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The ability of wild animals to navigate and survive in complex and dynamic environments

depends on their ability to store relevant information and place it in a spatial context.

Despite the centrality of spatial memory, and given our increasing ability to observe animal

movements in the wild, it is perhaps surprising how difficult it is to demonstrate spatial

memory empirically. We present a cognitive analysis of movements of several wolves

(Canis lupus) in Finland during a summer period of intensive hunting and den-centered

pup-rearing. We tracked several wolves in the field by visiting nearly all GPS locations

outside the den, allowing us to identify the species, location and timing of nearly all

prey killed. We then developed a model that assigns a spatially explicit value based

on memory of predation success and territorial marking. The framework allows for

estimation of multiple cognitive parameters, including temporal and spatial scales of

memory. For most wolves, fitted memory-based models outperformed null models by

20 to 50% at predicting locations where wolves chose to forage. However, there was

a high amount of individual variability among wolves in strength and even direction

of responses to experiences. Some wolves tended to return to locations with recent

predation success—following a strategy of foraging site fidelity—while others appeared

to prefer a site switching strategy. These differences are possibly explained by variability

in pack sizes, numbers of pups, and features of the territories. Our analysis points toward

concrete strategies for incorporating spatial memory in the study of animal movements

while providing nuanced insights into the behavioral strategies of individual predators.

Keywords: discrete choice modeling, wolf, movement, predation, boundary patrolling, central place foraging,

foraging site fidelity, foraging site switching

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.768478
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.768478&domain=pdf&date_stamp=2022-03-14
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:egurarie@esf.edu
https://doi.org/10.3389/fevo.2022.768478
https://www.frontiersin.org/articles/10.3389/fevo.2022.768478/full


Gurarie et al. Memory-Based Wolf Foraging Model

1. INTRODUCTION

Spatial memory is fundamental to successful navigation of
complex, dynamic environments (Fagan et al., 2013). Theoretical
and simulation studies have shown that memory can be essential
in structuring movements and space use (Mueller and Fagan,
2008; Barraquand et al., 2009; Van Moorter et al., 2009; Avgar
et al., 2013; Watkins and Rose, 2013; Schlägel and Lewis,
2014; Bracis et al., 2015; Riotte-Lambert et al., 2017), and can
help optimize resource acquisition in dynamic environments
(Bracis et al., 2015, 2018). In parallel, movement data is
rapidly accumulating. A central task of movement analysis is
to infer behavioral mechanisms that underlie decision making
processes (Nathan et al., 2008). Much effort has been devoted
to inferring unobservable behavioral states from movement data
(Morales et al., 2004; Forester et al., 2007; McClintock et al.,
2012; Gurarie et al., 2016), while step and resource selection
functions quantify animal movement responses to heterogeneous
environments (Boyce and McDonald, 1999; Hebblewhite et al.,
2005; Thurfjell et al., 2014). However, the underlying models
almost always assume a straightforward, tactical response to
immediate environmental cues, e.g., a fully informed preference
for a particular habitat, or a probabilistic rule for switching
behaviors under certain environmental conditions without
accounting for memory driven responses. In fact, it has been
demonstrated that not accounting for simple memory-based
behavior can lead to misleading inferences in a step-selection
framework (Van Moorter et al., 2013).

Despite the centrality of spatial memory and the abundance of
movement data collected on animals in the wild, demonstrating
that animals are using spatial memory is a surprisingly steep
challenge. Many relevant studies have focused on terrestrial
herbivores, which have the advantage of being relatively easy
to study. Thus, bison (Bison bison) keep track of meadow
patch locations and quality (Merkle et al., 2014, 2016), thereby
constraining their space use in a way reminiscent of simulation-
based predictions (Van Moorter et al., 2009). Migratory zebras
(Equus zebra) demonstrate a memory-based anticipation of
seasonal resource flushes (Bracis and Mueller, 2017), as do blue
whales (Balaenoptera musculus) (Abrahms et al., 2019). Boreal
woodland caribou (Rangifer tarandus caribou) movements can
be modeled with respect to a stored estimates of forage quality
and predation risk according to a nuanced cognitive model
(Avgar et al., 2015). Recently used locations were among the most
significant predictors of wild boar (Sus scrofa) movements and
habitat use (Oliveira-Santos et al., 2016).

The herbivorous examples above feed primarily on stationary
resources. In contrast, large carnivores feed onmobile and cryptic
prey, which are themselves capable of spatial mapping and event-
based memory when making movement decisions. This adds a
non-trivial level of complexity to applying a foraging strategy.
It is unclear, for example, whether predators should prefer or
avoid locations where they were most recently successful. Re-
use of those locations, referred to as “foraging site fidelity” is
a suitable strategy if locations of recent success correlate with
locations of future success. This hypothesis explains the large
scale selection of foraging sites for several avian central-place

predators (Davoren et al., 2003; Carroll et al., 2018). On the
other hand, foraging site switching can occur if prey avoid an
area where they have witnessed or are aware of the death of
a conspecific. In this case, predators are best off changing the
location where they predate, as had been demonstrated for lions
(Panthera leo) in savannas (Valeix et al., 2011). Whether an
immediate decision by a predator follows one strategy or another
likely depends on the spatial scale of prey patches and foraging
ranges, and on the temporal scale of prey patch persistence and
depletion-recovery dynamics relative to the temporal scale of a
predator foraging bout.

Wolves (Canis lupus) are highly adaptable, generalist, social
predators of large prey. Their reproductive, hunting, territorial,
seasonal, and dispersive behavior has been observed and
described in great detail (Mech and Boitani, 2003), mainly in
descriptive terms based on extensive field observations. Wolves
are routinely described as having high cognitive abilities and
complex information retention and communication skills. For
example, Peters and Mech (1975) write that “Wolves appear to
have well-organized memories for routes, points, junctions, and
their juxtaposition,” and propose that the spatial distribution
of wolf markings were a physical manifestation of their
“cognitive maps.”

Despite this, compelling quantitative or model-based
inference on the cognitive processes of wolf behavior in the
wild has been elusive, in part because of the layered behavioral
complexity of predator-prey interactions. In a recent study
(Schlägel et al., 2017) winter wolf movements were modeled as a
function of local prey density and boundary visitations, relating
these to the time of return for each location as a indication
of use of spatial memory. The results provide compelling
evidence that wolves do track space and time. However, the
modeling framework was constrained to a temporal scale fixed
by the arbitrary sampling frequency of the GPS locations and a
spatial scale of landscape rasterization fixed by computational
limitations. The structure of the model thereby precluded an
exploration of the temporal and spatial scales at which memory
was operating.

Here, we develop, parameterize, fit, and explore a predictive,
memory-driven model of spatial decision-making by wolves,
focusing on the summer, den-centered, pup-rearing period. In
this period, reproductive adult wolves must balance several
important prerogatives: (1) they must hunt successfully, not just
to feed themselves but to provide energetic surplus to pups, (2)
they must regularly revisit the den to feed pups via regurgitation,
and (3) they must periodically visit the edges of their territories
to mark and patrol. The data we analyze were obtained from
an intensive summer predation study contrasting established
and dispersed packs of wolves in Finland, where wolves have
reestablished themselves at relatively low densities via a process
of natural dispersal from Russia (Kojola et al., 2006; Barry et al.,
2020). During these predation studies, we obtained a detailed,
behaviorally annotated time-series by visiting nearly all non-
den GPS locations over a two-month period. Importantly, we
identified carcasses, allowing us to infer the location, composition
and timing of most kills (Gurarie et al., 2011), as well as
boundary visits.
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Our first goal was to demonstrate that wolves do use spatial
memory by developing a cognitive model that outperforms a
non-cognitive null model for predicting wolf foraging decisions.
An important goal in developing the model was to have a
heuristic that would allow us to estimate or approximate the
temporal and spatial scales at which wolves weigh and act upon
their recent predation success and boundary visitation. Once
fitted, we anticipated that this model would provide insights into
the fundamental decision-making strategies used by wolves to
forage and maintain their territories.

Based on our knowledge of wolf behavior, we had several
predictions: (1) that the valuing of predation might depend
on the size of prey (e.g., an adult moose Alces alces being
many magnitudes larger than a beaver Castor castor) and on
the effort, in terms of time spent hunting, required to make
a kill; and (2) that wolves would be inclined to return to
territorial boundaries that had not been visited with some time
lag to ensure they were marked, at a time lag approximately
equal to the duration of a scent marking persistence. We
also anticipated (3) that wolves would be more inclined to
head toward (or value more highly) areas where they have
had more recent predation success. We considered this more
likely than site switching as the limited viewshed in forested
environments may make it more difficult for prey to be aware
of conspecific kills.

2. MATERIALS AND METHODS

2.1. Study Area
The study focused on eight summer-tracking studies of seven
wolves in five unique territories in eastern Finland near the
border with Russia (Figure 1). These territories are in the
sparsely populated “core range” where wolves first recolonized
Finland from Russia in the 1970’s (Kojola et al., 2006), with
primarily coniferous boreal forest dominated by Scotch pine
(Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula
pendula and B. pubescens). As a result of extensive logging,
clear cuts and young successional mixed forests are common.
The landscape is further dotted with lakes and peat bogs,
about half of which have been drained. Moose (Alces alces)
and reindeer (Rangifer tarandus L.) are the two resident
ungulate species in the study area (Kojola et al., 2004). Reindeer
include the wild forest subspecies (R. t. fennicus) and the
free-ranging semi-domesticated reindeer (R. t. tarandus). The
distribution of wild forest reindeer is limited to the north by
the area of semi-domesticated reindeer management, separated
physically by a fence extending across Finland at roughly
65◦ N. North of this border, wolves have no legal protection
and are commonly killed by local hunters (Kojola et al.,
2006).

2.2. Wolf Capture and Handling
Wolves were captured and collared in late winter or early
spring (between February and April) (Kojola et al., 2006).
Individuals were captured using snowmobiles when the snow
was soft and at least 80 cm. Snowmobiles were driven alongside
wolves, which were looped using a neck-hold noose attached

to a pole. The wolves were placed in a wooden box that had
been strengthened with a metal grating around the outside
and had doors at both ends. Wolves were kept in the box
for at least 30 min before being injected with a mixture of
medetodimine and ketamine with a dose ratio of 1:20 (Jalanka
and Roeken, 1990). The wolves were equipped with collars
that contained global positioning system receivers (GPS Plus
2, Vectronic Aerospace GmbH, Berlin, Germany) and Very
High Frequency (VHF) radio beacon transmitters (Televilt,
Lindesberg, Sweden). The collars weighed approximately 760
g and had expanding, adjustable collars. Capture, handling,
and anesthetizing of the wolves met the guidelines issued by
the Animal Care and Use Committee at the University of
Oulu and permits provided by the provincial government of
Oulu (OLH-01951/Ym-23).

2.3. Field Tracking
We analyzed data from seven intensively field tracked wolves.
Each wolf was followed intensively for 60 days from the
beginning of June to the end of July for one summer each from
2006 to 2013, with the exception of one wolf (Hessu) that was
followed for two summers (2011 and 2013). All of the collared
wolves represented breeding individuals, and we did not have
more than one wolf collared in any particular pack.

GPS locations were obtained for all the wolves at half hour
intervals via the GSM (Global System for Mobile) network,
which covered the entirety of all wolves’ territories. In seven of
the eight studies, every location was visited in the field after a
minimum five day time lag, excluding locations near or around
the den. The lag was maintained to minimize disturbance, and
the locations visited on a given day were as far as possible from
the location of the focal wolf on that day. The overall median
lag was 8 days (inter-quartile range 5 to 11 days). A minimum
radius of 25 m around each location was surveyed with the help
of trained tracking dogs, who were able to efficiently identify
signs of wolf presence, such as carcasses, caches, bedding sites,
and scats. For the remaining study, only those locations that
were clustered, corresponding to likely kill, bedding and cache
sites, were visited. Cervid prey carcasses and age status (adult
or calf) were identified by the bones and antlers. Several were
not identifiable in the field, and were recorded as “unknown
ungulate.” Other prey items, including hare (Lepus europaeus),
beaver (Castor castor), capercaillie (Tetrao urogallus), black
grouse (Tetrao tetrix) and one each of raccoon dog (Nyctereutes
procyonoides), and Northern goshawk (Accipiter gentilis) were
identified by pelage and plumage and classified as “minor” prey,
with no further subdivision into age categories. For additional
details on the field methodology, see (Gurarie et al., 2011), which
provides a close analysis of the summer habitat preferences of
two of the wolves. The simplified outcome of the intensive field
tracking was a movement track annotated with behaviors, and
location and identity of most prey consumed over the period
of the studies. Separately, howling surveys (Fuller and Sampson,
1988) and winter tracking after each of the summer periods were
used to estimate the number of adults, juveniles, and pups in
each pack.
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FIGURE 1 | Map indicating the boundary polygons of eight wolf tracking studies in Finland (inset map). Several of the studies occurred in overlapping territories:

Lentuan Uros’s (magenta) territory in 2011 was inherited by Julla in 2013 (blue), and Viki’s territory in 2006 was inherited by Hessu, who was tracked in 2011 and 2013

(gray, green, and orange). Darker colors on the map reflect higher elevations (maximum 340 m). These territories are in the core of the Finnish wolf range, near the

border with Russia, whence the population naturally dispersed, but south of the reindeer management area (dashed line) which is separated from southern Finland by

a fence north of which wolves are unprotected.

2.4. Cognitive Model
Our overarching goal was to specify and estimate a model that
predicts the movement behavior of a wolf during the summer
den-centered pup-rearing period. In summer, wolves expend
considerable effort and energy on obtaining enough nutrition to
feed and rear pups, leaving and returning to the den on a near
daily basis (Jędrzejewski et al., 2001; Alfredéen, 2006; Gurarie
et al., 2011). A secondary important goal of wolf movements
is to patrol the territorial boundary, a task that is particularly
important when other wolves inhabit adjacent territories (Peters
and Mech, 1975).

In order to demonstrate the utility of memory, we needed to
isolate a behavioral variable that could be explained by the prior
experience of the wolves. Wolves are highly mobile and free to
hunt and visit any location in their territories. In Finland, there
are few topographical constraints to available habitat, only larger
water bodies are truly inaccessible in the summer. However, the
movements of wolves in summer are den-centered, allowing us

to specify and enumerate trips, defined as the set of GPS locations
framed on either end by departure from and return to the known
den site. One dependent variable which reflects an apparently free
(i.e., unconstrained and uncoerced) choice is the direction chosen
by the wolf, i.e., the portion of the territory toward which the wolf
headed when leaving the den to initiate a trip.

In order to enumerate or quantify this choice, we discretized
the entire territory into some number of zones ranging between
3 and 8 (see example in upper panels of Figure 4). We used
a range of zone numbers as we have no idea how the wolf
organizes its mental map of the territory, but the range of zones
allowed us to roughly explore the spatial scale at which the
wolves’ decision making process might occur. In order to make
the spatial classification unsupervised and algorithmic, we used
a nearest neighbor clustering on the location data sets, with the
slight modification that the square root was taken of the distance
of each location to the den (i.e., ||xTi || =

√
||xi − xden||, where

xT refers to the transformed location). This transformation had
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FIGURE 2 | Illustration of two trips (#3 and #19) for wolf Niki superimposed on

a four zone classification. Colored dots represent all locations collected for Niki

over the two month period of the study. The four colors represent Zones I to IV

as labeled along the exterior. In Trip 3, the wolf departed within Zone IV, killed a

reindeer calf, moved along its boundary (pink colors), killed an adult reindeer,

and returned to the den, entirely within Zone IV. In Trip 19, the wolf departed

within Zone II, killed an adult moose at the boundary, moved along the

boundary and returned via Zone I. Regardless of the return Zone, this trip is

classified as a Zone II trip, since that is the direction chosen by the wolf at

departure. The rhombus in the middle indicates the den site.

the effect of generating zones that were more likely to be radially
arranged around the hub of the den site. After performing
the clustering on the transformed locations, a polygon was
drawn around a Dirichlet tessellation of each set of original
points, thereby breaking the entire set of original locations into
the specified number of zones. The tesselation was performed
using the dirichlet function in the spatstat R package
(Baddeley et al., 2015). Each trip was classified as heading out
into a particular zone by taking the set of points from the
beginning of the trip to that trip’s furthest location from the den
or first kill—whichever came first—and finding the mode of the
visited zones (e.g., if the set of zones were 3,3,2,3,3, the selected
zone would be 3) (see Figure 2 for an illustration of the zone
classification process).

Whatever the eventual outcome of the trip (i.e., which zones
the wolf visited, whether, where and how many prey are killed,
etc.) the selected zone is a free and unconstrained choice that
the wolf makes when it departs. The central assumption of our
memory-based model is that choice of zone is driven, in part, by
prior experiences—specifically, predation success and boundary
visits—that are specific to each zone.

2.4.1. Discrete Choice Model
We model the selected zone for each trip (denoted Zt where
t ∈ 1, 2, ...nt) using a discrete choice modeling framework
fitted withmultinomial conditional logistic regression (Chapman
and Staelin, 1982; Croissant, 2013). Discrete choice models
are behavioral models designed to forecast the behavior of
individuals facing a choice with unknown or unobservable
estimates of utility of respective choices. They have been widely
applied mainly to model human behavior, e.g., in behavioral
economics (Louviere et al., 2000; McFadden, 2001; Dubé et al.,
2002), including modeling transportation (Antonini et al.,
2006) and food (Gracia and de Magistris, 2008; Czine et al.,
2020) choices. In wildlife ecology, discrete choice models have
been applied in the context of habitat selection, including in
hierarchical frameworks across multiple individuals (Cooper and
Millspaugh, 1999; McDonald et al., 2006; Thomas et al., 2006).

Discrete choice modeling allows for the statistical estimation
of a ranking of choices where each choice can have a dynamic
set of covariates. The model assumes that the wolf maintains a
preference (or “desirability” or “priority”) score (Uit) for the ith
zone at the time of trip t, and always chooses to head in the
direction with the highest score. The preference score is separated
into a systematic component (Vit) and unobserved component
(ǫit):

Uit = Vit + ǫit (1)

It is important to note that the actual choice Uit may in
fact be deterministic from the wolf ’s perspective, and neither
the systematic nor the random component can be directly
observed, as they represent the decision making process. But the
partitioning allows us to analyze the process statistically. The
deterministic portion is further decomposed into trip-specific
and zone-specific component:

Vit = βi +
∑

v

γvXitv (2)

The coefficients βi are the zone-specific intercepts, reflecting the
time-independent quality or preference of the particular zone.
The trip-dependent set of variables Xit captures the dynamic
scoring of the zones and the set of coefficients γv reflects the
overall intrinsic response to each of the variables (indexed by v).

In our most complex model, we include three variables in
Xit : a predation quality score (Xit1 = Pit), which tracks the
zone-specific hunting success based on the wolf ’s experience, a
boundary coverage score (Xit2 = Bit), which tracks whether a
zone’s boundary has been visited and, presumably, marked, and
a repetition score (Xit3 = Rit) which tracks simply whether
an animal went to a particular zone on the previous trip. The
impact of these variables are driven by the wolf ’s memory and
depend on several parameters as explained in detail below. The
coefficients β and γ capture the relative contribution of each
of environmental and experiential (cognitive) covariates. In total
there are k+ 2 parameters in the most complex fitted model, one
each for predation memory, boundary memory and repetition,
and k − 1 intercept parameters for each zone, minus one degree
of freedom as the sum of the probabilities is always fixed to 1.
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2.4.2. Scoring Zones
We assume the wolf tracks a zone-specific predation score, which
is higher in areas with greater and more recent predation success,
and a boundary score, which is higher in zones with more recent
boundary visits. It is important to note that these scores (which
are all positive) only quantify predation success and boundary
visits, without making any claims as to whether higher values
make directed departures more or less likely. Whether higher
or lower scored areas are preferred is indicated by the strength
and sign of the coefficient estimates of discrete choice model
detailed in the next section. In fact, given the complexity of wolf
and prey behavior, it is difficult to know a priori whether areas
with a higher or lower number of kills would be preferred or
avoided. Large prey items (e.g., adult moose or reindeer) are
often cached, i.e., unconsumed portions are buried in the ground
and returned to later (Peterson and Ciucci, 2003), which can
make a recent kill site attractive. Similarly, the general suitability
of a particular area for certain prey species can make areas
of high predation success sequentially attractive. Prey behavior
can further complicate these responses, as prey may also avoid
areas with recent kills generating a “landscape of fear” (Laundré
et al., 2010), and it may be more strategic to temporarily avoid a
recently successful site.

Each kill contributes individually to the predation score
corresponding to the zone of the kill. We assume that the score
is higher the greater the mass of the kill, the shorter the time to
the kill (i.e., the less the effort), and the more recent the kill. An
expression that combines all of these assumptions is:

Pit =
∑

j=preyi,t

(

Mα
j

Ej

)

exp

(

−
(

1pj

τp

)κ)

(3)

where the sum is performed over all of the prey items captured
in zone i up to trip t (preyi,t); M is the approximate mass of the
prey item; α ∈ [0, 1] is a mass-scaling parameter (details below);
the effort Ej is the time spent moving before each kill either after
leaving the den, or events that “pause” the hunting behavior,
including cache revisits, or bedding; 1pj is the time since the
predation event; τp is a memory time scale which captures how
long the wolf considers previous successes valid or actionable;
and κ is a memory discounting coefficient. Estimates for adult
mass and estimated linear growth rates for the calves of the main
ungulate prey (moose, forest, and semi-domesticated reindeer)
were obtained from the literature as well as approximate mass
of smaller mammals and birds (Table 1). Growth rates were,
in particular, important to capture the growth of reindeer and
moose calves, which are many times larger in late July than in the
beginning of June.

The form of this predation score reflects several strong
structural assumptions, which we tested to a limited extent. For
example, we set κ to be either 1 for exponential memory decay, or
2 for Gaussian decay. We also fitted models where the predation
score did not include the discounting for effort, i.e., where Ej
was always set equal to 1. This allowed us to test, in a narrow
way, whether effort was also tracked. In both cases, fitted discrete
choice models with the two different values of κ and with and
without the effort term were compared using likelihood ratios.

TABLE 1 | Prey species, numbers killed, and growth models or estimated used to

approximate mass obtained from each prey item in the predation module of the

cognition model.

Species n. killed Mass and growth Source

ungulates adultcalfunk. b. dateb. massgrowthmax. kg

moose 37 81 3 01-Jun 13 1.123 200 S

semi-domesticated reindeer 2 12 26-May 10 0.75 100 F&P

wild forest reindeer 9 34 26-May 10 0.75 100 F&P

small mammals total estimated mass

hare 13 4 S,M

beaver 2 18 S

racoon dog 1 6

birds

capercaillie 2 3

black grouse 2 1

goshawk 1 2

The growth rate is in kg/day; for animals killed before the mean birth date, the birth

weight was used. The cited sources are: S—(Sand et al., 2008); M—(Markgren, 1969),

F&P—(Finstad and Prichard, 2000).

The two free parameters for the predation memory module
are the prey mass parameter α and the predation memory time
scale τp. If α = 0, any prey item (whether a hare or an
adult moose) contributes equally to the score. If α = 1, the
contribution is proportional to mass. The memory coefficient τp
captures the time scale at which memory is retained: if τp =
∞, all predation experience accumulates with no discounting
for time.

The boundary memory attempts to track whether the wolf
has patrolled and marked its boundary, an important behavioral
goal. To algorithmically classify locations as boundary locations,
we developed a concave hull algorithm that works as follows:
(1) select the convex hull (i.e., vertices of the minimum convex
polygon) Zmcp, (2) compute the angle θinner between all of the
inner points Zinner and the respective pair of closest convex
hull points, (3) retain the subset Z∗

inner where θinner < θ∗,
where θ∗ is a threshold of concavity, (4) repeat these steps using
the combined set of Zmcp and Z∗

inner as an input, (5) stop the
iteration when the new set is identical to the input set. We
used a threshold angle of θ∗ = π/2 (90◦). This algorithm
generated territorial boundary sets that were consistent with
field determined boundary locations (see Figure A.1 for an
example of the algorithm and Figure A.2 for all boundaries in
Appendix A).

The boundary memory, denoted Bi,t is a binary (0, 1)
variable that tracks whether the wolf has visited at least
two locations on the boundary of zone i in a fixed time
period λ preceding each trip. The λ parameter captures
the interval of time that the wolf feels it is necessary to
re-mark the territory and, therefore, related to the time
a scent-marking fades. We anticipated that the choice
regression coefficient for the boundary would be negative,
indicating that a zone with a recently visited boundary will be
scored lower.
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Finally, we added a repetition variable Ri,t , which is simply
1 if the selected zone at trip t − 1 was also i and 0 otherwise.
This variable is included in the model to account for any serial
auto-correlation (or anti-correlation) in the wolf ’s zone choice,
which could be confounded with either of the predation or
boundary variables.

2.4.3. Model Fitting and Selection
Under the generic assumptions of independent and identical
Gumbel distributions for the unobserved terms εit in Equation
(1), the probabilities Prit = Pr[Uit = max(Ut)] can be written in
terms of the logit probability function:

Pr
it
=

exp(Vit)
∑k

j=1 exp(Vjt)
, (4)

and the coefficients can be estimated by full-information
maximum likelihood estimation, as implemented in the mlogit
package in R (Croissant, 2013).

The likelihood procedure provides estimates of the regression-
like choice coefficients β (zone-specific estimates) and γ

(contribution of predation, boundary memory, and repetition).
However, the memory parameters (τp, λ, memory type κ) and
the structural parameters (number of zones k) have to be assessed
separately. Likelihood based criteria are useful for comparing
models with different values of the memory coefficients;
however, because the number of zones fundamentally alters
the underlying data, likelihoods cannot be used to compare
different fitted models across different numbers of zones. We,
therefore, introduce an intuitive measure of predictive power
of the models to use a basis of comparisons: the relative
predictive improvement index (RPI) defined as the ratio of the
mean of the predicted probabilities over the mean of the null
probabilities, i.e.:

RPI =
nt

∑

t=1

P̃r(zt)/
nt

∑

i=1

Pr
0
(zt)

where the sums are across all trips t ∈ 1, 2, ..., nt , and the
null probabilities are the proportion of trips for each zone
(note, since both sums are over the same number of trips,
the ratio of the sums is equal to the ratio of the respective
means). As an example, if an entire dataset consisted of one
visit to each of 4 zones: z = (1, 2, 3, 4), and the model
predictions for choosing each of those trips were Prt =

(0.75, 0.5, 0.25, 0.5), then P̃r(zt) = 0.5. The mean of the null
probabilities is P0(zt) = 0.25 and the ratio of the two is RPI
= 2, which can be interpreted as a doubling of the predictive
power of the model. Note that model log-likelihoods and RPI
are monotonically related: the former is the sum of the log of
probabilities, while the latter is proportional to the sum of the
probabilities. Thus a “maximumRPI” point estimate is equivalent
to a maximum likelihood point estimate, though without the
convenience of asymptotic theory for estimating confidence
intervals on coefficients. However, a randomization test of the
null hypothesis (that the model provides no improvement,

i.e., RPI = 1) can be conducted by resampling the order of
the trips some large number of times from the null set of
probabilities, recalculating the RPI, and comparing the observed
RPI to the resulting null distribution. Similarly, a resampling
confidence interval can be obtained by sampling sequences
of trip zones from the predicted probabilities of the model,
and comparing to a sampling of zone sequences from the
null model. By computing the RPI of these resamplings and
repeating the process some large number of times (e.g., 1,000),
a confidence interval can be obtained around the RPI. The
RPI thus provides an intuitive, interpretable tool for assessing
discrete choice models where the number of choices itself is
variable, as well as a statistical mechanism for hypothesis testing
and inference.

We fitted the discretized trip-choice data across a range
of 3 to 8 zones, with predation time scales τp ranging from
0.5 to 4 (interval 0.25), boundary marking lags λ from 0.5
to 12 days (interval 0.5), for each of κ = 1 (exponential
memory) and κ = 2 (Gaussian memory), for each of 8
summermovement data sets.We computed the RPI, and selected
the combination of these parameters for which the RPI was
maximized. The theoretical total number of fitted models was
45,360, but in many cases—usually those with a high number
of zones of which some are never selected—the fits did not
converge. In other cases, there are no evident maxima in
the RPI. Nonetheless, from this set of models, we can pick
out the best combination of selected parameters (k, τp and
λ) for each wolf. Once those were determined, we compared
eight models with every combination of explanatory variables
(predation memory P, boundary memory B, or repetition R;
i.e., P+B+R, P+B, P+R, B+R, P, B, R, Null) using AIC as a
model selection criterion. From the final selected model, we
report the estimates, confidence intervals and p-values of the
retained coefficients.

As an added analysis, we compared estimates of the
boundary and predation coefficients across respective memory
time-scales to see if a particular response shifted across
scales. A transition from, e.g., a positive to a negative
response across time-scales would indirectly suggests that the
memory driven response to a particular zone operates in
different ways at different time-scales. In performing this
analysis, we selected the best model and combination of
structural parameters, i.e., number of zones and combination
of covariates.

All symbols and definitions for the modeling, data
preparation, and model assessment are presented in Table 2.

3. RESULTS

Pack size varied considerably, which in turn meant the number
and composition of prey killed varied by pack (Figure 3). The
overwhelming majority of prey consumed was cervids (176
of 206 identified carcasses: 85%): 80 (39%) moose calves and
46 (22%) were reindeer calves, another 36 (17%) were adult
moose and 11 (5%) were adult reindeer. The remaining prey
items were all minor, mainly hare. The two largest, most
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TABLE 2 | Definitions and symbols for modeling, data preparation and model

assessment.

Cognitive wolf foraging model

Zt Selected zone for each trip t

Uit Preference score for ith zone for trip t

Vit Systematic component of preference score

ǫit Unobserved component of preference score

Pit Predation quality score

Bit Boundary coverage score

Rit Repetition score

Xit Vector of covariate values: {Pit,Bit,Rit}
Predation scoring

M Approximate mass of prey item

Ej Effort preceding kill (hours)

1pj Time since predation event

Boundary identification

Zmcp Minimum convex polygon (convex hull) of all

locations

θ∗ Threshold of concavity

Z∗
inner Subset of points in convex hill where θinner < θ∗

θinner Angle between inner points Zinner and respective

pair of closest convex hull points

Estimated parameters

βi Zone specific intercept of preference for ith zone

γ Coefficients on covariates

τp Time scale of predation memory

α Mass-scaling coefficient (set to 0.5)

λ Time scale of boundary memory

Metrics

AIC Akaike Information Criterion

RPI Relative predictive improvement

established packs, on which we reported on in previous work
(Gurarie et al., 2011), consumed by far the most prey (over
45 items each, compared to 22 for the next highest, Figure 3),
which can partially be explained by their consumption of
larger prey which was easier to locate in the field. Over the
respective 60 day periods of field tracking, the number of
trips greater than 2 h varied between 34 and 67 (mean 53,
s.d. 12).

3.1. Parameters of Non-focal Interest
While there are many structural parameters in the full cognitive
model, the main ones of interest were those related to time scales
of memory for predation and boundary visits, and spatial scales
as reflected in the number of zones. We did, however, have to
make decisions regarding several other parameters.

Thus, we initially explored two values of the memory decay
shape parameter [κ in Equation (3)]: κ = 1 corresponding to
an exponential memory decay, and κ = 2 corresponding to a
Gaussianmemory decay.We also explored two values of themass
scaling parameter α: α = 0.5—i.e., a square root scaling, and
α = 1, a linear scaling. We fitted the complete (predation +
boundary visit + repetition) discrete choice model over a range
of scaling parameter values and each of the four combinations of

α and κ and compared the likelihoods of fitted models. Results
are summarized and presented in Appendix B.

There was high variability among individual animals when
these models were fitted (see results in Appendix B). Some
(e.g., Viki 2006) had a much higher likelihood with Gaussian
decay and square root scaling, while for others (e.g., Niki
2008), the exact inverse was the case. The absolute differences
in the log-likelihoods were not—typically—much larger than
one, suggesting that the process was not sensitive to either of
these parameters. We, therefore, chose to fix the “Viki” pattern
(Gaussian decay and square root scaling) for all subsequent
results, noting that those discrepancies may be worth further
investigation. Subsequent analyses focused on the time scales
of predation and boundary memory, and the spatial scales as
defined by number of zones.

Similarly, we assessed the structural assumption that the
effort component [Ej in Equation (3)] contributed significantly
to the predation score as a predictor by comparing likelihoods
of fits with and without the effort component across a range
of parameter values. Again, there was considerable variability
among individuals (see Appendix C), but for those four studies
for which the effort model was a better model (Viki 2006,
Niki 2008, Lentuan Uros 2011 and Julla 2013), the difference
was rather large (most 1AIC values < -2). These four wolves
are also the four wolves for which predation was retained in
the final discrete choice model (see below and Table 4). A
broad preliminary conclusion is that hunting effort is indeed
tracked by the wolf, and the “predation score” is tempered
by longer effort times. We retained the effort term for all
subsequent analyses.

3.2. Cognitive Model: Example Analysis
We illustrate fits of the complete (P+B+R) cognitive model for
one wolf, Lentuan Uros (LU 2011), across a range of zone
breakdowns (Figure 4, upper panels) and values of boundary
time lag λ and predation memory time scale τp (Figure 4,
lower panels). We obtained over a 50% improvement on null
predictions for this wolf (the highest of any of the other wolves),
with RPI maxima ranging between 1.51 and 1.54 for spatial
break-up into 5 to 8 zones. The RPI profile across boundary time
scales is fairly consistent across number of zones, around 4.5 days,
with the most prominent peak at 5 and 6 zones. The RPI profile
against predation memory time scale peaks consistently between
1.25–1.75 days, though differences across time scales were less
dramatic. Interestingly—the RPI-predation profile was sharper at
the higher breakdown of zones (7 and 8) where the profile for
boundary memory was flatter.

At the highest RPI set of parameters (5 zones, τp = 1.75, λ

= 4.0), a model comparison against all linear combinations of
P, B, and R models show that there is essentially no difference
between the P+B+R and B+R model, but that both of these are
much better than any of the other models (1AIC > 4), and
the null model performs much worse than any of the others
(Table 3). The coefficients for boundary and repetition were
both highly significant and positive, suggesting that the wolf
tended to repeat its previous behavior, and, unexpectedly, that
visits to boundary locations were further reinforced by recent
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FIGURE 3 | Pack and prey composition of all 8 pack-year studies, arranged chronologically by year. Colors indicate prey composition as per the legend, dots and

triangles above the bars indicate the number of adults and pups in each pack, respectively.

TABLE 3 | 1AIC table for comparison of fitted cognitive choice models for wolf LU 2011 with 5 zones, τp = 1.75, λ = 4.0, sorted by decreasing AIC, with d.f. representing

the degrees of freedom (number of parameters).

Main effects Estimated coefficients

Models d.f AIC 1AIC RPI (95% C.I.) P B R

B + R 6 120.38 0 1.51 (1.34-1.68) 1.483 0.85

P + B + R 7 120.79 0.41 1.54 (1.41-1.68) 0.22 1.372 0.784

P + B 6 125.05 4.68 1.38 (1.21-1.54) 0.29 1.579

B 5 126.21 5.83 1.31 (1.14-1.47) 1.76

P + R 6 128.51 8.13 1.40 (1.27-1.54) 0.34 1.03

R 5 130.24 9.86 1.34 (1.21-1.47) 1.152

P 5 138.02 17.64 1.17 (1.07-1.34) 0.456

null 4 144.07 23.69 1.00 (0.87-1.14)

Bold faced coefficient values are significant at the α = 0.01 level; italicized coefficients are significant at α = 0.1. The top two models have almost identical AIC values. P, B, and R refer

to predation score, boundary score, and repetition predictors, respectively. Note that the “null” model here is an intercept-only model, in which each zone has a constant preference

unaffected by the covariates.

visits, rather than recent visits obviating the need to return
to a boundary.

3.3. Cognitive Model: All Wolves
A cognitive model improved significantly on the null RPI for six
of the eight wolf studies at the best (or near best) combination of
parameters (Table 4). We refer to these six studies as “cognitive

wolves.” There was, however, considerable variability in the
values of the RPI-maximizing parameters and in the signs of the
fitted coefficients.

The repetition effect was positive and significant in all but
one of the cognitive wolves, suggesting that wolves have some
straightforward auto-correlation in their choice of departure
direction. For three of the four cognitive wolves for whom the
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FIGURE 4 | Zone breakdown (upper panels) and parameter sweep of memory models (lower panels) for wolf Lentuan Uros (LU). Upper panels illustrate the roughly

axial separation that the zone clustering algorithm generated. Lower panels illustrate the computed prediction improvement (RPI) for predation and boundary fitted

models across various values of predation memory time scale τp (middle panels) and boundary visit lags λ (lower panels). The color spectra correspond to the other

time scale in each plot. Thus, for example, the maximum RPI (1.54) is attained at 5 zones, τp = 1.75 days and λ = 4 days.

predation coefficient was retained, the effect was significant and
positive—consistent with our a priori hypothesis that there would
be a preference for zones with higher predation scores, consistent
with the foraging site fidelity hypothesis. The exception was
Viki 2006, who showed a negative response to predation at a
memory time scale of 0.75 days. Similarly, the boundary effect
was retained for five studies, of which three showed positive
responses, while two showed negative responses. Vellu 2010,
the only cognitive wolf for which repetition was non-significant,
had a strongly negative boundary coefficient (at a lag of 8.5
days), indicating that boundary patrolling was a significant
driver for this wolf, which also had the most elongated of all
the territories (Figure 1). The only wolf that conformed with
both of our hypothesized predictions was Julla 2013, with both
a positive response to predation and a negative response to
boundary visits.

3.4. Coefficients Across Time Lags
We explored how the estimated effect sizes and signs changed
across time scales of memory for boundary visits (λ from 1 to
20 days) and predation scores (τp from 0.5 to 5 days) for those
wolves for which both were significant predictors of departure
directions. Figure 5 illustrates three such examples.

Generally, for both predation and boundary visits, at the
longest time scales, the less important is the memory for
predicting intrisic values of areas, or at least at predicting
the direction of foraging. However, unique patterns do emerge
for each individual. Thus, Julla 2013 had a fairly consistent
positive predation response (mean effect size 0.58), and negative
boundary response (mean -0.72), more or less consistently across
all time scales. For wolf LU, the positive boundary response peaks
in magnitude around the value corresponding to the highest
likelihood, around 4 days (Table 4), and then steadily decays
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TABLE 4 | Summary of model results for best (or near-best) model for each study, with selected parameter values, selected model, and coefficient estimates.

ID year trips model zones τp λ RPI Predation Boundary Repeat

Significant improvement over null

LU 2011 53 P + B + R 5 1.75 4 1.54 0.22 1.37 ** 0.78 **

Hessu 2011 72 B + R 7 0.5 1.53 0.92 − 1.25 **

Niki 2008 61 P + R 8 0.75 1.35 0.75 * 0.85 **

Viki 2006 52 P + B + R 8 1.25 3 1.32 -0.56 − 1.26 ** 0.79 *

Vellu 2010 39 B 5 8.5 1.25 -1.60 **

Julla 2013 88 P + B + R 6 4 3 1.21 0.53 ** -0.76 * 0.5 −
No significant improvement over null

Hessu 2013 40 P + R 9 1.25 1.37 0.18 * 0.73 −
Miki 2009 73 B + R 8 3 1.07 -1.13 − -0.71 −

Significance indicators **, *, and − indicate p-values less than 0.01, 0.05, and 0.1, respectively. For coefficients that were significant at the 0.1 level, bold facing and italics indicate

positive and negative coefficients. The overall improvement over null was determined by the lower 95% confidence interval of the RPI being entirely greater than 1.0.

FIGURE 5 | Estimated coefficients for boundary effects against boundary memory time scales (upper panels) and predation effect against predation memory timescale

(lower panels) for three example wolves. Thick and thin bars represent 1 and 2 standard errors around respective point estimates, blue are negative, red are positive,

light and dark colors represent 1 and 2 standard errors away from 0. Note that the boundary coefficient for Viki (left panels) switches signs across memory time scales.

until it ceases to be significant after about a value of λ = 10 d.
The predation response decays steadily with greater time scale,
becoming statistically insignificant after about 3 days.

Most strikingly, wolf Viki 2006 undergoes a switch in the sign
of the boundary coefficient between short time lags (≈ 3 days)
and longer time lags (≈ 12 days). This suggests that the wolf is
more likely to revisit (or highly value) an area of recent visitation,

but if the score considers whether there have been visits over
a two week period, that area is less likely to be selected. This
result is somewhat consistent with the short and long time-scaled
memory, often referred to as “working” and “reference” which
has been both experimentally measured (Green and Stanton,
1989; Becker and Morris, 1999) and modeled (Bracis et al., 2015,
2018). Recent visits to portions of a boundary may require more
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visits for good marking. But if a boundary has been marked over
a larger time scale, while others have not been, then the need to
go to unmarked areas increases. The strength of the predation
response for Viki 2006 is significantly negative at a 1.5–2 day
time scale, indicating that more or less immediate returns to
areas with successful kills are unlikely. However, as that predation
memory time scale increases, recent predation success becomes
less significant as a predictor of future movements.

4. DISCUSSION

Cognitive processes cannot be directly observed for animals
in the wild; even in controlled experiments memory can only
be inferred. Studying cognition, therefore, requires developing
a cognitive model to make inferences on those behavioral
observations, like movements and predation events, that are
the observable outcomes of cognitive processes. In order
to demonstrate that central-place foraging wolves are using
memory to make movement decisions, we needed several specific
ingredients: (1) a discrete, observable set of choices made by
wolves in the wild, (2) significant events (kills and boundary
visits) that could reasonably have influenced the valuing of
those choices, (3) a statistical framework that allowed for a
rapid exploration of various temporal and spatial scales at
which memory might operate, combined with a model selection
framework to narrow down significant explanatory variables, and
(4) a metric by which we could demonstrate that our model
outperforms a non-cognitive model. For most wolves, fitted
and parameterized cognitive models were 20 to 50% better at
predicting choices than non-cognitive null models (Table 4).

In order to develop and fit such models, we relied on
an extraordinarily detailed dataset which contained reliable
information on objects and locations that are known to be of
importance to wolves during the breeding season: the precise
location of the den, of kill sites with identification of prey
species, and—with slightly more guesswork—the contours of the
territorial boundary.We therefore constructed ourmodel around
the behavioral imperatives of predation and territorial marking,
anchored around fairly regular, central-placed trips that began
and ended at the den site. The model assumed a spatially-explicit
scoring that emerges directly from prior experiences for both
priorities. These are generic assumptions that are consistent with
well-known aspects of wolf behavior (Mech and Boitani, 2003).

Nonetheless—and most intriguingly—the results we obtained
in many cases contradicted our expectations and were highly
individual and idiosyncratic. We comment here on the design
and structure of our modeling framework, discuss the cognitive
spatial ecology of the wolves in our study, and conclude with
some broad ideas on the ingredients needed to make cognitive
inferences on animals in the wild.

4.1. Discrete Choices
We chose a discrete choice framework with a design that focused
on the apparently unconstrained choice of direction taken by
the wolf when leaving the den. The discrete choice approach is
a natural one for exploring cognition for several reasons. First,
experimental studies of memory and learning in animals almost

always reduce to discrete choice frameworks (Thorpe et al., 2004),
including such classic experimental designs as the turns a rat
chooses to navigate a maze (Tolman and Honzik, 1930) or key-
pecking by pigeons (Wilkie and Willson, 1992). More relevant
to wolves, experiments on domestic dogs Canis familiaris that
have shown explicit episodic and working memory have been
designed around hiding food rewards in discrete boxes (Fiset
et al., 2003; Fujita et al., 2012). Second, the statistical analysis of
observational data on discrete choices is a well-developed field,
in particular as related to human economic choices (Louviere
et al., 2000; McFadden, 2001; Dubé et al., 2002). Fitting discrete
choice models is, therefore, fast and technically straightforward,
and provides easily interpretable effect sizes for any number
of statistically supported covariates that might independently
influence choices. Finally, a discrete choice framework provides
a straightforward measure of the predictive success of models by
comparing probabilistic predictions to randomized observations.

Despite the natural fit of the discrete choice framework to
studying cognition, this study is the only example we are aware
of as applied to a free-ranging wild animal. The key ingredient
is the discrete choice itself. We focused on a very specific kind
of movement: namely the early stage of departure from a den.
Given the high motility of wolves and the relatively unstructured
Finnish mixed woodland landscape, any destination was more or
less equally available. Furthermore, it seemed a safe assumption
that each departure from the den had similar essential purposes:
first to obtain food by hunting or visiting existing caches,
with the goal of returning with enough nourishment to feed
pups in the den, and to patrol territories. By reducing our
movement variable in this way, we greatly simplified the general
problem of “modeling movements.” This is in contrast to a
thematically similar study, in which a memory-based model of
winter (i.e., non den-centric) wolf movements with boundary
visits and prey habitat used as covariates (Schlägel et al., 2017).
In their compelling analysis, every movement step was modeled
and the spatial map was fixed to a computationally feasible grid.
Thus, the spatial and temporal units of analysis were set not
by biological or behavioral considerations but by the battery
power trade-off of collar transmission, and by computational
constraints of spatial grid processing. The intensive computation
of fitting a single model (several days, Schlägel, pers. comm.)
limited the ability to explore different parameterizations, model
structures or covariates. Furthermore, the nature of movements
can vary considerably depending on the motivation or behavioral
imperative. For example, previous work on several of the wolves
in this study showed thatmovements are faster andmore directed
when returning to a den post-kill than while hunting (Gurarie
et al., 2011), a distinction that is lost when all movements are
assumed to be driven by the same process.

By focusing on a limited set of discrete trip departures and
a coarsely discretized spatial structure, we were able to compare
thousands of models in a short amount of time, sweeping
across multiple temporal and spatial scales and combinations
of structural parameter values. The obvious trade-off is that
we had relatively few departures to model, no more than 1
per day per wolf, which limited the inferential power of more
complex models.
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4.2. Scales of Space and Time
Among the many structural assumptions underlying our
framework, perhaps the most tenuous was the discretization of
the wolf territories into a countable number of zones. There
is no objective way to know how similar a wolf ’s mental map
might be to our clustering-based zonal partitioning. However,
we were able to test a range of numbers of zones, from 3—
too few to provide interesting insights—to 8—at the limit of
discrete choices given the number of trips that we analyze
per wolf. By comparing these different spatial structures, we
were able to obtain a coarse idea of a spatial scale at which
wolves might be conceptualizing their territory. The number
of zones that best separated the discrete choice making of
the wolves was between 5 and 8, i.e., in the upper half of
the range. Noting that the mean area of the wolf territory
was around 670 km2 (s.d. 275), this would suggest that a
relevant cognitive spatial scale for valuing areas would be on
the order of 80–130 km2. Note that this sweeping of structural
parameters is made tractable, even trivial, by the discrete choice
model framework.

For the animals for which predation memory was significant,
three were between 0.75 and 1.75 days (Table 4), which might be
considered an indication of the time frame over which the spatial
location of a predation success is relevant to a wolf. Larger prey
items were often torn into smaller pieces and cached, i.e., buried
shallowly, by the wolves. Those caches are often revisited within
some relatively short period after the kill before any useful meat is
too spoiled, and the 1–2 day time scale might reflect that specific
cache-revisit behavior. For those wolves for which boundary
visits were a significant factor, time-scales were nearly all much
longer: from 3 to 8.5 days (Table 4).

The shift in the magnitude of the coefficient responses
(Figure 5) adds nuance to this discussion of time scales. Most
notably, the shift in the sign of the boundary response against
time scales for wolf Viki is somewhat consistent with the
paradigm of “working” (short-term) and “reference” (long-term)
memories that often operate in different ways (with opposite
signs) at different time-scales. Similarly, while we discretized
space into relatively few large zones, in Figure 4 it appears that
the RPI peak against predation time-scale is narrower at a larger
number of zones (8), i.e., at a finer spatial scale, while RPI against
boundary memory is more sharply optimized at fewer zones
(5). This may indicate that the spatial scale at which predation
success is remembered is finer than the spatial scale of boundary
patrolling. This is consistent with the fact that predation occurs
unpredictably in very specific locations, whereas the boundary is
a known, fixed entity which is most efficiently marked by making
larger territorial movements. Including multiple temporal and
spatial scales in a model like this, however, stretches the power
of limited observations for making inferences.

4.3. Wolf Foraging Strategies: Patch
Depletion or Site Fidelity?
While the fitting, parameterization and predictive assessment
of the cognitive model was largely successful, many of the
estimated effects contradicted our original expectations and point

to nuanced and context-dependent strategies of foraging. In
particular, we anticipated that the predationmemory effect would
be positive, corresponding to a strategy of foraging-site fidelity,
and that the boundary visit effect would be negative, as recently
visited boundaries would not need to be revisited immediately.

In fact, only one wolf (Julla) has a significant positive
predation memory at a time scale of 4 days (by far the
longest time scale) combined with a significant negative
boundary memory (time scale 3 days). Julla was a wolf in a
small pack (2 adults) which apparently only killed 5 reindeer
(of which three were adults) that were identified by field
workers over the study period. With so few animals, caching
and memory takes on an additionally important role, and
likely contributed to the higher scoring of recent predation
kill sites. Apparent foraging site fidelity in this context is
possibly more closely related to cache returns than persistent
prey density.

Julla can be contrasted to another wolf (Viki) that had a
weak (0.1 > p-value > 0.5) negative coefficient on the predation
memory (time scale of 1.25 days). Viki apparently did not value
locations of recent predation success as highly as moving to other
areas of its territory. Viki was a reproductive member of the
largest, most established pack in our data set in the core Finnish
wolf area, and had among the largest number of kills, 44 reindeer
and moose, mainly calves, in total (Figure 3). It is possible that
the high success rate of predation throughout the range, together
with the higher need to patrol boundaries, and reinforcing
territorial marking, deemphasizes the need for foraging site
fidelity. Furthermore, it is possible that local prey depletion
can occur, analogous to the “patch-disturbance” hypothesis that
leads lions to regularly change the location they predate after
successful hunts due to prey species avoiding environments
that are demonstrably risky (Valeix et al., 2011). While the
viewshed and corresponding cross-prey species communication
of successful hunts is much more limited in the boreal forest than
in the savanna, many of the prey ungulates have much smaller
ranges than the smallest of the wolf zones. For example, summer
home ranges of female moose in Fennoscandia range from 1000
to 2000 ha (Cederlund and Okarma, 1988; Eriksen et al., 2011).
Moose are, furthermore, solitary and somewhat territorial, with
minimal range overlap (Eriksen et al., 2011). A single adult kill
may, therefore, significantly deplete the availability of prey on
a hyper-local level, while a calf kill—which a mother moose
is likely to be aware of—may also result in a shift in the
female’s range.

In contrast to both Viki and Julla, Niki had a strong positive
predation coefficient (at time lag 0.75), and no boundary model
selected whatsoever, despite having the greatest number of kills.
This may be explained by the fact that Niki’s territory was
largely structured by several major roads and an extended fence
separating the reindeer management area (RMA, Figure 1). In
fact, Niki was the only wolf whose territory overlapped with the
RMA and the only wolf to have killed several semi-domesticated
reindeer (Gurarie et al., 2011). All of these highly structuring
features are consistent with certain areas being consistently better
for predation, making foraging site fidelity a more viable strategy
for this wolf.
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While accounting for the wide variability in cognitive
strategies among these wolves is impossible, we can broadly
conclude that wolves may engage in either major foraging
strategy, or—indeed—can move with no particular attention
to prey distribution at all. It bears noting that the territories
in this study were all very similar, many neighboring or
overlapping across years (Figure 1). The main differences
among wolves were related to pack composition and density
and distribution of primary roads and houses, which can
significantly impact wolf behavior and space use in general
(Gurarie et al., 2011; Barry et al., 2020). Thus, when it
comes to using and responding to spatial memory, wolves
appear to be highly idiosyncratic and individual, much as the
social and ecological context of individual wolves can be very
specific, even within the same territory across years (see also
Appendix B). Even as it can be demonstrated statistically that
some decisions are influenced by prior experience, there are
few overarching generalities that can be made about the spatial
or temporal scales and relative importance of various cues on
wolf cognition.

4.4. Inferring Cognition From Movement
Data
It is—in short—a surprisingly steep challenge to infer the use
of memory for animals moving in the wild, mainly because of
the large number of variables that cannot be controlled and the
complexity of animal behavior. Nonetheless, cognitive inferences
can be made when certain criterion are met. We propose here a
checklist building on the somewhat qualified success of fitting our
own cognitive model on the wolf data set.

1. Identification and isolation of a distinct quantifiable

behavior that might hypothetically be driven by prior
experiences and otherwise be minimally confounded by
unknown behavioral imperatives; e.g., den departures to
specific spatial zones.

2. Identification of key events or cues that might determine the
movement behavior to be modeled; in our example, predation
events and boundary visits. Generally, food resources are the
most important trigger, echoing experimental setups where
food rewards are routinely used. As a rule, movement data
alone without a context will almost never be sufficient to
unambiguously identify a cognitive signal.

3. A plausible cognitive mechanism for a movement response
to those events; i.e., the memory-based movement model
itself. Ideally, this model can be developed in a hierarchical
way, such that increasingly complex models can be compared
to test specific hypotheses.

4. A statistical framework to estimate the properties of that
mechanism from movement data; e.g., the discrete choice
modeling framework and parameter sweeps for maximum
likelihood exploration of parameter values.

5. A reliable metric to demonstrate the relative performance of
the cognitive model against simpler, non-cognitive models;
e.g., the relative prediction improvement score.

This checklist may be useful in pointing toward general
principles for the development of cognitive analysis of
movement data.
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