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Hexagonal boron nitride (h-BN) memristor arrays for
analog-based machine learning hardware

Jing Xie', Sahra Afshari' and Ivan Sanchez Esqueda®'™

Recent studies of resistive switching devices with hexagonal boron nitride (h-BN) as the switching layer have shown the potential of
two-dimensional (2D) materials for memory and neuromorphic computing applications. The use of 2D materials allows scaling the
resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high
programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. These
characteristics are of interest for the implementation of neuromorphic computing and machine learning hardware based on
memristor crossbars. However, existing demonstrations of h-BN memristors focus on single isolated device switching properties
and lack attention to fundamental machine learning functions. This paper demonstrates the hardware implementation of dot
product operations, a basic analog function ubiquitous in machine learning, using h-BN memristor arrays. Moreover, we
demonstrate the hardware implementation of a linear regression algorithm on h-BN memristor arrays.

npj 2D Materials and Applications (2022)6:50; https://doi.org/10.1038/s41699-022-00328-2

INTRODUCTION

Two-dimensional (2D) materials have attracted significant interest
for the downscaling of CMOS (complementary metal-oxide-
semiconductor)'3, as well as for beyond-CMOS electronic
applications*®. Their atomic scale thicknesses and pristine (i.e.,
dangling-bond free) surfaces could enable ultra-dense integration
for next-generation integrated electronic systems®. Consequently,
many studies have evolved from the demonstration of isolated
devices (e.g., field effect transistors or FETs) based on exfoliated
flakes towards large-area methods for fabrication of integrated
circuits with 2D materials®~'2. While early device demonstrations
focused predominantly on FET applications'>'6, recent studies
have proposed memory and neuromorphic devices based on the
non-volatile resistive-switching (NVRS) behavior observed in
various 2D materials including transition metal dichalcogenides
(TMDQ)", black-phosphorus'®'®, graphene?®?', hexagonal boron
nitride (h-BN)*?73°, etc. These devices are generally configured in
vertical two-terminal structures, where the resistive switching
layer is sandwiched between top and bottom metal electrodes.
The use of 2D materials has enabled the demonstration of devices
with atomically thin resistive switching layers having low voltage
operation?’” and fast switching speeds®>?*. Chemical vapor
deposition (CVD)-grown h-BN has attracted much attention for
use as the resistive switching layer due to its compatibility with
large-area wafer-scale fabrication, and arrays of h-BN memristors
have been reported'’. In CVD-grown h-BN devices the resistive
switching process is attributed to the formation and rupture of
conductive paths via penetration of metal ions into defects at
h-BN grain boundaries.

Initial studies of h-BN memristors reported on their non-
volatile resistive switching behavior observed as transitions or
hysteresis in measurements of DC current-voltage characteris-
tics232427.29 previous work'! has also shown the programming of
multiple resistive states in h-BN memristors by the application of
consecutive voltage pulses, although using significantly larger
pulse widths (milliseconds) compared to what is reported here
(nanoseconds). Pulsed programming is required for practical

memory and neuromorphic computing applications. Moreover,
the pulsed programming of multiple conductive states is critical
for the implementation of synaptic plasticity (i.e., long-term
potentiation and depression) in neuromorphic hardware, as well
as for the analog-based implementation of machine learning
functions in memristor arrays®'2, For example, most analog-
based implementations of neural networks and/or machine
learning hardware based on memristor crossbars rely on dot-
product (i.e., multiply-accumulate) operations®3=3>. Here, the
accumulated currents at the outputs of the array result from
the product of input voltage signals (input vector) and the
conductance of the memristors in the array (column vectors).
Nevertheless, this basic function has not been reported in arrays
of h-BN memristors.

This paper presents the wafer-scale fabrication of memristor
arrays using on CVD-grown h-BN resistive switching layers, and
their multi-state analog programmability. We focus on the
experimental demonstration of dot-product operation on h-BN
memiristor arrays and on the hardware implementation of multi-
variable stochastic linear regression. This work extends beyond
existing demonstrations of NVRS behavior in isolated h-BN
memristors and paves the way for more sophisticated demonstra-
tions of machine learning applications based on 2D materials.

RESULTS
Fabrication of h-BN memristor arrays

Multilayer CVD-grown h-BN was transferred from copper onto a
90 nm SiO,/Si substrate patterned with Au bottom electrodes. The
h-BN film was then shaped using standard photolithographic and
etching techniques to expose the bottom electrodes. Subse-
quently, we prepared top electrodes through patterning and Ti
deposition using e-beam evaporation and lift-off (see “Methods”
and Supplementary Fig. 2 for fabrication details). Figure 1a shows
a schematic of the fabricated Au/h-BN/Ti memiristors arrays where
the Au bottom electrode (BE) is shared across various devices each
having an independent Ti top electrode (TE) (1x3 and 1x10
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Fig. 1 hexagonal Boron Nitride (h-BN) memristor arrays. a Schematic of the Au/h-BN/Ti memiristor arrays and b cross-sectional schematic of
single memristor ¢ Photograph of Au/h-BN/Ti memristor arrays on 90 nm SiO,/Si wafer under ambient light, and d micrograph of arrays with
3 um X 3 ym active areas. e Cross-sectional TEM image of the Au/h-BN/Ti memristor indicating local defects responsible for the formation of
conductive paths. Scale bar, 5 nm. f A representation of conductive nanofilaments on the Au/h-BN/Ti memristors.

arrays are shown). Figure 1b illustrates the cross-section of the Au/
h-BN/Ti memristor. Figure 1c is a photograph of the memristor
arrays on a 2cm by 2.cm SiO,/Si wafer. A micrograph of the
fabricated h-BN memristor arrays shown in Fig. 1d corroborates
the dimensions of the 100 pm x 100 um squared pads and the
electrodes with 3 um x 3 um active areas (see Supplementary Fig.
1 for 20 um x 20 pm and 50 uym x 50 ym active areas). Figure 1e
shows a cross-section transmission electron microscopy (TEM)
image of a typical Au/h-BN/Ti memristor. From the TEM image we
confirm the thickness of the CVD-grown multilayer h-BN film
(~8-10nm) corresponding to approximately 15-20 atomic layers.
Moreover, we can observe local defects that facilitate metallic
penetration from the top electrode (Ti) to form conductive paths
(i.e, conductive nanofilaments) responsible for the resistive
switching behavior in the h-BN memristors.

Resistive-switching properties

Individual h-BN memristors from the arrays were measured
electrically to evaluate their resistive-switching properties
(see  “Methods” for details on electrical characterization).
Current-voltage (I-V) characteristics were obtained by sweeping
a voltage across the top and bottom electrodes while measuring
current. Figure 2a plots 100 consecutive cycles of -V measure-
ments on an Au/h-BN/Ti memristor with a 3 um x 3 um active area.
A compliance of 0.1 mA was activated for positive applied
voltages. The numbered labels indicate the sweeping process
during the /-V measurement. As shown, clear transitions occur
between resistive states, evidence of a forming-free bipolar
resistive-switching (RS) operation with low cycle-to-cycle resis-
tance variability and low set and reset voltages (approximately 1
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and —1 V). The cumulative distribution plot of the resistive states
extracted at a read voltage of 0.1V from all 100 cycles is shown in
Fig. 2b. Two distinct states labeled as HRS (high resistance states)
and LRS (low resistance state) are easily observed as their
distributions are separated by approximately two orders of
magnitude. Another illustration of the HRS and LRS distributions
is provided in Fig. 2c where the resistances are plotted as a
function of the cycle number. A histogram of the set and reset
voltages corresponding to transitions between HRS and LRS is
shown in Fig. 2d. All results indicate a stable and reliable RS
bipolar operation.

We also explore the dependence of the /-V characteristics and
of the HRS and LRS statistics on h-BN memristor active area. In
Fig. 2e we compare the /-V characteristics from devices with
3um X 3 um, 20 um X 20 um, and 50 um x 50 um active areas. All
devices were measured for 100 cycles and the results show good
repeatability with limited cycle-to-cycle variation. The difference in
active area has a larger effect on the HRS and this is easier to
identify in the cumulative distribution plot shown in Fig. 2f. Here,
the HRS an LRS resistances are shown for the three devices (all
100 cycles) extracted at a read voltage of 0.1 V. While distributions
of LRS are only minimally affected by active area we see a clear
trend in HRS. The HRS resistance goes down with increasing the
active area. This trend in HRS and LRS with active area has been
previously reported for different filamentary-based RS mem-
ory®*%37, Figure 2g is a box plot showing the distribution of HRS
and LRS as a function of cell area side length (3, 20, and 50 pm).
The plot includes the raw data (circles), the standard deviation
(size of box), and the mean values (solid horizontal lines). We note
that while cycle-to-cycle variability is comparable to previous
resistive-switching technologies (e.g, oxide-based RRAM39),
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Fig. 2 Resistive switching characteristics of h-BN memristors. a Representative /-V characteristics measured during 100 cycles in one single
3 um X% 3 um Au/h-BN/Ti memristor with 0.1 and 1 mA compliance respectively for the positive and negative sides of the sweep. b Cumulative
probability distribution of the HRS and LRS (read at 0.1V) c resistance vs cycle number plot, and d histogram of set and reset voltages.
e Comparison of 100 /-V cycles from Au/h-BN/Ti memristors with different active areas. f Cumulative probability distribution of the HRS and
LRS (read at 0.1V) and g statistical analysis of resistance (HRS, LRS) as a function of the active area side length.

device-to-device variability remains large, likely due to nonunifor-
mity of the h-BN film and may be improved by optimizing the
synthesis and transfer methods.

Multistate non-volatile pulse programmability

Achieving multiple conductive states through the application of
programming pulses is critical for the implementation of
neuromorphic hardware and for the analog-based implementa-
tion of machine learning functions in memristor arrays. We
investigate the multistate pulse programmability of the Au/h-BN/
Ti memristors by applying a sequence of positive/negative voltage
pulses (pulse width is 500 ns, amplitudes indicated in Fig. 3). After
each pulse a small read of 0.1V is applied to read the current
(conductive state) of the device (see Fig. 3a top panel). The results
are shown in Fig. 3b, where 100 cycles of 50 positive pulses
followed by 50 negative pulses were applied. The gray lines are
the results from each individual cycle and the solid red line with
circles is the average from all 100 cycles. The results show a
gradual change in conductance (from ~4 to 10 pS) indicating good
analog (i.e., multistate) programmability. Due to the fast-switching
behavior (nanoseconds), a low energy consumption per program-
ming pulse of Epyse = (1)(V) (tpu|se) ~ 125 fJ is achieved. We note
that this can be further reduced to al/pulse by applying a low
compliance current as previously reported on h-BN memristors'".
The non-volatile property of the conductive states is also
demonstrated by retention tests where current is sampled over
100s (read voltage 0.1V) following the application of the
programming pulses (Fig. 3¢, d). Figure 3c plots current for
different programming cycles where the number of positive
pulses was varied from two up to twenty. Immediately after the
last positive pulse we apply and hold a 0.1V read voltage and
sample current every second for 100 s (see Fig. 3a bottom panel).
After the retention test the negative pulses are applied and we
then proceed to the next cycle. The results from the retention test
are shown in Fig. 3d where the current is plotted as a function of
the retention time (longer retention tests up to 10*s confirming a
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stable, non-volatile response are shown in Supplementary Fig. 6).
The results confirm the endurance and robustness of the
conductive filaments and demonstrate the multistate non-
volatile pulse programmability of Au/h-BN/Ti memristors.

Dot product with h-BN memristor arrays

The dot-product operation is crucial for neuromorphic computing
and machine learning hardware. For example, a dot-product
operation is typically used in neural networks implemented on
memristor crossbar arrays to accumulate currents at the outputs
(i.e., the post-synaptic neurons). Here, the product of the input
voltage signals (the input vector, v) multiply the conductances of
the memristor arrays (the column vector, G) to accumulate an
output current (/). This is achieved in hardware due to Ohm's and
Kirchhoff's laws as given by / = Y vG. This dot-product operation
has been previously reported on oxide-based memristors>*3°, but
not on recently developed h-BN memristor arrays. Here we
demonstrate the most basic implementation of dot-product on an
array of two h-BN memristors where the accumulated current is
given by | = v1Gy + v,2G,. The experimental setup is illustrated in
Fig. 4a. As shown, for each memristor we can switch between a
pulse source (used to program the memristor conductances G,
and G,) and a voltage source to apply the read voltage on the
memristors (v4, and v5). During the read operation we measure the
output current through the shared bottom electrode. Figure 4b
plots the total current measured with a read voltage of 0.1V
(v; = v, =0.1V) following the application of consecutive program-
ming pulses (positive then negative). We show the case with both
memristors pulsed (i.e, both are programmed with voltage
pulses), the case with only one of the memristors pulsed, and
with none pulsed (20 cycles shown for each case). For each cycle
we also sweep the read voltage (v; = v, = V,eaq) between —0.15
and +0.15V and measure the total current after all 30 positive
programming pulses. The results from these voltage sweeps are
shown in Fig. 4c. For the case where both memristor were pulsed
(blue lines), the conductances G; and G, are both high (LRS) and
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Fig. 3 Multi-state non-volatile pulse programming of h-BN memristors. a Diagram of the pulsed measurements and retention test. b 100
cycles of pulse programming for Au/h-BN/Ti memristor with 3 um x 3 pm active area (50 positive pulses, followed by 50 negative pulses for
each cycle). Gray lines show 100 individual cycles, and the red line shows the average. ¢ Pulse measurement cycles with increasing number of
positive pulses. Deep blue to red colored curves corresponds to increasing the number of positive pulses from 2 up to 20. d Retention tests
measured immediately after the last positive pulse for each cycle using a read voltage of V,caq = 0.1 V. The color of the curves in d match the

color of the corresponding cycle in (c).

therefore the current is the largest. When none of the memristors
are pulsed (black lines), both G; and G, are low (HRS), and the
current is the lowest. When only one memristor is pulsed, its
conductance is high (LRS) while the other memristor’'s conduc-
tance is low (HRS), and the magnitude of the current is between
the first two cases. The results in Fig. 4c indicate good linear
behavior of the memristor /-V characteristics (needed for reliable
dot-product operation)*® and show good repeatability (small
cycle-to-cycle variation).

DISCUSSION

We now demonstrate the implementation of stochastic multi-
variable linear regression on an h-BN memristor array. In this
implementation we use an h-BN memristor array to predict the
profit of startup companies given their investment in marketing
and in research and development (R&D). Our model is trained
using a dataset from 50 startup companies available online*'. In
this implementation, the memristor conductances (G; and G,) are
the model parameters. The training process is illustrated in Fig. 5a.
For each training step a single sample from the dataset is
randomly selected (the sample includes profit, marketing, and
R&D in $K). The input variables (marketing and R&D) are translated
(normalized) to voltages between 0 and 0.15 V. These voltages are
applied to the h-BN memristors (v; and v,). We have previously
confirmed that for this range of read voltages the /-V response is
linear, and the dot-product operation is reliable (see Fig. 4c). This is
important for the implementation of linear regression as the
prediction (h) is determined from the output current of the h-BN
memristor array given by the dot product as

l=vTG,v:{v1},G={Gl}. (1

V2 G
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The prediction is then compared against the training sample
(y = profit) from which we determine the error and the required
update for each of the model parameters (AG; and AG,) (see
“Methods” for details of the implementation). Here we use a
hardware-compatible approach to update the model parameters
whereby a single programming pulse is applied to each
memristor*>~*, and the polarity of the pulse is determined by
the sign of AG; and AG,. This programming pulse will slightly
adjust the conductances to ultimately minimize the error in the
prediction. To achieve good convergence, stochastic regression
algorithms typically limit the parameter updates with a learning
rate that is gradually reduced with training number*?434>_In our
experiments the learning rate is implemented by gradually
reducing the amplitude of the programming pulses. We reduce
the amplitude of the programming pulses by 0.1% after each
iteration (starting with 1V, the pulse amplitude will be reduced
to +0.67V after 400 training steps). The width of positive and
negative programming pulses is kept fixed at 500 ns throughout
the training process.

Figure 5b-d shows the results of the stochastic linear regression
implementation. In Fig. 5b we plot the training data (black dots) as
well as the model prediction before (magenta plane) and after 400
training steps (green plane). As shown, the trained model clearly
predicts the profit of startup companies based on their invest-
ments in marketing and R&D much better than the before
training. A more quantitative result is shown in Fig. 5c where we
plot the mean squared error (MSE) as a function of the training
step (i.e., iteration) as given by MSE = (1/N) >, 6’.2 where N is the
sample size (50 in this case) and §; = h; — y; is the error in the
prediction. As shown, the MSE reduces with training indicating
good convergence of the algorithm. Figure 5d shows the change
in conductances G; and G, (the model parameters) during the
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each cycle.
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training process. The mean absolute error (MAE) was also
calculated and is shown in Supplementary Fig. 4. We see larger
updates and fluctuations in the conductances during the initial
training steps, and eventually convergence to the optimal values
for the model parameters.

In this article, we have reported the fabrication and
characterization of Au/h-BN/Ti memristor arrays. We have
presented statistics for the nonvolatile resistive switching
behavior of h-BN memiristors, including the effects of cell active
area. We have then focused on establishing the non-volatile
multistate pulse programmability of the h-BN memristors based
on multiple cycles of consecutive programming pulses, and
retention tests. Our results show successful multistate program-
ming of conductive states with good stability. Moreover, we
have presented the implementation of the dot-product opera-
tions on h-BN memristor arrays, and show good linearity and
repeatability, which is crucial for machine learning hardware.
Finally, we have demonstrated the hardware implementation of
stochastic multivariable linear regression on an h-BN memristor
array. Our hardware-compatible implementation shows good
convergence and represents an important milestone in advan-
cing the research and implementation of 2D materials for
machine learning hardware. It also paves the way for more
sophisticated demonstrations of machine learning algorithms
using 2D materials, devices, and circuits.

METHODS
h-BN memristor and memristor arrays fabrication

The Au/h-BN/Ti memiristor arrays were fabricated on a 90 nm SiO,/Si wafer.
First, the bottom electrodes (5nm Cr/35nm Au) with 3, 20, and 50 um
width were patterned on the substrate via photolithography and e-beam
evaporation methods. Second, CVD-grown multilayer h-BN on copper from
Graphene Supermarket was transferred onto the prepared SiO,/Si
substrate by wet transfer method. Third, h-BN film was patterned to
expose the 100 um by 100 pm bottom electrodes pads using oxygen
plasma. Finally, the top electrodes (70 nm Ti) were patterned with the
same electrode width and the same methods as that of the bottom
electrodes. The top electrodes are exposed to air and a thin surface layer
may be oxidized over time. This oxidized layer can be easily penetrated
with probe needles during measurements, and its impact on the resistive
switching behavior has been ruled out by comparing against devices with
Au-capped top electrodes that show very similar characteristics (see
Supplementary Fig. 5). More details about fabrication process and a
diagram of the fabrication flow are provided in Supplementary Fig. 2.

Electrical characterization

The electrical characterization was conducted on a Cascade semi-
automatic probe station using a Keithley 4200 semiconductor character-
ization system. The DC /-V measurements were performed using source
measure units (SMUs), while the pulse programming experiments used a
combination of pulse measure units (PMU, model 4225) for programming
pulses and SMUs for reading currents. In the pulse programming
experiments we switched between PMU and SMU automatically using a
Keithley remote amplifier/switch (4225-RPM). Supplementary Fig. 3 shows
the experimental setup.

Linear regression test

Our implementation of multivariable stochastic linear regression on the
Au/h-BN/Ti memristor arrays was trained using a dataset available online*'.
The experimental demonstration was done with a Keithley 4200 SCS using
a custom test script developed in the Keithley user library tool (KULT) and
executed in the Keithley interactive testing environment (KITE). The input
parameters to the test script are the minimum and maximum conductance
values for each memristor (predetermined based on pulse measurements,
used to normalize output currents from the array), the initial values for the
programming pulse amplitudes, the constant value for the width of the
programming pulses, and the number of iterations. The test script loads
the training data and normalizes the independent variables (in this case
marketing and R&D investments in thousands of dollars) to voltages

npj 2D Materials and Applications (2022) 50
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Fig. 5 Implementation of stochastic multivariable linear regression on h-BN memristor arrays. a Flow diagram for stochastic multivariable

linear regression on h-BN memristor arrays (graphical description of one step in the training process): In step 1, the inputs (independent
variables) are translated to DC voltages and applied to the array (top electrodes). In step 2, the total output current (the model prediction) is
measured at the shared bottom electrode. In step 3, the prediction error is calculated by comparing against the training sample, and model
parameter updates are obtained (AG; and AG,). In step 4, a single programming pulse is applied to each memristor (polarity of the pulse
determined by the sign of AG). Good convergence of the implementation is verified by b model prediction fit to training data before
(magenta plane) and after (green plane) training. ¢ Evolution of mean squared error (MSE) with training, and d evolution of h-BN memristor
conductances (model parameters) with training step (iterations) reaching stable values that minimize prediction error.

between 0 and 0.15 V. We also subtract a constant offset (y-intercept) from
the dependent variable (profit) so that the model is based only on two
regression coefficients (model parameters represented by the memristor
conductances). The script then goes into a loop where it randomly selects
a sample for the data set and apply the read voltages (v; and v;) that
correspond to the independent variables of that sample. The current | =
v1Gy + v»2G; is read at the output of the h-BN memristor array (shared
bottom electrode) and is translated from Amps to dollars to be compared
against the training sample. This read operation is conducted with the
Keithley SMUs. We then calculate the error (6) in the prediction as well as
the required update for each model parameter (i.e., AG; and AG,). From
the minimization of the cost function (i.e., §%/2) the updates are calculated
as AG=-6v. Here we propose a simplified hardware-compatible
regression approach where the memristor conductances (i.e., the model
parameters) are updated through the application of a single programming
pulse, and the polarity of the pulse is determined by the sign of the
corresponding AG. The programming pulses are applied using the
Keithley's 4225 PMU (pulse width is fixed to 500 ns). Gradient descent
algorithms typically use learning rate decay to improve convergence,
where model parameter updates are weighted by a learning rate (a) that is
reduced gradually as training advances. In our hardware demonstration we
introduce learning rate decay by gradually reducing the amplitude of the
programming pulses (we have reduced the amplitude of the programming
pulses by 0.1% after each iteration).
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