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Home range estimation is a key output from these tracking datasets, but the

to under- or overestimate home range areas.

designed to be statistically efficient while explicitly dealing with the complexi-

Handling Editor: Edward Codling ties of modern movement data: autocorrelation, small sample sizes and missing
or irregularly sampled data. Although each of these estimators has been de-
scribed in separate technical papers, here we review how these estimators work
and provide a user-friendly guide on how they may be combined to reduce mul-
tiple biases simultaneously.

3. We describe the magnitude of the improvements offered by these estimators
and their impact on home range area estimates, using both empirical case stud-
ies and simulations, contrasting their computational costs.

4. Finally, we provide guidelines for researchers to choose among alternative esti-
mators and an R script to facilitate the application and interpretation of AKDE

home range estimates.
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1 | INTRODUCTION mating, and caring for young’ Although this definition does not

provide a mathematical description or statistical method for esti-
An animal's home range was first defined in Burt (1943) as ‘the area mation, it highlights how behaviour drives animal movement: areas
traversed by the individual in its normal activities of food gathering, selected by individual animals are usually distinct from the larger
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areas an animal could explore given their movement abilities. Early
translations into a statistical definition include quantifying an ani-
mal's probability of using a given location (i.e. utilization distribu-
tion; Jennrich & Turner, 1969; Worton, 1989). The concept of home
range has been redefined by many authors over the years (Harris
et al., 1990); here, we follow the definition of home range as the area
repeatedly used throughout an animal's lifetime for all its normal
behaviours and activities, excluding occasional exploratory excur-
sions outside of home range boundaries. The characteristic temporal
stability of a home range also highlights additional concepts: range
residency, defined as the tendency of an animal to remain within its
home range; and time-scale parameters that quantify the weakness
of this tendency, including the home range crossing time-scale (), de-
fined as the average time required for an animal to cross the linear
extent of its home range.

Home range area estimates are used to inform conservation
practitioners and wildlife managers about protected area sizes and
to advocate for conservation policy changes (Barton et al., 2019;
Lambertucci et al., 2014; Linnell et al., 1997). It is thus crucial to
provide a reliable and statistically robust metric that is comparable
across individuals, species and sites. Natural landscapes are becom-
ing increasingly fragmented (Curtis et al., 2018; Hansen et al., 2020),
imposing new challenges at local, regional and global scales, and un-
reliable estimations may hinder area-based conservation. Reliable
estimates of home ranges, however, have proven to be deceptively
difficult to achieve, and have occupied generations of ecologists
(Fieberg & Borger, 2012; Horne et al., 2020; Jennrich & Turner, 1969;
Worton, 1989). The inherent properties of animal tracking data cre-
ate unique analytical challenges. Specifically, animal movement data
frequently feature some combination of autocorrelation, small sam-
ple sizes, missing observations or irregular sampling, and home range
estimators that are not designed to handle these issues can both
under- and overestimate the sizes of home ranges.

Although many home range estimators exist (Horne et al., 2020),
autocorrelated kernel density estimation (AKDE) was the first to
explicitly account for temporal autocorrelation in the data (Fleming
et al., 2015). Since its introduction, AKDE has grown into a family
of related techniques, each aimed at mitigating a different source
of bias that can affect home range estimates, including unmodelled
autocorrelation (Hemson et al., 2005; Kie et al., 2010; Swihart &
Slade, 1997), oversmoothing (Seaman & Powell, 1996; Worton, 1995),
autocorrelation estimation bias (Cressie, 2015) and unrepresentative
sampling in time (Frair et al., 2004; Horne, Garton, & Sager-Fradkin,
et al., 2007; Katajisto & Moilanen, 2006). These biases are mitigated,
respectively, by the original AKDE (Fleming et al., 2015), the area-
corrected AKDE (Fleming & Calabrese, 2017), the perturbative hy-
brid residual maximum likelihood (REML) parameter estimation and
parametric bootstrapping (Fleming et al., 2019) and weighted AKDE
(Fleming et al., 2018). REML is a form of maximum likelihood esti-
mation that reduces biases in variance/covariance estimation. AKDE
and associated corrections have been shown to outperform tradi-
tional home range estimators across species, degrees of autocor-
relation and sample size (Noonan et al., 2019). The ctmm workflow

also allows researchers to partially account for the location errors
associated with their tracking datasets (Fleming et al., 2021). These
methods can be run using the programming language R (Www.r-proje
ct.org) and the ctmm or amt packages (Calabrese et al., 2016; Signer
& Fieberg, 2021), or the ctmmweb graphical user interface (https://
ctmm.shinyapps.io/ctmmweb; Calabrese et al., 2021). In addition to
offering flexible and open-source tools for home range estimation,
these software programs allow easy documentation and implemen-
tation of new methods by sharing code and workflows. Such repro-
ducible methods can increase reliability and transparency in ecology
(Alston & Rick, 2021; Culina et al., 2020; Powers & Hampton, 2019;
Signer & Fieberg, 2021).

Because movement data often violate multiple assumptions of
traditional methods, the individual methodological advances offered
by the AKDE family of home range estimators can and often should
be combined. The costs and benefits of each estimator have previ-
ously been described in separate technical papers, so in this paper,
we bring all of these estimation methods together in one document.
We describe their effects on the quality of home range estimates,
both in isolation and in combination, while evaluating how sample
size interacts with multiple different sources of bias. We use track-
ing data from African buffalo (Syncerus caffer; Cross et al., 2009),
lowland tapir (Tapirus terrestris; Fleming et al., 2019) and jaguar
(Panthera onca; Morato et al., 2018) as empirical case studies to
guide researchers through the application and value of these anal-
yses. Finally, we use simulations to show the improvements offered
by combining these techniques and demonstrate their application in
real-world problems. We conclude by giving clear guidance on how
ecologists can choose among these alternatives to best achieve their
study goals. We hope that this review provides a practical guide to
why and how to use AKDE methods to estimate home ranges that
will be useful for both researchers and practitioners who are unfa-

miliar with these methods.

2 | SOURCES OF BIAS AND MITIGATION
MEASURES

Many biases, including most that affect home range estimates,
are exacerbated by small sample sizes. Conversely, large sample
sizes in modern tracking datasets are typically achieved through
higher sampling frequencies, which exacerbate autocorrelation.
Autocorrelation is a general statistical property of variables meas-
ured across geographic and temporal space (Dale & Fortin, 2002;
Legendre, 1993), as observations sampled more closely in space
or time tend to be more similar. In these conditions, it is thus im-
portant to distinguish between two different measures of sample
size: absolute sample size (n) and effective sample size (N). Absolute
sample size is simply the total number of observations in a data-
set. More relevant for home range estimation, however, is the
effective sample size. Specifically, the amount of information avail-
able to home range estimators is governed not simply by the total
number of observations, but by the number of range crossings that
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occurred during the observation period (i.e. how many times an
animal traversed the linear extent of its home range). The effective
sample size can be roughly estimated as T/z, where T is the tem-
poral duration of the tracking dataset, and r is the average home
range crossing time parameter. Increasing sampling frequency leads
to larger absolute sample sizes, but does not increase the effective
sample size commensurately. For autocorrelated data, the effective
sample size is necessarily smaller than the absolute sample size and,
very frequently in practice, orders of magnitude smaller (Fleming
et al., 2019). In contrast, small absolute sample sizes commonly occur
in very-high-frequency (VHF) tracking data but are becoming rarer
in modern GPS tracking data.

We now describe each source of bias and the mitigation measure
available to correct it, highlighting the difference each correction
makes with real data from multiple case studies. We present the bias
sources in order of their general importance, from the largest bias
to the smallest. Note that this ranking refers to the typical magni-
tude of each type of bias, but the order may be different under some
conditions.

3 | BIASI: UNMODELLED
AUTOCORRELATION

Traditional home range estimators such as minimum convex poly-
gons (MCPs) and kernel density estimators (KDEs) assume indepen-
dently and identically distributed (IID) data. When these techniques
came into common use in the 1980s, the sheer difficulty of ob-
taining VHF location fixes ensured that the time interval between
successive observations was typically long enough for most of
the autocorrelation among observations to have decayed (Swihart
& Slade, 1997; Worton, 1989). The IID assumption at the heart of
these techniques was therefore usually satisfied by VHF-quality
data (Harris et al., 1990). The situation began to change with the
arrival of new technologies, most notably GPS tracking systems
(Rempel et al., 1995), which now routinely feature large volumes of
data with much more frequent temporal sampling than is feasible for
VHF-based animal tracking. As autocorrelation arises from obser-
vations sampled closely in time also being located closely in space,
increasing sampling frequencies inevitably leads to more strongly
autocorrelated tracking data (De Solla et al., 1999). Automated, high-
sampling frequency tracking data have undoubtedly revolutionized
movement ecology (Kays et al., 2015), but these advances have bro-
ken the armistice between the statistical assumptions of traditional
home range estimators and the reality of the datasets now used to
study animal movement (Boyce et al., 2010).

Specifically, feeding autocorrelated data into a home range
estimator based on the IID assumption yields negatively biased
estimates (Noonan et al., 2019). Autocorrelation-induced under-
estimation of home range areas is particularly pronounced when
the effective sample size is small. In the recent comparative study of
Noonan et al. (2019), 368 of 369 tracking datasets featured strong
autocorrelation, and roughly half were also plagued by small effective

sample size. In these conditions, conventional estimators—such as
MCPs, KDEs and local convex hull polygons—underestimate home
range areas by a factor of ~2 to 13 (on average), depending on the
method and bandwidth optimizer, which is what determines how
tightly KDEs conform to the data. Accordingly, published estimates
featuring these traditional methods may severely underestimate an-
imal space-use requirements, hindering conservation and manage-

ment decisions.

4 | MITIGATION MEASURE I: AKDE

Fortunately, it is not autocorrelation per se that causes errors in
home range estimation, but rather autocorrelation that is statisti-
cally ‘unmodelled’ (Calabrese et al., 2021). Home range estimators
that account for autocorrelation can therefore avoid the biases and
violated assumptions of traditional methods. Autocorrelated kernel
density estimation (AKDE) explicitly requires a movement model
that accounts for the autocorrelation in the tracking data (Figure 1)
and then estimates the home range while conditioned on the same
movement model (Fleming et al., 2015). This model is identified via
formal model selection among a range of plausible alternatives, cur-
rently spanning from uncorrelated data (IID), correlated positions
but uncorrelated velocities (Ornstein-Uhlenbeck or OU; Uhlenbeck
& Ornstein, 1930), to correlated positions and correlated velocities
(Ornstein-Uhlenbeck foraging process or OUF; Fleming et al., 2014).
In this framework, IID is both a candidate model and one limit of a
continuum of possibilities, rather than an a priori assumption. These
models are ranked based on Akaike's information criterion adjusted
for small sample sizes (AICc) by default, although the ctmm package
also offers AIC, Bayesian information criterion (BIC), leave-one-out
cross-validation (LOOCV) and half-sample cross-validation (HSCV).
Ad hoc measures such as data thinning (Harris et al., 1990;
Rooney et al., 1998) are not necessary, as AKDE allows model as-
sumptions to conform as closely as possible to empirical reality,
instead of coercing the data to fit a model with unrealistic assump-
tions. Feeding 11D data into AKDE will not have any adverse effects,
as it will simply result in a conventional KDE estimate. This workflow
also allows reliable confidence intervals to be determined for home
range area estimates, which historically have not been applied to
home range estimates. This measure of confidence is fundamental
for any statistical estimate (Pawitan, 2001), increasing the compara-
bility of AKDE and its relevance for biogeographical and conserva-

tion applications.

5 | BIAS II: OVERSMOOTHING

Kernel density estimators are best-in-class tools for estimating un-
known probability distributions and are used in this capacity across
the sciences (Chen, 2017; Silverman, 1986; Wang et al., 2013). In the
context of tracking data, KDEs estimate the probability distribution
of locations, which is then used to estimate the area of a home range
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FIGURE 1 Anexample of
autocorrelated data (individual six from
the African buffalo dataset, available
within the ctmm package), and the same
data when it achieves independence (IID)
after data thinning (from one fix per hour
to one fix per week). We calculated the
95% contour of an autocorrelated kernel
density estimation (AKDE) and a Gaussian
reference function KDE (GRF-KDE).
Displayed errors correspond to % bias of
full dataset KDE and subset KDE against
full dataset AKDE. N: effective sample
size, n: absolute sample size

Buffalo data, 1

n =5766

underestimation
of ~38.4%

Large effective sample size
Sampling duration ~ 1 year

Medium effective sample size
Sampling duration ~ 3 months

AKDE 95%

AKDE 95%

HR area
overestimation
of ~5.1%

HR area
overestimation
of ~11.2%

oV

(Powell, 2000; Worton, 1989). Typically, ecologists are more inter-
ested in this area estimate than in the distribution itself.

Even when we account for autocorrelation (AKDE), kernel den-
sity estimators based on the Gaussian reference function (GRF) re-
main biased owing to the natural tendency of the GRF approximation
to oversmooth (yielding a more spread-out distribution). This bias
is estimator specific, and may be either positive or negative (Kie
et al,, 2010; Worton, 1995): for GRF-KDEs—such as AKDE and h,
(Silverman, 1986)—this bias is positive and, all else being equal, leads to
an overestimated home range (Seaman & Powell, 1996). Importantly,
for estimators that do not account for autocorrelation, like hre( but
unlike AKDE, this positive bias can be masked by the often stron-
ger negative bias caused by unmodelled autocorrelation. For KDEs

based on least-squares cross-validation, h ., this bias is typically

Autocorrelated data

Small effective sample size

Uncorrelated data (1ID)

fix every hour Buffalo data, 1 fix every week

n=35
N~ 35
/*é
Data loss of
~99.4%
Tracking time: | E———
Start End el

KDE 95%

overestimation .
of ~14.8%

FIGURE 2 Autocorrelated kernel
density estimation (AKDE) and area-
corrected AKDE (AKDE ) calculated for
one individual from the lowland tapir
tracking dataset with: large effective
sample size (N = 1,566), medium effective
sample size (N = 261) and small effective
sample size (N = 30). Displayed errors
correspond to % bias of AKDE against
AKDE_ of the same individual. Note that
for large N values the estimates from
AKDE and AKDE_ overlap considerably

Sampling duration ~ 15 days

AKDE 95%

HRarea
erestimation
of ~27.4%

negative (Blundell et al., 2001; Hemson et al., 2005) and exacerbates
the autocorrelation-induced underestimation of home range areas.

6 | MITIGATION MEASURE II: KDE_ or
AKDE_

Fleming and Calabrese (2017) derived an improved KDE by calcu-
lating the bias in area estimation under a GRF approximation and
applying a correction in an area-based coordinate system. By pulling
the contours of the location distribution estimate inward towards
the data without distorting its shape, this correction removes the
tendency of GRF-based methods (including AKDE) to overestimate
the area of home ranges, particularly at small effective sample sizes



538 Methods in Ecology and Evolution

SILVA ET AL.

Large absolute &
Small effective sample size
n=363 N=~3.1

n=1010 N=~145

HR area
underestimation
of ~19.9%

(Figure 2). Formally correcting the density function estimate allows
us to calculate a more reliable home range area and confidence inter-
vals. This correction can be applied to both conventional and auto-
correlated GRF-KDEs (then termed KDE_ and AKDE_ respectively),
and is the default method within the ctmm package. As this source
of bias is estimator specific, the mitigation must also be estimator
specific, so this correction cannot be applied to non-GRF KDE ap-

proaches such as h ¢,

7 | BIAS IIl: AUTOCORRELATION
ESTIMATION BIAS

The main advantage of AKDE is that it accounts for the autocorre-
lated structure of animal movement data; for optimal performance,
we need to estimate this autocorrelation correctly. Maximum
likelihood (ML) estimation is the standard approach to fitting
movement models to animal tracking data (Horne Garton, Krone,
et al., 2007; Michelot et al., 2016) due to its versatility, widespread
use and relatively good performance (Pawitan, 2001). However,
ML performs best at large sample sizes, while parameters related
to variances and covariances tend to be underestimated in small
sample size conditions (Cressie, 2015). As variance-associated
parameters are closely related to home range size, their under-
estimation propagates into underestimated home range areas
(Noonan et al., 2019).

8 | MITIGATION MEASURE Ill: pHREML
AND PARAMETRIC BOOTSTRAPPING

Residual ML estimation is often used to improve (co)variance param-
eter estimation with small sample sizes, but it can perform poorly for
the class of movement models on which AKDE depends (Fleming
et al., 2019). To mitigate the small sample size bias in autocorrelation
model parameter estimates, Fleming et al. (2019) developed a series of
REML-based estimators that focus on small effective sample sizes (per-
turbative REML; pREML), small absolute sample sizes (Hybrid REML,;
HREML), or both small absolute and small effective sample sizes (pertur-
bative Hybrid REML; pHREML). We focus on pHREML here (Figure 3)
as it is the most broadly applicable of these methods and has no seri-
ous disadvantages relative to the others, because it combines the bias

Small absolute &

FIGURE 3 AKDE,_ calculated with
Small effective sample size

maximum likelihood (ML) and with

n=5 N=~4
perturbative Hybrid REML (pHREML) for
b an individual within the jaguar dataset,
--------- showcasing its effect on large absolute
— but small effective sample size (reduce to

a sampling duration of 3 months: n = 363
locations, N = 3.1), and both small absolute
and small effective sample size (3 months
thinned to n = 5 locations, N = 4). Displayed
errors correspond to % bias of ML-fitted
AKDE against pHREML-fitted AKDE

HRarea
underestimation
of ~13.9%

correction of REML and the stability of ML. It is currently the default
parameter estimation method in the ctmm package.

The parametric bootstrap method (Efron, 1982) is another stan-
dard solution for the biases caused by ML estimation and can be
applied on top of REML-based estimations to further reduce biases.
In extreme cases where effective sample sizes are ~5 or less, paramet-
ric bootstrapping may result in substantial improvements. However,
the high computational cost incurred by bootstrapped pHREML
(Supporting Information File 1), coupled with the usually modest im-

provements it provides, reinforce its use only as a last resort.

9 | BIAS IV: UNREPRESENTATIVE
SAMPLING IN TIME

From a statistical perspective, evenly spaced temporal sampling of
tracking data ensures the widest possible range of analytical options. In
practice, however, many real-world issues can lead to animal locations
being sampled irregularly in time: duty-cycling tags to avoid wasting
battery during periods of inactivity, acceleration-informed sampling,
device malfunction, habitat-related signal loss and many other causes
(DeCesare et al., 2005; Frair et al., 2004; Horne, Garton, & Sager-
Fradkin, et al., 2007). When unaccounted for, such cases can yield
biased datasets, causing area estimates associated with over-sampled
portions of home ranges to be too large and those associated with
under-sampled parts of home ranges to be too small (Fieberg, 2007).
There is no guarantee that these contrasting biases cancel each other
out, so the overall home range area estimate may be either positively

or negatively biased.

10 | MITIGATION MEASURE IV: wAKDE
Weighted AKDE (or wAKDE) corrects for unrepresentative sampling in
time (Fleming et al., 2018) through the larger bias addressed is where the
area is distributed: it optimally upweights observations that occur dur-
ing under-sampled times, while optimally downweighting observations
occurring during over-sampled times. In [ID data, optimal weights are
uniform (i.e. there is no temporal sampling bias, as all times are equally
important) so there is no advantage to weighting. For autocorrelated
data with highly irregular sampling, however, the difference between
weighted and unweighted AKDE can be considerable (Figure 4).
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In practice, very few tracking datasets are perfectly regular, so
it is essential to handle data irregularity appropriately. Missing data
equate to a loss of information, and these errors can propagate into
biases in habitat selection or area-based conservation outputs (Frair
et al., 2004). For example, areas with good satellite reception (e.g.
open flat landscapes) may appear over-used even when animals did
not spend more time in them compared to areas with poorer recep-
tion. Shifting sampling schedules (based on behavioural or seasonal
patterns) is a common strategy employed in animal tracking projects,
due to the trade-off between sampling intensity and battery life
(Brown et al., 2012); in these circumstances, weight optimization via
WAKDE is critical for comparisons between individuals or populations.

11 | COMBINATION OF MITIGATION
MEASURES

In practice, different sources of bias frequently occur together in the
same datasets. This is a key reason why home ranges are so difficult
to estimate accurately. However, the mitigation measures described
above can be implemented simultaneously when necessary to combat
multiple biases. For example, if a tracking dataset features autocor-
relation, small effective sample size and irregular temporal sampling,
we can use pHREML to estimate and select the underlying movement
model, and then pass the selected model to an optimally weighted
area-corrected AKDE (WAKDE) to properly estimate home range
area. The default settings in the ctmm package have been carefully
chosen to balance performance against computational cost, so in this
example, only optimal weighting would need to be manually selected
by the user. Default values and alternative options are discussed in
more detail in the ctmm documentation (Fleming & Calabrese, 2021).

To quantify the level of improvement offered by each mitigation
measure and to explore the trade-off between accuracy and compu-
tational cost, we performed a detailed simulation study. Our simu-
lations are based on an OUF movement model, which features both
correlated velocities (i.e. directional persistence), correlated positions
and restricted space use. We chose the OUF model because it was

the most frequently selected across all empirical GPS datasets in the

Uniformly weighted

FIGURE 4 A uniformly weighted
AKDE_ and an optimally weighted AKDE_
(WAKDE), calculated from an individual
from the African buffalo dataset with an
irregular sampling schedule likely due to a
device malfunction (nicknamed ‘Pepper’;
available within the ctmm package).
Displayed errors correspond to % bias of
AKDE_ core area (50%) against wAKDE_
core area (50%)

Core area (50%)
overestimation
ofa3ss 00000 Ressdsioeesidd

Noonan et al. (2019) study, with 240 of 369 datasets. We set both the
directional persistence and range crossing time-scales to 1 day, and
varied the duration of the simulated datasets from 1 to 4,096 days in
a doubling series, sampled hourly (except for bootstrapped pHREML
WAKDE_ which was significantly more computationally intensive and
impractical to simulate over the whole sampling duration). This setup
results in effective sample sizes that approximate the duration of each
simulated dataset. We then sequentially fit home range estimators in
the ctmm package to each simulated dataset in the following order:
KDE, AKDE, AKDE_, pHREML AKDE_, pHREML WAKDE_ and boot-
strapped pHREML WAKDE_. This represents a progression from no
bias corrections (KDE) through all possible bias corrections applied
simultaneously, in order of the typical importance of the corrections.
Each simulation was repeated 400 times. We calculated bias as the
95% area estimate of the method in question divided by the exact ex-
pectation value of the true 95% area (under the model from which
the data were simulated), while the computational cost was the time
the simulation took to complete in seconds. All simulations were per-
formed in the R environment (version 3.5.2; R Core Team, 2018) using
the ctmm package (version 0.5.2; Calabrese et al., 2016) and con-
ducted on the University of Maryland High Performance Cluster.
Compared to conventional KDE, the original AKDE offered clear
advantages for small effective sample sizes, but failed to improve area
estimation for mediumand large effective sample sizes (N > 32; Table 1).
By solving the oversmoothing bias, AKDE_improved over KDE for all
effective sample sizes. The next technique, pHREML-fitted AKDE_
(ctmm default settings) further improved over conventional KDE
and all previous measures, and stabilized the closest to 0% relative
error after only eight sampling days (Figure 5a). Additional mitigation
measures do lead to an increasingly higher computational cost: for
the full sampling duration (4,096 days), pHREML-fitted wWAKDE_ ran
on average 2.7 times longer than the original AKDE, and 230 times
longer than a conventional KDE (Figure 5b, Supporting Information
File 1). With an Intel i7 3.9GHz processor using a single core, and an
hourly tracking dataset collected for a year, this could correspond to
an increase from a few seconds to approximately 45 min. However,
unlike AKDE, conventional KDE does not run any autocorrelation

model selection, or numerical optimization of parameter estimates.

pHREML wAKDE,

Sampling rate shifted from 1 fix every hour to 1 fix every 2 hr

10 km

50% contour

--=*" 95% contour

Tracking time: ———————
Start End
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12 | DISCUSSION

The techniques presented in this paper represent a family of home
range estimators starting with conventional GRF-KDE and pro-
gressing through a series of estimation methods designed to miti-
gate bias arising when the core assumption of IID data is not met.

TABLE 1 Meanimprovement (%) in area estimation for each
AKDE method compared to baseline KDE, over small (N < 32),
medium (32 > N < 512) and large effective sample sizes (N > 512).
Negative values denote underperformance

Improvement over KDE

These methods are implemented with efficient computational algo-
rithms that work with both small and large animal tracking datasets.
We have brought these techniques together in a single document
to demonstrate when each correction is applicable, the degree to
which home range estimates can be improved, and when and how
they can be combined to handle the unique quirks of each tracking
dataset to yield accurate home range estimates.

The AKDE family of estimators are all implemented in the ctmm R
package (Calabrese et al., 2016), so we provide an annotated R script
in the supplementary material of this paper to guide users through
the applications of these techniques (Supporting Information File 2).
The current default settings are pHREML, for estimating movement

Methods SmallN Medium N Large N model parameters, and (A)KDE_, for estimating home ranges. The
AKDE 513%  -31.3% _78.4% decision between KDE_and AKDE_is determined using model selec-
tion, and dependent on whether the data are independently distrib-
AKDE_ 42.6%  48.3% 36.4% .
uted or autocorrelated respectively. We recommend that users keep
HREML AKDE 59.8% 52.9% 40.4% . . .
P ¢ ? ’ ? pHREML and (A)KDE_ as the default settings and especially caution
pHREML wAKDE 59.4%  52.9% 43.1% . . . . .
c against changing these settings for any effective sample sizes below
Bootstrapped pHREML WAKDE_  72.0%  NA NA 20. When working with legacy data where small effective sample sizes
(a)
25%
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are a serious concern, but additional data collection is not an option,
bootstrapped pHREML may be used as a method of last resort to
obtain the best possible home range estimates. However, due to
the high computational cost of using bootstrapped pHREML, users
should decide on a bias threshold (typically >1%-5% with an initial
pHREML estimate) before applying this measure (see Supporting
Information File 2 for how to determine this bias threshold). Finally,
WAKDE_ can account for temporal sampling bias (i.e. missing or irreg-
ular tracking data), but is switched off by default due to its consider-
able computational cost (approximately 200 times longer than KDE).

Most mitigation measures we have discussed here become in-
creasingly valuable at small sample sizes (absolute and/or effective),
allowing researchers to maximize the value of legacy datasets or to
handle situations where larger effective sample sizes are impossible
to obtain (e.g. on smaller animals for which battery size limits the
temporal duration of GPS life spans). Nevertheless, the application
of these analytical methods should not replace careful study design
before data collection, tailored to address specific research ques-
tions (Fieberg & Borger, 2012). When the main goal of a study is
home range estimation, the sampling duration should be many times
larger than the average range crossing time of the focal species. This
ensures that the effective sample size will be large enough to facilitate
reliable estimation of the area of home ranges. Achieving this goal
may require researchers to decrease the sampling rate of their de-
vices to save battery power, although small effective sample sizes may
be inevitable even in these conditions due to battery constraints,
specific ranging behaviours or short life spans.

Although AKDEs provide reliable home range area estimations
in the conditions presented in this manuscript, there are scenarios
in which they fail. A known issue of KDE methods is that their
estimates can spill over discontinuities, such as hard boundaries
(e.g. coastal lines and water sources for terrestrial species, land
for aquatic species) or three-dimensional features (e.g. steep
terrain, impermeable barriers), and have difficulties resolv-
ing narrow movement corridors (Guo et al., 2019; Péron, 2019;
Silverman, 1986; Worton, 1995). The positive bias from bound-
ary spillover is likely less influential than the negative bias due
to unmodelled autocorrelation; nevertheless, it is possible to cor-
rect for hard boundaries by following the workflow presented in
appendix 3 of Noonan et al. (2019). Kernel density methods also
fail to adequately resolve non-stationary behaviour and nomad-
ism (Lichti & Swihart, 2011; Nandintsetseg et al., 2019), as no-
madic species lack site fidelity to movement pathways or key sites
(e.g. breeding or wintering areas). Addressing non-stationarity
requires home range estimates that accommodate multiple cen-
tres and allow for variation in use patterns (Breed et al., 2017). In
addition, a misspecified model due to migratory behaviours will
affect the accuracy of AKDE area outputs due to the stationary
movement models being leveraged (OU, OUF and IID). However, if
an animal is not range resident, then the data are not appropriate
for any home range estimation method.

Moving forward, we hope to address two remaining challenges
in home range estimation: location error and resource selection

(which includes boundary interactions). Home range estimation is
not as sensitive to location error as fine-scale quantities, such as
speed estimation (Noonan et al., 2019). However, any biological in-
ferences can become compromised if location errors are compara-
ble to the relevant movement scales. At present, locations errors can
be partially accounted for in the autocorrelation modelling stage of
the ctmm workflow (Fleming et al., 2021). First, the autocorrelation
and bandwidth calculations are error-informed, which mitigates var-
ious biases in autocorrelation and bandwidth estimates that would
otherwise occur had location error been ignored. Second, location
estimates are fed through a Kalman smoother before kernel place-
ment, which counteracts overdispersal. However, there are two
adjustments that could provide further improvements. First, more
erroneous location estimates could be optimally downweighted in
the sense of Fleming et al. (2018), which would increase statistical
efficiency. Second, instead of employing a Kalman smoother that is
only consistent with normal distributions, the data could be nonlin-
early smoothed via iteration. Finally, the inclusion of resource selec-
tion parameters into KDE has been considered by Guo et al. (2019)
and Péron (2019). Resource selection can include the respecting of
hard boundaries, as well as softer habitat preferences. The influence
of resource selection on AKDE can be considered at various stages,
including autocorrelation modelling, bandwidth optimization and
kernel shape, and will likely take multiple research efforts to fully
implement in a general use software solution.

Only by estimating home ranges in a comparable way across sam-
pling schedules, study designs and behavioural idiosyncrasies can
wildlife researchers provide wildlife managers and practitioners with
accurate information for conservation planning and land-use decision-
making. Movement ecology has reached an inflection point where it
is no longer possible to ignore autocorrelation: using autocorrelated
tracking datasets with estimators that assume IID data will result in
underestimated home range areas (Noonan et al., 2019). Although
further technological advances will only increase the amount of au-
tocorrelation present in tracking data, autocorrelation is often still
present even in VHF data and should not be overlooked. We have pro-
vided guidelines to obtain accurate home range area estimates with
the AKDE family of home range estimators which, in their current
form, provide the most reliable and flexible solution for home range
area estimation. These methods were explicitly designed to work syn-
ergistically, eliminating discrepancies between empirical reality and
estimator assumptions that drive home range under- or overestima-
tion with conventional techniques. Furthermore, these techniques
can be implemented with open-source software and code (Calabrese
etal., 2016, 2021), and new movement processes can be easily added
into the AKDE workflow as they are developed. This flexibility ‘future
proofs’ the AKDE family of analyses by allowing it to be tailored to
new datasets, movement behaviours and species as necessary.
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