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Abstract
1. Comparing traits across species has been a hallmark of biological research for cen-

turies. While interspecific comparisons can be highly informative, phylogenetic 
inertia can bias estimates if not properly accounted for in comparative analyses. 
In response, researchers typically treat phylogenetic inertia as a form of autocor-
relation that can be detected, modelled and corrected for. Despite the range of 
methods available for quantifying the strength of phylogenetic autocorrelation, 
no tools exist for visualising these autocorrelation structures.

2. Here we derive variogram methods suitable for phylogenetic data, and show how 
they can be used to straightforwardly visualise phylogenetic autocorrelation. We 
then demonstrate their utility for three empirical examples: sexual size dimor-
phism (SSD) in the Musteloidea, maximum per capita rate of population growth, r, 
in the Carnivora, and brain size in the Artiodactyla.

3. When modelling musteloid SSD, the empirical variogram showed a tendency for 
the variance in SSD to stabilise over time, a characteristic feature of Ornstein– 
Uhlenbeck (OU) evolution. In agreement with this visual assessment, model selec-
tion identified the OU model as the best fit to the data. In contrast, the infinitely 
diffusive Brownian motion (BM) model did not capture the asymptotic behaviour 
of the variogram and was less supported than the OU model. Phylogenetic vari-
ograms proved equally useful in understanding why an OU model was selected 
when modelling r in the Carnivora, and why BM was the selected evolutionary 
model for brain size in the Artiodactyla.

4. Because the variograms of the various evolutionary processes each have differ-
ent theoretical profiles, comparing fitted semi- variance functions against empiri-
cal semi- variograms can serve as a useful diagnostic tool, allowing researchers to 
understand why any given evolutionary model might be selected over another, 
which features are well captured by a model, and which are not. This allows for 
fitted models to be compared against the empirical variogram, facilitating model 
identification prior to subsequent analyses. We therefore recommend that any 
phylogenetic analysis include a nonparametric estimate of the autocorrelation 
structure of the data that can be visualised. The methods developed in this work 
are openly available in the new R package ctpm.
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1  | INTRODUC TION

Comparing traits across species has been a hallmark of biological 
research for centuries (Garland et al., 2005; Harvey & Pagel, 1991). 
Indeed, interspecific comparisons have yielded some of the most 
important biological advances, including the theory of evolu-
tion by natural selection (Darwin, 1859), allometric scaling rules 
(Bergman, 1848; Hirt et al., 2017; Jetz, 2004; Noonan et al., 2020; 
Rensch, 1950), the metabolic theory of ecology (Brown et al., 2004) 
and theories on the evolution of sociality (Lukas & Clutton- 
Brock, 2013; Noonan et al., 2015). While interspecific comparisons 
can be highly informative, as early as Darwin (1859) it was recognised 
that the characteristics of newly evolved species are based on modi-
fications of traits inherited from ancestors. This inheritance will limit 
the differences in traits between closely related taxa, especially if 
only a short amount of time has passed, a phenomenon known as 
‘phylogenetic inertia’ (Blomberg & Garland Jr, 2002). In his seminal 
paper, Felsenstein (1985) showed how phylogenetic inertia can be 
viewed as as a form of statistical autocorrelation that could result 
in biased estimates and misleading significance if not properly ac-
counted for in comparative analyses. Felsenstein (1985) effectively 
translated the concept of phylogenetic inertia into a statistical prob-
lem and provided a path forward for correcting for autocorrelation- 
induced biases in comparative analyses using statistical approaches.

The idea that phylogenetic inertia should leave a statistically 
identifiable autocorrelation structure in species trait data that 
could be modelled was transformative, and methods for modelling 
phylogenetic autocorrelation have evolved substantially over re-
cent decades (e.g. Abouheif, 1999; Blomberg et al., 2020; Butler & 
King, 2004; Harmon et al., 2008; Martins & Hansen, 1997; Revell 
et al., 2008). Researchers now routinely model phylogenetic au-
tocorrelation when making interspecific comparisons (Abouheif 
& Fairbairn, 1997; Johnson et al., 2017; Noonan et al., 2015), and/
or quantify the strength of phylogenetic autocorrelation to infer 
evolutionary processes (Herrera, 2020; Kellermann et al., 2012; 
Morales, 2000). These approaches primarily rely on modelling evolu-
tion according to Gaussian stochastic processes, typically some form 
of Brownian motion (BM; Einstein, 1905), Ornstein– Uhlenbeck (OU) 
processes (Uhlenbeck & Ornstein, 1930), or, more recently, non- 
Gaussian stochastic processes (Blomberg et al., 2020). Models are 
fit via maximum likelihood estimation (Clavel et al., 2015; Harmon 
et al., 2008; Revell, 2012), and the best model is chosen via standard 
model selection procedures (Burnham & Anderson, 2002). While ex-
isting tools for working with phylogenetic data have yielded novel 
insight into evolutionary processes (e.g. Furness et al., 2021; Smaers 
et al., 2021), a challenge of the conventional workflow is that it of-
fers no way to visualise the autocorrelation structure of the data, 
nor to assess whether any of the candidate models look like the data. 
This is a notable limitation as the ability to visualise autocorrelation 

is crucial for understanding the underlying evolutionary process 
and determining what stochastic model the data best suggest. 
This stands in stark contrast to the numerous tools available for 
quantifying the strength of phylogenetic autocorrelation, such as 
Moran's I (Moran, 1950), Pagel's λ (Pagel, 1999), Abouheif's Cmean 
(Abouheif, 1999) and Blomberg's K (Blomberg et al., 2003) (reviewed 
in: Münkemüller et al., 2012). As a result of this limitation, research-
ers often rely on colouring the branch tips or lengths of phylogenetic 
trees based on trait values (e.g. Revell, 2013), or on plotting changes 
in diversity over time (Harvey et al., 1994). While these can serve as 
a useful visual tools, they provide only limited information on the 
underlying stochastic process by which a trait may be evolving.

Here we show how semi- variograms offer both a novel ap-
proach for visualising phylogentic autocorrelation and a solution 
to the model diagnostic problem. Semi- variograms were originally 
developed to describe the degree of spatial dependence of random 
fields in geostatistics, as it was well known that geological samples 
taken close together in space would be more similar to one another 
than samples taken farther apart (Matheron, 1963). While originally 
developed to describe spatial autocorrelation, semi- variograms 
have also been extended to describe the temporal autocorrelation 
of stochastic processes (Fleming et al., 2014). Because the differ-
ent stochastic processes used to model phylogenetic autocorrela-
tion all have different theoretical variograms (Fleming et al., 2014), 
empirical semi- variograms can provide a useful diagnostic tool for 
checking a model's fit (Pérez- Barbería et al., 2004). Here, we ex-
tend semi- variograms to the needs of phylogenetic autocorrela-
tion, develop confidence intervals on the estimated semi- variances, 
and implement the method into openly available software. We 
then demonstrate the utility of the method for three empirical 
examples: (a) the evolution of sexual size dimorphism (SSD) in the 
carnivoran superfamily Musteloidea (Noonan et al., 2016); (b) max-
imum per capita rate of population growth in the Carnivora (Fagan 
et al., 2013) and (c) brain size in the Artiodactyla (Haarmann, 1975; 
Oboussier, 1979).

2  | MATERIAL S AND METHODS

2.1 | Semi- variograms for phylogenetic data

There are methods other than the variogram for visualising au-
tocorrelation structures that can be applied to phylogenetic trait 
data. For instance, Gittleman and Kot (1990) and Diniz- Filho 
(2001) put forward methods for generating phylogenetic corre-
lograms based on calculating Moran's I (Moran, 1950) at evenly 
spaced, user- defined distances classes and plotting this against 
the rank of the distance class. Although correlograms and vario-
grams carry similar information, we focus here on semi- variograms 
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for three key reasons: (a) variograms have an unbiased estimator 
(Cressie, 1993), whereas this is not the case for correlograms; (b) 
variograms more readily relax the need for evenly spaced data 
(Fleming et al., 2014) and (c) variograms are better suited towards 
exploring the structure of autocorrelation in a dataset as opposed 
to correlograms that are typically used to identify the presence/
absence of significant autocorrelation. Variograms are thus the 
only known unbiased, nonparametric autocorrelation estimator 
that can handle the highly irregular time intervals that typify phy-
logenetic tree data.

Let xi(t) denote the trait x of the ancestor of species i at time t in 
the past, which all share the same stochastic process distribution, 
but evolve independently after bifurcation. Under an assumption of 
stationarity, the semi- variance function at lag τ can be estimated via 
any weighted average of the form

where the sum runs only over species that last shared a common an-
cestor at time τ/2 in the past, and where the second constraint fixes 
the expectation value E[ ( )] = ( ). The above form of estimator is 
unbiased and asymptotically consistent, but its variance will be deter-
mined by our choice of weights wij(t).

Optimal weights will minimise the variance

under constraint (1). This, however, requires an estimate of the model. 
First, at a given lag τ, let us represent the above quadratic form in ma-
trix notation as

where the indices of the block- vector w are ij and the indices of the 
block- matrix  are ij;kl. When including constraint (1), the Lagrangian is

where 1 is a vector of all 1s. The optimal weights are, via straightfor-
ward calculation, given by

which requires inverting the covariance matrix . This, in turn, re-
quires  to be correctly positive definite (PD). Therefore, we cannot 
reliably optimise our weights based on a nonparametric estimate of 
the variogram, because it will not be ensured to provide a PD cova-
riance function. Instead, we can rely on parametric assumptions, as 

all valid parametric models will always be PD. Moreover, we do not 
require all model parameters, as any overall constant (equivalent to 
the variance) will cancel out in (5). Given the stationary assumption, 
we only require the correlation matrix, C.

Here, our weights optimised to minimise variance can occa-
sionally be negative, which can lead to slightly negative estimates 
when the true value is close to zero. This can be remedied by in-
troducing the inequality constraints wij( ) ≥ 0, which turns (5) into 
a quadratic programming (QP) problem that can be solved to obtain 
a non- negative estimate of less optimal variance (Turlach, 2019). In 
that case, the above relations still hold if the resultant QP weights 
are non- negative. In addition, the empirical variogram that we 
propose in Equation (1) is unbiased regardless of the true model 
(Cressie, 1993). When a parametric assumption about the form 
of the evolutionary process is also made, the variogram obtains 
the additional property of becoming optimal. We therefore focus 
on the independent and identically distributed (IID)- optimal and 
BM- optimal empirical variograms because they do not require any 
parameter estimates from the data. While this may seem like an 
extra restriction or assumption on the data, we note that the con-
ventional empirical variogram and correlogram estimators used 
on time- series and spatial- field data are also only IID- optimal and 
could also be improved with optimal weighting (see e.g. Fleming 
et al., 2014).

2.1.1 | Independent and identically distributed

If the phylogenetic process is IID, then it is sufficient to consider 
the correlation matrix C ∝ , where the diagonal of C is 1 and the 
off- diagonal is 1/4 if species pair (i, j) and (k, l) share one species in 
common and 0 otherwise.

2.1.2 | Brownian motion

If the phylogenetic process is BM, then it is sufficient to consider 
the correlation matrix C ∝ , where the diagonal of C is 1 and the 
off- diagonal is the squared proportion of time- lag τ during which 
the backward- in- time– forward- in- time tip- branch- tip trajectories 
{xi(0) → xij( ∕2) → xj(0)} and {xk (0) → xkl( ∕2) → xl(0)} correspond to 
the same species, where xi( ∕2) = xj( ∕2) = xij( ∕2) (Figure 1).

2.1.3 | Ornstein– Uhlenbeck

Optimal weights for an OU process can be derived, but there will be 
dependence on the unknown time- scale parameter, which is why we 
do not consider such cases here.

(1)( ) =

i≠ j

xi ( ∕2) ≡xj ( ∕2)

wij( )
1

2
xi(t)−xj(t)

2

ij( )

,

i≠ j

xi ( ∕2) ≡xj ( ∕2)

wij( ) = 1,

(2)VAR ( ) =

i≠j k≠l

wij( ) wkl( ) COV ij( ), kl( ) ,

(3)VAR ( ) = w
TΣ w,

(4)ℒ( ) = w
TΣ w + 1 − 1Tw ,

(5)w =
−11

1T −11
,

(6)w =
C
−11

1TC−11
.
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2.1.4 | Confidence intervals

Using the same weights as before, and assuming the correlation 
structure to be correct, the variance of the variogram is given by

Variances are strictly positive and range between 0 and ∞, so 
as an improvement over normal confidence intervals, which can in-
clude negative values, we summarise the uncertainty in ( ) with χ2 
statistics.

2.1.5 | Time- lag gridding

The time- lags for phylogenetic variograms are calculated based 
on the topologies and branch lengths of the supplied phylogenetic 
trees (phylograms or chronograms), and the structure of a particu-
lar tree will dictate what pairwise time- lags are possible. These 
trees represent snapshots of the evolutionary processes, and will 
almost always result in irregular time series. Although irregularity 
in the data is acceptable, coarsening the variogram according to 
time- lag bin widths can make variograms more straightforward 
to interpret. Here we identify the lag bins using Gaussian mix-
ture model (McLachlan & Basford, 1988) and k- means (MacQueen 
et al., 1967) clustering implemented in the R package clusterR 
(ver 1.2.4, Mouselimis, 2021), with the number of clusters, n, given 
as n =

√
(nlags) + 1, and initial estimates of the centroids given by the 

regular grid points running along the range of lags. This number of 
bins was selected as in the limit of a perfectly regular time series, 
the number of bins would reduce back to the conventional grid.

The methods developed in this work are openly accessible in the 
new R package ctpm, version 1.0.1 available on CRAN.

2.2 | Semi- variance functions of 
evolutionary models

We next express IID, BM and OU models in terms of their semi- 
variance functions. We selected these three processes as they are 
the models most frequently used in practice (e.g. Fagan et al., 2013; 
Furness et al., 2021; Pérez- Barbería et al., 2004; Smaers et al., 2021). 
We also provide a biological interpretation of the parameters of 
these three semi- variance functions. A diagram of how these semi- 
variance functions relate to different tree configurations and pat-
terns of traits assumed under each model is shown in Figure 2. 
Furthermore, in Appendix S1 we provide the full details of a simula-
tion study aimed at exploring the relationship between the IID, BM 
and OU evolutionary models, their semi- variance functions, and the 
resulting empirical semi- variograms. For these simulations, the num-
ber of tips in the simulated trees and the number of replicates were 
held consistent across all simulations, and only the underlying evolu-
tionary model was changed. We then visually assessed the empirical 
variogram against the evolutionary process that generated the trait 
values, and quantified the coverage of the 95% confidence intervals.

2.2.1 | IID: No phylogenetic inertia

Under an IID model of evolution, the values of traits observed in lin-
eage i at one point in time xi(t) are independent of traits at any other 
time xi(t′), with t ≠ t′ and evolve according to a white noise process. 
In other words, there is no phylogenetic autocorrelation present 
under this evolutionary model and the semi- variance is therefore 
not dependent on the time- lag τ, but is simply given by the steady- 
state variance

The IID model is unlikely in most data, however, it does serve as a null 
model against which comparisons can be made. For instance, if only a 
small number of distantly related species are being compared, there 
may be no statistically detectable phylogenetic autocorrelation in the 
trait data.

2.2.2 | BM: Infinitely diffusive evolutionary process

Brownian motion describes a random walk with a fixed mean and a 
conditional variance that is proportional to the amount of time that 
has passed, diverging to infinity in the limit of infinite time. Its semi- 
variance function is given by

where D is the diffusion rate of the process and is proportional to the 
variance that can be expected over any given time- lag. Under a BM 
model of evolution, traits are free to evolve without constraint. The 

(7)VAR ( ) = 2 w
T
Cw ( )2.

(8)( ) = 2.

(9)( ) = D ,

F I G U R E  1   Schematic diagram depicting the calculation of the 
Brownian motion weights for a trait X between the species pairs 
(1, 2) and (1, 3)
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semi- variance function, therefore, increases without bound over time. 
BM is likely most relevant when studying highly plastic traits, or com-
paring traits across taxa that have only recently diverged.

2.2.3 | OU: Diffusive evolutionary process with 
mean reversion

The OU process generalises BM by specifying an upper limit on the 
process, σ2, centred around a mean. Within the bounds of σ2, the 
trait undergoes a random search for an optimal value but with a ten-
dency to stay near the mean. The semi- variance function for the OU 
model of evolution is

where τx is a trait's mean- reversion time- scale (τ = 1/α in 
Martins, 1994), and σ2 is the variance of the process ( 2 = 2∕2  
in Martins, 1994). The OU process is equivalent to the BM pro-
cess in the limit of no central tendency, x → ∞, and infinite diver-
gence, 2

→ ∞, with fixed diffusion rate D = 2∕ x. The OU process 

represents a variation of Brownian diffusion when 𝜏 ≪ 𝜏x, and, due 
to the central tendency, asymptotes to a constant variance when 
𝜏 ≫ 𝜏x. In other words, BM and OU can be indistinguishable over 
short time- scales because a trait has not yet diverged sufficiently far 
from the mean and it is only over longer time- lags that it is possible 
to tell the difference between BM and OU processes. In the limit 
where → 0, D = 2∕ x → ∞ and the OU process converges to an 
IID model of evolution.

2.3 | Empirical case studies

2.3.1 | Musteloid sexual size dimorphism

We first demonstrate the utility of semi- variograms for modelling 
the evolution of SSD in the carnivoran superfamily Musteloidea. 
Musteloids are an ecologically diverse group of carnivores that ex-
hibit substantial variability in SSD, ranging from parity, to males 
being more than twice the size of females (Noonan et al., 2016). 
Here we use a dataset describing SSD in 48 species of extant mus-
teloids gathered by Noonan et al. (2015). We paired these data 

(10)( ) = 2 1 − e− x ,

F I G U R E  2   Examples of independent and identically distributed (IID), Brownian motion (BM) and Ornstein– Uhlenbeck (OU) phylogenetic 
models and their semi- variograms. The first row depicts the form of the phylogenetic tree assumed under each processes, the second the 
underlying stochastic processes, and the third the theoretical semi- variance functions. In particular, note how the BM and OU phylogenetic 
trees are difficult to differentiate, whereas the semi- variance functions can be easily distinguished
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with a time- scaled phylogenetic tree of the musteloids compiled 
by (Law et al., 2017, Figure 4a). For these data we estimated the 
empirical semi- variogram using the BM weights described above, 
and fit IID, BM and OU processes to the data using the meth-
ods implemented in the R package slouch (ver 2.1.4; Kopperud 
et al., 2020).

2.3.2 | Carnivora maximum per capita rate of 
population growth (r)

We next demonstrate the utility of phylogenetic semi- variograms 
for modelling maximum per capita rate of population growth, r, in 
the Carnivora, a central measure of population biology. We use 
a dataset describing r in 63 species of extant carnivores gath-
ered by Fagan et al. (2013). We paired these data with a phy-
logram of the Carnivora compiled by (Agnarsson et al., 2010, 
Figure 5a), with branch lengths computed by Fagan et al. (2013). 
The r values were log- scaled prior to analysis and the empirical 
semi- variogram and model fitting process were carried out as de-
scribed above.

2.3.3 | Artiodactyla brain size

Finally, we apply phylogenetic semi- variograms when modelling 
the evolution of brain size in the Artiodactyla, which represents 
the even- toed ungulates. Here we used morphological data on 
log- scaled mean brain size (g) described in Haarmann (1975) and 
Oboussier (1979), and openly available in the R package slouch. 
We paired these data with a phylogenetic tree of the Artiodactyla 
compiled by (Toljagić et al., 2018, Figure 6a), also available in slouch. 
Again, the empirical semi- variogram and model fitting process were 
carried out as described above.

The R script required to reproduce these analyses is presented 
in Appendix S2.

3  | RESULTS

3.1 | Simulation study

From our simulation study, we found that there was generally 
good correspondence between the true evolutionary models and 

F I G U R E  3   Empirical semi- variograms estimated from trait data that were simulated via (a) and independent and identically distributed 
(IID) process with no phylogenetic inertia; (b) and infinitely diffusive Brownian motion (BM) process; and (c) a diffusive Ornstein– Uhlenbeck 
(OU) process with mean reversion. In (d) boxplots of the coverage across 20 replicates are shown
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the empirical variograms (Figure 3a– c; for full details see Appendix 
S1). Importantly all key features of the true semi- variance func-
tions from which the trait data were simulated could be easily 
seen, highlighting the utility of this approach as a visual diagnostic 
tool. We found that the coverage of the confidence intervals in the 
IID and OU cases was near nominal, however, the coverage for the 
BM model was lower than expected (Figure 3d). Although the cov-
erage was lower than 95% on average, the point estimates showed 
good correspondence with the true model (Figure 3b). This sug-
gests that the lower than expected coverage was not due to biased 
point estimates, but rather confidence intervals that were unduly 
narrow.

3.2 | Musteloid SSD

When modelling musteloid SSD, AICc based model selection identi-
fied the OU process as the best fit to the data, although with mar-
ginal support for an IID model (Table 1). There was substantially less 
support for the BM model. While the AICc values provided support 
for SSD evolving according to an OU process, they provide no in-
formation on why this model was selected over the BM or IID pro-
cesses, nor on why an IID model had substantially more support 

than BM. Comparing the fitted models against the empirical semi- 
variogram demonstrates the reason for the preference of the OU 
model over the BM or IID processes (Figure 4b). The empirical semi- 
variogram for the variance in SSD shows clear asymptotic behaviour. 
The infinitely diffusive BM model was the least supported based on 

F I G U R E  4   Phylogenetic tree (a) and semi- variogram (b) on 
musteloid sexual size dimorphism (SSD). The colours in the scale 
bar in (a) depict SSD values while the length of the bar is scaled to 
10 Ma

F I G U R E  5   Phylogenetic tree (a) and semi- variogram (b) on 
maximum per capita rate of population growth, r, in the Carnivora. 
Note here the application of the method to a phylogram as opposed 
to the chronograms in Figures 4 and 6. The colours in the scale bar 
in (a) depict r, while the length of the bar is scaled to 0.5 arbitrary 
units of time on the phylogenetic tree
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AICc values, and the semi- variogram clearly shows this mismatch. 
The IID model, in contrast, captures the asymptotic behaviour of the 
empirical variogram, but misses the phylogenetic autocorrelation 
over shorter time- scales. Only the OU model captures both features 
of the semi- variogram.

3.3 | Carnivora r

We found that the evolution of the intrinsic rate of increase, r, in 
the Carnivora was best described by an OU process (Table 2), with 
the empirical semi- variogram showing clear asymptotic behaviour 
(Figure 5b). In other words, the best fit model suggests that popula-
tion growth rates are not expected to evolve without bound, but 
instead fluctuate around a mean. Here, although the IID model was 
able to capture the asymptotic behaviour of the variogram, it missed 
the phylogenetic inertia over shorter evolutionary time- scales. As a 
result it received ~1.9 × 1012 times less support than the OU model 
and ~7.5 × 1011 less support than BM.

3.4 | Artiodactyla brain size

For brain size in the Artiodactyla, AICc based model selection identi-
fied the BM process as the best fit to the data, although with marginal 
support for an OU model, and substantially less support for the IID 
model (Table 3). Again, while the AICc values provided support for 
brain size evolving according to a BM process, they provide no infor-
mation on why this model was selected over the OU or IID processes. 
Comparing the fitted models against the empirical semi- variogram 
demonstrates the reason for the preference of the BM model over 
the OU or IID processes (Figure 6b). In contrast to the previous ex-
amples, here the empirical semi- variogram shows no clear asymptotic 

TA B L E  2   Small- sample- size corrected Akaike information 
criterion (AICc) differences for models fit to the log- scaled 
maximum per capita rate of population growth, r, in the Carnivora. 
In the first three columns the diffusion rate (D, in proportional 
units of time−1), phylogenetic autocorrelation time- scale (τr, in 
proportional units of time) and stationary variance (σ2), are shown. 
The evidence ratios for each model were calculated as 1∕e−1∕2ΔAICc

Model D τr σ2 ΔAICc Ev. ratio

OU 2.84 0.43 0.87 0 1

BM 2.14 ∞ ∞ 2 2.7

IID ∞ 0 0.94 56.6 1.9 × 1012

Abbreviations: BM, Brownian motion; IID, independent and identically 
distributed; OU, Ornstein– Uhlenbeck.

TA B L E  1   Small- sample- size corrected Akaike information 
criterion (AICc) differences for models fit to musteloid sexual 
size dimorphism. In the first three columns the diffusion rate (D, 
in mega- anna−1), phylogenetic autocorrelation time- scale (τSSD, in 
mega- anna), and stationary variance (σ2), are shown. The evidence 
ratios for each model were calculated as 1∕e−1∕2ΔAICc

Model D τSSD σ2 ΔAICc Ev. ratio

OU 0.03 3.16 0.066 0 1

IID ∞ 0 0.062 2.5 3.5

BM 0.01 ∞ ∞ 15 1,808

Abbreviations: BM, Brownian motion; IID, independent and identically 
distributed; OU, Ornstein– Uhlenbeck.

F I G U R E  6   Phylogenetic trees (a) and semi- variogram (b) for 
brain size in the Artiodactyla. The colours in the scale bar in (a) 
depict brain sizes while the length of the bar is scaled to 10 Ma

TA B L E  3   Small- sample- size corrected Akaike information 
criterion (AICc) differences for models fit to artiodactyla brain size 
data. In the first three columns the diffusion rate (D, in mega- 
anna−1), phylogenetic autocorrelation time- scale (τr, in mega- anna) 
and stationary variance (σ2), are shown. The evidence ratios for 
each model were calculated as 1∕e−1∕2ΔAICc

Model D τr σ2 ΔAICc Ev. ratio

BM 0.03 ∞ ∞ 0 0

OU 0.03 4.3 × 105 9.1 × 103 2.4 3.3

IID ∞ 0 0.77 31.3 6.3 × 106

Abbreviations: BM, Brownian motion; IID, independent and identically 
distributed; OU, Ornstein– Uhlenbeck.
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behaviour. In other words, variance in brain size was simply propor-
tional to phylogenetic distance. The infinitely diffusive BM model 
was therefore the most appropriate model for the data, and the semi- 
variogram shows this correspondence. Thus, even though the OU 
variogram falls visually closer to the empirical data (Figure 6b), it is 
not supported because the fit requires an additional parameter.

4  | DISCUSSION

Since Felsenstein (1985) translated the concept of phylogenetic in-
ertia into a statistical problem, methods for modelling evolution-
ary processes have been advancing rapidly (e.g. Abouheif, 1999; 
Blomberg et al., 2020; Butler & King, 2004; Harmon et al., 2008; 
Martins & Hansen, 1997; Revell et al., 2008), allowing for substan-
tially more profound insight into evolutionary biology than was 
previously possible. While these modelling approaches all treat 
phylogenetic inertia as a form of statistical autocorrelation, few 
tools exist to visualise the autocorrelation structure of the trait data 
and diagnose the fits of evolutionary models (but see the phyloge-
netic correlograms of Gittleman & Kot, 1990 and Diniz- Filho, 2001 
and diversity through time plots of Harvey et al., 1994). As such, 
researchers often rely on colouring the branch tips or lengths of 
phylogenetic trees based on trait values (e.g. Revell, 2013). While 
these can serve as a useful visual tool, they provide only limited 
on the underlying stochastic process by which the trait may be 
evolving, and on whether any of the candidate models actually look 
like the data. For example, a monotonic decrease in diversity over 
time might indicate a BM process on speciation. Here we extended 
semi- variograms developed for visualising temporal autocorrelation 
in other contexts (Fleming et al., 2014) to the needs of phyloge-
netic autocorrelation, and show how phylogenetic variograms can 
be used to straightforwardly visualise phylogenetic autocorrelation 
structures. Notably, because the variograms of the IID, BM and OU 
processes each have different theoretical profiles, comparing fit-
ted semi- variance functions against empirical semi- variograms can 
serve as a useful diagnostic tool, allowing researchers to understand 
why any given evolutionary model might be selected over another, 
which features are well captured by the model, and which are not.

When modelling musteloid SSD, the empirical variogram showed 
a tendency for the variance in SSD to stabilise over time, a charac-
teristic feature of OU evolution. In agreement with this visual as-
sessment, AIC- based model selection identified the OU model as 
the best fit to the data. In contrast, the BM model received sub-
stantially less support than the OU model. While AIC- based model 
selection yielded a clear ‘top’ model, without the empirical vario-
gram it would not have been possible to see that the failure of the 
infinitely diffusive BM model was because it did not capture the as-
ymptotic behaviour of the data. Indeed, for musteloid SSD a white 
noise, IID process was actually a better fit to the variogram than the 
BM model. The phylogenetic variogram proved equally useful in un-
derstanding why the OU model was selected when modelling pop-
ulation growth rate in the Carnivora, and why BM was the selected 

evolutionary model for brain size in the Artiodactyla. For the time- 
scale over which species in the Artiodactyla have been diverging, 
the variance in brain size has yet to show any evidence of stabilising 
selection (Figure 6b). Here BM showed good correspondence with 
the empirical variogram.

It is important to note that while variograms can serve as valuable 
diagnostic tools, they are only as useful as the pool of models against 
which they can be compared. In other words, it is entirely possible 
that none of the candidate models end up being a good match to the 
data. While variograms on their own do nothing to solve this prob-
lem, they do allow research to identify potential pitfalls and areas 
for model improvement. For instance, the empirical variograms for 
both growth rate in the Carnivora, and brain size in the Artiodactyla 
showed strong phylogenetic inertia over shorter time- scales that was 
not well captured by any of the models fitted here (Figures 5b and 
6b). A model with multiple autocorrelation time- scales would likely 
be a better match to those data (e.g. Fleming et al., 2014; Johnson 
et al., 2008), and is a promising area of future research. In this regard, 
however, it is also important to note that variogram errors are cor-
related (Diggle et al., 1998), and smooth trends may not necessarily 
be significant and should be treated with caution. Finally, another 
important limitation of phylogenetic variograms is that the time- lags 
for phylogenetic variograms are calculated based on the topologies 
and branch lengths of the supplied phylogenetic trees. As such, the 
structure of a particular tree will dictate what pairwise time- lags are 
possible and the resulting time series will almost always be heavily 
irregular. When combined with pronounced interspecific variability 
and small sample sizes, phylogenetic variograms can be difficult to 
interpret. In addition, although we did not assess the impact of tree 
topology on parameter estimation here, the model fitting process 
can be strongly affected by the data density across the time- lags. 
Despite these limitations, however, phylogenetic variograms can 
serve as a useful tool for visualising the autocorrelation structure of 
evolutionary processes, and informing future model developments.

When working with autocorrelated data, it is generally recom-
mended that any analysis begin with a nonparametric estimate of 
the autocorrelation structure of the data that can be visualised. 
Although this is a key step in the data analysis ‘pipeline’, it is one 
that has heretofore not been possible for phylogenetic data (but see 
Diniz- Filho, 2001; Gittleman & Kot, 1990). The variograms methods 
developed here enable evolutionary ecologists to visualise phyloge-
netic autocorrelation from trait data and phylograms or chronograms 
prior to any model fitting procedure. The theoretical semi- variance 
functions further allow for fitted models to be compared against the 
empirical variogram, facilitating model identification, in tandem with 
standard model selection techniques, prior to subsequent analyses. 
We therefore recommend that any phylogenetic analysis include 
variogram estimation and visualisation (see also Pérez- Barbería 
et al., 2004). The methods developed in this work are openly acces-
sible in the R package ctpm, available on CRAN.
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