
A Programming API Implementation for Secure
Data Analytics Applications with Homomorphic

Encryption on GPUs
Shuangsheng Lou

Computer Science and Engineering
The Ohio State University

lou.125@osu.edu

Gagan Agrawal
Computer and Cyber Sciences

Augusta University
gagrawal@augusta.edu

Abstract—As sensitive data is frequently stored and processed
in environments that are either shared, untrusted or otherwise
can be compromised, privacy is frequently a concern. To ad-
dress this, a method that has been gaining popularity is to
use Homomorphic Encryption (HE), which allows computation
over encrypted data, i.e., without decrypting the data first.
However, the overhead of such analytics (up to 4 orders of
magnitude) is a detriment and while there have been a few
previous efforts on reducing these overheads through the use of
accelerators like GPUs, programmability is a concern. This paper
addresses both performance and programmability concerns with
the use of HE. We port the major pieces of Simple Encrypted
Arithmetic Library (SEAL) from Microsoft to GPU using CUDA.
Through these GPU-based functions, a new HE application can
be developed easily. We demonstrate this by developing encrypted
versions of three applications – CNN, k-means, and KNN. The
speedups of execution time for CNN, k-means and KNN on a
single GPU over CPU implementation achieve up to 81, 133 and
7 respectively.

Index Terms—Homomorphic Encryption, Secure Data Analyt-
ics, Cloud applications, Security, Programmability, GPU

I. INTRODUCTION

Over the last two decades, data analytics applications have
been studied and have achieved remarkable results in many
domains. At the same time, the rapidly increasing volume has
created the challenge of finding resources to match the scale of
data. Naturally, the community is attracted to the advantages
of cloud systems such as elasticity, flexibility, and sharing of
resources by users from several organizations [5], [9], [20].

However, using the cloud to enable data-driven collabo-
ration creates new challenges. A prominent challenge is the
security and privacy of the data [19], [22], [11], [24]. Cloud
(data) security has been recognized as one of the major
challenges for cloud systems since their inception [23], [8],
[14], [13]. Specifically, an attacker or adversary having an
unauthorized access to the storage on the cloud can mine the
data and retrieve large amounts of confidential data, which
can be a severe risk in many areas, such as the financial and
medical fields.

Traditional encryption solutions mainly address the secu-
rity and privacy issues for the data storage or during the
transmission of data, and not during the data analysis itself.
To securely perform analytics in the public clouds that may

not be fully trustful, a popular approach that has emerged
in this area is to utilize Homomorphic Encryption (HE).
HE supports many arithmetical operations over ciphertexts
without requiring decryption [16], [1]. By careful design,
this can enable one to fully evaluate functions on encrypted
data without decryption [12]. Overall, there are three notable
classes of schemes [1] – partially homomorphic encryption
schemes (PHE), somewhat homomorphic encryption schemes
(SWHE) and fully homomorphic encryption schemes (FHE).
PHE [16] allows only one type of operation, either addition
or multiplication, for an unlimited number of computation
times. SWHE allows certain types of operations for a limited
number of computation times, whereas FHE [6], [2] allows an
unlimited number of operations for an unlimited number of
computation times.

With the goal of providing secure, privacy-preserving data
analytics when the data stored in a public cloud is analyzed,
it is natural to build on FHE [1] instead of PHE or SWHE.
However, the FHE-based privacy-preserving solution has a
big drawback, which is its high computational overhead. An-
other challenge for developing data analytics functions using
HE is that with only a few operations supported using HE
(multiplication and addition), data analytics algorithms cannot
be translated to encrypted versions without modification. For
example, in Convolutional Neural Network (CNN), activation
functions such as Rectified Linear Unit (ReLU) and Sigmoid
are used and need to be replaced with others functions that
only use addition and multiplication.

The goal of this work is to address the computational,
programmability, and algorithm modification challenges as-
sociated with developing HE-based data analytics. We do
this by porting the major functions of the SEAL library
from Microsoft[3] on GPUs. SEAL aims to provide high-
performance and easy-to-use encryption functions that allow
computations to be performed directly on encrypted data.

Overall, the contributions of this work are as follows: 1)
We ease the programmability for data analytics applications
with homomorphic encryption by designing secure advanced
functions on the top of the SEAL library, 2) The development
and introduction of integrated functions to perform comparison
operation into CKKS scheme [6], [2], which is one of the
schemes within the SEAL library, and 3) Demonstration of
this functionality on GPUs by showing the development of



three significant applications – CNN, K-means clustering, and
k-Nearest Neighbors (KNN) search, and 4) Comprehensive
experimental evaluations of three data analytics applications
that compare the efficiency of the CPU-based implementation
to GPU-based implementation. The speedups of execution
time for CNN, K-means and KNN on a single GPU over CPU
implementation achieve up to 81x, 133x and 7x respectively
and the operation optimizations of homomorphic encryption
help us achieve up to 28% and 11% execution time reduction
of CNN and KNN respectively.

II. PRELIMINARIES

A. Fully Homomorphic Encryption

The scheme used in this work is the Cheon-Kim-Kim-Song
(CKKS) scheme [4]. CKKS allows us to perform computations
on vectors of complex values (thus real values as well). The
CKKS scheme allows additions and multiplications on en-
crypted real or complex numbers, but yields only approximate
results. In applications such as summing up encrypted real
numbers, evaluating machine learning models on encrypted
data, or computing distances of encrypted locations, CKKS is
a good choice. Figure 1 provides a high-level view of CKKS.
We can see that a message m, which is a vector of values on
which we want to perform certain computation, is first encoded
into a plaintext polynomial p(X) and then encrypted using a
public key.

Once the message m is encrypted into c, which is a couple
of polynomials, CKKS provides several operations that can be
performed on it, such as addition, multiplication, and rotation.
If we denote a function by f , which is a composition of homo-
morphic operations, then decrypting c′ = f(c) with the secret
key will yield p′ = f(p). Therefore, once we decode it, we will
get m = f(m). The central idea to implement a homomorphic
encryption scheme is to have homomorphic properties on the
encoder, decoder, encryptor, and the decryptor.

Fig. 1: High-level Overview of CKKS

B. Microsoft Seal Library

We built our privacy-preserving data clustering framework
on the Seal library which is a free and open-source cross plat-
form software library developed by Microsoft Research [18]
and CKKS scheme described above is one of the supported
schemes. The library includes the following key functions.
Encode and Decode: Encode/Decode process transforms the
plaintext, a vector in RN , to/from a polynomial in the Nth or-
der cyclotomic polynomial ring (equivalently, the coefficients-
vector of the polynomial) by the Canonical Embedding tech-
nique. Here we denote the degree of our polynomial degree
modules by N , which will be a power of 2. We also denote
the m-th cyclotomic polynomial by ΦM (X) = XN + 1.

Encryption and Decryption: Encryption process transforms
the plaintext to ciphertext and decryption process transforms
the ciphertext to plaintext. The ciphertext can be expressed
into a cyclotomic polynomial. If n is a positive integer, then
the nth cyclotomic polynomial is defined as the unique monic
polynomial having exactly the primitive nth roots of unity as
its zeros. The public key and private key are needed in this
process and are also cyclotomic polynomials. The security of
this process is guaranteed by the hardness of Learning-With-
Errors (LWE) problem, which is the foundation of CKKS [15].
Homomorphic operations: Homomorphic operations sup-
ported by the framework are addition, multiplication, and
scaling operation. Scaling performs homomorphic rounding
operation so as to keep the modulus of the ciphertext linear
with respect to the depth of the computational circuit.
Addition: Suppose we have two messages, µ and µ′ and that
we encrypt them into c = (c0, c1) and c′ = (c′0, c

′
1). Then

c_add = c + c′ = (c0 + c′0, c1 + c′1) is a correct encryption
of µ + µ′, i.e. when we decrypt it using secret s we get
(approximatively) µ + µ′. Indeed, the decryption mechanism
c_add yields.
Plaintext-ciphertext multiplication: Suppose we have a
plaintext µ, encrypted into the ciphertext c = (c0, c1) and a
plaintext µ′. Then to obtain the ciphertext of the multiplication,
we simply need to output cmult = µ′ × c0 + µ′ × c1. Indeed,
when decrypting cmult we get

µ′×c0+µ′×c1×s = µ′×(c0+c1×s) = µ′×(µ+e) = µ′×µ+µ′×e
(1)

Ciphertext-ciphertext multiplication: We can use the fol-
lowing operations to do ciphertext-ciphertext multiplication:
• Cmult(c, c′) = (d0, d1, d2)
• Decryptmult(cmult, s) = d0 + d1 × s+ d2 × s2

While ciphertexts were usually only a couple of polynomials,
here we have 3 polynomials for our ciphertext. By using
the same reasoning as before, to correctly decrypt the next
product we will need 5 polynomials, then 9, and so on.
Therefore the size of the ciphertext will grow exponentially
and it will not be usable in practice if we were to define
ciphertext-ciphertext multiplication like that. So relinearization
is required for ciphertext-ciphertext multiplication so that the
ciphertext size is not increased at each step.
Relinearization: The essence of relinearization is finding a
couple of polynomials (d′0, d

′
1) = Relin(cmult) such that:

Decrypt((d′0, d
′
1), s) = d′0 + d′1 × s = d0 + d1 × s+ d2 × s2.

So relinearization allows to have a polynomial couple, and
not triple, such that once it is decrypted using the regular
decryption circuit, which only needs the secret key, and not
its square, we get the multiplication of the two underlying
plaintexts. Therefore, if we perform relinearization after each
ciphertext-ciphertext multiplication, we will always have ci-
phertexts of the same size, with the same decryption circuit.

Now, to define Relin, we will define (d′0, d
′
1) = d0+d1+P

where P represents a couple of polynomials such that Decrypt
(P, s) = d2 × s2.
Rescaling: We need a final operation called rescaling to
manage the noise and avoid overflow. Rescaling is a kind
of modulus switch operation, which removes the last of the
primes from coeff_modulus. As a side-effect, it also scales
down the ciphertext by the removed prime. Usually we want
to have perfect control over how the scales are changed,
which is why for the CKKS scheme it is more common to



use carefully selected primes for the coeff_modulus. More
precisely, suppose that the scale in a CKKS ciphertext is S,
and the last prime in the current coeff_modulus (for the
ciphertext) is P . Rescaling to the next level changes the scale
to S/P , and removes the prime P from the coeff_modulus,
as is common in modulus switching. The number of primes
limits how many rescaling can be done, and thus limits the
multiplicative depth of the computation.

It is possible to choose the initial scale freely. One good
strategy can be to set the initial scale S and primes P_i in the
coeff_modulus to be very close to each other. If ciphertexts
have scale S before the multiplication, they have scale S2 after
multiplication, and S2/P_i after rescaling. If all P_i are close
to S, then S2/Pi is close to S again. This way we stabilize the
scales to be close to S throughout the computation. Generally,
for a circuit of depth D, we need to rescale D times, i.e.,
we need to be able to remove D primes from the coefficient
modulus. Once we have only one prime left in this term,
the remaining prime must be larger than S by a few bits to
preserve the pre-decimal-point value of the plaintext.

III. PROPOSED APPROACH TO DEVELOPING GPU
LIBRARY

Our overall goal is to both obtain high performance using
GPUs while simplifying the use of Seal library-type func-
tionality for application development. In this section, we will
introduce the integrated functions designed to perform encode,
decode, encryption, decryption, and homomorphic operations.

A. Integrated functions

(a) function Ciphertext Multiply_Plain
(Ciphertext x, Plaintext p){
Ciphertext x2;
evaluator.multiply_plain(x,p,x2);
evaluator.rescale_to_next_inplace(x2);
return x2;}
(b) function Ciphertext Multiply
(Ciphertext x, Ciphertext x2){
evaluator.multiply_inplace(x,x2);
evaluator.relinearize_inplace(x, relin_keys);
evaluator.rescale_to_next_inplace(x);
return x;}
(c) vector<double> FloatToVector
(double*Fvalue, size_t slot_count){
vector<double> Vvalue;
Vvalue.reserve(slot_count);
for (size_t i = 0; i < slot_count; i++)
input.push_back(Fvalue[i]);
return Vvalue;}

Listing 1: New Integrated Functions for GPU

It is complicated for developers to manually program the
applications even though the basic operations have been
supported by the CKKS scheme. Developers need to think
about the encryption of data and the side effect brought by
homomorphic encryption, i.e. the size of encryption data.
We introduce a number of functions to address programmer
burden.
(1)Ciphertext Multiply_Plain(Ciphertext x, Plaintext p)
This function computes the multiplication between the cipher-
text x and plaintext p and then eliminate the scale effect
of data. It combines plaintext-ciphertext multiplication and
rescaling operation together, as shown in Listing 1 (a).

(2)Ciphertext Multiply(Ciphertext x, Ciphertext x2)
When executing the multiplication between two ciphertexts,
relinearization and rescaling operations are needed to eliminate
the scale effect of data. So in this integrated function, we
combined these three functions to encapsulate the scaling
effect and implementation details for developers. The step-
by-step operation is shown in Listing 1 (b).
(3)vector<double> FloatToVector(double* Fvalue, size_t
slot_count)
The purpose of FloatToVector function is to convert the data
of double type into vector type so that they can be operated
with different homomorphic operations. The function is shown
as Listing 1 (c). The input parameter slot_count indicates the
size of input data Fvalue. The reserve function is to assign
slot_count size memory for the output vector named V value.
The push_back function allocates the value of the input to the
V value.

B. Aggregate functions

(a) dim3 block_dim_conv(CONV_COLS, CONV_ROWS,
CONV1_OUTPUT_CHANNELS)

(b) dim3 block_dim_fc1(d_dims[3], d_dims[2],
d_dims[1])

(c) dim3 block_dim_mm(HALF_TILE_SIZE,
HALF_TILE_SIZE, layer)

(d) dim3 block_dim_avg1(b_dims[2], b_dims[3],
layers)

Listing 2: Aggregate GPU Mapping Functions

GPU programming involves the mapping between operating
data and threads. On top of basic functions, certain aggregate
functions are designed for different applications so that de-
velopers can easily implement GPU-based applications with
homomorphic encryption.

To illustrate the need for such functions, consider the
Convolutional Neural Network (CNN). Before the first con-
volutional layer, we need to transform the provided dataset or
intermediate data to proper dimensions so that it be can prop-
erly be mapped to different threads for GPU programming.
The function block_dim_conv is designed to transform the di-
mensions of input dataset into the dimensions of the first con-
volutional layer, as shown in Listing 2 (a). CONV _COLS,
CONV _ROWS, CONV 1_OUTPUT_CHANNELS in-
dicates the dimensions of column, row and channel of the first
convolutional layer. In order to transform the dimensions of
intermediate data for the first fully convolutional layer, another
function block_dim_fc1(d_dims[3], d_dims[2], d_dims[1])
is designed listed in Listing 2 (b). The parameter d_dims[3],
d_dims[2], d_dims[1] indicates the the dimensions of column,
row and channel of first fully convolutional layer, respectively.
When considering the multiplication operation, the designed
mapping is shown in List 2 (c). HALF_TILE_SIZE indi-
cates the tile size for multiplication and layer is the number
of the layer in that CNN layer. The designed mapping func-
tion for average pooling is shown in List 2 (d). b_dims[2],
b_dims[3] and layers indicate the dimension size of kernel
size.

IV. SECURE DATA ANALYTICS APPLICATIONS

We now explain how we have used the functions introduced
in the last section to develop three key applications.



A. CNN Application
Convolution Neural Network (CNN) has been applied in

many scenarios related to object recognition, such as ImageNet
classification and face recognition [10], as it exhibits good
classification performance. To implement this application, the
following functionality was developed for a GPU.
Preprocessing Layer: Before the first convolutional layer, the
dimensions of the provided dataset have to be transformed to
map to different threads for GPU programming. In this func-
tion there are no data operations such as addition or multiplica-
tion involved. Threads work concurrently on BLOCK_SIZE
to unroll the matrix and there is no communication needed
between blocks for unrolling the data.
Convolutional Layer: A convolutional layer is a set of filters
that operates on the input points. For the first layer, the
input is the raw image. This step only includes addition and
multiplication and we can use the same computation over the
encrypted data. The function matrix_multiplication is de-
signed as a kernel function for tile-based matrix multiplication.
The parameter matrix_b is a pointer to the b_unroll vector,
matrix_c is a pointer to the c vector and start is the first
number’s index of the current batch. Each block deals with a
part of a number. Block index in the x direction is for one of
these part blocks and block index in y direction is for column
indices. Registers are used to store common indices.
Activation Layer: Every activation function takes a single
number and performs a certain fixed mathematical operation
on it. There are several activation functions we may en-
counter in practice including ReLU(ReLU(x) = max(0, x)),

Sigmoid(σ =
1

1 + e−x
), and Tanh(2σ(2x) − 1) functions.

We cannot calculate these functions over encrypted values
and we should find replacements for these functions that
only include addition and multiplication operations. To make
it simpler and easier, the square function is used for the
activation function in our implementation.
Pooling Layer: After an activation layer, a pooling layer is
designed. Two of the most popular pooling layers are max
pooling and average pooling. We cannot use max pooling
because of the lack of max operation over encrypted data. We
use a scaled-up version of average pooling [7] to calculate the
summation of values without dividing them by the number
of values. We implement average pooling with addition only.
The main computation is averaging the results of matrix
multiplication. In the algorithm, we first locate the index of the
number this thread is averaging, then loop through all channels
and calculate the average.
Fully Connected Layer: The fully connected layer has the
same structure as hidden layers in classic neural networks.
The output of each neuron is the dot product of two vectors:
the output of neurons in the previous layers and the related
weight for each neuron. This is implemented through a kernel
function for tile-based matrix multiplication specialized for
fully forward.

In our work, a simple CNN model is built and trained in
advance to classify the gender of the person in the image –
this training is done using the public IMDB-WIKI dataset
[17] in our experiments. The CNN architecture that is used
for our experiments contains two convolution layers followed
by pooling layers and two fully connected layers. In the first
convolutional layer, 32×32 input is processed by 16 filters of
size 5×5 pixels, followed by a square function. Next is the first

pooling layer where 16× 28× 28 output of the previous filter
task is processed to take the average value of 2 × 2 regions
with a two-pixel stride. In the second convolutional layer, 16×
14 × 14 input processed by 32 filters of size 5 × 5 pixels,
again followed by a square activation function; whereas in the
second pooling layer, 32×10×10 output of the previous filter
task is processed to take the average value again with the same
hyper-parameters as above. Next, the first fully connected layer
receives the 32× 5× 5 output of the previous filter task and
contains 256 neurons, followed by a square activation function.
Finally, the second fully connected layer receives the 256-
dimensional output of the previous filter task and contains only
2 neurons that map to the final classes for gender.

B. K-means Application

The HE k-means clustering task uses the typical squared
Euclidean distance as the similarity metric, as shown in
Algorithm 1. Apart from the initialization phase, the algorithm
(as well as its non-encrypted counterpart) involves four phases:
encryption, assignment, update, and termination. At first, k
data points are selected at random and assigned as initial
data centers c1, ..., ck during the initialization phase. In the
encryption phase, m data points are encoded and encrypted
for the following homomorphic encryption. Then the algorithm
computes the squared Euclidean distance between each data
point and each data center.

The algorithm of SquaredEuclideanDistance is listed in Al-
gorithm 2, showing how to get the squared Euclidean distance
through a series of homomorphic encryption operations. At
first, we applied Multiply_Plain function designed in List 1
(a) to compute the multiplication between ciphertext t2 and
plaintext −1 and assign the result to t2. Then the addition
between t1 and t2 is computed through basic add function. At
last square function is used to get the square result between
t1 and t2. Then each data point is assigned to the closest
data center c′h. Then the new data centers c′1, ..., c

′
k will be

updated based on their assigned data points. Finally, in the
termination phase, the algorithm verifies whether the number
of iteration satisfies the pre-defined termination condition. If
not, the algorithm continues to the next iteration with the new
clusters as input.

Since the CKKS scheme of Seal library supports the addi-
tion and multiplications on encrypted real numbers, it is easy
for us to compute the Euclidean distance between encrypted
data points and data centers. It is important to note that
the algorithm also involves the comparison operation in the
assignment phase to find the closest data center for each data
point, which is not supported by the CKKS scheme. CAM
protocol [21] is adopted to solve this problem. After computing
the Euclidean distance, the CAM protocol first decrypts the
received encrypted Euclidean distance to obtain the plaintexts
Pstij . A new assignment matrix of m × k is created with
all entries set to be zeros. It runs the Min(.) to compare
Pstij for j ∈ [k] and find the minimum distance Pstih. The
corresponding value in the assignment matrix (ith row and
hth column) is marked to one to indicate the belonging of data
point ti. With the help of assignment matrix, the assigned data
points for each data center can be easily known and the new k
encrypted data centers are computed on those encrypted data
points. The unencrypted iteration is also used to help to verify
whether the algorithm should be terminated or continued.



Algorithm 1 Encrypted Version of K-means Clustering
Input: m data points t1, ..., tm and iteration n
Initialization: Select k data points randomly and assign them
as initial data centers c1, ..., ck
{Encryption Phase}

1 Encode and encrypt m data points
{Assignment Phase}

2 for i = 1 to m do
3 for j = 1 to k do
4 SquaredEuclideanDistance(ti, cj)
5 end for
6 end for
7 CAM protocol

{Update Phase}
8 for j = 1 to k do
9 Compute cluster center for c′j

10 end for
{Termination Phase}

11 for j = 1 to k do
12 cj ← c′j
13 end for
14 if iteration < n
15 iteration ++
16 Go to Step 1
17 end if

Algorithm 2 Squared Euclidean Distance Computation with
Encryption
Input: two data points t1, t2
Output: Squared distance of t1, t2

1 t2 → Multiply_Plain(t2,−1)
2 evaluator.add(t1, t2,result)
3 square(result, result2)
4 relinearize_inplace(result2, relin_keys)
5 rescale_to_next_inplace(result2)

Algorithm 3 Encrypted Version of KNN
Input: m data points t1, ..., tm and test data point p
Output: class
1 Encode and encrypt m data points, test data point p
2 Set K
3 for i = 1 to m do
4 SquaredEuclideanDistance(ti, pj )
5 end for
6 Find K nearest neighbors using CAM protocol

P = {p1, p2, ..., pk} for 1 ≤ k ≤ m
7 Identify the the p using k nearest neighbor’s method.
8 Compute cluster center for c′j

C. KNN Application

The goal of KNN is to identify k objects that are nearest to
the given test point. The encryption-based algorithm of KNN
is shown in Algorithm 3. For selecting a proper k value, the
Euclidean distance is computed between the test data point
and each training data point using Algorithm 2.

D. Optimization

We will talk about the specific optimization techniques for
the secure data analytics applications discussed.

Reduction of Scaling operation: The CNN application in-
volves lots of addition and multiplication operations. After
each addition or multiplication, we must scale down the
ciphertext. However, if we frequently recall the scaling op-
eration, it would take more time than the time consumed to
scale down the ciphertext only once in the end.

If we had an initial vector of values z, it is multiplied by a
scale ∆ during encoding to keep some level of precision. So
the underlying value contained in the plaintext µ and ciphertext
c is ∆× z. So the problem when we multiply two ciphertexts
c and c′ is that the result holds the result z × z′ × ∆2.
So it contains the square of the scale which might lead to
overflow after a few multiplications as the scale might grow
exponentially. Suppose we must do L multiplications, with a
scale ∆, then we will define q as:

q = ∆L × q0 (2)

Once we have chosen the number L of multiplications we
want to perform and set q accordingly, it is easy to define
the rescaling operation – we simply divide and round our
ciphertext.

V. EXPERIMENT RESULTS

All experiments are conducted on the Pitzer cluster of Ohio
Supercomputer Center. All single GPU experiments (Dual
Intel Xeon 8268s) were involved in dual NVIDIA Volta V100
with 32GB GPU memory. The configuration for the CPU
environment is Dual Intel Xeon 8268s Cascade Lakes, which
has 48 cores per node.

A. CNN
In this application, we treated 100 images as one data chunk.

GPU can provide significant speedups over CPU with or
without encryption. HE has high costs, as reported in various
earlier studies, but GPUs can help reduce their costs. As shown
in Figure 2, without any encryption technique, the speedup of
GPU over CPU is 190x. After using the CKKS scheme to
encrypt the data, the speedup of GPU over CPU still achieves
81x. GPU implementation involves many relinearization and
rescaling operations. During matrix multiplication, rather than
executing relinearization and rescaling operations each time
after ciphertext-ciphertext multiplication, we delay part of
relinearization and rescaling operations to reduce their cost
– we scaled the data every 5 iterations. The performance of
CNN application on GPU increases 28% after utilizing this
mechanism.

Fig. 2: GPU versus CPU Speedup



B. KMeans

In the KMeans application, the number of data points is 100,
whose number of attributes is 288. The number of iterations
in the algorithm is set to 100. GPU performs better with
or without encryption. As shown in Figure 2, without any
encryption technique, the speedup of GPU to CPU is 170x.
After using the CKKS scheme to encrypt the data, the speedup
of GPU to CPU still achieves 133x. The main reason that its
homomorphic encryption speedup performance is much better
than CNN’s is the use of CAM protocol. By using CAM
protocol, a part of the computation is performed directly on
unencrypted data, which reduces the size of encrypted data
greatly.

C. KNN

In the KNN application, each data chunk has 10000 points,
which have three different labels. The value of k chosen in
our experiment is three. As shown in Figure 2, the speedup
of GPU to CPU with or without any encryption technique is
7x and 6.7x, respectively. We also applied our optimization
technique to this application and it achieves 11% reduction on
its execution time.

VI. CONCLUSION

Security and privacy are the major issues concerning the
clients as well as the providers of cloud services as a lot
of confidential and sensitive data are stored in the cloud
which can provide valuable information to an attacker. In this
paper, our goal has been to help address performance issues
associated with the use of Homomorphic Encryption, while
also alleviating the programming difficulties. For this purpose,
secure functions for GPU-based processing of data analytics
applications are developed, starting on top of the SEAL library
from Microsoft. Three secure data analytics applications are
implemented, including CNN application, KMeans application
and KNN application using CKKS homomorphic encryption.
We evaluated the performance of our implementations with
both CPU and GPU and achieved up to 81x, 133x and
7x speedup by using GPUs for CNN, KMenas and KNN
respectively. Our operation optimizations also help us achieve
up to 28% and 11% execution reduction of CNN and KNN,
respectively.

Acknowledgements: This work was partially supported by the
following NSF grants:1629392, 2007793, 2034850, 2131509,
and 2018627.

REFERENCES

[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A sur-
vey on homomorphic encryption schemes: Theory and implementation.
ACM Comput. Surv., 51(4), July 2018.

[2] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-lwe and security for key dependent messages. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 505–
524, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[3] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic
library - seal v2.1. In Michael Brenner, Kurt Rohloff, Joseph Bonneau,
Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali,
Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors,
Financial Cryptography and Data Security, pages 3–18, Cham, 2017.
Springer International Publishing.

[4] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, pages 409–437, Cham, 2017. Springer International
Publishing.

[5] Ewa Deelman, Karan Vahi, Mats Rynge, Gideon Juve, Rajiv Mayani,
and Rafael Ferreira Da Silva. Pegasus in the cloud: Science automation
through workflow technologies. IEEE Internet Computing, 20(1):70–76,
2016.

[6] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford, CA, USA, 2009. AAI3382729.

[7] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 201–210, New
York, New York, USA, 20–22 Jun 2016. PMLR.

[8] Lori M Kaufman. Data security in the world of cloud computing. IEEE
Security & Privacy, 7(4):61–64, 2009.

[9] Kate Keahey, Renato Figueiredo, Jos Fortes, Tim Freeman, and Maurcio
Tsugawa. Science clouds: Early experiences in cloud computing for
scientific applications. Cloud computing and applications, 2008:825–
830, 2008.

[10] S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back. Face
recognition: A convolutional neural-network approach. Trans. Neur.
Netw., 8(1):98–113, January 1997.

[11] Qin Liu, Guojun Wang, and Jie Wu. Time-based proxy re-encryption
scheme for secure data sharing in a cloud environment. Information
sciences, 258:355–370, 2014.

[12] A. QaisarAhmadAlBadawi, J. Chao, J. Lin, C. F. Mun, S. J. Jie, B. H. M.
Tan, X. Nan, A. M. M. Khin, and V. Chandrasekhar. Towards the alexnet
moment for homomorphic encryption: Hcnn, the first homomorphic cnn
on encrypted data with gpus. IEEE Transactions on Emerging Topics
in Computing, pages 1–1, 2020.

[13] Muthu Ramachandran and Victor Chang. Towards performance evalu-
ation of cloud service providers for cloud data security. International
Journal of Information Management, 36(4):618–625, 2016.

[14] R Velumadhava Rao and K Selvamani. Data security challenges and its
solutions in cloud computing. Procedia Computer Science, 48:204–209,
2015.

[15] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), September 2009.

[16] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978.

[17] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation
of real and apparent age from a single image without facial landmarks.
International Journal of Computer Vision (IJCV), July 2016.

[18] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL,
November 2020. Microsoft Research, Redmond, WA.

[19] Danan Thilakanathan, Shiping Chen, Surya Nepal, and Rafael A Calvo.
Secure data sharing in the cloud. In Security, privacy and trust in cloud
systems, pages 45–72. Springer, 2014.

[20] Paul Watson, Phillip Lord, Frank Gibson, Panayiotis Periorellis, and
Georgios Pitsilis. Cloud computing for e-science with carmen. In
2nd Iberian Grid Infrastructure Conference Proceedings, pages 3–14.
Citeseer, 2008.

[21] W. Wu, J. Liu, H. Wang, J. Hao, and M. Xian. Secure and efficient
outsourced k-means clustering using fully homomorphic encryption with
ciphertext packing technique. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1, 2020.

[22] QI Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin
Gao, Xiaojiang Du, and Mohsen Guizani. Medshare: Trust-less medical
data sharing among cloud service providers via blockchain. IEEE
Access, 5:14757–14767, 2017.

[23] Xiaojun Yu and Qiaoyan Wen. A view about cloud data security from
data life cycle. In 2010 international conference on computational
intelligence and software engineering, pages 1–4. IEEE, 2010.

[24] Gansen Zhao, Chunming Rong, Jin Li, Feng Zhang, and Yong Tang.
Trusted data sharing over untrusted cloud storage providers. In 2nd
IEEE International Conference on Cloud Computing Technology and
Science, pages 97–103. IEEE, 2010.

https://github.com/Microsoft/SEAL

	Introduction
	Preliminaries
	Fully Homomorphic Encryption
	Microsoft Seal Library

	Proposed Approach to Developing GPU Library
	Integrated functions
	Aggregate functions

	Secure Data Analytics Applications
	CNN Application
	K-means Application
	KNN Application
	Optimization

	Experiment Results
	CNN
	KMeans
	KNN

	Conclusion
	References

