/10.1086/597229>

625 Hopcraft, J. G. C., Holdo, R. M., Mwangomo, E., Mduma, S. A. R., Thirgood, S. J., Borner, M.,
626 Fryxell, J. M., Olff, H., & Sinclair, A. R. E. (2015). 6. Why Are Wildebeest the Most
627 Abundant Herbivore in the Serengeti Ecosystem? In *Serengeti IV: Sustaining Biodiversity*
628 *in a Coupled Human-Natural System* (pp. 125–174). University of Chicago Press.
629 <https://doi.org/10.7208/9780226196336-007>

630 Hopcraft, J. G. C., Olff, H., & Sinclair, A. R. E. (2010). Herbivores, resources and risks:
631 Alternating regulation along primary environmental gradients in savannas. *Trends in*
632 *Ecology & Evolution*, 25(2), 119–128. <https://doi.org/10.1016/j.tree.2009.08.001>

633 Illius, A. W., & O'Connor, T. G. (2000). Resource heterogeneity and ungulate population
634 dynamics. *Oikos*, 89(2), 283–294. <https://doi.org/10.1034/j.1600-0706.2000.890209.x>

635 IUCN. (2019). *The IUCN Red List of Threatened Species*. IUCN Red List of Threatened Species.
636 <https://www.iucnredlist.org/en>

637 Janis, C. M. (1993). Tertiary Mammal Evolution in the Context of Changing Climates,
638 Vegetation, and Tectonic Events. *Annual Review of Ecology and Systematics*, 24, 467–
639 500.

640 Janis, C. M. (2008). An Evolutionary History of Browsing and Grazing Ungulates. In I. J.
641 Gordon & H. H. T. Prins (Eds.), *The Ecology of Browsing and Grazing* (pp. 21–45).
642 Springer. https://doi.org/10.1007/978-3-540-72422-3_2

643 Jarman, P. J. (1974). The Social Organisation of Antelope in Relation To Their Ecology.
644 *Behaviour*, 48(1–4), 215–267. <https://doi.org/10.1163/156853974X00345>

645 Joly, K., Gurarie, E., Sorum, M. S., Kaczensky, P., Cameron, M. D., Jakes, A. F., Borg, B. L.,
646 Nandintsetseg, D., Hopcraft, J. G. C., Buuveibaatar, B., Jones, P. F., Mueller, T., Walzer,
647 C., Olson, K. A., Payne, J. C., Yadamsuren, A., & Hebblewhite, M. (2019). Longest
648 terrestrial migrations and movements around the world. *Scientific Reports*, 9(1), 15333.
649 <https://doi.org/10.1038/s41598-019-51884-5>

650 Kartzinel, T. R., & Pringle, R. M. (2020). Multiple dimensions of dietary diversity in large
651 mammalian herbivores. *Journal of Animal Ecology*, 89(6), 1482–1496.
652 <https://doi.org/10.1111/1365-2656.13206>

653 Kaufmann, J. H. (1974). The Ecology and Evolution of Social Organization in the Kangaroo
654 Family (Macropodidae). *American Zoologist*, 14(1), 51–62.
655 <https://doi.org/10.1093/icb/14.1.51>

656 Lindenfors, P., Revell, L. J., & Nunn, C. L. (2010). Sexual dimorphism in primate aerobic
657 capacity: A phylogenetic test. *Journal of Evolutionary Biology*, 23(6), 1183–1194.
658 <https://doi.org/10.1111/j.1420-9101.2010.01983.x>

659 McGowan, C. P., Skinner, J., & Biewener, A. A. (2008). Hind limb scaling of kangaroos and
660 wallabies (superfamily Macropodoidea): Implications for hopping performance, safety
661 factor and elastic savings. *Journal of Anatomy*, 212(2), 153–163.
662 <https://doi.org/10.1111/j.1469-7580.2007.00841.x>

663 Olff, H., Ritchie, M. E., & Prins, H. H. T. (2002). Global environmental controls of diversity in
664 large herbivores. *Nature*, 415(6874), 901–904. <https://doi.org/10.1038/415901a>

665 Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in
666 R language. *Bioinformatics*, 20(2), 289–290.
667 <https://doi.org/10.1093/bioinformatics/btg412>

668 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2007). Linear and nonlinear
669 mixed effects models. *R Package Version*, 3(57), 1–89.

670 R Core Team. (2020). *R: A language and environment for statistical computing*. (3.6.1)
671 [Computer software]. R Foundation for Statistical Computing.

672 Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to
673 temperature and latitude. *Proceedings of the National Academy of Sciences*, 101(30),
674 11001–11006. <https://doi.org/10.1073/pnas.0403588101>

675 Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other
676 things). *Methods in Ecology and Evolution*, 3(2), 217–223.
677 <https://doi.org/10.1111/j.2041-210X.2011.00169.x>

678 Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W.,
679 Kerley, G. I. H., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E.,
680 Sandom, C. J., Terborgh, J., & Van Valkenburgh, B. (2015). Collapse of the world's
681 largest herbivores. *Science Advances*, 1(4), e1400103.
682 <https://doi.org/10.1126/sciadv.1400103>

683 Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004).
684 A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production.
685 *BioScience*, 54(6), 547–560. [https://doi.org/10.1641/0006-3568\(2004\)054\[0547:ACSMOG\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2)

687 Ryan, C. M., Williams, M., Grace, J., Woollen, E., & Lehmann, C. E. R. (2017). Pre-rain green-
688 up is ubiquitous across southern tropical Africa: Implications for temporal niche
689 separation and model representation. *New Phytologist*, 213(2), 625–633.
690 <https://doi.org/10.1111/nph.14262>

691 Scanlon, T. M., Caylor, K. K., Manfreda, S., Levin, S. A., & Rodriguez-Iturbe, I. (2005).
692 Dynamic response of grass cover to rainfall variability: Implications for the function and
693 persistence of savanna ecosystems. *Advances in Water Resources*, 28(3), 291–302.
694 <https://doi.org/10.1016/j.advwatres.2004.10.014>

695 Schowanek, S. D., Davis, M., Lundgren, E. J., Middleton, O., Rowan, J., Pedersen, R. Ø., Ramp,
696 D., Sandom, C. J., & Svenning, J.-C. (2021). Reintroducing extirpated herbivores could
697 partially reverse the late Quaternary decline of large and grazing species. *Global Ecology
698 and Biogeography*, 30(4), 896–908. <https://doi.org/10.1111/geb.13264>

699 Scott, K. M. (Kathleen M. (1985). *Allometric trends and locomotor adaptations in the Bovidae*.
700 *Bulletin of the AMNH* ; v. 179, article 2. <https://digilibRARY.amnh.org/handle/2246/1005>

701 Shaw, A. K. (2016). Drivers of animal migration and implications in changing environments.

702 *Evolutionary Ecology*, 30(6), 991–1007. <https://doi.org/10.1007/s10682-016-9860-5>

703 Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N., & Ericsson, G. (2012). From migration to

704 nomadism: Movement variability in a northern ungulate across its latitudinal range.

705 *Ecological Applications*, 22(7), 2007–2020. <https://doi.org/10.1890/12-0245.1>

706 Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R.,

707 Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S.

708 K., McCain, C., Okie, J. G., Saarinen, J. J., Sibly, R. M., Stephens, P. R., Theodor, J., &

709 Uhen, M. D. (2010). The Evolution of Maximum Body Size of Terrestrial Mammals.

710 *Science*, 330(6008), 1216–1219. <https://doi.org/10.1126/science.1194830>

711 Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T., & Faith, J. T. (2021). The past,

712 present, and future of herbivore impacts on savanna vegetation. *Journal of Ecology*,

713 109(8), 2804–2822. <https://doi.org/10.1111/1365-2745.13685>

714 Staver, A. C., & Hempson, G. P. (2020). Seasonal dietary changes increase the abundances of

715 savanna herbivore species. *Science Advances*, 6(40), eabd2848.

716 <https://doi.org/10.1126/sciadv.abd2848>

717 Toljagić, O., Voje, K. L., Matschiner, M., Liow, L. H., & Hansen, T. F. (2018). Millions of

718 Years Behind: Slow Adaptation of Ruminants to Grasslands. *Systematic Biology*, 67(1),

719 145–157. <https://doi.org/10.1093/sysbio/syx059>

720 Upham, N. S., Esselstyn, J. A., & Jetz, W. (2019). Inferring the mammal tree: Species-level sets

721 of phylogenies for questions in ecology, evolution, and conservation. *PLOS Biology*,

722 17(12), e3000494. <https://doi.org/10.1371/journal.pbio.3000494>

723 Veldhuis, M. P., Kihwele, E. S., Cromeis, J. P. G. M., Ongutu, J. O., Hopcraft, J. G. C.,

724 Owen-Smith, N., & Olff, H. (2019). Large herbivore assemblages in a changing climate:

725 Incorporating water dependence and thermoregulation. *Ecology Letters*, ele.13350.

726 <https://doi.org/10.1111/ele.13350>

727 Walker, E. P., Warnick, F., Hamlet, S. E., Lange, K. I., Davis, M. A., Uible, H. E., Wright, P. F.,

728 & Paradiso, J. L. (1968). *Mammals of the world* (1st ed.). Johns Hopkins University

729 Press.

730 Webber, Q. M. R., & McGuire, L. P. (2021). Heterothermy, body size, and locomotion as

731 ecological predictors of migration in mammals. *Mammal Review*, n/a(n/a).

732 <https://doi.org/10.1111/mam.12263>

733 Wilman, H., Belmaker, J., Simpson, J., Rosa, C. de la, Rivadeneira, M. M., & Jetz, W. (2014).

734 EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals.

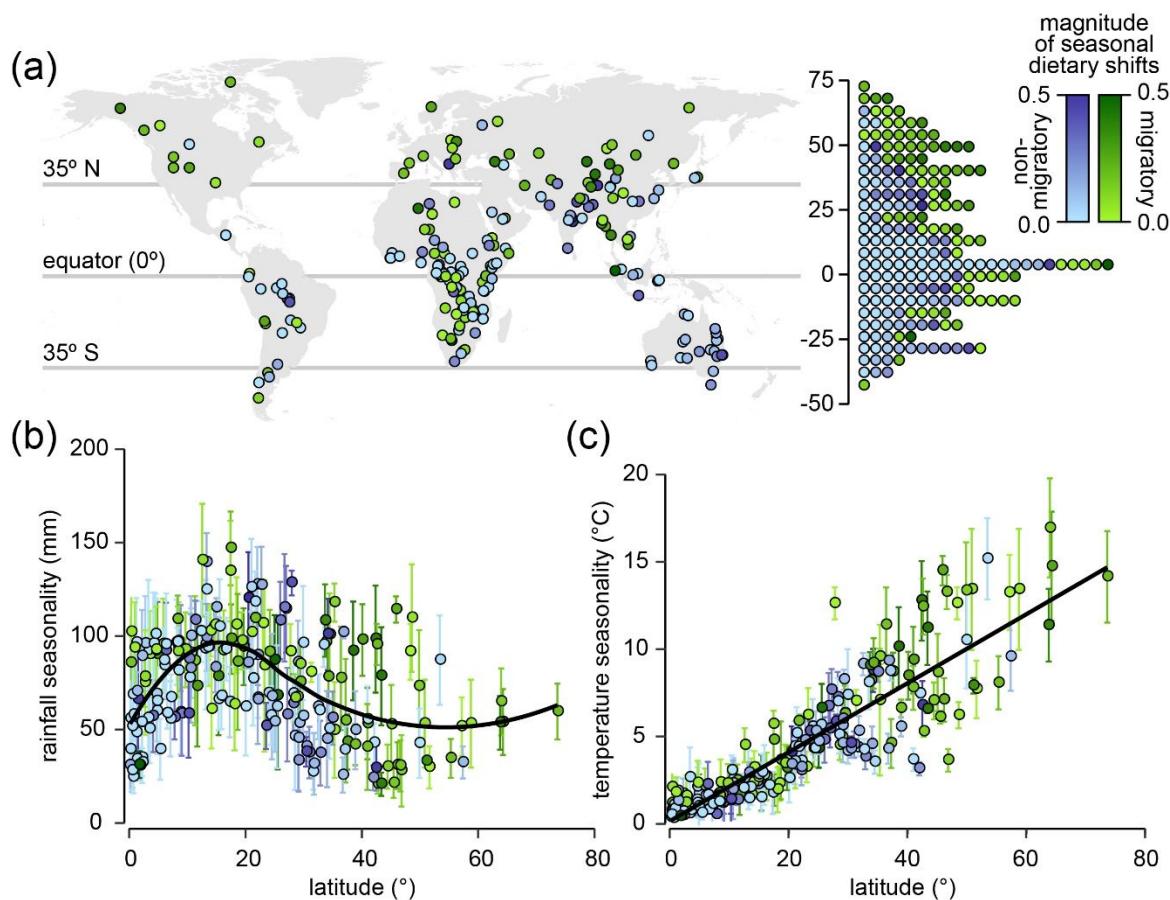
735 *Ecology*, 95(7), 2027–2027. <https://doi.org/10.1890/13-1917.1>

736 Xu, L., Myneni, R. B., Chapin III, F. S., Callaghan, T. V., Pinzon, J. E., Tucker, C. J., Zhu, Z.,

737 Bi, J., Ciais, P., Tømmervik, H., Euskirchen, E. S., Forbes, B. C., Piao, S. L., Anderson,

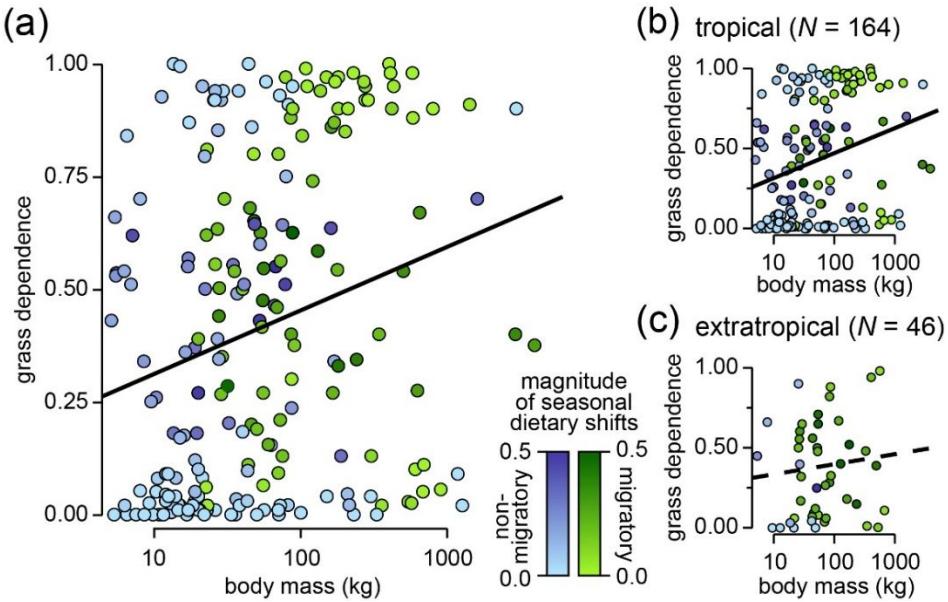
738 B. T., Ganguly, S., Nemani, R. R., Goetz, S. J., Beck, P. S. A., Bunn, A. G., ... Stroeve,

739 J. C. (2013). Temperature and vegetation seasonality diminishment over northern lands.


740 *Nature Climate Change*, 3(6), 581–586. <https://doi.org/10.1038/nclimate1836>

741

742 TABLES

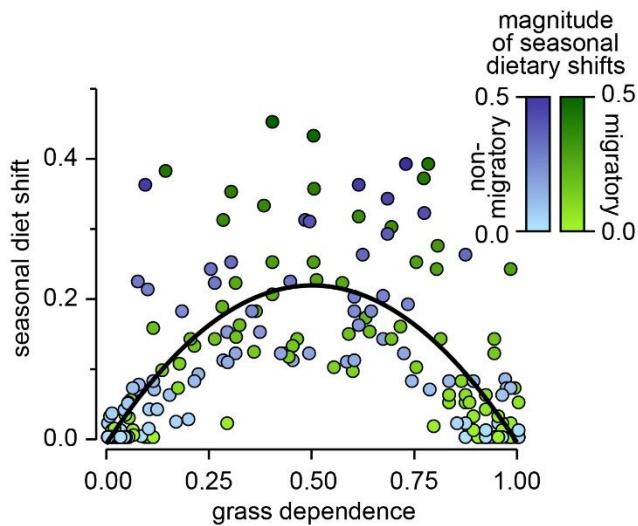

743 Table 1. Directions for future research.

<p>Mechanism underlying Jarman-Bell: Though we recovered support for increasing grass consumption with larger body size, consistent with the Jarman-Bell Principle, the underlying mechanisms for Jarman-Bell remain unclear: the Jarman-Bell Principle may result from sub-unity scaling of metabolism with body size, larger gut capacities and longer gut retention times of large herbivores, or the scaling of resource distributions with body size (Bell, 1971; Bhat <i>et al.</i>, 2020; Jarman, 1974). Additionally, we found substantial variation in grass dependency not explained by body size. <i>What mechanism underlies the Jarman-Bell Principle? And what determines the large variability in grass dependence not explained by body size?</i></p>
<p>Evolutionary links between body size, grass consumption, and migration: Body size, grass dependence, and migration were all interrelated: large herbivores consumed more grass and migrated more, and migratory herbivores ate more grass. <i>How does the timing of body size evolution in mammalian herbivores relate to the expansion of grasslands since the late Miocene? Was the expansion of grasslands related to the evolution of migratory strategies? Is migration related to body size evolution of mammals through the Cenozoic?</i></p>
<p>Migration and the Pleistocene megafaunal extinctions: Large-bodied animals disproportionately went extinct during the late Pleistocene (Barnosky, 2004). We found that the largest extant herbivores were disproportionately migratory. Furthermore, contemporary migratory collapse has driven many large herbivores closer to extinction (Harris <i>et al.</i>, 2009). <i>Was migration prevalent among now-extinct Pleistocene megafauna? Did the disruption of migratory pathways—by human impacts or climate-driven environmental changes—contribute to the demise of Pleistocene megafauna?</i></p>
<p>History and cost of mixed feeding: Mixed feeding herbivores sustain larger population sizes than their specialist counterparts (Staver & Hempson, 2020), despite presumed energetic costs of generalism (e.g., constraints on bite size and/or digestive efficiency). However, we found that mixed feeder diversity was low. <i>Were mixed feeders dominant historically, as they are today? Or was mixed feeding a less beneficial strategy in the past, when ecosystems were grassier? Does this account for their low diversity?</i></p>
<p>Magnitudes and mechanisms of seasonal diet shifts: Observed seasonal diet shifts were of smaller magnitude than expected, peaking at <i>ca.</i> 20%. <i>What constrains the magnitude of seasonal diet shifts? How and at what scale do mixed feeders select for resources?</i></p>
<p>Latitudinal gradients in herbivore impacts: Extratropical herbivores were less diverse than tropical ones, exhibited more intermediate phenotypes, and were likelier to migrate and diet switch seasonally. <i>Are seasonal resource bottlenecks more extreme outside of the tropics because forage seasonality is uniform across plant functional types? Does reduced seasonality in the tropics translate to higher herbivore population densities, and resultantly larger herbivore impacts?</i></p>

745 **FIGURES**

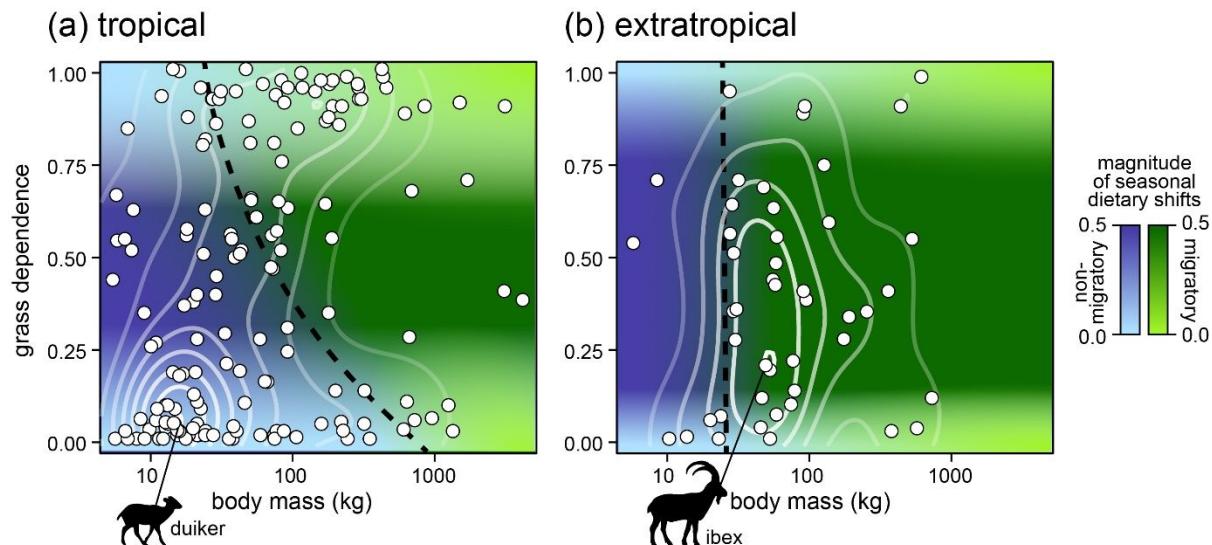

746

747 **Figure 1.** The global distribution of herbivores (a) and relationships between rainfall seasonality
 748 and latitude (b) and temperature seasonality and latitude (c) across herbivore species' ranges.
 749 Points in (a) correspond to species range centroids. Herbivores are distributed across every
 750 continent excluding Antarctica and experience a wide range of seasonally variable conditions.
 751 Point and error bar colors correspond to herbivore strategies, where *blue* corresponds to non-
 752 migratory herbivores, *green* corresponds to migratory herbivores, and *darker* colors reflect
 753 species that exhibit larger seasonal diet shifts. Note that migration is coded as a binary whereas
 754 diet shifts take proportional values.



755

756 **Figure 2.** The relationship between herbivore body mass and grass dependence across all
 757 herbivores (a; $N = 210$), across tropical herbivores (b; $N = 164$), and across extratropical
 758 herbivores (c; $N = 46$). Body mass was positively correlated with grass consumption in the
 759 global dataset, but this relationship broke down when only extratropical herbivores were
 760 considered. Point colors correspond to herbivore strategies, where *blue* points correspond to non-
 761 migratory herbivores, *green* points correspond to migratory herbivores, and *darker* points reflect
 762 species that exhibit larger seasonal diet shifts. *Solid* regression lines indicate significant
 763 relationships ($P < 0.05$), and a *dashed* line indicates a non-significant relationship ($P \geq 0.05$).



764 **Figure 3.** Relationships between migration and body mass (a), latitude (b), and grass dependence (c). All three were positively correlated with migratory behavior in herbivores. Point colors correspond to herbivore strategies, where *blue* points correspond to non-migratory herbivores, *green* points correspond to migratory herbivores, and *darker* points reflect species that exhibit larger seasonal diet shifts. The *light grey* box in (a) corresponds to the region of trait space where no herbivores exhibit migratory behavior, possibly suggesting energetic constraints on migration. *Solid* regression lines indicate significant relationships ($P < 0.05$).

772

773 **Figure 4.** The relationship between herbivore grass dependence and the magnitude of seasonal
774 dietary shifts. Dietary shifts peaked at intermediate grass dependences. Point colors correspond
775 to herbivore strategies, where *blue* points correspond to non-migratory herbivores, *green* points
776 correspond to migratory herbivores, and *darker* points reflect species that exhibit larger seasonal
777 diet shifts. The *solid* regression line indicates a significant relationship ($P < 0.05$).

778

779 **Figure 5. Conceptual synthesis.** Strategies for navigating scarcity in the tropics are most
 780 prevalent among grass-dependent herbivores and large herbivores with bulky forage
 781 requirements, whereas nearly all extratropical herbivores exhibit one or both seasonal strategies.
 782 These latitudinal differences in the distribution of strategies are likely because only grass forage
 783 is seasonally available in the tropics, whereas all vegetation is strongly seasonal in the
 784 extratropics. Inconsistent resource availability may also preclude dietary specialists in
 785 extratropical systems, while forage and thermoregulatory requirements likely restrict
 786 extratropical herbivores to more intermediate body sizes. Contrastingly, in the tropics there is a
 787 much higher diversity of specialist herbivores (and herbivores more generally), with
 788 comparatively few generalists. Herbivore trait space is colored according to the distribution of
 789 different strategies: *blue* corresponds to non-migratory herbivores, *green* corresponds to
 790 migratory herbivores, and *darker* colors reflect regions of trait space where larger seasonal diet
 791 shifts are expected. *White* contours indicate how herbivores are distributed in trait space, with the
 792 most representative herbivore from tropical and extratropical environments respectively depicted
 793 in silhouette. *Black* dashed lines correspond to the migration threshold in each environment,
 794 below which few herbivores exhibit migration.

MANUSCRIPT TITLE: Seasonal strategies differ between tropical and extratropical herbivores**AUTHORS:** Joel O. Abraham, Gareth P. Hempson, J. Tyler Faith, and A. Carla Staver**SUPPORTING INFORMATION****Table S1.** Complete list of all 210 herbivorous mammals included in this study, representing 7 orders and 23 families distributed across the globe, as well as their range centroids, body masses, seasonal grass dependences, and migratory status.

Scientific name	Family	Latitude	Longitude	Body mass	Growing season dietary grass	Dormant season dietary grass	Avg. dietary grass	Dietary sources	Migration	Migration sources
<i>Addax nasomaculatus</i>	Bovidae	17.4	7.7	70.0	0.83	0.77	0.80	58, 62	1	31
<i>Aepyceros melampus</i>	Bovidae	-13.3	31.6	52.5	0.67	0.53	0.60	32	1	169
<i>Ailuropoda melanoleuca</i>	Ursidae	31.3	104.1	108.4	0.99	0.99	0.99	131	1	177
<i>Alcelaphus buselaphus</i>	Bovidae	-4.6	21.0	171.0	0.96	0.97	0.96	193	1	20
<i>Alces alces</i>	Cervidae	58.8	43.2	357.0	0.04	0.01	0.02	127	1	127
<i>Alces americanus</i>	Cervidae	50.8	-72.4	541.5	0.06	0.00	0.03	88	1	162
<i>Ammotragus lervia</i>	Bovidae	25.5	4.7	48.0	0.78	0.39	0.65	125	1	31
<i>Antidorcas marsupialis</i>	Bovidae	-25.0	20.9	31.5	0.50	0.07	0.29	150	1	20
<i>Antilocapra americana</i>	Antilocapridae	41.0	-106.3	46.1	0.31	0.09	0.20	153	1	145
<i>Antilope cervicapra</i>	Bovidae	21.0	77.4	37.5	0.95	0.93	0.94	76	0	84
<i>Axis axis</i>	Cervidae	20.5	79.6	67.3	0.73	0.34	0.55	95	0	95
<i>Axis porcinus</i>	Cervidae	26.0	87.3	34.4	0.44	0.67	0.55	46, 178	0	46
<i>Beatragus hunteri</i>	Bovidae	-1.3	40.5	79.1	0.78	0.72	0.75	8	0	8
<i>Bison bison</i>	Bovidae	57.2	-120.5	579.3	0.98	0.98	0.98	35	1	20
<i>Bison bonasus</i>	Bovidae	51.1	23.2	500.0	0.69	0.39	0.54	107	1	139
<i>Blastocerus dichotomus</i>	Cervidae	-18.1	-54.3	86.7	0.29	0.31	0.30	170	1	170
<i>Bos gaurus</i>	Bovidae	19.7	93.6	650.0	0.80	0.53	0.67	29	1	4
<i>Bos javanicus</i>	Bovidae	11.7	106.5	625.0	0.40	0.15	0.28	21	1	172
<i>Bos mutus</i>	Bovidae	35.3	86.9	416.5	0.86	0.94	0.90	72, 123	1	31
<i>Bos sauveti</i>	Bovidae	13.7	106.1	800.0	0.90	0.90	0.90	180	1	31
<i>Boselaphus tragocamelus</i>	Bovidae	22.7	78.5	169.0	0.28	0.39	0.34	13	0	95
<i>Bubalus arnee</i>	Bovidae	21.1	94.0	431.3	0.96	0.94	0.95	39	1	173
<i>Bubalus depressicornis</i>	Bovidae	-1.9	121.4	300.0	0.04	0.04	0.04	142	0	142

<i>Bubalus quarlesi</i>	Bovidae	-2.3	120.8	150.0	0.04	0.04	0.04	142	0	142
<i>Budorcas taxicolor</i>	Bovidae	29.4	99.0	302.0	0.17	0.10	0.13	147	1	147
<i>Camelus bactrianus</i>	Camelidae	48.3	95.9	690.0	0.11	0.11	0.11	81	1	31
<i>Camelus dromedarius</i>	Camelidae	27.7	22.4	601.0	0.10	0.10	0.10	81	1	31
<i>Capra caucasica</i>	Bovidae	43.3	41.7	55.0	0.30	0.65	0.48	179	1	179
<i>Capra cylindricornis</i>	Bovidae	42.1	46.0	50.0	0.00	0.00	0.00	12	0	12
<i>Capra falconeri</i>	Bovidae	35.0	72.1	41.0	0.60	0.42	0.51	3	0	17
<i>Capra ibex</i>	Bovidae	45.5	7.1	85.2	0.94	0.82	0.88	137	1	137
<i>Capra nubiana</i>	Bovidae	24.0	40.4	62.6	0.17	0.14	0.15	71	0	198
<i>Capra pyrenaica</i>	Bovidae	38.9	-2.4	50.0	0.26	0.12	0.19	64	1	2
<i>Capra sibirica</i>	Bovidae	43.3	86.3	130.0	0.77	0.40	0.59	57	1	57
<i>Capra walie</i>	Bovidae	13.3	38.2	100.0	0.01	0.00	0.00	66	0	52
<i>Capreolus capreolus</i>	Cervidae	51.6	20.5	22.5	0.06	0.06	0.06	127	1	127
<i>Capreolus pygargus</i>	Cervidae	49.8	98.5	43.8	0.17	0.07	0.11	9	1	73
<i>Capricornis crispus</i>	Bovidae	37.1	138.6	43.0	0.01	0.04	0.03	133	0	100
<i>Capricornis sumatraensis</i>	Bovidae	1.7	100.1	87.5	0.40	0.85	0.63	179	1	179
<i>Castor canadensis</i>	Castoridae	49.9	-106.3	21.8	0.00	0.00	0.00	25	0	25
<i>Castor fiber</i>	Castoridae	57.4	35.7	19.0	0.11	0.03	0.05	101	0	101
<i>Catagonus wagneri</i>	Tayassuidae	-22.1	-61.3	35.6	0.00	0.00	0.00	118	0	118
<i>Cephalophus adersi</i>	Bovidae	-4.6	38.8	9.2	0.03	0.03	0.03	62	0	198
<i>Cephalophus callipygus</i>	Bovidae	0.8	13.5	18.2	0.02	0.02	0.02	62	0	198
<i>Cephalophus dorsalis</i>	Bovidae	0.2	14.6	20.0	0.04	0.04	0.04	26	0	198
<i>Cephalophus harveyi</i>	Bovidae	-6.0	36.4	14.5	0.01	0.01	0.01	26	0	198
<i>Cephalophus jentinki</i>	Bovidae	6.5	-8.8	70.0	0.01	0.01	0.01	62	0	198
<i>Cephalophus leucogaster</i>	Bovidae	0.5	17.4	12.7	0.04	0.04	0.04	26	0	198
<i>Cephalophus natalensis</i>	Bovidae	-16.7	36.1	12.0	0.03	0.03	0.03	26	0	198
<i>Cephalophus niger</i>	Bovidae	7.2	-4.3	20.4	0.01	0.01	0.01	62	0	198
<i>Cephalophus nigrifrons</i>	Bovidae	-2.2	19.9	13.9	0.04	0.04	0.04	26	0	198
<i>Cephalophus ogilbyi</i>	Bovidae	4.8	5.9	20.0	0.01	0.01	0.01	62	0	198
<i>Cephalophus rufilatus</i>	Bovidae	8.9	6.6	12.0	0.18	0.00	0.09	48	0	198
<i>Cephalophus silvicultor</i>	Bovidae	-0.6	15.8	72.5	0.02	0.02	0.02	26	0	198
<i>Cephalophus spadix</i>	Bovidae	-6.1	36.8	56.0	0.01	0.01	0.01	62	0	198
<i>Cephalophus weynsi</i>	Bovidae	-0.2	24.2	17.0	0.01	0.01	0.01	62	0	198
<i>Cephalophus zebra</i>	Bovidae	6.5	-8.8	17.5	0.01	0.01	0.01	62	0	198

<i>Ceratotherium simum</i>	Rhinocerotidae	3.3	25.3	2950.0	0.90	0.90	0.90	33	0	176
<i>Cervus albirostris</i>	Cervidae	33.8	97.8	161.7	0.98	0.74	0.86	72, 164	1	72
<i>Cervus elaphus</i>	Cervidae	46.1	48.7	165.0	0.36	0.18	0.27	28	1	31
<i>Cervus nippon</i>	Cervidae	37.5	140.0	53.0	0.75	0.50	0.63	165	1	20
<i>Connochaetes gnou</i>	Bovidae	-29.0	26.3	180.0	0.97	0.97	0.97	62	1	73
<i>Connochaetes taurinus</i>	Bovidae	-19.4	24.8	180.0	0.87	0.92	0.90	33	1	73
<i>Dama dama</i>	Cervidae	42.5	19.5	52.4	0.61	0.25	0.43	82	0	168
<i>Damaliscus lunatus</i>	Bovidae	-9.7	25.5	136.0	0.92	0.98	0.94	33	1	73
<i>Damaliscus pygargus</i>	Bovidae	-28.5	27.3	102.0	0.87	0.81	0.84	90	1	73
<i>Dicerorhinus sumatrensis</i>	Rhinocerotidae	2.2	103.1	1266.7	0.02	0.02	0.02	144	0	176
<i>Diceros bicornis</i>	Rhinocerotidae	-13.2	26.1	1180.5	0.09	0.09	0.09	33	0	176
<i>Dinomys branickii</i>	Dinomyidae	-5.3	-71.7	12.5	0.04	0.04	0.04	67	0	67
<i>Dolichotis patagonum</i>	Caviidae	-38.9	-67.5	8.0	0.74	0.66	0.70	155	0	155
<i>Dorcatragus megalotis</i>	Bovidae	10.4	46.9	10.2	0.05	0.05	0.05	62	0	198
<i>Elaphodus cephalophorus</i>	Cervidae	28.2	108.5	33.5	0.00	0.00	0.00	109	0	109
<i>Elephas maximus</i>	Elephantidae	15.3	98.1	2915.0	0.61	0.30	0.40	140	1	87
<i>Equus burchellii</i>	Equidae	14.2	40.4	276.0	0.92	0.92	0.92	33	1	31
<i>Equus grevyi</i>	Equidae	3.6	39.8	408.0	0.98	0.98	0.98	91	1	196
<i>Equus hemionus</i>	Equidae	42.4	97.4	240.0	0.50	0.15	0.34	188	1	31
<i>Equus kiang</i>	Equidae	34.5	88.9	275.0	0.99	0.92	0.95	72, 191	1	31
<i>Equus quagga</i>	Equidae	-13.7	29.9	400.0	1.00	1.00	1.00	49	1	73
<i>Equus zebra</i>	Equidae	-23.0	16.4	287.0	0.92	0.92	0.92	183	1	19
<i>Eudorcas rufifrons</i>	Bovidae	13.3	12.5	27.0	0.45	0.34	0.39	62, 148	0	198
<i>Eudorcas thomsonii</i>	Bovidae	-2.7	35.9	22.9	0.83	0.78	0.81	193	1	31
<i>Gazella arabica</i>	Bovidae	21.3	45.7	12.0	0.04	0.04	0.04	186	0	186
<i>Gazella bennettii</i>	Bovidae	26.7	68.3	18.9	0.26	0.48	0.37	13	0	5
<i>Gazella dorcas</i>	Bovidae	23.2	11.5	23.0	0.02	0.03	0.02	14	1	31
<i>Gazella gazella</i>	Bovidae	21.7	46.7	22.7	0.69	0.55	0.62	14	1	31
<i>Gazella leptoceros</i>	Bovidae	27.2	10.0	22.2	0.60	0.40	0.50	89, 62, 34	0	198
<i>Gazella spekei</i>	Bovidae	8.3	48.5	20.0	0.46	0.32	0.39	98, 47, 62	1	15
<i>Gazella subgutturosa</i>	Bovidae	36.4	69.0	28.5	0.31	0.17	0.27	188	1	31
<i>Giraffa camelopardalis</i>	Giraffidae	-8.5	28.2	900.0	0.06	0.05	0.06	33	1	31
<i>Hemitragus jemlahicus</i>	Bovidae	29.4	82.9	35.2	0.59	0.44	0.54	68	1	68
<i>Hippocamelus antisensis</i>	Cervidae	-17.5	-69.9	68.6	0.57	0.35	0.46	65, 16	1	19, 16

<i>Hippocamelus bisulcus</i>	Cervidae	-46.8	-72.8	70.0	0.13	0.04	0.09	63	1	31
<i>Hippopotamus amphibius</i>	Hippopotamidae	-5.9	25.1	1417.5	0.89	0.92	0.91	33	1	119, 132, 53, 169, 174
<i>Hippotragus equinus</i>	Bovidae	-0.4	18.1	270.0	0.95	0.98	0.96	33	1	7
<i>Hippotragus niger</i>	Bovidae	-14.0	31.3	227.5	0.98	0.98	0.98	33	1	169, 61
<i>Hydrochoerus hydrochaeris</i>	Caviidae	-10.2	-57.6	48.1	0.49	0.80	0.65	45	0	45
<i>Hydropotes inermis</i>	Cervidae	32.5	121.2	14.0	0.11	0.04	0.08	97	0	97
<i>Hyemoschus aquaticus</i>	Tragulidae	1.3	16.0	10.9	0.00	0.00	0.00	51	0	198
<i>Hylochoerus meinertzhageni</i>	Suidae	4.1	14.9	188.5	0.25	0.01	0.13	195	0	195
<i>Hystrix cristata</i>	Hystricidae	10.6	16.7	16.3	0.42	0.30	0.36	24	0	198
<i>Hystrix indica</i>	Hystricidae	29.9	64.2	12.4	0.10	0.09	0.09	6	0	6
<i>Kobus ellipsiprymnus</i>	Bovidae	-1.0	22.9	210.0	0.89	0.90	0.90	33	1	184, 169
<i>Kobus kob</i>	Bovidae	8.4	12.5	78.5	1.00	0.95	0.97	48	1	31
<i>Kobus leche</i>	Bovidae	-14.8	23.2	110.7	0.95	0.95	0.95	62, 134	1	192
<i>Kobus megaceros</i>	Bovidae	8.3	30.9	87.5	0.95	0.95	0.95	62	0	198
<i>Kobus vardonii</i>	Bovidae	-12.3	26.8	71.5	0.93	0.93	0.93	62, 134	0	198
<i>Lama guanicoe</i>	Camelidae	-37.2	-68.2	120.0	0.81	0.67	0.74	141	1	143
<i>Lasiorhinus latifrons</i>	Vombatidae	-31.6	131.8	25.5	0.92	0.92	0.92	185	0	185
<i>Litocranius walleri</i>	Bovidae	4.5	42.6	38.0	0.02	0.02	0.02	26	0	198
<i>Loxodonta africana</i>	Elephantidae	-4.9	23.9	3940.0	0.50	0.25	0.38	32	1	194
<i>Macropus agilis</i>	Macropodidae	-15.5	135.4	15.0	1.00	0.99	1.00	10	0	198
<i>Macropus antilopinus</i>	Macropodidae	-15.0	133.7	27.3	0.89	0.81	0.85	10	0	198
<i>Macropus dorsalis</i>	Macropodidae	-25.0	149.2	11.3	0.96	0.90	0.93	10	0	198
<i>Macropus eugenii</i>	Macropodidae	-34.4	117.9	6.5	0.85	0.83	0.84	108	0	108
<i>Macropus fuliginosus</i>	Macropodidae	-31.8	135.0	22.0	0.83	0.75	0.80	10	0	198
<i>Macropus giganteus</i>	Macropodidae	-28.5	146.3	25.9	0.92	0.91	0.92	40	0	198
<i>Macropus irma</i>	Macropodidae	-32.7	117.3	8.0	0.03	0.03	0.05	40	0	40
<i>Macropus parryi</i>	Macropodidae	-24.4	149.8	13.5	1.00	1.00	1.00	92	0	92
<i>Macropus robustus</i>	Macropodidae	-24.5	134.1	21.3	0.98	0.91	0.95	130	0	198
<i>Macropus rufogriseus</i>	Macropodidae	-31.0	149.4	16.9	0.64	0.46	0.55	158	0	120
<i>Macropus rufus</i>	Macropodidae	-25.4	132.9	46.3	0.87	0.85	0.86	130	0	130
<i>Madoqua guentheri</i>	Bovidae	4.2	41.0	7.5	0.00	0.00	0.00	91	0	198

<i>Madoqua kirkii</i>	Bovidae	-8.2	29.3	5.3	0.00	0.00	0.00	26	0	198
<i>Mazama americana</i>	Cervidae	-7.1	-61.0	22.8	0.00	0.02	0.01	22	0	22
<i>Mazama gouazoubira</i>	Cervidae	-20.0	-52.4	16.6	0.00	0.00	0.00	22	0	22
<i>Mazama nemorivaga</i>	Cervidae	-3.3	-61.4	15.0	0.02	0.02	0.02	121	0	121
<i>Mazama rufina</i>	Cervidae	-0.5	-77.5	26.0	0.01	0.01	0.01	114	0	114
<i>Mazama temama</i>	Cervidae	15.4	-88.6	18.8	0.03	0.03	0.03	175	0	175
<i>Moschus chrysogaster</i>	Moschidae	33.4	97.7	14.5	0.03	0.02	0.02	69	0	69
<i>Moschus moschiferus</i>	Moschidae	53.4	116.3	13.0	0.01	0.00	0.01	94	0	94
<i>Muntiacus crinifrons</i>	Cervidae	29.3	118.8	36.1	0.07	0.00	0.03	78	0	78
<i>Muntiacus muntjak</i>	Cervidae	0.2	108.6	15.9	0.22	0.13	0.18	80	0	80
<i>Muntiacus reevesi</i>	Cervidae	28.2	111.7	13.5	0.07	0.29	0.18	59	0	82
<i>Muntiacus vuquangensis</i>	Cervidae	14.8	107.3	36.7	0.43	0.55	0.49	128	0	128
<i>Myocastor coypus</i>	Myocastoridae	-34.0	-63.5	6.9	0.58	0.47	0.51	1	0	1
<i>Naemorhedus caudatus</i>	Bovidae	42.6	128.3	27.0	0.71	0.55	0.63	17	1	30
<i>Naemorhedus goral</i>	Bovidae	29.0	84.7	28.5	0.97	0.88	0.92	80	0	159
<i>Nanger dama</i>	Bovidae	17.4	10.1	73.0	0.64	0.49	0.56	70, 62	1	70
<i>Nanger granti</i>	Bovidae	-0.3	37.5	55.5	0.21	0.34	0.27	193	1	20
<i>Nanger soemmerringii</i>	Bovidae	11.3	41.3	40.0	0.55	0.45	0.50	98, 47, 62	1	15
<i>Nesotragus moschatus</i>	Bovidae	-13.1	36.2	6.5	0.00	0.00	0.00	26	0	198
<i>Nilgiritragus hylocrius</i>	Bovidae	10.3	77.0	75.0	0.73	0.54	0.64	163	0	163
<i>Odocoileus hemionus</i>	Cervidae	45.1	-113.9	54.2	0.36	0.48	0.42	103	1	145
<i>Odocoileus virginianus</i>	Cervidae	35.3	-93.6	55.5	0.05	0.08	0.07	11	1	20
<i>Okapia johnstoni</i>	Giraffidae	1.3	26.5	230.0	0.00	0.00	0.00	74	0	74
<i>Onychogalea fraenata</i>	Macropodidae	-23.5	149.2	5.5	0.68	0.39	0.54	10	0	198
<i>Oreamnos americanus</i>	Bovidae	55.3	-128.3	72.5	0.11	0.27	0.21	38	1	19
<i>Oreotragus oreotragus</i>	Bovidae	-10.6	30.1	13.0	0.05	0.00	0.02	83	0	198
<i>Oryx dammah</i>	Bovidae	-12.6	17.9	200.0	0.88	0.83	0.85	58, 62	1	31
<i>Oryx gazella</i>	Bovidae	-24.2	20.4	169.0	0.94	0.80	0.87	153	1	20
<i>Oryx leucoryx</i>	Bovidae	48.6	21.1	87.7	0.92	0.88	0.90	161, 156	1	62
<i>Ourebia ourebi</i>	Bovidae	1.2	20.5	17.3	0.87	0.87	0.87	26, 62	0	62
<i>Ovibos moschatus</i>	Bovidae	73.6	-86.4	340.5	0.32	0.48	0.40	99	1	31
<i>Ovis ammon</i>	Bovidae	38.5	90.5	180.0	0.14	0.52	0.33	181	1	31
<i>Ovis canadensis</i>	Bovidae	40.9	-113.8	74.6	0.20	0.06	0.13	122	1	19
<i>Ovis dalli</i>	Bovidae	63.8	-139.7	55.7	0.38	0.71	0.55	149	1	149

<i>Ovis nivicola</i>	Bovidae	64.0	135.8	90.0	0.44	0.33	0.38	106	1	17
<i>Ovis orientalis</i>	Bovidae	34.3	56.2	60.0	0.28	0.09	0.16	116	1	129
<i>Ozotoceros bezoarticus</i>	Cervidae	-17.3	-57.1	40.0	0.20	0.17	0.18	45	0	45
<i>Pantholops hodgsonii</i>	Bovidae	33.6	88.3	27.5	0.28	0.59	0.44	72, 191, 110	1	19
<i>Pecari tajacu</i>	Tayassuidae	-4.8	-63.9	21.3	0.08	0.08	0.08	36	0	198
<i>Pelea capreolus</i>	Bovidae	-29.9	25.4	20.0	0.12	0.08	0.10	124	0	124
<i>Petrogale penicillata</i>	Macropodidae	-30.4	151.6	7.1	0.77	0.45	0.62	10	0	198
<i>Petrogale persephone</i>	Macropodidae	-20.4	148.5	6.2	0.60	0.49	0.54	182	0	182
<i>Petrogale xanthopus</i>	Macropodidae	-29.1	140.8	8.5	0.37	0.22	0.34	42	0	42
<i>Phacochoerus africanus</i>	Suidae	-4.6	22.2	82.5	0.91	0.91	0.91	33	0	198
<i>Philantomba maxwellii</i>	Bovidae	8.5	-8.1	8.6	0.00	0.00	0.00	77	0	77
<i>Philantomba monticola</i>	Bovidae	-4.7	23.1	6.3	0.01	0.04	0.02	96	0	62
<i>Procapra gutturosa</i>	Bovidae	45.9	110.0	27.8	0.40	0.60	0.50	85	1	31
<i>Procapra picticaudata</i>	Bovidae	34.1	91.5	20.0	0.09	0.45	0.27	72, 191	1	31
<i>Procapra przewalskii</i>	Bovidae	36.8	100.3	27.5	0.29	0.40	0.35	113	0	198
<i>Pseudois nayaur</i>	Bovidae	40.1	101.4	45.0	0.80	0.56	0.68	126	1	73
<i>Pudu puda</i>	Cervidae	-41.0	-72.5	9.7	0.00	0.00	0.00	86	0	86
<i>Rangifer tarandus</i>	Cervidae	64.2	10.9	86.0	0.51	0.28	0.40	127	1	117
<i>Raphicerus campestris</i>	Bovidae	-21.0	24.4	10.5	0.10	0.06	0.08	33	0	198
<i>Raphicerus melanotis</i>	Bovidae	-32.9	22.3	10.2	0.35	0.17	0.26	93, 153	0	198
<i>Raphicerus sharpei</i>	Bovidae	-14.6	31.9	9.5	0.31	0.19	0.25	62, 151	0	198
<i>Redunca arundinum</i>	Bovidae	-13.6	26.6	58.0	0.96	0.96	0.96	157, 62	0	198
<i>Redunca fulvorufa</i>	Bovidae	-15.8	31.0	29.5	0.94	0.94	0.94	26, 62	0	198
<i>Redunca redunca</i>	Bovidae	6.3	20.0	44.1	1.00	1.00	1.00	26	0	198
<i>Rhinoceros unicornis</i>	Rhinocerotidae	26.9	89.3	1602.3	0.87	0.61	0.70	140	0	176
<i>Rucervus duvaucelii</i>	Cervidae	27.9	81.5	160.0	0.48	0.79	0.64	167	0	198
<i>Rupicapra pyrenaica</i>	Bovidae	42.7	0.3	30.0	0.75	0.65	0.70	138	1	37
<i>Rupicapra rupicapra</i>	Bovidae	44.4	22.9	26.1	0.60	0.50	0.56	104	1	104, 192
<i>Rusa timorensis</i>	Cervidae	-7.8	111.4	66.4	0.62	0.36	0.46	43	0	198
<i>Rusa unicolor</i>	Cervidae	18.6	95.3	177.5	0.63	0.46	0.54	136	1	190
<i>Saiga tatarica</i>	Bovidae	46.6	63.0	29.0	0.45	0.32	0.35	18	1	31
<i>Semnopithecus entellus</i>	Cercopithecidae	21.6	84.0	11.5	0.00	0.00	0.00	146	0	146
<i>Sus barbatus</i>	Suidae	0.7	110.9	70.5	0.00	0.00	0.00	111	0	111
<i>Sylvicapra grimmia</i>	Bovidae	-6.3	21.9	19.5	0.30	0.05	0.18	33	0	198

<i>Syncerus caffer</i>	Bovidae	-2.7	21.6	580.0	0.88	0.89	0.88	33	1	20
<i>Tapirus pinchaque</i>	Tapiridae	0.6	-77.0	148.9	0.98	0.96	0.97	50	1	19
<i>Tapirus terrestris</i>	Tapiridae	-8.9	-57.8	207.5	0.08	0.01	0.05	166	0	198
<i>Taurotragus derbianus</i>	Bovidae	8.4	17.3	680.0	0.05	0.05	0.05	23, 75	1	27
<i>Taurotragus oryx</i>	Bovidae	-16.2	27.4	570.0	0.05	0.00	0.03	33	1	62
<i>Tayassu pecari</i>	Tayassuidae	-9.0	-58.6	32.2	0.10	0.31	0.20	44	0	60
<i>Tetracerus quadricornis</i>	Bovidae	22.0	78.9	19.0	0.15	0.09	0.12	102, 154	0	154
<i>Theropithecus gelada</i>	Cercopithecidae	11.4	38.9	17.0	0.67	0.47	0.57	56	0	198
<i>Thylogale billardierii</i>	Macropodidae	-41.9	146.6	5.5	0.61	0.45	0.53	158	0	158
<i>Thylogale stigmatica</i>	Macropodidae	-22.1	148.9	5.1	0.49	0.37	0.43	158	0	158
<i>Thylogale thetis</i>	Macropodidae	-30.5	152.2	5.4	0.72	0.60	0.66	158	0	158
<i>Tragelaphus angasii</i>	Bovidae	-22.1	32.3	86.6	0.29	0.14	0.24	33	0	198
<i>Tragelaphus eurycerus</i>	Bovidae	3.5	14.2	329.0	0.00	0.00	0.00	26	0	198
<i>Tragelaphus imberbis</i>	Bovidae	2.8	40.4	81.6	0.04	0.00	0.02	112	0	198
<i>Tragelaphus scriptus</i>	Bovidae	-2.2	21.4	43.3	0.06	0.13	0.10	115	0	198
<i>Tragelaphus spekii</i>	Bovidae	-1.5	21.5	78.0	0.68	0.34	0.51	157, 62	0	198
<i>Tragelaphus strepsiceros</i>	Bovidae	-10.6	29.9	213.5	0.08	0.00	0.02	135	0	198
<i>Vicugna vicugna</i>	Camelidae	-18.4	-69.3	47.5	0.79	0.81	0.80	171	1	31
<i>Vombatus ursinus</i>	Vombatidae	-36.7	147.6	26.0	0.97	0.90	0.94	55	0	55
<i>Wallabia bicolor</i>	Macropodidae	-29.1	148.1	15.0	0.21	0.13	0.17	79	0	198

Sources:

1. Abbas, A. (1991). Feeding strategy of coypu (*Myocastor coypus*) in central western France. *Journal of Zoology*, 224(3), 385-401.
2. Acevedo, P., & Cassinello, J. (2009). Biology, ecology and status of Iberian ibex *Capra pyrenaica*: a critical review and research prospectus. *Mammal Review*, 39(1), 17-32.
3. Ahmad, R., Sharma, N., Mishra, C., Singh, N. J., Rawat, G. S., & Bhatnagar, Y. V. (2017). Security, size, or sociality: what makes markhor (*Capra falconeri*) sexually segregate? *Journal of Mammalogy*, 99(1), 55-63.
4. Ahrestani, F. S., Heitkönig, I. M., & Prins, H. H. (2012). Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. *Journal of Tropical Ecology*, 28(4), 385-394.
5. Akbari, H., Moradi, H. V., Rezaie, H. R., & Baghestani, N. (2016). Winter foraging of chinkara (*Gazella bennettii shikarii*) in Central Iran. *Mammalia*, 80(2), 163-169.
6. Akram, F., Ilyas, O., & Haleem, A. (2017). Food and Feeding Habits of Indian Crested Porcupine in Pench Tiger Reserve, Madhya Pradesh, India. *Ambient Science*, 4(1).
7. Allsopp, R., & Baldry, D. A. (1982). A general description of the Lambwe Valley area of South Nyanza District, Kenya. *Bulletin of the World Health Organization*, 47(6), 691.

8. Andanje, S. A. (2002). Factors limiting the abundance and distribution of hirola (*Beatragus hunteri*) in Kenya.
9. Argunov, A. V., & Stepanova, V. V. (2011). Diet structure of the Siberian roe deer in Yakutia. *Russian journal of ecology*, 42(2), 161-164.
10. Arman, S. D., & Prideaux, G. J. (2015). Dietary classification of extant kangaroos and their relatives (Marsupialia: Macropodoidea). *Austral ecology*, 40(8), 909-922.
11. Arnold, L. A., & Drawe, D. L. (1989). Seasonal food habits of white-tailed deer in the South Texas Plains. *Journal of Range Management*, 175-178.
12. Aryal, A. (2009). Habitat ecology of himalayan serow (*Capricornis sumatraensis* ssp. *thar*) in Annapurna Conservation Area of Nepal. *Tiger Paper/FAO*, 36(4), 12-20.
13. Bagchi, S., Goyal, S. P., & Sankar, K. (2003). Niche relationships of an ungulate assemblage in a dry tropical forest. *Journal of Mammalogy*, 84(3), 981-988.
14. Baharav, D. (1980). Habitat utilization of the dorcas gazelle in a desert saline area. *Journal of Arid Environments*, 3(2), 161-167.
15. Barker, J.R., Herlocker, D. J., & Young, S. A. (1989). Vegetal dynamics along a grazing gradient within the coastal grassland of central Somalia. *African Journal of Ecology*, 27(4), 283-289.
16. Barrio, J. (2013). *Hippocamelus antisensis* (Artiodactyla: Cervidae). *Mammalian Species*, 45(901), 49-59.
17. Baskin, L., & Danell, K. (2003). *Ecology of ungulates: a handbook of species in Eastern Europe and Northern and Central Asia*. Springer Science & Business Media.
18. Bekenov, A. B., Grachev, I. A., & Milner-Gulland, E. J. (1998). The ecology and management of the saiga antelope in Kazakhstan. *Mammal Review*, 28(1), 1-52.
19. Berger, J. (2004). The last mile: how to sustain long-distance migration in mammals. *Conservation Biology*, 18(2), 320-331.
20. Bolger, D. T., Newmark, W. D., Morrison, T. A., & Doak, D. F. (2008). The need for integrative approaches to understand and conserve migratory ungulates. *Ecology letters*, 11(1), 63-77.
21. Bowman, D. M., Murphy, B. P., & McMahon, C. R. (2010). Using carbon isotope analysis of the diet of two introduced Australian megaherbivores to understand Pleistocene megafaunal extinctions. *Journal of Biogeography*, 37(3), 499-505.
22. Branan, W. V., Werkhoven, M. C., & Marchinton, R. L. (1985). Food habits of brocket and white-tailed deer in Suriname. *The Journal of wildlife management*, 972-976.
23. Brandlová, K., Mallon, D., Hejcmánková, P., Regnaut, S., Jůnková Vymyslická, P., Fedorová, T., ... & Ndiaye, S. (2013). Western Derby eland (*Taurotragus derbianus derbianus*) conservation strategy. *Prague: Czech University of Life Sciences Prague*.
24. Bruno, E., & Riccardi, C. (1995). The diet of the crested porcupine *Hystrix cristata* L., 1758 in a Mediterranean rural area. *Zeitschrift für Säugetierkunde*, 60(4), 226-236.
25. Busher, P. E. (1996). Food caching behavior of beavers (*Castor canadensis*): selection and use of woody species. *American Midland Naturalist*, 343-348.
26. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African Bovidae based on stable isotope analysis. *Journal of Mammalogy*, 84(2), 456-470.
27. Chardonnet, B., & Chardonnet, P. (2004). Antelope Survey Update. Number 9: November 2004. *IUCN/SSC Antelope Specialist Group Report*.
28. Chen, H., Ma, J., Li, F., Sun, Z., Wang, H., Luo, L., & Li, F. (1998). Seasonal composition and quality of red deer *Cervus elaphus* diets in northeastern China. *Acta Theriologica*, 43, 77-94.

29. Chetri, M. (2006). Diet analysis of gaur, *Bos gaurus gaurus* (Smith, 1827) by microhistological analysis of fecal samples in Parsa wildlife reserve, Nepal. *Our Nature*, 4(1), 20-28.

30. Cho, C., Kim, K., & Kwon, G. (2016). Habitat altitude and home range of the endangered long-tailed goral (*Naemorhedus caudatus*): seasonal and monthly home range and altitude change. *Mammalia*, 80(5), 481-489.

31. CMS. (2018). *Appendices I and II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS)*.

32. Codron, J., Lee-Thorp, J. A., Sponheimer, M., Codron, D., Grant, R. C., & de Ruiter, D. J. (2006). Elephant (*Loxodonta africana*) diets in Kruger National Park, South Africa: spatial and landscape differences. *Journal of Mammalogy*, 87(1), 27-34.

33. Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., De Ruiter, D., Sealy, J., ... & Fourie, N. (2007). Diets of savanna ungulates from stable carbon isotope composition of faeces. *Journal of Zoology*, 273(1), 21-29.

34. Codron, D., Sponheimer, M., Codron, J., Hammer, S., Tschauder, A., Braun, U., ... & Clauss, M. (2012). Tracking the fate of digesta ^{13}C and ^{15}N compositions along the ruminant gastrointestinal tract: Does digestion influence the relationship between diet and faeces? *European journal of wildlife research*, 58(1), 303-313.

35. Coppedge, B. R., Leslie Jr, D. M., & Shaw, J. H. (1998). Botanical composition of bison diets on tallgrass prairie in Oklahoma. *Journal of Range Management*, 379-382.

36. Corn, J. L., & Warren, R. J. (1985). Seasonal food habits of the collared peccary in south Texas. *Journal of Mammalogy*, 66(1), 155-159.

37. Crampe, J.P., Bon, R., Gerard, J.F., Serrano, E., Caens, P., Florence, E., and Gonzalez, G. (2007). Site fidelity, migratory behaviour, and spatial organization of female isards (*Rupicapra pyrenaica*) in the Pyrenees National Park, France. *Canadian journal of zoology* 85(1): 16-25.

38. Dailey, T. V., Hobbs, N. T., & Woodard, T. N. (1984). Experimental comparisons of diet selection by mountain goats and mountain sheep in Colorado. *The Journal of wildlife management*, 799-806.

39. Daniel, J. C., & Grubh, B. R. (1966). The Indian wild buffalo *Bubalus bubalis* (Linn.), in peninsular India: a preliminary survey. *Journal of the Bombay Natural History Society*, 63, 32-53.

40. Dawson, T.J. (1989) Diets of macropodoid marsupials: general patterns and environmental influences. In: Grigg, G., Jarman, P.J. & Hume, I.D. (Eds) *Kangaroos, wallabies and rat-kangaroos*. New South Wales: Surrey Beatty & Sons, pp. 129-142.

41. Dawson, T. J., & Ellis, B. A. (1989). Comparison of the diets of yellow-footed rock-wallabies and sympatric herbivores in western New South Wales. *Wildlife Research*, 6(3), 245-254.

42. Dawson, T. J., McAvish, K. J., & Ellis, B. A. (2004). Diets and foraging behaviour of red and eastern grey kangaroos in arid shrub land: is feeding behaviour involved in the range expansion of the eastern grey kangaroo into the arid zone?. *Australian Mammalogy*, 26(2), 169-178.

43. de Garine-Wichatitsky, M., Soubeyran, Y., Maillard, D., & Duncan, P. (2005). The diets of introduced rusa deer (*Cervus timorensis russa*) in a native sclerophyll forest and a native rainforest of New Caledonia. *New Zealand Journal of Zoology*, 32(2), 117-126.

44. Desbiez, A. L. J., Santos, S. A., Keuroghlian, A., & Bodmer, R. E. (2009). Niche partitioning among white-lipped peccaries (*Tayassu pecari*), collared peccaries (*Pecari tajacu*), and feral pigs (*Sus scrofa*). *Journal of Mammalogy*, 90(1), 119-128.

45. Desbiez, A. L. J., Santos, S. A., Alvarez, J. M., & Tomas, W. M. (2011). Forage use in domestic cattle (*Bos indicus*), capybara (*Hydrochoerus hydrochaeris*) and pampas deer (*Ozotoceros bezoarticus*) in a seasonal Neotropical wetland. *Mammalian Biology-Zeitschrift für Säugetierkunde*, 76(3), 351-357.

46. Dhungel, S. K., & O'Gara, B. W. (1991). Ecology of the hog deer in Royal Chitwan National Park, Nepal. *Wildlife monographs*, 3-40.

47. Dittmann, M. T., Hebel, C., Arif, A., Kreuzer, M., & Clauss, M. (2015). Metabolic rates of three gazelle species (*Nanger soemmerringii*, *Gazella gazella*, *Gazella spekei*) adapted to arid habitats. *Mammalian Biology*, 80(5), 390-394.

48. Djagoun, C. A. M. S., Codron, D., Sealy, J., Mensah, G. A., & Sinsin, B. (2013). Stable carbon isotope analysis of the diets of West African bovids in Pendjari Biosphere Reserve, Northern Benin. *South African Journal of Wildlife Research*, 43(1), 33-43.
49. Doku, Y., Bekele, A., & Balakrishnan, M. (2007). Population status of plains zebra (*Equus quagga*) in Nchisar plains, Nchisar National Park, Ethiopia. *Tropical Ecology*, 48(1), 79-86.
50. Downer, C. C. (2001). Observations on the diet and habitat of the mountain tapir (*Tapirus pinchaque*). *Journal of Zoology*, 254(3), 279-291.
51. Dubost, G. (1984). Comparison of the diets of frugivorous forest ruminants of Gabon. *Journal of Mammalogy*, 65(2), 298-316.
52. Ejigu, D., Bekele, A., Powell, L., & Lernould, J. M. (2015). Habitat preference of the endangered Ethiopian walia ibex (*Capra walie*) in the Simien Mountains National Park, Ethiopia. *Animal Biodiversity and Conservation*, 38(1), 1-10.
53. Ertiban, S. M. (2016). Population status and human conflict of common hippopotamus (*Hippopotamus amphibius*, L., 1758) In Boye Wetland, Jimma, Ethiopia. *Am. J. Sci. Ind. Res.*, 000, 32-40.
54. Escós, J., & Alados, C. L. (1992). Habitat preference of Spanish ibex and other ungulates in Sierras de Cazorla y Segura (Spain). *Mammalia*, 56(3), 393-406.
55. Evans, M. C., Macgregor, C., & Jarman, P. J. (2006). Diet and feeding selectivity of common wombats. *Wildlife Research*, 33(4), 321-330.
56. Fashing, P. J., Nguyen, N., Venkataraman, V. V., & Kerby, J. T. (2014). Gelada feeding ecology in an intact ecosystem at Guassa, Ethiopia: variability over time and implications for theropith and hominin dietary evolution. *American Journal of Physical Anthropology*, 155(1), 1-16.
57. Fedosenko, A. K., & Blank, D. A. (2001). *Capra sibirica. Mammalian species*, 1-13.
58. Ferrell, S. T., Radcliffe, R. W., Marsh, R., Thurman, C. B., Cartwright, C. M., De Maar, T. W., ... & Osofsky, S. A. (2001). Comparisons among selected neonatal biomedical parameters of four species of semi-free ranging Hippotragini: Addax (*Addax nasomaculatus*), scimitar-horned oryx (*Oryx dammah*), Arabian oryx (*Oryx leucoryx*), and sable antelope (*Hippotragus niger*). *Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association*, 20(1), 47-54.
59. Forde, P. (1989). Comparative ecology of muntjac *Muntiacus reevesi* and roe deer *Capreolus capreolus* in a commercial coniferous forest. *Ph.D. Thesis. University of Bristol*.
60. Fragoso, J. M. (1998). Home Range and Movement Patterns of White-lipped Peccary (*Tayassu pecari*) Herds in the Northern Brazilian Amazon 1. *Biotropica*, 30(3), 458-469.
61. Furstenburg, D. (2016). Sable antelope *Hippotragus niger* (Pallas, 1766). *Wildlife Biologist Scientific Report*. GeoWild Consult (Pty.) Ltd.
62. Gagnon, M., & Chew, A. E. (2000). Dietary preferences in extant African Bovidae. *Journal of Mammalogy*, 81(2), 490-511.
63. Galende, G., Ramilo, E., & Beati, A. (2005). Diet of Huemul deer (*Hippocamelus bisulcus*) in Nahuel Huapi National Park, Argentina. *Studies on Neotropical Fauna and Environment*, 40(1), 1-5.
64. García-González, R., & Cuartas, P. (1992). Feeding strategies of Spanish wild goat in the Cazorla Sierra (Spain).
65. Gazzolo, C. (2006). Botanical composition of taruka (*Hippocamelus antisensis*) diet during rainy season in Huascaran national park, Peru. In *Advances in deer biology: deer in a changing world. Proceedings of the 6th International Deer Biology Congress* (L. Bartoš, A. Dušek, R. Kotrba, and J. Bartošova-Vichova, eds.). *Research Institute of Animal Production, Prague, Czech Republic* (p. 216).
66. Gebremedhin, B., Flagstad, Ø., Bekele, A., Chala, D., Bakkestuen, V., Boessenkool, S., ... & Brochmann, C. (2016). DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats-implications for conservation. *PloS one*, 11(7), e0159133.
67. González, J. L., & Osbahr, K. (2013). Composición botánica y nutricional de la dieta de *Dinomys branickii* (Rodentia: Dinomyidae) en los Andes Centrales de Colombia. *Revista UDCA actualidad & divulgación científica*, 16(1), 235-244.

68. Green, M. J. (1988). The ecology and feeding behaviour of the Himalayan tahr (*Hemitragus jemlahicus*) in the Langtang valley, Nepal (Doctoral dissertation, Durham University).

69. Green, M. J. (1987). Diet composition and quality in Himalayan musk deer based on fecal analysis. *The Journal of Wildlife Management*, 880-892.

70. Grettenberger, J. F., & Newby, J. E. (1986). The status and ecology of the dama gazelle in the Air and Tenere National Nature Reserve, Niger. *Biological Conservation*, 38(3), 207-216.

71. Hakham, E., & Ritte, U. (1993). Foraging pressure of the Nubian ibex *Capra ibex nubiana* and its effect on the indigenous vegetation of the En Gedi Nature Reserve, Israel. *Biological conservation*, 63(1), 9-21.

72. Harris, R. B., & Miller, D. J. (1995). Overlap in summer habitats and diets of Tibetan Plateau ungulates. *Mammalia*, 59(2), 198-212.

73. Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P., & Berger, J. (2009). Global decline in aggregated migrations of large terrestrial mammals. *Endangered Species Research*, 7(1), 55-76.

74. Hart, J. A., & Hart, T. B. (1989). Ranging and feeding behaviour of okapi (*Okapia johnstoni*) in the Ituri Forest of Zaire: food limitation in a rain-forest herbivore. In *Symposium of the Zoological Society of London* (Vol. 61, pp. 31-50).

75. Hejcmanová, P., Homolka, M., Antonínová, M., Hejčman, M., & Podhájeká, V. (2010). Diet composition of western Derby eland (*Taurotragus derbianus derbianus*) in the dry season in a natural and a managed habitat in Senegal using faecal analyses. *South African Journal of Wildlife Research*, 40(1), 27-34.

76. Henke, S.C., Demarais, S., Pfister, J.A. (1988). Digestive capacity and diets of white-tailed deer and exotic ruminants. *J. Wildl. Manag.* 52, 595-598.

77. Hofmann, T., H. Roth. 2000. Feeding preferences of duiker (*Cephalophus maxwelli*, *C. rufilatus* and *C. niger*) in Ivory Coast and Ghana. *Mammalian Biology*, 68: 65-77.

78. Ho-Gee, L., & He-Lin, S. (1984). Status of the Black muntjac, *Muntiacus crinifrons*, in eastern China. *Mammal Review*, 14(1), 29-36.

79. Hollis, C. J., Robertshaw, J. D., & Harden, R. H. (1986). Ecology of the swamp wallaby (*Wallabia bicolor*) in northeastern New-South-Wales. 1. Diet. *Wildlife Research*, 13(3), 355-365.

80. Ilyas, O., & Khan, J. A. (2003). Food habits of barking deer (*Muntiacus muntjak*) and goral (*Naemorhedus goral*) in Binsar Wildlife Sanctuary, India. *Mammalia*, 67(4), 521-532.

81. Iqbal, A. and B.B. Khan (2001). Feeding behaviour of Camel: A review. *Pakistan J. Agri. Sci.*, 38:3-4

82. Jackson, J. (1987). The annual diet of the Fallow deer (*Dama dama*) in the New Forest, Hampshire, as determined by rumen content analysis. *Journal of Zoology*, 181(4), 465-473.

83. Jarman, P. J. (1981). Diets of large mammals in the woodlands around Lake Kariba, Rhodesia. *Oecologia*, 8(2), 157-178.

84. Jhala, Y. V., & Isvaran, K. (2016). Behavioural ecology of a grassland antelope, the blackbuck *Antilope cervicapra*: linking habitat, ecology and behaviour. In *The Ecology of Large Herbivores in South and Southeast Asia* (pp. 151-176). Springer, Dordrecht.

85. Jiang, Z., Takatsuki, S., Gao, Z., & Jin, K. (1998). The present status, ecology and conservation of the Mongolian gazelle, *Procapra gutturosa*: a review. *Mammal Study*, 23(1), 63-78.

86. Jiménez, J. E. (2010). Southern pudu *Pudu puda* (Molina 1782). *Neotropical Cervidology: Biology and Medicine of Latin American Deer*. Funep & IUCN, Jaboticabal & Gland, 140-150.

87. Joshi, R., & Singh, R. (2008). Feeding behaviour of wild Asian elephants (*Elephas maximus*) in the Rajaji National Park. *The Journal of American Science*, 4(2), 34-48.

88. Jung, T. S., Stotyn, S. A., & Czetwertynski, S. M. (2015). Dietary overlap and potential competition in a dynamic ungulate community in northwestern Canada. *The Journal of Wildlife Management*, 79(8), 1277-1285.
89. Jungius, H. (1988). Plan to restore Arabian oryx in Oman. *Oryx*, 14(4), 328-336.
90. Kalule-Sabiti, M. J., & Venter, J. A. (2016). Diet composition of the large herbivores in Mkambati Nature Reserve, Eastern Cape, South Africa. *African Journal of Wildlife Research*, 46(1), 49-56.
91. Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress, W. J., Kuzmina, M. L., ... & Pringle, R. M. (2015). DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. *Proceedings of the National Academy of Sciences*, 201503283.
92. Kaufmann, J. H. (1984). Social ethology of the whiptail wallaby, *Macropus parryi*, in northeastern New South Wales. *Animal Behaviour*, 22(2), 281-369.
93. Kerley, G. I., Landman, M., & De Beer, S. (2010). How do small browsers respond to resource changes? Dietary response of the Cape grysbok to clearing alien Acacias. *Functional Ecology*, 24(3), 670-675.
94. Khadka, K. K., Singh, N., Magar, K. T., & James, D. A. (2017). Dietary composition, breadth, and overlap between seasonally sympatric Himalayan musk deer and livestock: Conservation implications. *Journal for Nature Conservation*, 38, 30-36.
95. Khan, J. A. (1994). Food habits of ungulates in dry tropical forests of Gir Lion Sanctuary, Gujarat, India. *Acta Theriologica*, 39(2), 185-193.
96. Kigozi, F. (2000). Feeding biology of common and blue duiker (Doctoral dissertation, Rhodes University).
97. Kim, B. J., Lee, N. S., & Lee, S. D. (2011). Feeding diets of the Korean water deer (*Hydropotes inermis argyropus*) based on a 202 bp rbcL sequence analysis. *Conservation Genetics*, 12(3), 851-856.
98. Kingdon, J. (1982). *East African mammals (bovids)*. Vol. 3. P.D. Ibid.
99. Klein, D. R. (1992). Comparative ecological and behavioral adaptations of *Ovibos moschatus* and *Rangifer tarandus*. *Rangifer*, 12(2), 47-55.
100. Kobayashi, K., & Takatsuki, S. (2012). A comparison of food habits of two sympatric ruminants of Mt. Yatsugatake, central Japan: sika deer and Japanese serow. *Acta Theriologica*, 57(4), 343-349.
101. Krojerová-Prokešová, J., Barančeková, M., Hamšíková, L., & Vorel, A. (2010). Feeding habits of reintroduced Eurasian beaver: spatial and seasonal variation in the use of food resources. *Journal of Zoology*, 281(3), 183-193.
102. Krishna, Y. C., Clyne, P. J., Krishnaswamy, J., & Kumar, N. S. (2009). Distributional and ecological review of the four horned antelope, *Tetracerus quadricornis*. *Mammalia*, 73(1), 1-6.
103. Kufeld, R. C. (1983). Foods eaten by the Rocky Mountain elk. *Journal of Range Management*, 106-113.
104. La Morgia, V., & Bassano, B. (2009). Feeding habits, forage selection, and diet overlap in Alpine chamois (*Rupicapra rupicapra* L.) and domestic sheep. *Ecological Research*, 24(5), 1043-1050.
105. Lamprey, H. (1963). Ecological separation of the large mammal species in the Tarangire Game Reserve, Tanaganyika. *East African Wildlife Journal*, 1, 63-93.
106. Larin, VV, Shelkonivoka, TA (1988). Season peculiarities of the feeding ecology of *Ovis nivicola* in the Delochi river basin. 17-26.
107. Larter, N. C., & Gates, C. C. (1991). Diet and habitat selection of wood bison in relation to seasonal changes in forage quantity and quality. *Canadian Journal of Zoology*, 69(10), 2677-2685.
108. Lentle, R. G., Potter, M. A., Stafford, K. J., Springett, B. P., & Haslett, S. (1998). The temporal characteristics of feeding activity in free-ranging tammar wallabies (*Macropus eugenii* Desmarest). *Australian Journal of Zoology*, 46(6), 601-615.
109. Leslie, D. M., Lee, D. N., & Dolman, R. W. (2013). *Elaphodus cephalophus* (Artiodactyla: Cervidae). *Mammalian Species*, 45(904), 80-91.

110. Leslie, D. M., & Schaller, G. B. (2008). *Pantholops hodgsonii* (Artiodactyla: Bovidae). *Mammalian Species*, (817), 1-13.

111. Leus, K., & Macdonald, A. A. (1997). From babirusa (*Babirousa babyrussa*) to domestic pig: the nutrition of swine. *Proceedings of the Nutrition Society*, 56(3), 1001-1012.

112. Leuthold, W. (1981). Studies on the food habits of lesser kudu in Tsavo National Park, Kenya. *African Journal of Ecology*, 9(1), 35-45.

113. Li, Z., Jiang, Z., & Li, C. (2008). Dietary Overlap of Przewalski's Gazelle, Tibetan Gazelle, and Tibetan Sheep on the Qinghai-Tibet Plateau. *The Journal of Wildlife Management*, 72(4), 944-948.

114. Lizcano, D. J. (2006). *Ecology and conservation of large mammals in the northern Andes*. Ph.D., University of Kent, Canterbury.

115. MacLeod, S. B., Gaylard, A., & Kerley, G. I. H. (1996). Habitat and diet of bushbuck *Tragelaphus scriptus* in the Woody Cape Nature Reserve: observations from faecal analysis. *South African Journal of Wildlife Research-24-month delayed open access*, 26(1), 19-25.

116. Maisels, F.G. (1988). The feeding ecology of the Cyprus mouflon *Ovis orientalis* Gmelin 1774, the the Paphos Forest, Cyprus.

117. Mager K.H., Colson K.E., Groves P., Hundertmark K.J. (2014). Population structure over a broad spatial scale driven by nonanthropogenic factors in a wide-ranging migratory mammal, Alaskan caribou. *Mol Ecol*, 23, 6045-6057.

118. Mayer, J. J., & Wetzel, R. M. (1986). *Catagonus wagneri*. *Mammalian Species*, (259), 1-5.

119. McCarthy, T.S., Ellery, W.N. and Bloem, A., 1998. Some observations on the geomorphological impact of hippopotamus (*Hippopotamus amphibius* L.) in the Okavango Delta, Botswana. *African Journal of Ecology*, 36(1), pp.44-56.

120. McCullough DR, McCullough Y (2000) Kangaroos in outback Australia: comparative ecology and behaviour of three coexisting species. Columbia University Press, New York.

121. Merino, M. L., & Rossi, R. V. (2010). Origin, systematics and morphological radiation. *Neotropical Cervidology. Biology and medicine of Latin American deer*, 1, 2-11.

122. Miller, G. D., & Gaud, W. S. (1989). Composition and variability of desert bighorn sheep diets. *The Journal of Wildlife Management*, 597-606.

123. Miller, D. J., Harris, R. B., & Cai, G. Q. (1994). Wild yaks and their conservation on the Tibetan Plateau. In *Proceedings of the First International Congress on Yak* (27-35). Gansu Agricultural University Lanzhou.

124. Mills, G., & Hes, L. (1997). The Mammals of Southern Africa.

125. Mimoun, J. B., & Nouira, S. (2015). Food habits of the aoudad *Ammotragus lervia* in the Bou Hedma mountains, Tunisia. *South African Journal of Science*, 111(11-12), 1-5.

126. Mishra, C., Van Wieren, S. E., Ketner, P., Heitkönig, I. M., & Prins, H. H. (2004). Competition between domestic livestock and wild bharal *Pseudois nayaur* in the Indian Trans-Himalaya. *Journal of Applied Ecology*, 41(2), 344-354.

127. Mysterud, A. (2000). Diet overlap among ruminants in Fennoscandia. *Oecologia* 124(1): 130-7.

128. Nagarkoti, A., & Thapa, T. (2007). Food habits of barking deer (*Muntiacus muntjac*) in the middle hills of Nepal. *Hystrix, the Italian Journal of Mammalogy*, 18(1).

129. Najafabadi, S.M., Hemami, M.R., Salman Mahini, A. (2010). Determining habitat suitability of *Ovis orientalis isfahanica* in Mothe Wildlife Refuge using ENFA. *J. Nat. Environ. (Iran. J. Nat. Resour.)* 63: 279-290.

130. Newsome, A. E. (1985). An ecological comparison of the two arid-zone kangaroos of Australia, and their anomalous prosperity since the introduction of ruminant stock to their environment. *The Quarterly Review of Biology*, 50(4), 389-424.

131. Nie, Y., Zhang, Z., Raubenheimer, D., Elser, J. J., Wei, W., & Wei, F. (2015). Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. *Functional Ecology*, 29(1), 26-34.

132. Nunez, T. (2017). *Animal movement in a changing world*. Doctoral dissertation, UC Berkeley.
133. Ochiai, K. (1999). Diet of the Japanese serow (*Capricornis crispus*) on the Shimokita Peninsula, northern Japan, in reference to variations with a 16-year interval. *Mammal Study*, 24(2), 91-102.
134. O'shaughnessy, R., Cain III, J., & Owen-Smith, N. (2014). Comparative diet and habitat selection of puku and lechwe in northern Botswana. *J. Mammalogy* 95(5): 933-942.
135. Owen-Smith, N., Cooper, S. (1989). Nutritional ecology of a browsing ruminant, the kudu (*Tragelaphus strepsiceros*), through the seasonal cycle. *J. Zoology* 219(1): 29-43.
136. Padmalal, U., Takatsuki, S., & Jayasekara, P. (2003). Food habits of sambar *Cervus unicolor* at the Horton Plains National Park, Sri Lanka. *Ecological Research*, 18(6): 775-782.
137. Parrini, F., Cain, J. W., & Krausman, P. R. (2009). *Capra ibex* (Artiodactyla: Bovidae). *Mammalian Species*, (830), 1-12.
138. Perez-Barberia, F.J., Olivan, M., Osoro, K., and Nores, C. (1997). Sex, seasonal and spatial differences in the diet of Cantabrian chamois *Rupicapra pyrenaica parva*. *Acta Theriologica* 42: 37-46.
139. Perzanowski, K., Januszczak, M., & Wołoszyn-Gałęza, A. (2012). Seasonal movements of wisents (*Bison bonasus* L., 1758) in the Bieszczady Mountains (SE Poland). *Biological Letters*, 49(1), 11-17.
140. Pradhan, N., Wegge, P., Moe, S., & Shrestha, A. (2008). Feeding ecology of two endangered sympatric megaherbivores: Asian elephant *Elephas maximus* and greater one-horned rhinoceros *Rhinoceros unicornis* in lowland Nepal. *Wildlife Biology*, 14(1), 147-154.
141. Puig, S., Videla, F., Monge, S., & Roig, V. (1996). Seasonal variations in guanaco diet (*Lama guanicoe* Müller 1776) and food availability in Northern Patagonia, Argentina. *Journal of Arid Environments*, 34(2), 215-224.
142. Pujaningsih, R. I., Sutrisno, C. I., Supriondho, Y., Malik, A., Djuwantoko, D., Pudyatmoko, S., ... & Aryanto, S. (2009). Diet composition of Anoa (*Bubalus* sp.) studied using direct observation and dung analysis method in their habitat. *Journal of the Indonesian Tropical Animal Agriculture*, 34(3), 223-228.
143. Raedeke, K. J. (1980). Food habits of the guanaco (*Lama guanicoe*) of Tierra de Fuego, Chile. *Turrialba*, 30(2), 177-181.
144. Reilly, J., & Spedding, G. H. (1997). Preliminary observations on the Sumatran rhino in Way Kambas National Park, Indonesia. *Oryx*, 31(2), 143-150.
145. Sawyer, H., F. Lindzey, and D. McWhirter. 2005. Mule deer and pronghorn migration in western Wyoming. *Wildlife Society Bulletin* 33:1266-1273.
146. Sayers, K., & Norconk, M. A. (2008). Himalayan *Semnopithecus entellus* at Langtang National Park, Nepal: diet, activity patterns, and resources. *International Journal of Primatology*, 29(2), 509.
147. Schaller, G.B., Qitao, T., Wenshi, P., Zisheng, Q., Xiaoming, W., Jinchu, H., & Heming, S. (1986). Feeding behavior of Sichuan takin (*Budorcas taxicolor*). *Mammalia*, 50(3), 311-322.
148. Schulz, E., Fraas, S., Kaiser, T. M., Cunningham, P. L., Ismail, K., & Wronski, T. (2013). Food preferences and tooth wear in the sand gazelle (*Gazella marica*). *Mammalian Biology-Zeitschrift für Säugetierkunde*, 78(1), 55-62.
149. Seip, D.R. 1983. *Foraging ecology and nutrition of Stone's sheep*. Ph.D. Thesis, Univ. British Columbia, Vancouver.
150. Skinner, G. N. (1996). The Springbok: *Antidorcas marsupialis* (Zimmermann, 1790). Ecology and physiology. Behaviour. *Transvaal Museum Monographs*, 10(1).
151. Skinner, J. D., & Smithers, R. H. (1990). *The Mammals of the Southern African Subregion*. University of Pretoria, South Africa.

152. Smith, M. (1991) *Faecal Composition as Indicator of Diet Composition in the Cape Grysbok*, *Raphicerus melanotis*. Honors thesis, University of Port Elizabeth, South Africa

153. Smith, C., Valdez, R., Holechek, J. L., Zwank, P. J., & Cardenas, M. (1998). Diets of native and non-native ungulates in southcentral New Mexico. *The Southwestern Naturalist*, 163-169.

154. Solanki, G. S., & Naik, R. M. (1998). Grazing interactions between wild and domestic herbivores. *Small Ruminant Research*, 27(3), 231-235.

155. Sombra, M. S., & Mangione, A. M. (2005). ¿Obsesionada con gramíneas?: el caso de Mara *Dolichotis patagonum* (Caviidae: Rodentia). *Revista chilena de historia natural*, 78(3), 393-399.

156. Spalton, J. A. (1999). The food supply of Arabian oryx (*Oryx leucoryx*) in the desert of Oman. *Journal of Zoology*, 248(4), 433-441.

157. Sponheimer, M., Robinson, T., Ayliffe, L., Passey, B., Roeder, B., Shipley, L., ... & Ehleringer, J. (2003). An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. *Canadian Journal of Zoology*, 81(5), 871-876.

158. Sprent, J. A., & McArthur, C. (2002). Diet and diet selection of two species in the macropodid browser-grazer continuum—do they eat what they 'should'? *Australian Journal of Zoology*, 50(2), 183-198.

159. Srivastava, T., & Kumar, A. (2018). Seasonal habitat use in three species of wild ungulates in Sikkim Himalaya. *Mammalian Biology*, 88, 100-106.

160. Stephenson, T. E., Holecheck, J. L., & Kuykendall, C. B. (1985). Drought effect on pronghorn and other ungulate diets. *The Journal of wildlife management*, 49(1), 146-151.

161. Stewart, D. R. M. (1963). The Arabian oryx (*Oryx leucoryx* Pallas). *African Journal of Ecology*, 1(1), 103-117.

162. Stone, J. L. (1981). Winter movements and distribution of moose (*Alces alces shirasi*) in Upper Rock Creek drainage Granite County Montana.

163. Sumithran, S. (1997). *Status and ecology of the Nilgiri Tahr in the Mukurthi National Park, South India* (Doctoral dissertation, Virginia Tech).

164. Takatsuki, S., Ohtaishi, N., Kaji, K., Han, Y., & Wu, J. (1988). A note on fecal and rumen contents of white-lipped deer on eastern Qinghai-Tibet Plateau. *Journal of the Mammalogical Society of Japan*, 13(2), 133-137.

165. Takatsuki, S., Fuse, S., & Ito, T. (2010). A comparison of diet and digestion between sika deer and Japanese serow in northern Japan. *Mammal study*, 35(4), 257-263.

166. Talamoni, S. A., & Cançado, M. A. (2009). Feeding habit of the Brazilian tapir, *Tapirus terrestris* (Perissodactyla: Tapiridae) in a vegetation transition zone in south-eastern Brazil. *Zoologia*, 26(2).

167. Tewari, R., & Rawat, G. S. (2013). Habitat use of Swamp Deer (*Rucervus duvaucelii duvaucelii*) in Jhilmil Jheel Conservation Reserve, Haridwar, Uttarakhand, India. *International Journal of Ecology and Conservation Science*, 39, 79-85.

168. Thirgood, S. J. (1995). The effects of sex, season and habitat availability on patterns of habitat use by fallow deer (*Dama dama*). *Journal of Zoology*, 235(4), 645-659.

169. Tinley, K. L. (1987). *Framework of the Gorongosa Ecosystem, Mozambique*. PhD thesis, Univ. Pretoria.

170. Tomas, W. M., & Salis, S. M. (2000). Diet of the marsh deer (*Blastocerus dichotomus*) in the Pantanal wetland, Brazil. *Studies on Neotropical Fauna & Environment*, 35(3), 165-172.

171. Torres, M., & Puig, S. (2010). Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina): Are they optimal foragers? *Journal of Arid Environments*, 74(4), 450-457.

172. Trisurat, Y. (2006). Transboundary biodiversity conservation of the Pha Taem Protected Forest Complex: A bioregional approach. *Applied Geography*, 26(3-4): 260-275.

173. Tulloch, D. (1980). Season movement and distribution of the sexes in the water buffalo, *Bubalus bubalis*, in the Northern Territory. *Australian Journal of Zoology* 18(4): 399-414.

174. Viljoen, P.C. 1980. Distribution and numbers of the hippopotamus in the Olifants and Blyde Rivers. *S. Afr. J. Wildl. Res.* 10: 129–132.

175. Villarreal-Espino-Barros, O. A., Campos-Armendia, L. E., Castillo-Martínez, T. A., Cortes-Mena, I., Plata-Pérez, F. X., & Mendoza-Martínez, G. D. (2008). Composición botánica de la dieta del venado temazate rojo (*Mazama temama*), en la sierra nororiental del estado de Puebla. *Universidad y ciencia*, 24(3), 183-188.

176. Walker, E.P., Warnick, F., Lange, K.I., Uible, H.E., Hamlet, S.E., Davies, M.A. & Wright P. F. (1968). *Mammals of the World*. The John Hopkins Press, Baltimore, vol. 1, 2: 1-1500.

177. Wang, T., Skidmore, A. K., Zeng, Z., Beck, P. S., Si, Y., Song, Y., ... & Prins, H. H. (2010). Migration patterns of two endangered sympatric species from a remote sensing perspective. *Photogrammetric Engineering & Remote Sensing*, 76(12), 1343-1352.

178. Wegge, P., Shrestha, A. K., & Moe, S. R. (2006). Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. *Ecological Research*, 21(5), 698-706.

179. Weinberg, P. J. (2002). *Capra cylindricornis*. *Mammalian Species*, 1-9.

180. Wharton, C. H. 1957. *An ecological study of the Kouprey Novibos sauveli (Urbain)*. Manila: Institute of Science and Technology (monograph 5).

181. Wingard, G. J., Harris, R. B., Pletscher, D. H., Bedunah, D. J., Mandakh, B., Amgalanbaatar, S., & Reading, R. P. (2011). Argali food habits and dietary overlap with domestic livestock in Ikh Nart Nature Reserve, Mongolia. *Journal of Arid Environments*, 75(2), 138-145.

182. Winkel, P. (1997). *The ecology and management of the Proserpine rock-wallaby (Petrogale persephone)*.

183. Winkler A 1992. *The Feeding Ecology of the Cape Mountain Zebra (Equus zebra zebra Linn., 1758) in the Mountain Zebra National Park, South Africa*. MSc Thesis, University of Witwatersrand, Johannesburg, South Africa.

184. Woodman, H. M. (1965). What of Sudan Game Migration? *Oryx*, 8(2), 113-114.

185. Woolnough, A. P. (1998). *The feeding ecology of the northern hairy-nosed wombat, Lasiorhinus krefftii (Marsupialia: Vombatidae)* (Doctoral dissertation, James Cook University).

186. Wronski, T., & Schulz-Kornas, E. (2015). The Farasan gazelle—A frugivorous browser in an arid environment? *Mammalian Biology-Zeitschrift für Säugetierkunde*, 80(2), 87-95.

187. Xu, W., Xia, C., Lin, J., Yang, W., Blank, D. A., Qiao, J., & Liu, W. (2012). Diet of *Gazella subgutturosa* (Güldenstaedt, 1780) and food overlap with domestic sheep in Xinjiang, China. *Folia Zoologica*, 61(1), 54-61.

188. Xu, W., Xia, C., Yang, W., Blank, D. A., Qiao, J., & Liu, W. (2012). Seasonal diet of khulan (Equidae) in northern Xinjiang, China. *Italian Journal of Zoology*, 79(1), 92-99.

189. Yockney, I. J., & Hickling, G. J. (2000). Distribution and diet of chamois (*Rupicapra rupicapra*) in Westland forests, South Island, New Zealand. *New Zealand Journal of Ecology*, 31-38.

190. Yen, S. C., Wang, Y., Yu, P. H., Kuan, Y. P., Liao, Y. C., Chen, K. H., & Weng, G. J. (2019). Seasonal space use and habitat selection of sambar in Taiwan. *The Journal of Wildlife Management*, 83(1), 22-31.

191. Yin, B. F., Huai, H. Y., Zhang, Y. L., Le, Z., & Wei, W. H. (2007). Trophic niches of *Pantholops hodgsoni*, *Procapra picticaudata* and *Equus kiang* in Kekexili region. *The Journal of Applied Ecology*, 18(4), 766-770.

192. Fryxell, J. M., & Sinclair, A. R. E. (1988). Causes and consequences of migration by large herbivores. *Trends in ecology & evolution*, 3(9), 237-241.
193. Hansen, R. M., Mugambi, M. M., & Bauni, S. M. (1985). Diets and trophic ranking of ungulates of the northern Serengeti. *The Journal of wildlife management*, 823-829.
194. Cerling, T. E., Wittemyer, G., Rasmussen, H. B., Vollrath, F., Cerling, C. E., Robinson, T. J., & Douglas-Hamilton, I. (2006). Stable isotopes in elephant hair document migration patterns and diet changes. *Proceedings of the National Academy of Sciences*, 103(2), 371-373.
195. Cerling, T. E., & Viehl, K. (2004). Seasonal diet changes of the forest hog (*Hylochoerus meinertzhageni* Thomas) based on the carbon isotopic composition of hair. *African Journal of Ecology*, 42(2), 88-92.
196. Keast, A. (1965). Interrelationships of two zebra species in an overlap zone. *Journal of Mammalogy*, 46(1), 53-66.
197. Gaidet, N., & Lecomte, P. (2013). Benefits of migration in a partially-migratory tropical ungulate. *BMC ecology*, 13(1), 1-14.
198. No record of migration available in Web of Science or Google Scholar.

Table S2. Variable abbreviations used in model selection along with their corresponding definitions and the ecological interpretation of each variable

Variable name	Variable definition	Ecological interpretation
logBM	log-transformed body mass	Herbivore body masses vary by orders of magnitude (from 5 kg to nearly 4,000 kg). This variable corresponds to the order of magnitude of herbivore body mass.
$(\log\text{BM})^2$	polynomial transformation of log-transformed body mass	The second-order polynomial transformation of log-transformed herbivore body mass. This transformation was done to test whether herbivores of intermediate body size are most able to migrate and/or shift their diets.
avg_grass_diet	average dietary grass fraction	An herbivore's average grass dependence, quantified as the average grass fraction in its diet across seasons.
$(\text{avg_grass_diet})^2$	polynomial transformation of average dietary grass fraction	The second-order polynomial transformation of an herbivore's average grass dependence (quantified as the average grass fraction in its diet across seasons). This transformation was done to test whether herbivores with intermediate dietary preferences have the largest home ranges.
grow_grass_diet	growing season dietary grass fraction	An herbivore's growing season grass dependence, quantified as the average grass fraction in its diet during the summer/wet season.
dorm_grass_diet	dormant season dietary grass fraction	An herbivore's dormant season grass dependence, quantified as the average grass fraction in its diet during the winter/dry season.
$(\text{grow_grass_diet})^2$	polynomial transformation of growing season dietary grass fraction	The second-order polynomial transformation of an herbivore's growing season grass dependence (quantified as the average grass fraction in its diet during the summer/wet season). This transformation was done to test whether herbivores with intermediate dietary preferences are most able to shift their diets.
migration	seasonal migration	Whether or not an herbivore species is migratory. Coded as a binary (1 = migratory, 0 = non-migratory).
diet_shift	seasonal dietary shifts	The magnitude of seasonal dietary shifts. Quantified as the change in dietary grass fraction between the growing and dormant season.
abs(latitude)	absolute value of latitude	The absolute value of the latitudinal centroid of an herbivore's species range. Corresponds to average distance from the equator for each herbivore species.
mean_temp_mean	mean annual temperature	Mean annual temperature averaged across an herbivore's species range. As such, corresponds to the average temperatures experienced by the species.

mean_temp_sd	standard deviation of mean annual temperature	The standard deviation of mean annual temperature across an herbivore's species range. As such, corresponds to spatial variability in temperature.
temp_seas_mean	mean temperature seasonality	Temperature seasonality averaged across an herbivore's species range. As such, corresponds to the average temperature seasonality experienced by the species.
temp_seas_sd	standard deviation of temperature seasonality	The standard deviation of temperature seasonality across an herbivore's species range. As such, corresponds to spatial variability in temperature seasonality.
annu_rain_mean	annual rainfall	Annual rainfall averaged across an herbivore's species range. As such, corresponds to the average rainfall experienced by the species.
annu_rain_sd	standard deviation of annual rainfall	The standard deviation of annual rainfall averaged across an herbivore's species range. As such, corresponds to spatial variability in rainfall.
rain_seas_mean	mean rainfall seasonality	Mean rainfall seasonality averaged across an herbivore's species range. As such, corresponds to the average rainfall seasonality experienced by the species.
rain_seas_sd	standard deviation of rainfall seasonality	The standard deviation of rainfall seasonality across an herbivore's species range. As such, corresponds to spatial variability in rainfall seasonality.
cec_mean	mean effective cation exchange capacity of soil	Average effective cation exchange capacity of all soil data points within an herbivore's species range. Higher values reflect comparatively nutrient rich soils.
cec_sd	standard deviation of effective cation exchange capacity of soil	The standard deviation of effective cation exchange capacity for all soil data points within an herbivore's species range. Higher values reflect more spatially variable soil nutrients.
nit_mean	mean nitrogen content of soil	Average nitrogen content of all soil data points within an herbivore's species range. Higher values reflect comparatively nutrient rich soils.
nit_sd	standard deviation of mean nitrogen content of soil	The standard deviation of nitrogen content for all soil data points within an herbivore's species range. Higher values reflect more spatially variable soil nutrients.

Table S3. Global models of herbivore traits and behaviors, including all predictors hypothesized that have an effect on said variable, for use in model selection. Note that predictors that are underlined were only included in the analyses involving soil nutrient data, which encompass only the subset of species for which nutrient data were available.

Variable	Global model
body mass	$\log\text{BM} \sim \text{abs(latitude)} + \text{mean_temp_mean} + \text{mean_temp_sd} + \text{temp_seas_mean}$ + $\text{annu_rain_mean} * [\text{nit_mean} + \text{nit_sd} + \text{cec_mean} + \text{cec_sd}]$
grass dependence	$\text{avg_grass_diet} \sim \log\text{BM} * \text{abs(latitude)} + \text{temp_seas_mean} + \text{rain_seas_mean}$ + $\text{annu_rain_mean} * [\text{nit_mean} + \text{nit_sd} + \text{cec_mean} + \text{cec_sd}]$
migration	$\text{migration} \sim (\log\text{BM})^2 + \text{grow_grass_diet} + \text{diet_shift} * [\text{abs(latitude)} + \text{rain_seas_mean} + \text{annu_rain_sd} + \text{temp_seas_mean} + \text{mean_temp_sd}] + \text{annu_rain_mean} * [\text{nit_mean} + \text{nit_sd} + \text{cec_mean} + \text{cec_sd}]$
dietary shifts	$\text{diet_shift} \sim (\log\text{BM})^2 + (\text{grow_grass_diet})^2 + \text{migration} * [\text{abs(latitude)} + \text{rain_seas_mean} + \text{annu_rain_sd} + \text{temp_seas_mean} + \text{mean_temp_sd}] + \text{annu_rain_mean} * [\text{nit_mean} + \text{nit_sd} + \text{cec_mean} + \text{cec_sd}]$

Table S4. Model selection results for the predictors of herbivore body mass using different data subsets. Only the 6-8 highest ranked models are listed. ‘Preferred’ models (all models with $\Delta\text{AIC}_c < 2$) are *italicized*, whereas the ‘best’ model (simplest model with $\Delta\text{AIC}_c < 2$) is **bolded**.

Data set	Model formula	R ²	K	logLik	AICc	ΔAICc	weight
All herbivores with nutrient data (N = 158)	<i>Intercept only</i>	0.0356	2	-148.6	301.3	0	0.829
	logBM~mean_temp_sd	0.0525	3	-149.8	305.8	4.507	0.087
	logBM~nit_mean	0.0356	3	-150.8	307.7	6.404	0.034
	logBM~nit_sd	0.0358	3	-151.4	309.0	7.644	0.018
	logBM~cec_sd	0.0386	3	-152.4	310.9	9.566	0.007
	logBM~cec_mean	0.0409	3	-152.5	311.1	9.775	0.006
	logBM~mean_temp_mean	0.0356	3	-152.9	311.9	10.615	0.004
	logBM~mean_temp_sd+nit_mean	0.0528	4	-152.0	312.2	10.875	0.004
All herbivores (N = 210)	<i>Intercept only</i>	0.0539	2	-191.3	386.7	0	0.937
	logBM~mean_temp_sd	0.0626	3	-193.1	392.4	5.681	0.055
	logBM~mean_temp_mean	0.0552	3	-195.6	397.4	10.728	0.004
	logBM~abs(latitude)	0.0558	3	-196.1	398.4	11.712	0.003
	logBM~mean_temp_mean+mean_temp_sd	0.0687	4	-197.4	403.0	16.367	0
	logBM~mean_temp_mean+mean_temp_sd	0.0626	4	-197.5	403.2	16.545	0
Herbivores < 500 kg	<i>Intercept only</i>	0.0657	2	-130.1	264.2	0	0.939
	logBM~mean_temp_sd	0.0728	3	-132.3	270.8	6.571	0.035
	logBM~mean_temp_mean	0.0851	3	-132.8	271.7	7.452	0.023
	logBM~abs(latitude)	0.067	3	-135.2	276.5	12.244	0.002
	logBM~mean_temp_mean+mean_temp_sd	0.0859	4	-135.6	279.4	15.144	0
	logBM~abs(latitude)+mean_temp_mean	0.0996	4	-136.0	280.2	15.987	0
Herbivores 50 - 500 kg (N = 81)	<i>Intercept only</i>	0.0608	2	-12.23	28.62	0	0.98
	logBM~mean_temp_sd	0.0609	3	-15.34	36.99	8.372	0.015
	logBM~mean_temp_mean	0.0658	3	-16.96	40.22	11.601	0.003
	logBM~abs(latitude)	0.0608	3	-17.69	41.7	13.075	0.001
	logBM~temp_seas_mean	0.0652	3	-20.53	47.38	18.753	0
	logBM~annu_rainfall_mean	0.0708	3	-20.84	48	19.377	0
	logBM~mean_temp_mean+mean_temp_sd	0.0673	4	-19.92	48.38	19.753	0
Ungulates only (N = 175)	<i>Intercept only</i>	0.0686	2	-146.3	296.7	0	0.918
	logBM~mean_temp_sd	0.0821	3	-147.8	301.7	5.048	0.074
	logBM~mean_temp_mean	0.0714	3	-150.6	307.2	10.585	0.005
	logBM~abs(latitude)	0.0710	3	-151.1	308.4	11.730	0.003
	logBM~mean_temp_mean+mean_temp_sd	0.0821	4	-152.2	312.6	15.989	0
	logBM~abs(latitude)+mean_temp_sd	0.0822	4	-152.8	313.8	17.117	0

Table S5. Model selection results for the predictors of herbivore grass dependence (defined here as mean dietary grass fraction) using different data subsets. Only the 6-8 highest ranked models are listed. ‘Preferred’ models (all models with $\Delta\text{AIC}_c < 2$) are *italicized*, whereas the ‘best’ model (simplest model with $\Delta\text{AIC}_c < 2$) is **bolded**.

Data set	Model formula	R ²	K	logLik	AICc	ΔAICc	weight
All herbivores with nutrient data (N = 158)	<i>avg_grass_diet~logBM</i>	0.1143	3	-61.3	128.7	0	0.71
	avg_grass_diet~logBM+nit_mean	0.1334	4	-62.3	132.9	4.191	0.087
	avg_grass_diet~logBM+nit_sd	0.1382	4	-62.5	133.3	4.592	0.071
	avg_grass_diet~logBM+cec_sd	0.1446	4	-63.1	134.5	5.817	0.039
	avg_grass_diet~logBM+cec_mean	0.1466	4	-63.2	134.7	6.023	0.035
	Intercept only	0.0329	2	-66	136.1	7.372	0.018
	avg_grass_diet~logBM+annu_rain_mean	0.1758	4	-64.7	137.7	8.975	0.008
	avg_grass_diet~logBM+rain_seas_mean	0.1369	4	-65.2	138.6	9.885	0.005
All herbivores (N = 210)	<i>avg_grass_diet~logBM</i>	0.0882	3	-76.02	158.2	0	0.921
	Intercept only	0.0324	2	-79.92	163.9	5.733	0.052
	avg_grass_diet~logBM+annu_rain_mean	0.1386	4	-79.38	167.0	8.809	0.011
	avg_grass_diet~logBM+rain_seas_mean	0.1114	4	-79.49	167.2	9.028	0.01
	avg_grass_diet~rain_seas_mean	0.0713	3	-81.79	169.7	11.533	0.003
	avg_grass_diet~logBM+abs(latitude)	0.0920	4	-81.18	170.6	12.403	0.002
Herbivores < 500 kg (N = 192)	<i>avg_grass_diet~logBM</i>	0.1293	3	-64.59	135.3	0	0.964
	avg_grass_diet~logBM+annu_rain_mean	0.1873	4	-67.29	142.8	7.485	0.023
	avg_grass_diet~logBM+rain_seas_mean	0.1534	4	-68.07	144.4	9.059	0.01
	avg_grass_diet~logBM+abs(latitude)	0.1315	4	-69.91	148.0	12.742	0.002
	Intercept only	0.0272	2	-73.11	150.3	14.990	0.001
	avg_grass_diet~logBM*abs(latitude)	0.1589	5	-71.78	153.9	18.577	0
	avg_grass_diet~logBM+abs(latitude)+annu_rain_mean	0.1928	5	-72.12	154.6	19.272	0
Herbivores 50 - 500 kg (N = 81)	<i>Intercept only</i>	0.0160	2	-33.11	70.37	0	0.431
	avg_grass_diet~logBM	0.0541	3	-32.56	71.43	1.056	0.254
	avg_grass_diet~rain_seas_mean	0.1596	3	-32.60	71.51	1.136	0.244
	avg_grass_diet~logBM+rain_seas_mean	0.1789	4	-32.76	74.05	3.673	0.069
	avg_grass_diet~abs(latitude)	0.0210	3	-38.11	82.53	12.159	0.001
	avg_grass_diet~logBM+abs(latitude)	0.0589	4	-37.58	83.68	13.305	0.001
	avg_grass_diet~rain_seas_mean+abs(latitude)	0.1600	4	-37.82	84.17	13.794	0
Ungulates only (N = 175)	<i>avg_grass_diet~logBM</i>	0.1718	3	-54.74	115.6	0	0.621
	avg_grass_diet~logBM+rain_seas_mean	0.2334	4	-54.19	116.6	0.999	0.377
	avg_grass_diet~logBM+annu_rain_mean	0.2086	4	-60.08	128.4	12.776	0.001
	avg_grass_diet~logBM+abs(latitude)	0.1725	4	-60.27	128.8	13.14	0.001
	avg_grass_diet~logBM+rain_seas_mean+abs(latitude)	0.2380	5	-59.28	128.9	13.295	0.001
	avg_grass_diet~logBM+annu_rain_mean+rain_seas_mean	0.2447	5	-62.13	134.6	18.983	0

Table S6. Model selection results for the predictors of migration using different data subsets. Only the 5-7 highest ranked models are listed. ‘Preferred’ models (all models with $\Delta AIC_c < 2$) are *italicized*, whereas the ‘best’ model (simplest model with $\Delta AIC_c < 2$) is **bolded**.

Data set	Model formula	R ²	K	logLik	AICc	ΔAIC_c	weight
All herbivores with nutrient data (N = 158)	<i>migration~(logBM)² + abs(latitude)</i>	0.430	5	-76.50	163.39	0	0.109
	<i>migration~(logBM)² + diet shift</i>	0.389	5	-76.84	164.08	0.694	0.077
	<i>migration~(logBM)² + grow_grass_diet + abs(latitude)</i>	0.446	6	-75.83	164.22	0.828	0.072
	<i>migration~(logBM)² + grow_grass_diet + diet shift</i>	0.405	6	-76.29	165.14	1.749	0.045
	<i>migration~(logBM)² + abs(latitude) + diet shift</i>	0.434	6	-76.32	165.19	1.798	0.044
	<i>migration~(logBM)²</i>	0.373	4	-78.48	165.23	1.835	0.043
	<i>migration~logBM + grow_grass_diet + abs(latitude)</i>	0.420	5	-77.54	165.47	2.078	0.038
	<i>migration~logBM + abs(latitude)</i>	0.400	4	-78.62	165.49	2.102	0.038
All herbivores (N = 210)	<i>migration~abs(latitude) + (logBM)² + grow_grass_diet</i>	0.447	6	-101.3	215.0	0	0.363
	<i>migration~abs(latitude) + logBM + grow_grass_diet + diet shift</i>	0.452	7	-100.8	216.1	1.098	0.210
	<i>migration~abs(latitude) + logBM + grow_grass_diet</i>	0.425	5	-103.3	216.9	1.945	0.137
	<i>migration~abs(latitude) + logBM + grow_grass_diet + diet shift</i>	0.431	6	-102.7	217.9	2.871	0.086
	<i>migration~(logBM)² + grow_grass_diet + temp_seas_mean</i>	0.451	6	-103.5	219.4	4.382	0.041
	<i>migration~logBM + grow_grass_diet + temp_seas_mean</i>	0.433	5	-105.0	220.2	5.214	0.027
	<i>migration~abs(latitude) + logBM + grow_grass_diet</i>	0.449	5	-88.23	186.9	0	0.299
Herbivores < 500 kg (N = 192)	<i>migration~abs(latitude) + logBM + grow_grass_diet + diet shift</i>	0.456	6	-87.55	187.6	0.689	0.212
	<i>migration~abs(latitude) + logBM + grow_grass_diet + mean_temp_sd</i>	0.466	6	-88.47	189.4	2.522	0.085
	<i>migration~logBM + grow_grass_diet + temp_seas_mean</i>	0.459	5	-89.62	189.6	2.693	0.078
	<i>migration~abs(latitude) + logBM + grow_grass_diet + mean_temp_sd + diet shift</i>	0.472	7	-87.89	190.4	3.524	0.051
	<i>migration~logBM + grow_grass_diet + temp_seas_mean + diet shift</i>	0.464	6	-89.14	190.7	3.858	0.043
	<i>migration~abs(latitude) + grow_grass_diet + mean_temp_sd</i>	0.482	5	-39.74	90.27	0	0.302
50 - 500 (N = 81)	<i>migration~abs(latitude) + logBM + grow_grass_diet + mean_temp_sd</i>	0.502	6	-39.24	91.61	1.342	0.154

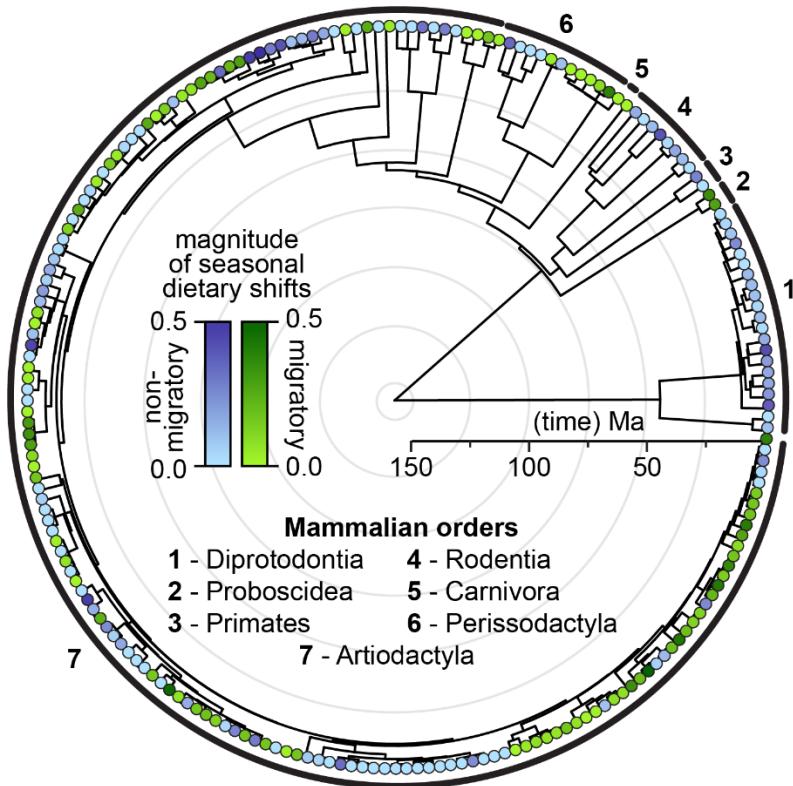

Ungulates only (N=175)	migration~abs(latitude) + diet_shift grow_grass_diet + mean_temp_sd	0.483	6	-39.82	92.77	2.501	0.086
	migration~grow_grass_diet + mean_temp_sd	0.368	4	-42.33	93.19	2.919	0.070
	migration~abs(latitude) + (logBM) ² grow_grass_diet + mean_temp_sd	0.503	7	-38.83	93.20	2.928	0.070
	migration~abs(latitude) + logBM + diet_shift + grow_grass_diet + mean_temp_sd	0.502	7	-39.39	94.32	4.046	0.040
	<i>migration~abs(latitude)+ logBM + grow_grass_diet</i>	0.438	5	-87.99	186.3	0	0.488
	<i>migration~abs(latitude)+ (logBM)² + grow_grass_diet</i>	0.449	6	-87.87	188.2	1.907	0.188
	<i>migration~abs(latitude) + logBM + grow_grass_diet + diet shift</i>	0.441	6	-87.95	188.4	2.062	0.174
	<i>migration~abs(latitude)+ (logBM)² + grow_grass_diet + diet shift</i>	0.450	7	-88.05	190.8	4.425	0.053
	<i>migration~abs(latitude)+ logBM + grow_grass_diet + mean_temp_sd</i>	0.445	6	-89.96	192.4	6.082	0.023
	<i>migration~abs(latitude)+ (logBM)² + grow_grass_diet + mean_temp_sd</i>	0.457	7	-89.79	194.3	7.910	0.009

Table S7. Model selection results for the predictors of dietary shifts using different data subsets. Only the 5-7 highest ranked models are listed. ‘Preferred’ models (all models with $\Delta\text{AIC}_c < 2$) are *italicized*, whereas the ‘best’ model (simplest model with $\Delta\text{AIC}_c < 2$) is **bolded**.

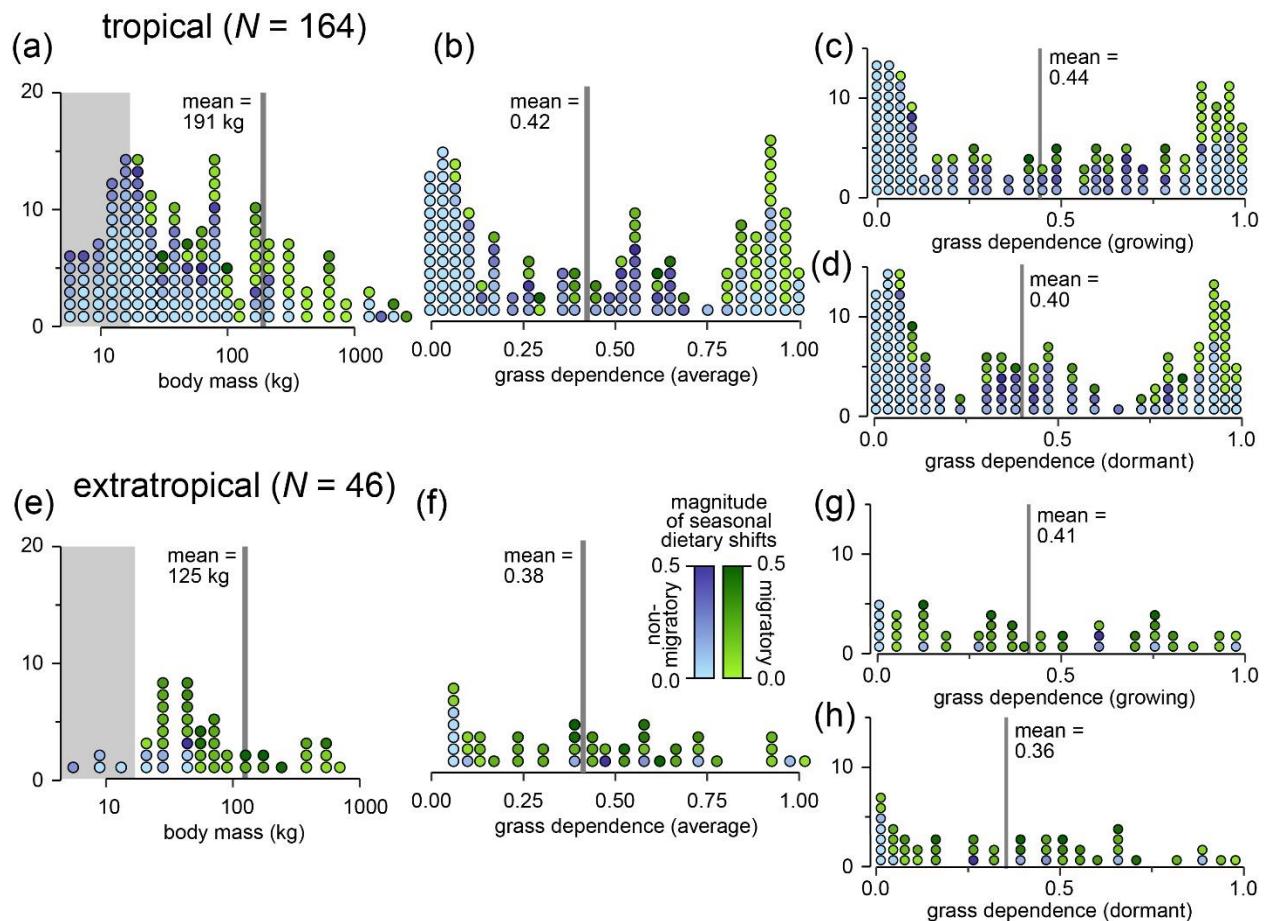

Data set	Model formula	R ²	K	logLik	AICc	ΔAICc	weight
All herbivores with nutrient data (N = 158)	<i>diet shift~(grow_grass_diet)²</i>	0.540	4	178.7	-349.1	0	0.64
	diet shift~(grow_grass_diet) ² + cec_sd	0.576	5	178.8	-347.2	1.879	0.25
	diet shift~(grow_grass_diet) ² + nit_mean	0.556	5	177.0	-343.6	5.471	0.042
	diet shift~(grow_grass_diet) ² + logBM	0.545	5	175.8	-341.2	7.875	0.012
	diet shift~(grow_grass_diet) ² + cec_mean	0.56	5	175.7	-341.0	8.133	0.011
	diet shift~(grow_grass_diet) ² + nit_mean + cec_sd	0.588	6	176.7	-340.8	8.350	0.010
	diet shift~(grow_grass_diet) ² + migration	0.542	5	175.5	-340.7	8.453	0.009
All herbivores (N = 210)	<i>diet shift~(grow_grass_diet)²</i>	0.519	4	231.8	-455.4	0	0.949
	diet shift~(grow_grass_diet) ² + migration	0.522	5	229.0	-447.4	8.038	0.017
	diet shift~(grow_grass_diet) ² + logBM	0.523	5	228.8	-447.4	8.077	0.017
	diet shift~(grow_grass_diet) ² + mean_temp_sd	0.526	5	228.4	-446.6	8.878	0.011
	diet shift~(grow_grass_diet) ² + (logBM) ²	0.522	5	227.2	-444.0	11.402	0.003
	diet shift~(grow_grass_diet) ² + abs(latitude)	0.526	5	226.1	-441.9	13.484	0.001
Herbivores < 500 kg (N = 192)	<i>diet shift~(grow_grass_diet)²</i>	0.510	4	210.7	-413.2	0	0.893
	diet shift~(grow_grass_diet) ² + logBM	0.519	5	209.0	-407.7	5.548	0.056
	diet shift~(grow_grass_diet) ² + migration	0.516	5	208.3	-406.3	6.876	0.029
	diet shift~(grow_grass_diet) ² + (logBM) ²	0.518	5	207.5	-404.6	8.553	0.012
	diet shift~(grow_grass_diet) ² + mean_temp_sd	0.514	5	206.7	-403.1	10.072	0.006
	diet shift~(grow_grass_diet) ² + abs(latitude)	0.518	5	205.2	-400.1	13.065	0.001
Herbivores 50 - 500 kg (N = 81)	<i>diet shift~(grow_grass_diet)²</i>	0.549	4	80.09	-151.6	0	0.948
	diet shift~(grow_grass_diet) ² + logBM	0.549	5	77.68	-144.6	7.082	0.027
	diet shift~(grow_grass_diet) ² + migration	0.549	5	77.19	-143.6	8.063	0.017
	diet shift~(grow_grass_diet) ² + (logBM) ²	0.549	5	76.22	-141.6	10.01	0.006
	diet shift~(grow_grass_diet) ² + mean_temp_sd	0.550	5	75.90	-141.0	10.653	0.005
	diet shift~(grow_grass_diet) ² + abs(latitude)	0.557	5	74.25	-137.7	13.934	0.001
	diet shift~(grow_grass_diet) ² + rainfall_seas_mean	0.563	5	74.20	-137.6	14.038	0.001
Ungulates only (N = 175)	<i>diet shift~(grow_grass_diet)²</i>	0.524	4	189.3	-370.3	0	0.946
	diet shift~(grow_grass_diet) ² + mean_temp_sd	0.536	5	186.8	-363.2	7.173	0.026
	diet shift~(grow_grass_diet) ² + migration	0.524	5	186.0	-361.6	8.742	0.012
	diet shift~(grow_grass_diet) ² + logBM	0.524	5	185.8	-361.2	9.176	0.010
	diet shift~(grow_grass_diet) ² + (logBM) ²	0.524	5	184.4	-358.4	11.935	0.002

Table S8. Sensitivity analysis. The results of statistical tests for differences between tropical and extratropical herbivores if 35° N/S is used as the boundary and if 23.5° N/S is used as the boundary. Qualitatively, results are largely the same regardless of the boundary used to distinguish taxa. ‘phylANOVA’ refers to phylogenetic analysis of variance, which tests for differences between group means; and ‘KS test’ to a Kolmogorov–Smirnov test, which tests for differences between group distributions. Significantly different results ($P < 0.05$) are **bolded**.

Depen- dent variable	Dataset (N)	35° N/S				23.5° N/S			
		phylANOVA		KS test		phylANOVA		KS test	
		F	P	D	P	F	P	D	P
Body size	Nutrient (158)	0.1127	0.793	0.2564	0.0142	2.8237	0.631	0.2003	0.1029
	Full (210)	0.8235	0.591	0.2625	0.0105	2.1898	0.611	0.1594	0.1447
	< 500 kg (192)	3.6031	0.180	0.2936	0.0064	0.2891	0.893	0.1337	0.3631
	50 - 500 kg (81)	1.4227	0.401	0.2983	0.0991	0.3775	0.647	0.2090	0.3548
	Ungulates (175)	0.7582	0.541	0.2627	0.0263	0.0669	0.901	0.1896	0.0990
Grass dependence	Nutrient (158)	1.0793	0.410	0.2313	0.1823	0.7591	0.821	0.2212	0.0537
	Full (210)	0.4439	0.712	0.1840	0.1756	1.6935	0.697	0.2618	0.0016
	< 500 kg (192)	0.3987	0.737	0.2023	0.1303	2.0363	0.686	0.2870	7.88×10⁻⁴
	50 - 500 kg (81)	3.3761	0.178	0.3487	0.0329	0.7053	0.549	0.2522	0.1625
	Ungulates (175)	0.0219	0.920	0.2044	0.1451	0.2118	0.814	0.2847	0.0023
Migration	Nutrient (158)	17.433	0.003	0.4060	0.0012	2.1975	0.702	0.1175	0.6877
	Full (210)	33.537	0.001	0.4438	1.43×10⁻⁶	8.0139	0.259	0.1912	0.0456
	< 500 kg (192)	36.796	0.001	0.4690	8.42×10⁻⁷	11.146	0.165	0.2296	0.0133
	50 - 500 kg (81)	11.609	0.007	0.3728	0.0183	15.759	0.005	0.3930	0.0045
	Ungulates (175)	37.108	0.001	0.4955	4.05×10⁻⁷	21.760	0.009	0.3415	1.17×10⁻⁴
Dietary shifts	Nutrient (158)	7.1917	0.030	0.3789	0.0032	12.513	0.147	0.3717	7.33×10⁻⁵
	Full (210)	10.115	0.013	0.3634	0.0001	23.735	0.009	0.3893	3.14×10⁻⁷
	< 500 kg (192)	13.346	0.006	0.4117	2.44×10⁻⁵	27.828	0.005	0.4099	2.29×10⁻⁷
	50 - 500 kg (81)	14.229	0.002	0.5351	0.0001	11.411	0.014	0.4456	7.93×10⁻⁴
	Ungulates (175)	12.601	0.011	0.4183	3.39×10⁻⁵	36.144	0.001	0.4662	2.57×10⁻⁸

Figure S1. Phylogenetic distribution of seasonal strategies. Point colors at the tips of the phylogeny correspond to herbivore seasonal strategies, where *blue* points correspond to non-migratory herbivores, *green* points correspond to migratory herbivores, and *darker* points reflect species that exhibit larger seasonal diet shifts. *Light grey* circles correspond to 25 Ma intervals. Numbers around the margins of the phylogeny correspond to herbivore orders.

Figure S2. Trait distributions for tropical (a-d) and extratropical herbivores (e-g). For both, body mass distributions are roughly unimodal (a,e), with means between 100-200 kg, though the body mass distribution is significantly narrower for temperate herbivores. In contrast, dietary distributions are roughly trimodal for both extratropical and tropical herbivores (b,f), with a mean dietary grass fraction of *ca.* 0.40. This is particularly evident in the dormant season (d,h) as compared to the growth season (c,g), when diet distributions become flatter (possibly suggesting that herbivore niche breadths increase in the dormant season when resources are scarce). Note that extratropical herbivores seasonally shift their diets significantly more than do tropical herbivores. Dark grey lines correspond to means (none of which differ significantly between temperate and tropical herbivores). Point colors correspond to herbivore seasonal strategies, where *blue* points correspond to non-migratory herbivores, *green* points correspond to migratory herbivores, and *darker* points reflect species that exhibit larger seasonal diet shifts. Light grey boxes in (a,e) correspond to regions of trait space where no herbivores exhibit migratory behavior, possibly suggesting some morphological and/or energetic constraint on migration.