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1  |  INTRODUCTION

An animal's home range was first defined in Burt (1943) as ‘the area 
traversed by the individual in its normal activities of food gathering, 

mating, and caring for young’. Although this definition does not 
provide a mathematical description or statistical method for esti-
mation, it highlights how behaviour drives animal movement: areas 
selected by individual animals are usually distinct from the larger 
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Abstract
1.	 Modern tracking devices allow for the collection of high-volume animal track-

ing data at improved sampling rates over very-high-frequency radiotelemetry. 
Home range estimation is a key output from these tracking datasets, but the 
inherent properties of animal movement can lead traditional statistical methods 
to under- or overestimate home range areas.

2.	 The autocorrelated kernel density estimation (AKDE) family of estimators was 
designed to be statistically efficient while explicitly dealing with the complexi-
ties of modern movement data: autocorrelation, small sample sizes and missing 
or irregularly sampled data. Although each of these estimators has been de-
scribed in separate technical papers, here we review how these estimators work 
and provide a user-friendly guide on how they may be combined to reduce mul-
tiple biases simultaneously.

3.	 We describe the magnitude of the improvements offered by these estimators 
and their impact on home range area estimates, using both empirical case stud-
ies and simulations, contrasting their computational costs.

4.	 Finally, we provide guidelines for researchers to choose among alternative esti-
mators and an R script to facilitate the application and interpretation of AKDE 
home range estimates.
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areas an animal could explore given their movement abilities. Early 
translations into a statistical definition include quantifying an ani-
mal's probability of using a given location (i.e. utilization distribu-
tion; Jennrich & Turner, 1969; Worton, 1989). The concept of home 
range has been redefined by many authors over the years (Harris 
et al., 1990); here, we follow the definition of home range as the area 
repeatedly used throughout an animal's lifetime for all its normal 
behaviours and activities, excluding occasional exploratory excur-
sions outside of home range boundaries. The characteristic temporal 
stability of a home range also highlights additional concepts: range 
residency, defined as the tendency of an animal to remain within its 
home range; and time-scale parameters that quantify the weakness 
of this tendency, including the home range crossing time-scale (τ), de-
fined as the average time required for an animal to cross the linear 
extent of its home range.

Home range area estimates are used to inform conservation 
practitioners and wildlife managers about protected area sizes and 
to advocate for conservation policy changes (Bartoń et  al.,  2019; 
Lambertucci et  al.,  2014; Linnell et  al.,  1997). It is thus crucial to 
provide a reliable and statistically robust metric that is comparable 
across individuals, species and sites. Natural landscapes are becom-
ing increasingly fragmented (Curtis et al., 2018; Hansen et al., 2020), 
imposing new challenges at local, regional and global scales, and un-
reliable estimations may hinder area-based conservation. Reliable 
estimates of home ranges, however, have proven to be deceptively 
difficult to achieve, and have occupied generations of ecologists 
(Fieberg & Börger, 2012; Horne et al., 2020; Jennrich & Turner, 1969; 
Worton, 1989). The inherent properties of animal tracking data cre-
ate unique analytical challenges. Specifically, animal movement data 
frequently feature some combination of autocorrelation, small sam-
ple sizes, missing observations or irregular sampling, and home range 
estimators that are not designed to handle these issues can both 
under- and overestimate the sizes of home ranges.

Although many home range estimators exist (Horne et al., 2020), 
autocorrelated kernel density estimation (AKDE) was the first to 
explicitly account for temporal autocorrelation in the data (Fleming 
et al., 2015). Since its introduction, AKDE has grown into a family 
of related techniques, each aimed at mitigating a different source 
of bias that can affect home range estimates, including unmodelled 
autocorrelation (Hemson et  al.,  2005; Kie et  al.,  2010; Swihart & 
Slade, 1997), oversmoothing (Seaman & Powell, 1996; Worton, 1995), 
autocorrelation estimation bias (Cressie,  2015) and unrepresentative 
sampling in time (Frair et al., 2004; Horne, Garton, & Sager-Fradkin, 
et al., 2007; Katajisto & Moilanen, 2006). These biases are mitigated, 
respectively, by the original AKDE (Fleming et al., 2015), the area-
corrected AKDE (Fleming & Calabrese, 2017), the perturbative hy-
brid residual maximum likelihood (REML) parameter estimation and 
parametric bootstrapping (Fleming et al., 2019) and weighted AKDE 
(Fleming et al., 2018). REML is a form of maximum likelihood esti-
mation that reduces biases in variance/covariance estimation. AKDE 
and associated corrections have been shown to outperform tradi-
tional home range estimators across species, degrees of autocor-
relation and sample size (Noonan et al., 2019). The ctmm workflow 

also allows researchers to partially account for the location errors 
associated with their tracking datasets (Fleming et al., 2021). These 
methods can be run using the programming language R (www.r-proje​
ct.org) and the ctmm or amt packages (Calabrese et al., 2016; Signer 
& Fieberg, 2021), or the ctmmweb graphical user interface (https://
ctmm.shiny​apps.io/ctmmweb; Calabrese et al., 2021). In addition to 
offering flexible and open-source tools for home range estimation, 
these software programs allow easy documentation and implemen-
tation of new methods by sharing code and workflows. Such repro-
ducible methods can increase reliability and transparency in ecology 
(Alston & Rick, 2021; Culina et al., 2020; Powers & Hampton, 2019; 
Signer & Fieberg, 2021).

Because movement data often violate multiple assumptions of 
traditional methods, the individual methodological advances offered 
by the AKDE family of home range estimators can and often should 
be combined. The costs and benefits of each estimator have previ-
ously been described in separate technical papers, so in this paper, 
we bring all of these estimation methods together in one document. 
We describe their effects on the quality of home range estimates, 
both in isolation and in combination, while evaluating how sample 
size interacts with multiple different sources of bias. We use track-
ing data from African buffalo (Syncerus caffer; Cross et al., 2009), 
lowland tapir (Tapirus terrestris; Fleming et  al.,  2019) and jaguar 
(Panthera onca; Morato et  al.,  2018) as empirical case studies to 
guide researchers through the application and value of these anal-
yses. Finally, we use simulations to show the improvements offered 
by combining these techniques and demonstrate their application in 
real-world problems. We conclude by giving clear guidance on how 
ecologists can choose among these alternatives to best achieve their 
study goals. We hope that this review provides a practical guide to 
why and how to use AKDE methods to estimate home ranges that 
will be useful for both researchers and practitioners who are unfa-
miliar with these methods.

2  |  SOURCES OF BIAS AND MITIGATION 
MEASURES

Many biases, including most that affect home range estimates, 
are exacerbated by small sample sizes. Conversely, large sample 
sizes in modern tracking datasets are typically achieved through 
higher sampling frequencies, which exacerbate autocorrelation. 
Autocorrelation is a general statistical property of variables meas-
ured across geographic and temporal space (Dale & Fortin, 2002; 
Legendre,  1993), as observations sampled more closely in space 
or time tend to be more similar. In these conditions, it is thus im-
portant to distinguish between two different measures of sample 
size: absolute sample size (n) and effective sample size (N). Absolute 
sample size is simply the total number of observations in a data-
set. More relevant for home range estimation, however, is the 
effective sample size. Specifically, the amount of information avail-
able to home range estimators is governed not simply by the total 
number of observations, but by the number of range crossings that 
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occurred during the observation period (i.e. how many times an 
animal traversed the linear extent of its home range). The effective 
sample size can be roughly estimated as T/τ, where T is the tem-
poral duration of the tracking dataset, and τ is the average home 
range crossing time parameter. Increasing sampling frequency leads 
to larger absolute sample sizes, but does not increase the effective 
sample size commensurately. For autocorrelated data, the effective 
sample size is necessarily smaller than the absolute sample size and, 
very frequently in practice, orders of magnitude smaller (Fleming 
et al., 2019). In contrast, small absolute sample sizes commonly occur 
in very-high-frequency (VHF) tracking data but are becoming rarer 
in modern GPS tracking data.

We now describe each source of bias and the mitigation measure 
available to correct it, highlighting the difference each correction 
makes with real data from multiple case studies. We present the bias 
sources in order of their general importance, from the largest bias 
to the smallest. Note that this ranking refers to the typical magni-
tude of each type of bias, but the order may be different under some 
conditions.

3  |  BIAS I :  UNMODELLED 
AUTOCORRELATION

Traditional home range estimators such as minimum convex poly-
gons (MCPs) and kernel density estimators (KDEs) assume indepen-
dently and identically distributed (IID) data. When these techniques 
came into common use in the 1980s, the sheer difficulty of ob-
taining VHF location fixes ensured that the time interval between 
successive observations was typically long enough for most of 
the autocorrelation among observations to have decayed (Swihart 
& Slade, 1997; Worton, 1989). The IID assumption at the heart of 
these techniques was therefore usually satisfied by VHF-quality 
data (Harris et  al.,  1990). The situation began to change with the 
arrival of new technologies, most notably GPS tracking systems 
(Rempel et al., 1995), which now routinely feature large volumes of 
data with much more frequent temporal sampling than is feasible for 
VHF-based animal tracking. As autocorrelation arises from obser-
vations sampled closely in time also being located closely in space, 
increasing sampling frequencies inevitably leads to more strongly 
autocorrelated tracking data (De Solla et al., 1999). Automated, high-
sampling frequency tracking data have undoubtedly revolutionized 
movement ecology (Kays et al., 2015), but these advances have bro-
ken the armistice between the statistical assumptions of traditional 
home range estimators and the reality of the datasets now used to 
study animal movement (Boyce et al., 2010).

Specifically, feeding autocorrelated data into a home range 
estimator based on the IID assumption yields negatively biased 
estimates (Noonan et  al.,  2019). Autocorrelation-induced under-
estimation of home range areas is particularly pronounced when 
the effective sample size is small. In the recent comparative study of 
Noonan et al. (2019), 368 of 369 tracking datasets featured strong 
autocorrelation, and roughly half were also plagued by small effective 

sample size. In these conditions, conventional estimators—such as 
MCPs, KDEs and local convex hull polygons—underestimate home 
range areas by a factor of ~2 to 13 (on average), depending on the 
method and bandwidth optimizer, which is what determines how 
tightly KDEs conform to the data. Accordingly, published estimates 
featuring these traditional methods may severely underestimate an-
imal space-use requirements, hindering conservation and manage-
ment decisions.

4  | MITIGATION MEASURE I :  AKDE

Fortunately, it is not autocorrelation per se that causes errors in 
home range estimation, but rather autocorrelation that is statisti-
cally ‘unmodelled’ (Calabrese et al., 2021). Home range estimators 
that account for autocorrelation can therefore avoid the biases and 
violated assumptions of traditional methods. Autocorrelated kernel 
density estimation (AKDE) explicitly requires a movement model 
that accounts for the autocorrelation in the tracking data (Figure 1) 
and then estimates the home range while conditioned on the same 
movement model (Fleming et al., 2015). This model is identified via 
formal model selection among a range of plausible alternatives, cur-
rently spanning from uncorrelated data (IID), correlated positions 
but uncorrelated velocities (Ornstein–Uhlenbeck or OU; Uhlenbeck 
& Ornstein, 1930), to correlated positions and correlated velocities 
(Ornstein–Uhlenbeck foraging process or OUF; Fleming et al., 2014). 
In this framework, IID is both a candidate model and one limit of a 
continuum of possibilities, rather than an a priori assumption. These 
models are ranked based on Akaike's information criterion adjusted 
for small sample sizes (AICc) by default, although the ctmm package 
also offers AIC, Bayesian information criterion (BIC), leave-one-out 
cross-validation (LOOCV) and half-sample cross-validation (HSCV).

Ad hoc measures such as data thinning (Harris et  al.,  1990; 
Rooney et al., 1998) are not necessary, as AKDE allows model as-
sumptions to conform as closely as possible to empirical reality, 
instead of coercing the data to fit a model with unrealistic assump-
tions. Feeding IID data into AKDE will not have any adverse effects, 
as it will simply result in a conventional KDE estimate. This workflow 
also allows reliable confidence intervals to be determined for home 
range area estimates, which historically have not been applied to 
home range estimates. This measure of confidence is fundamental 
for any statistical estimate (Pawitan, 2001), increasing the compara-
bility of AKDE and its relevance for biogeographical and conserva-
tion applications.

5  |  BIAS I I :  OVERSMOOTHING

Kernel density estimators are best-in-class tools for estimating un-
known probability distributions and are used in this capacity across 
the sciences (Chen, 2017; Silverman, 1986; Wang et al., 2013). In the 
context of tracking data, KDEs estimate the probability distribution 
of locations, which is then used to estimate the area of a home range 
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(Powell, 2000; Worton, 1989). Typically, ecologists are more inter-
ested in this area estimate than in the distribution itself.

Even when we account for autocorrelation (AKDE), kernel den-
sity estimators based on the Gaussian reference function (GRF) re-
main biased owing to the natural tendency of the GRF approximation 
to oversmooth (yielding a more spread-out distribution). This bias 
is estimator specific, and may be either positive or negative (Kie 
et  al.,  2010; Worton,  1995): for GRF-KDEs—such as AKDE and href 
(Silverman, 1986)—this bias is positive and, all else being equal, leads to 
an overestimated home range (Seaman & Powell, 1996). Importantly, 
for estimators that do not account for autocorrelation, like href but 
unlike AKDE, this positive bias can be masked by the often stron-
ger negative bias caused by unmodelled autocorrelation. For KDEs 
based on least-squares cross-validation, hLSCV, this bias is typically 

negative (Blundell et al., 2001; Hemson et al., 2005) and exacerbates 
the autocorrelation-induced underestimation of home range areas.

6  | MITIGATION MEASURE I I :  KDEc or 
AKDEc

Fleming and Calabrese (2017) derived an improved KDE by calcu-
lating the bias in area estimation under a GRF approximation and 
applying a correction in an area-based coordinate system. By pulling 
the contours of the location distribution estimate inward towards 
the data without distorting its shape, this correction removes the 
tendency of GRF-based methods (including AKDE) to overestimate 
the area of home ranges, particularly at small effective sample sizes 

F IGURE  1 An example of 
autocorrelated data (individual six from 
the African buffalo dataset, available 
within the ctmm package), and the same 
data when it achieves independence (IID) 
after data thinning (from one fix per hour 
to one fix per week). We calculated the 
95% contour of an autocorrelated kernel 
density estimation (AKDE) and a Gaussian 
reference function KDE (GRF-KDE). 
Displayed errors correspond to % bias of 
full dataset KDE and subset KDE against 
full dataset AKDE. N: effective sample 
size, n: absolute sample size

F IGURE  2 Autocorrelated kernel 
density estimation (AKDE) and area-
corrected AKDE (AKDEc) calculated for 
one individual from the lowland tapir 
tracking dataset with: large effective 
sample size (N ≈ 1,566), medium effective 
sample size (N ≈ 261) and small effective 
sample size (N ≈ 30). Displayed errors 
correspond to % bias of AKDE against 
AKDEc of the same individual. Note that 
for large N values the estimates from 
AKDE and AKDEc overlap considerably
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(Figure 2). Formally correcting the density function estimate allows 
us to calculate a more reliable home range area and confidence inter-
vals. This correction can be applied to both conventional and auto-
correlated GRF-KDEs (then termed KDEc and AKDEc respectively), 
and is the default method within the ctmm package. As this source 
of bias is estimator specific, the mitigation must also be estimator 
specific, so this correction cannot be applied to non-GRF KDE ap-
proaches such as hLSCV.

7  |  BIAS I I I :  AUTOCORRELATION 
ESTIMATION BIAS

The main advantage of AKDE is that it accounts for the autocorre-
lated structure of animal movement data; for optimal performance, 
we need to estimate this autocorrelation correctly. Maximum 
likelihood (ML) estimation is the standard approach to fitting 
movement models to animal tracking data (Horne Garton, Krone, 
et al., 2007; Michelot et al., 2016) due to its versatility, widespread 
use and relatively good performance (Pawitan,  2001). However, 
ML performs best at large sample sizes, while parameters related 
to variances and covariances tend to be underestimated in small 
sample size conditions (Cressie,  2015). As variance-associated 
parameters are closely related to home range size, their under-
estimation propagates into underestimated home range areas 
(Noonan et al., 2019).

8  | MITIGATION MEASURE I I I :  pHREML 
AND PARAMETRIC BOOTSTRAPPING

Residual ML estimation is often used to improve (co)variance param-
eter estimation with small sample sizes, but it can perform poorly for 
the class of movement models on which AKDE depends (Fleming 
et al., 2019). To mitigate the small sample size bias in autocorrelation 
model parameter estimates, Fleming et al. (2019) developed a series of 
REML-based estimators that focus on small effective sample sizes (per-
turbative REML; pREML), small absolute sample sizes (Hybrid REML; 
HREML), or both small absolute and small effective sample sizes (pertur-
bative Hybrid REML; pHREML). We focus on pHREML here (Figure 3) 
as it is the most broadly applicable of these methods and has no seri-
ous disadvantages relative to the others, because it combines the bias 

correction of REML and the stability of ML. It is currently the default 
parameter estimation method in the ctmm package.

The parametric bootstrap method (Efron, 1982) is another stan-
dard solution for the biases caused by ML estimation and can be 
applied on top of REML-based estimations to further reduce biases. 
In extreme cases where effective sample sizes are ~5 or less, paramet-
ric bootstrapping may result in substantial improvements. However, 
the high computational cost incurred by bootstrapped pHREML 
(Supporting Information File 1), coupled with the usually modest im-
provements it provides, reinforce its use only as a last resort.

9  |  BIAS IV:  UNREPRESENTATIVE 
SAMPLING IN TIME

From a statistical perspective, evenly spaced temporal sampling of 
tracking data ensures the widest possible range of analytical options. In 
practice, however, many real-world issues can lead to animal locations 
being sampled irregularly in time: duty-cycling tags to avoid wasting 
battery during periods of inactivity, acceleration-informed sampling, 
device malfunction, habitat-related signal loss and many other causes 
(DeCesare et  al.,  2005; Frair et  al.,  2004; Horne, Garton, & Sager-
Fradkin, et  al.,  2007). When unaccounted for, such cases can yield 
biased datasets, causing area estimates associated with over-sampled 
portions of home ranges to be too large and those associated with 
under-sampled parts of home ranges to be too small (Fieberg, 2007). 
There is no guarantee that these contrasting biases cancel each other 
out, so the overall home range area estimate may be either positively 
or negatively biased.

10  | MITIGATION MEASURE IV:  wAKDE

Weighted AKDE (or wAKDE) corrects for unrepresentative sampling in 
time (Fleming et al., 2018) through the larger bias addressed is where the 
area is distributed: it optimally upweights observations that occur dur-
ing under-sampled times, while optimally downweighting observations 
occurring during over-sampled times. In IID data, optimal weights are 
uniform (i.e. there is no temporal sampling bias, as all times are equally 
important) so there is no advantage to weighting. For autocorrelated 
data with highly irregular sampling, however, the difference between 
weighted and unweighted AKDE can be considerable (Figure 4).

FIGURE 3 AKDEc calculated with 
maximum likelihood (ML) and with 
perturbative Hybrid REML (pHREML) for 
an individual within the jaguar dataset, 
showcasing its effect on large absolute 
but small effective sample size (reduce to 
a sampling duration of 3 months: n = 363 
locations, N ≈ 3.1), and both small absolute 
and small effective sample size (3 months 
thinned to n = 5 locations, N ≈ 4). Displayed 
errors correspond to % bias of ML-fitted 
AKDE against pHREML-fitted AKDE
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In practice, very few tracking datasets are perfectly regular, so 
it is essential to handle data irregularity appropriately. Missing data 
equate to a loss of information, and these errors can propagate into 
biases in habitat selection or area-based conservation outputs (Frair 
et  al.,  2004). For example, areas with good satellite reception (e.g. 
open flat landscapes) may appear over-used even when animals did 
not spend more time in them compared to areas with poorer recep-
tion. Shifting sampling schedules (based on behavioural or seasonal 
patterns) is a common strategy employed in animal tracking projects, 
due to the trade-off between sampling intensity and battery life 
(Brown et al., 2012); in these circumstances, weight optimization via 
wAKDE is critical for comparisons between individuals or populations.

11  |  COMBINATION OF MITIGATION 
MEASURES

In practice, different sources of bias frequently occur together in the 
same datasets. This is a key reason why home ranges are so difficult 
to estimate accurately. However, the mitigation measures described 
above can be implemented simultaneously when necessary to combat 
multiple biases. For example, if a tracking dataset features autocor-
relation, small effective sample size and irregular temporal sampling, 
we can use pHREML to estimate and select the underlying movement 
model, and then pass the selected model to an optimally weighted 
area-corrected AKDE (wAKDEc) to properly estimate home range 
area. The default settings in the ctmm package have been carefully 
chosen to balance performance against computational cost, so in this 
example, only optimal weighting would need to be manually selected 
by the user. Default values and alternative options are discussed in 
more detail in the ctmm documentation (Fleming & Calabrese, 2021).

To quantify the level of improvement offered by each mitigation 
measure and to explore the trade-off between accuracy and compu-
tational cost, we performed a detailed simulation study. Our simu-
lations are based on an OUF movement model, which features both 
correlated velocities (i.e. directional persistence), correlated positions 
and restricted space use. We chose the OUF model because it was 
the most frequently selected across all empirical GPS datasets in the 

Noonan et al. (2019) study, with 240 of 369 datasets. We set both the 
directional persistence and range crossing time-scales to 1 day, and 
varied the duration of the simulated datasets from 1 to 4,096 days in 
a doubling series, sampled hourly (except for bootstrapped pHREML 
wAKDEc which was significantly more computationally intensive and 
impractical to simulate over the whole sampling duration). This setup 
results in effective sample sizes that approximate the duration of each 
simulated dataset. We then sequentially fit home range estimators in 
the ctmm package to each simulated dataset in the following order: 
KDE, AKDE, AKDEc, pHREML AKDEc, pHREML wAKDEc and boot-
strapped pHREML wAKDEc. This represents a progression from no 
bias corrections (KDE) through all possible bias corrections applied 
simultaneously, in order of the typical importance of the corrections. 
Each simulation was repeated 400 times. We calculated bias as the 
95% area estimate of the method in question divided by the exact ex-
pectation value of the true 95% area (under the model from which 
the data were simulated), while the computational cost was the time 
the simulation took to complete in seconds. All simulations were per-
formed in the R environment (version 3.5.2; R Core Team, 2018) using 
the ctmm package (version 0.5.2; Calabrese et  al.,  2016) and con-
ducted on the University of Maryland High Performance Cluster.

Compared to conventional KDE, the original AKDE offered clear 
advantages for small effective sample sizes, but failed to improve area 
estimation for medium and large effective sample sizes (N > 32; Table 1). 
By solving the oversmoothing bias, AKDEc improved over KDE for all 
effective sample sizes. The next technique, pHREML-fitted AKDEc 
(ctmm default settings) further improved over conventional KDE 
and all previous measures, and stabilized the closest to 0% relative 
error after only eight sampling days (Figure 5a). Additional mitigation 
measures do lead to an increasingly higher computational cost: for 
the full sampling duration (4,096 days), pHREML-fitted wAKDEc ran 
on average 2.7 times longer than the original AKDE, and 230 times 
longer than a conventional KDE (Figure 5b, Supporting Information 
File 1). With an Intel i7 3.9GHz processor using a single core, and an 
hourly tracking dataset collected for a year, this could correspond to 
an increase from a few seconds to approximately 45 min. However, 
unlike AKDE, conventional KDE does not run any autocorrelation 
model selection, or numerical optimization of parameter estimates.

F IGURE  4 A uniformly weighted 
AKDEc and an optimally weighted AKDEc 
(wAKDEc), calculated from an individual 
from the African buffalo dataset with an 
irregular sampling schedule likely due to a 
device malfunction (nicknamed ‘Pepper’; 
available within the ctmm package). 
Displayed errors correspond to % bias of 
AKDEc core area (50%) against wAKDEc 
core area (50%)
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12  | DISCUSSION

The techniques presented in this paper represent a family of home 
range estimators starting with conventional GRF-KDE and pro-
gressing through a series of estimation methods designed to miti-
gate bias arising when the core assumption of IID data is not met. 

These methods are implemented with efficient computational algo-
rithms that work with both small and large animal tracking datasets. 
We have brought these techniques together in a single document 
to demonstrate when each correction is applicable, the degree to 
which home range estimates can be improved, and when and how 
they can be combined to handle the unique quirks of each tracking 
dataset to yield accurate home range estimates.

The AKDE family of estimators are all implemented in the ctmm R 
package (Calabrese et al., 2016), so we provide an annotated R script 
in the supplementary material of this paper to guide users through 
the applications of these techniques (Supporting Information File 2). 
The current default settings are pHREML, for estimating movement 
model parameters, and (A)KDEc, for estimating home ranges. The 
decision between KDEc and AKDEc is determined using model selec-
tion, and dependent on whether the data are independently distrib-
uted or autocorrelated respectively. We recommend that users keep 
pHREML and (A)KDEc as the default settings and especially caution 
against changing these settings for any effective sample sizes below 
20. When working with legacy data where small effective sample sizes 

TABLE  1 Mean improvement (%) in area estimation for each 
AKDE method compared to baseline KDE, over small (N < 32), 
medium (32 > N < 512) and large effective sample sizes (N > 512). 
Negative values denote underperformance

Methods

Improvement over KDE

Small N Medium N Large N

AKDE 51.3% −31.3% −78.4%

AKDEc 42.6% 48.3% 36.4%

pHREML AKDEc 59.8% 52.9% 40.4%

pHREML wAKDEc 59.4% 52.9% 43.1%

Bootstrapped pHREML wAKDEc 72.0% NA NA

F IGURE  5 (a) Mean relative error (%) of the home range area estimation and (b) computational cost (log-transformed) for each method, by 
sampling duration (in days). Based on simulations (repeated 400 times) where the position and velocity autocorrelations were kept constant 
at 1 day and 1 hr respectively. Error bars represent 95% confidence intervals. AKDE and AKDEc have almost overlapping performances, as 
well as pHREML-fitted AKDEc and pHREML wAKDEc
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are a serious concern, but additional data collection is not an option, 
bootstrapped pHREML may be used as a method of last resort to 
obtain the best possible home range estimates. However, due to 
the high computational cost of using bootstrapped pHREML, users 
should decide on a bias threshold (typically >1%–5% with an initial 
pHREML estimate) before applying this measure (see Supporting 
Information File 2 for how to determine this bias threshold). Finally, 
wAKDEc can account for temporal sampling bias (i.e. missing or irreg-
ular tracking data), but is switched off by default due to its consider-
able computational cost (approximately 200 times longer than KDE).

Most mitigation measures we have discussed here become in-
creasingly valuable at small sample sizes (absolute and/or effective), 
allowing researchers to maximize the value of legacy datasets or to 
handle situations where larger effective sample sizes are impossible 
to obtain (e.g. on smaller animals for which battery size limits the 
temporal duration of GPS life spans). Nevertheless, the application 
of these analytical methods should not replace careful study design 
before data collection, tailored to address specific research ques-
tions (Fieberg & Börger,  2012). When the main goal of a study is 
home range estimation, the sampling duration should be many times 
larger than the average range crossing time of the focal species. This 
ensures that the effective sample size will be large enough to facilitate 
reliable estimation of the area of home ranges. Achieving this goal 
may require researchers to decrease the sampling rate of their de-
vices to save battery power, although small effective sample sizes may 
be inevitable even in these conditions due to battery constraints, 
specific ranging behaviours or short life spans.

Although AKDEs provide reliable home range area estimations 
in the conditions presented in this manuscript, there are scenarios 
in which they fail. A known issue of KDE methods is that their 
estimates can spill over discontinuities, such as hard boundaries 
(e.g. coastal lines and water sources for terrestrial species, land 
for aquatic species) or three-dimensional features (e.g. steep 
terrain, impermeable barriers), and have difficulties resolv-
ing narrow movement corridors (Guo et  al.,  2019; Péron,  2019; 
Silverman,  1986; Worton,  1995). The positive bias from bound-
ary spillover is likely less influential than the negative bias due 
to unmodelled autocorrelation; nevertheless, it is possible to cor-
rect for hard boundaries by following the workflow presented in 
appendix 3 of Noonan et al. (2019). Kernel density methods also 
fail to adequately resolve non-stationary behaviour and nomad-
ism (Lichti & Swihart,  2011; Nandintsetseg et  al.,  2019), as no-
madic species lack site fidelity to movement pathways or key sites 
(e.g. breeding or wintering areas). Addressing non-stationarity 
requires home range estimates that accommodate multiple cen-
tres and allow for variation in use patterns (Breed et al., 2017). In 
addition, a misspecified model due to migratory behaviours will 
affect the accuracy of AKDE area outputs due to the stationary 
movement models being leveraged (OU, OUF and IID). However, if 
an animal is not range resident, then the data are not appropriate 
for any home range estimation method.

Moving forward, we hope to address two remaining challenges 
in home range estimation: location error and resource selection 

(which includes boundary interactions). Home range estimation is 
not as sensitive to location error as fine-scale quantities, such as 
speed estimation (Noonan et al., 2019). However, any biological in-
ferences can become compromised if location errors are compara-
ble to the relevant movement scales. At present, locations errors can 
be partially accounted for in the autocorrelation modelling stage of 
the ctmm workflow (Fleming et al., 2021). First, the autocorrelation 
and bandwidth calculations are error-informed, which mitigates var-
ious biases in autocorrelation and bandwidth estimates that would 
otherwise occur had location error been ignored. Second, location 
estimates are fed through a Kalman smoother before kernel place-
ment, which counteracts overdispersal. However, there are two 
adjustments that could provide further improvements. First, more 
erroneous location estimates could be optimally downweighted in 
the sense of Fleming et al. (2018), which would increase statistical 
efficiency. Second, instead of employing a Kalman smoother that is 
only consistent with normal distributions, the data could be nonlin-
early smoothed via iteration. Finally, the inclusion of resource selec-
tion parameters into KDE has been considered by Guo et al. (2019) 
and Péron (2019). Resource selection can include the respecting of 
hard boundaries, as well as softer habitat preferences. The influence 
of resource selection on AKDE can be considered at various stages, 
including autocorrelation modelling, bandwidth optimization and 
kernel shape, and will likely take multiple research efforts to fully 
implement in a general use software solution.

Only by estimating home ranges in a comparable way across sam-
pling schedules, study designs and behavioural idiosyncrasies can 
wildlife researchers provide wildlife managers and practitioners with 
accurate information for conservation planning and land-use decision-
making. Movement ecology has reached an inflection point where it 
is no longer possible to ignore autocorrelation: using autocorrelated 
tracking datasets with estimators that assume IID data will result in 
underestimated home range areas (Noonan et  al.,  2019). Although 
further technological advances will only increase the amount of au-
tocorrelation present in tracking data, autocorrelation is often still 
present even in VHF data and should not be overlooked. We have pro-
vided guidelines to obtain accurate home range area estimates with 
the AKDE family of home range estimators which, in their current 
form, provide the most reliable and flexible solution for home range 
area estimation. These methods were explicitly designed to work syn-
ergistically, eliminating discrepancies between empirical reality and 
estimator assumptions that drive home range under- or overestima-
tion with conventional techniques. Furthermore, these techniques 
can be implemented with open-source software and code (Calabrese 
et al., 2016, 2021), and new movement processes can be easily added 
into the AKDE workflow as they are developed. This flexibility ‘future 
proofs’ the AKDE family of analyses by allowing it to be tailored to 
new datasets, movement behaviours and species as necessary.
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