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Abstract—Autotuning has been widely studied in
high performance computing as a very effective mech-
anism for improving application performance. Such
an approach has become particularly crucial for ar-
chitectures like the modern GPUs, where obtaining
the best performance involves a complex interaction
between the architecture and the applications. Au-
totuning methods rely upon a search strategy, which
is designed to search through the (potentially very
large) space. A large number of search methods have
been proposed in the past, and include both local
and global strategies. We observe that on GPU ap-
plications, high performing configurations are likely to
be spatially clustered. Based on this observation, we
propose to apply a strategy we refer to as shrinking
sample. This method searches in all areas of the entire
space, looking for combinations of different parameter
values, and without relying on random (initial) choices
that may miss a part of the space. The efficacy and
efficiency of this method has been tested against state-
of-the-art local and global search algorithms on seven
benchmark GPU kernels. Our experiments show that
the shrinking-sample method can achieve around 99%
percent of the performance from exhaustive search (on
average) with orders of magnitude much less tuning
time.

I. INTRODUCTION

Graphics Processing Units (GPUs) are now an integral
part of high performance computing (HPC), for a number
of reasons like their cost-effectiveness and power-efficiency.
Complexity of the codes run on such architectures have
grown considerably because of the features of these sys-
tems. Specifically, for execution on GPUs, there are many
tunable parameters like number of threads, thread block
dimensions, unrolling factor, and others. Different values
for each dimension may result in very different perfor-
mance and furthermore, parameter settings are sensitive
to both input programs and the underlying architecture.
Certain parameters for program transformations such as
unrolling and tiling can also have complex interactions
with each other [26]. If the programmer is to choose these
parameters on their own, they need to have a detailed
knowledge of the specific architecture and insights into the
performance characteristics. This can be extremely hard
even for a single architecture, and in practice, needs to be
repeated as new architectures emerge.

To free programmers from such tedious and time con-
suming manual tuning effort, various autotuning tech-
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niques have been developed. Autotuning broadly refers to
an automated search for the combination of the tunable
parameter values that yield the best performance. Auto-
tuning software can be categorized as three groups [32]:
(1) compiler-based autotuners [10], [38], [16], (2) library
generators that incorporate autotuners such as FFTW
[15], ATLAS [36], PhiPAC [8], SPIRAL [37] and OSKI
[35]. (3) application-level autotuners [34], [24].

One common challenge for all autotuners is that the
search space, i.e., the cartesian product of all possible
values for each tuning parameter, is often too huge for an
exhaustive search. Therefore, efficient search algorithms
are required to examine a subset of possible parameter
configurations to find (close to) optimal parameter con-
figuration(s). There are two broad classes of searching
algorithms: model-free and model-based. A model-based
algorithm avoids the cost of running the code by predict-
ing performance of a given parameter configuration [3].
Model-based methods can be further categorized into two
groups: analytical model based algorithms and empirical
model based algorithms. Analytical models use closed-
form expressions for predictions of performance and often
require great expertise in programming model, applica-
tion details, and the target architecture. Moreover, such
methods are often limited, especially on GPUs, where
there is a complex interaction between the code, archi-
tecture, and runtime systems [3]. Empirical model based
methods use a subset of parameter configurations to build
a predictive model, using machine learning approaches
[11], [19], [28], [31]. However, as codes and architectures
become more complicated, more tuning parameters may
be added to the applications. This implies very complex
models, which are hard to train and/or less effective. On
the other hand, model-free methods navigate the search
space for high-performing configurations by using various
search strategies that are independent of application and
architecture. Overall, they can have better portability
across architectures and do not require understanding of
(or generating models for) an individual application.

In this paper, a model-free search algorithm for auto-
tuning, shrinking sample method, is applied and evaluated.
The application of this method is based on the hypothesis
that high performing configurations, i.e. configurations
that perform very close to optimal, tend to be spatially
clustered in the space of parameter values. Suppose there
are n parameters, our method ensures that search is
conducted in all areas of the n-dimensional space — unlike



most other local methods, it does not use random sampling
(of initial points). However, after an initial step, it works
like a local method, but still looks at combination of pa-
rameter values (as opposed to optimizing each parameter
independently). Thus, the cost associated with the method
is similar to that of local methods. Our hypothesis allows
us to search the space efficiently, and find a combination of
parameters that are either optimal, or have performance
very close to the optimal.

For evaluation, our method has been incorporated into a
developed autotuner framework [33]. To examine the effi-
ciency of this search algorithm, multiple GPU kernels with
varying search space sizes have been used as benchmark
including: median, bilateral, stereo, convolution, GEMM,
raycast, and SpMV. The main parameters we focus on
tuning include loop unrolling, tiling, block size in each
dimension, and others. Based on experimental results,
the shrinking sample search algorithm outperforms most
of other search algorithms and shows robustness against
different sizes and patterns of search spaces. The shrinking
sample method achieves 97.25% ~ 99.97% performance of
the brute-force search. At the same time, it takes only
1% ~ 10% of the corresponding exhaustive search time for
all but one of the benchmarks (it takes 46% of the time
for exhaustive search time for the GEMM kernel that has
a very small search space size). In general, our method
produces much better performing parameter combinations
over local search methods, and is faster than most of the
global search methods.

II. RELATED WORK

In recent years, several autotuning frameworks have
been built for GPU applications. Bruel et al. [9] imple-
mented an auto-tuner for a CUDA compiler using the
OpenTuner framework. Rasch et al. [27] demonstrated the
efficacy of a generic directive based autotuning frame-
work (ATF), which shows higher efficiency and flexibility
compared with the state-of-the-art autotuning approaches
OpenTuner [2] and CLTUne [25]. Kurzak et al. [23] de-
scribed the implementation of a distributed autotuning
engine for deploying large tuning sweeps of GPU kernels
to large super computer /cluster installations. Bao et al. [6]
presented a learning-based autotuning system to optimize
the performance of big data analytics frameworks by
generating enough samples for a better prediction model
under certain time constraints. Werkhoven et al. [33]
implemented a search optimizing GPU code auto-tuner
for testing CUDA, OpenCL, and C kernels supporting
many search optimization algorithms. Guerreiro et al. [17]
proposed procedures to auto-tune concurrent GPU kernels
to maximize the performance or minimize the energy
consumption.

Various model-based search strategies have also been
proposed for GPUs. Davidson et al. [1] demonstrate multi-
ple techniques toward autotuning data parallel algorithms
on GPU and establish a model based search method.
This method identifies computational patterns between
algorithms to prune the search space before tuning the
algorithms’ parameters. Feng et al. [14] proposed a sample-
based GPU autotuning strategy that combines heuristic
search with regression trees to prune the optimization
space. Thomas et al. [13] used machine-learning based
autotuning to address the portability issue of OpenCL.

Generic autotuners that use the model-free search algo-
rithms can be further categorized as two groups: those us-
ing local and global search algorithms, respectively. Certain
global algorithms can theoretically guarantee to find the
globally optimum configuration [3], though, in reality, such
algorithms will terminate when a user defined stopping
criterion is met. Examples include genetic algorithm [18],
particle swarm optimization [20], and simulated annealing
[21]. In contrast, local search algorithms (such as win-
dow search [22], orthogonal search [30] and pattern-based
search method [26]) aim to find an improving configuration
by looking at values of each parameters in the neigh-
borhood of the current value [3]. These algorithms will
stop when we cannot find a neighboring configuration that
improves the performance.

Extensive experimental studies on various search heuris-
tics have been performed. Seymour et al. [30] examined
global search methods such as random search, genetic al-
gorithm, simulated annealing, particle swarm optimization
(PSO), and local search methods including Nelder-Mead
and orthogonal search. The orthogonal search is shown
to suffer if there is a bad ordering of tuning parameters.
Billings et al. [7] proposed a new adaptive orthogonal
search (AOS) algorithm for model subset selection and
non-linear system identification. The new AOS scheme
provides an efficient tool for model term selection, model
size determination, and parameter estimation [7]. PSO
tends to have advantages on searching the search areas
near the bounds of certain tuning parameters [30]. Ran-
dom search method turned out to be robust and can
compete with most of the search methods for the applica-
tions that have a large number of high performing tuning
parameter configurations. Other local search methods such
as pyramid search and window search have been investi-
gated in the previous work by Kisuki et al. [22]. Another
local algorithm, pattern-based direct search, has also been
studied [26] and was shown to compete with the random
search methods for multiple applications. Balaprakash et
al. [5] made efficiency comparison between the global and
local algorithms. The work showed that when the com-
putation time is crucial, local algorithm is more efficient
especially given good initial configurations. However, poor
initial configurations can significantly retard both local
and global search algorithms [5].

III. MOTIVATION

One issue for autotuning is that the effectiveness of a
search algorithm can be influenced by the relative per-
formance of different configurations (i.e. combination of
parameter values) in the search space. One question is
whether certain properties can be exploited to facilitate a
faster and yet effective search. One example of exploiting
such a property is density of high performing configura-
tions, which are the configurations that perform close to
the highest performing configuration. Certain algorithms,
such as random search, require or benefit from a high den-
sity of high-performing configurations [30]. However, the
distribution of configurations depends on the application
and more specifically, high performing configuration den-
sity varies for each application, and accordingly, random
search can be limited on many applications.

To further examine what properties of search space
can be used, we experimented with two applications on



SPMV Kernel Time vs Block Size in X and Threads per Row
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Fig. 1: Contour plots of SpMV kernel running time versus
block size in x dimension and number of threads per row

GPU. Figures 1 and 2 show the relationship between
the parameter values and the kernel performance of two
applications: SpMV and stereo. The color bar shows the
scale of the kernel running time and the dots shows the
data point in the 2D-grid. Data points are located only
in a part of the grid in Figure 2 due to the constraints
between the tuning parameters (some of the grid points
do not yield a valid parameter configuration).

The performance trends for SpMV show a high density
of high performing points, making it easy for even the sim-
plest of search methods to find a version with best possible
performance. However, relationship between performance
and parameters for stereo is more complex because of the
existence of multiple local minima. It is well known that
many search methods, especially local search methods, can
suffer from the existence of the local minima [4]. Methods
that are particularly vulnerable are the ones based on
choosing an initial (set of) points randomly, and searching
only around these points.

Overall, from results of these two applications, we notice
the following. The high performing configurations tend to
be spatially clustered in the space. At the same time, we
find that the density of high performing configurations
is not necessarily high. These observations help drive the
design of our algorithm. We want to ensure that all areas
within the search space are considered in the initial step,
but subsequently, we focus on fine-tuning our choice within
a restricted area.

IV. SHRINKING SAMPLE SEARCH ALGORITHM

We introduce the following terms to describe the al-
gorithm: n denotes the number of tuning parameters,
i.e, we have an n-dimensional search space, where each
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Fig. 2: Contour plots of stereo kernel running time versus
block size in x and y dimension

dimension represents a tuning parameter such as block size
or unrolling factor. P = (P, P, ...,P,) denotes a point
inside the search space where P; denotes the value of i,
tuning parameter at this configuration. Each parameter
has a set of possible values which are determined by the
application and the user input. f(Py, Ps, ...,P,) denotes
the execution time for the program with tuning parameters
(P1, Py,...,Pp).

The goal of the search algorithm is to find (close to)
optimum configuration point Pyest = (Py, Pa, ...,P,) such
that f(Py, Py, ...,P,) is minimized. Two hyper-parameters
are defined for the shrinking sample algorithm: number
of partitions (k) and lower threshold for further division
(V). We first divide all possible values for each tuning
parameter into k equal-sized partitions of consecutive
values. The median of each partition is chosen as the
representative value of the partition. Instead of going
through each possible value of a tuning parameter, we save
search time by only considering combinations of medians
of each partition for each parameter. Our hypothesis is
that such combination of medians can well represent the
overall performance of its corresponding section in the
search space. We have k™ points to search in the first step
of the algorithm, which is likely much smaller than the
entire search space. At the same time, unlike many other
(local) algorithms, we are considering points from all parts
of the entire search space.

Next, we execute the kernel with each configuration
in our reduced search space. The configuration found to
have the best performance represents the combination of
optimal partition for each of the parameters. Our hypoth-



esis is that the region surrounding the best configuration
from the reduced or shrunk search space is very likely to
have the best configuration, or a configuration with similar
performance to that of the best configuration. We will
start next iteration of the search process by dividing the
obtained optimal partition for each tuning parameter into
k sections. This allows for a detailed search within the
section we have identified. To avoid the issues caused by
local minima, each time we combine medians for different
tuning parameters from different sections, creating a larger
set of candidate configurations as compared to methods
that vary only one parameter at a time. The division
of each partition and recombination of medians will stop
when every partition size is smaller than Vrg. The final
optimal section will have a size small enough for an exhaus-
tive search to find the optimal parameter configuration
in a reasonable time period. Though the hierarchical grid
search method [29] also performs a "coarse-to-fine" tuning,
it relies on the random search for specific number of
combinations to find promising areas during each iteration.
However, the randomly generated combinations cannot
guarantee that all ranges of each parameter are checked
and can miss the optimal configurations more easily.

Algorithm 1 Shrinking-sample algorithm

procedure SHRINK( )
Divide values of each parameter into k sections:

Sm:([Su, Ceey S1k}, [521, ey Sgk], ey [Snl, ey Snk])
Construct a new search space from each section’s median
P™ = ([Pi1, .-, Pk, [Po1, -y Pak]y oy [Pniy -« oy Pak])

while Stopping Criteria Not Met do
Execute kernel on the new search space
Identify optimum configuration:
PbTZst = (Pljl7"' ,Pnj")
Find optimum section configuration:
Sl?gst = (51‘7'17 sty Snj")
pmtt o pr,
smtl . gm .

Exhaustive search through all configurations in Sp.,,

An illustrative example run of shrinking sample algo-
rithm on SpMV kernel is shown in Figure 3. Three tuning
parameters are introduced for SpMV kernel: block size in x
dimension with 32 values, number of threads per row with
4 values and a boolean parameter read with 2 possible
values. For simplicity, only two iterations are presented
with the hyper-parameters taken as: k=2, and Vpg=1. For
each iteration, the possible values of each parameters are
divided into two partitions as indicated by the red dash
line and the median value of each partition is shaded. The
value circled by the blue rectangle indicates the extracted
optimal value and the chosen partition will be further
divided in the next iteration. We next describe the main
steps of Algorithm 1 below, using SpMV as a concrete
example (only the first iteration will be shown for SpMV).
Step 1: We divide all possible values for each tuning
parameter into k distinct sections.

S™ = ([S11, - --,S1k], [S21, ---,S2k], -+ - [Sniy ---5Snk])

where each §;; indicates the jg, section of the 4;, tuning
parameter. For the SpMV kernel, three tuning parameters
with multiple possible values are divided into two halves
in the first iteration. The values for tuning parameters will

number of threads
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Fig. 3: Flow chart of the shrinking algorithm between
different iterations on the SpMV kernel.

be listed in the following order: block size in x, number of
threads per row, and read or not. So, we get

ST =1(32, ..., 512), (544, ..., 1024)], [(1, 2), (4, 8) ], [0, 1]
Step 2: We choose the median of each section to construct
a small search space.

P™ = [Pi1, ..., Pig], [Po1, .-+, Pok)ye ooy [Pn1y - -y Pnil

where each P;; implies the median of j;;, section of i,

tuning parameter, i.e., P;; denotes the median of S;;. For
the SpMV kernel, the medians of each partition are listed
as P! = [256, 768], [1, 4], [0, 1].
Step 3: Execute the kernel on the constructed search
space and identify the tuning configuration with the best
performance: P, = (Pyj1, ..., Py;n) and the correspond-
ing optimum section configuration: S;*, = (Si1, ...,
Snjn). The corresponding execution time f(P;,) will be
recorded as the best performance so far.

For the SpMV kernel, we have two median values for

each parameter and we combine them to construct a search
space with a size of 2x2x 2, which is much smaller than the
original search space. The best value for each parameters
are circled in Figure 3 and is Pl _, = (768, 4, 0).
Step 4: We check the current optimum section configura-
tion Py, and extract the corresponding partition where
the median value belongs. Now, if the size of any section is
greater than the lower threshold value: Vrp, repeat steps
1-3 by using current section configuration as the starting
section configuration. However, if none of the section in the
current section configuration has a larger size than Vpp,
move to Step 5.

For the SpMV kernel, we extract the corresponding
section based on F;.,.,. For example, 768 belongs to the
section (544, 576, ...,1024). In this way, we obtain all the
optimal partitions for each tuning parameter:

Stosr = (544, 576, ...,1024)], [(4, 8)], [0]



Since the parameter read or not hits the threshold
Vrr=1, we will continue to divide partitions of the other
two tuning parameters in Sl}est in the next iteration.
Step 5: After we obtain a section configuration S}, =
(S1j1, ..., Snjn), we can now perform a brute force search
on all the tuning parameter configurations covered by this

m

best*
For the SpMV kernel, suppose we reach the optimal

partition at m iteration: Spr., = [576],[4],[0]. We
then perform the kernel calculation over S}, which only

includes one parameter configuration since Vpg = 1. The
resulting performance will be the optimal performance.
For the case where Vpy > 1, we will run kernels for
multiple configurations covered by S;”., and the one with
the best performance will be selected.

A. Analytical Comparison with Local Search Methods

We now analytically compare our method against pop-
ular search methods, focusing on number of configurations
one will need to experiment with. Our comparison is
against orthogonal logarithmic search, window search, and
pattern based direct search method.

In orthogonal search, one dimension is optimized while
keeping the other dimensions constant. Then, each succes-
sive dimension is optimized while retaining the best values
for the preceding dimensions. In our implementation, we
first generate a random subset of the search space with
the size: rands, and choose one configuration randomly as
the starting point.

In window search, two hyper-parameters are defined: the
sample size (S) and the shrinking fraction (f). Initially, the
window is defined as the entire space. First, we randomly
generate sample of size (S) within the window and execute
the kernel to select the configuration with the best perfor-
mance. Then we generate a shrinking window size around
this selected configuration and do the random sampling
again. Each time the windows size will shrink by a factor
(f) until the window size is decreased below the sample

size (9).
In Pattern-based direct search method, hyper-
parameters are random sample size (rands), step

size (S) and shrinking fraction of step size (f). In our
implementation, we first generate a random sample with
a size of rand, from which we will randomly select one
configuration as the starting point. This algorithm is
described as follows: Step 1: Starting from the base
configuration P° = (P, P,...,P,), we first record
its running time as: f,;, = fpo. Then we change the
value of each parameter by increasing and decreasing
by the step size S to generate two more configurations.
For example, for i;, parameter we have two more
configurations: P! = (P, P,...,P + S,...,P,) and
P? = (P,P,...,P; — S,...,P,). The configuration
with the best performance will be selected. Once all
the tuning parameters have been checked, we move to
Step 2. Step 2: After we simulate the newly obtained
configuration, if the time is less than that of the base
configuration we move to Step 1 otherwise move to Step
3. Step 3: Reduce the step size. If we reach the minimum
step size (default to be 1) then we return the optimum
configuration. Otherwise, we go back to Step 1 with the
reduced step size.

The evaluation of the search space size is listed in Table
I. For the shrinking sample method, v, is maximum

TABLE I: Search Space Size of Local Search Method

Local Search Method Hyper-parameters Search Space Size

Shrinking Sample k, Vo O(K™ - Log ™A% + (Vpp)™)
Orthogonal Logarithmic randg O(n + randg)
S
Window Search S, f o(s - log;v )
1
Pattern-based direct Search rands, S, f o(3m. zogfs + rands )

number of possible values for all the tuning parameters.
A compromise should be made for the value of k since a
larger value of k will yield a greater size of subsets for
each iteration but smaller number of iterations. Similarly,
a larger Vpry may stop the division of a certain partition
earlier but yield greater search space size for the final
exhaustive search step with a time cost O((Vry)™). The
orthogonal search method has the time complexity linear
to the number of tuning parameters. However, the kernel
performance depends on the random initialization. For the
window search method, a larger S and a smaller fraction
value f will make the algorithm stop early. However,
a smaller f also makes it easier to miss the optimal
configuration. In pattern-based direct search methods, a
smaller step size S and a smaller fraction f will make the
algorithm converge faster but make the execution more
likely to miss the optimum.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the effectiveness of the shrinking-sample
algorithm, seven GPU kernels have been used as the
benchmarks, each with input data as listed in Table II
and corresponding tuning parameters in Table I[1I. GEMM,
convolution and SpMV kernels are from the kernel tuner
framework [33] and all the other kernels are the CUDA
version of the four benchmarks used in another machine
learning based auto tuning framework [13], [12]. The
search space size for all these kernels varies from 384
to 147,456. To illustrate the efficiency of this searching
algorithm, we perform the shrinking-sample method along
with other search algorithms.

TABLE II: Input data for benchmarking GPU kernels

GPU Kernel Input data dimension Pre-setting

bilateral image (256 x 256 x 64) filter (5 x 5 x 3)
convolution image (4096 x 4096 x 64) filter (17 x 17)
GEMM matrices (4096 x 4096)

median image ( 2048 x 2048) filter ( 5 x 5)

raycast image ( 512 x 512)

SpMV sparse matrix (217 x 216)  non-zero fraction 103
stereo image 256 x 256

A. Summary of Different Global Search Methods

Four global search schemes (PSO, genetic, simulated
annealing, and random sampling) have been chosen for
comparison. We used the version of those methods imple-
mented by Werkhoven in his framework [33]. Moreover, we
also implemented three local search methods (orthogonal
search, window search, pattern-based direct search) within
this framework using CUDA.

Particle Swarm Optimization [18] originates from the
simulation of flocking or swarming patterns of birds. PSO



TABLE III: Tuning Parameters for GPU kernels

GPU Kernel Tuning Parameters

Value

bilateral

block size in x
block size in y
block size in z

Output pixels per thread in x,y,z

Use local memory

4-i (i=1,2,...,16)
4-i (i=1,2,...,16)
20 (1=1,2,3)

1,2 forx, vy, z

0,1

’

convolution
block size in x
block size in y
tile size in x, y

16-i (1=1,2,...,8)
2t (¢=0,1,...,6)
1,2,...,9forx,y

Add padding to image 0,1

GEMM

block size in x 16-2* (:1=0,1,2)

block size in y 28 (i=0,1,...,5)

tile size in x, y 2 (i=0,1,2,3) for x, y
median

block size in x, y 4-i (i=1,2,...,16) for x, y
Output pixels per thread in x, y 1,2 for x, y

Use local memory 0,1

Use sorting(0) or histogram (1) 0,1

raycast

block size in x, y 28 (1=0,1,...,6) forx, y
Output pixels per thread in x, y 1,2,3 for x, y

Unroll factor for ray traversal loop 1,2,...,16

SpMV

block size in x dimension 324 (1=1,2,...,32)
Number of threads per row 2" (i=0,1,...,5)

Read only or not 0,1

stereo

block size in dimension x, y 4.4 (1=1,2,...,16 ) forx, y
Output pixels per thread in x, y 1,2 for x,y

Unroll factor (disparity loop) 1,2,4,8

Unroll factor (difference loop x, y) 1,2,4 for x, y

Use local memory for left/right image 0,1 for left/right image

generates a group of particles inside the hyperspace con-
structed by the tuning parameters. Each particle has a
position and velocity flying through the hyperspace while
keeping a memory of the optimal position it has visited.
The particles are simultaneously drawn towards the global
and local optimal locations based on the relative strength
of attractions. In our case, the initial particles are gener-
ated randomly at different locations in the hyperspace. At
each iteration, the performance of every particle is eval-
uated and velocity are updated correspondingly based on
the strength calculation formula [18]. The entire procedure
terminates when the number of iterations has reached a
specific threshold.

Genetic Algorithm [20] is based on the evolutionary pro-
cess in biology with the idea that the fittest individual will
survive. In the tuning process, each parameter configura-
tion is taken as a gene and the fittest gene in population
will be the optimal configuration which gives the best
kernel performance. In our case, each gene will be rep-
resented by an array of values for each tuning parameter.
The initial population is generated randomly and succes-
sive generations are produced by following procedures:
1) crossover: merge two genes to generate an offspring
gene. Two parameter arrays will be split at a random
position and concatenated to form a new configuration,
2) mutation: produce a mutated version of a gene. With
low probability, we choose one configuration and alter one
of the values, and 3) selection: pick the fittest gene. We
perform the kernels on each generation and choose the
configurations with the best performance while excluding
the poor-performing members. In our case, the algorithm

will terminate when the number of generations hits a
specific threshold.

Simulated Annealing [21] is based on the simulation of
annealing process of metals during which the internal
structure of metals will change when undergoing a series of
cooling and heating cycles. In the simulation, a tempera-
ture setting is needed such that the system tends to mutate
the state when the temperature is high and converge
to a steady state when the temperature is low. In the
tuning process, the parameter configuration will be likely
to change at high temperature and start to converge on
optimal points as the temperature is decreasing. Multiple
configurable parameters can affect the performance of
this algorithm: 1) annealing schedule determines how the
temperature is adjusted 2) acceptance probability checks
the probability of acceptance of new configuration, 3)
neighbor selection function chooses the next candidate
configurations.

Random Sampling: A subset of the entire search space
will be selected completely at random. The kernel will be
executed on this subset to choose the best configuration.
The size of the random chosen subset will be determined
by the user.

B. Experimental Results

Bilateral Tuning Time vs Kernel Time
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Fig. 4: The tuning time to find the best performing
configuration versus the performance of Bilateral kernel,
y-axis using the log scale

The experiments were performed both on a P-100 GPU
and on a V-100 GPU using the auto-tuner framework
kernel tuner 0.2.0 [33]. We obtained consistent results
from both architectures and only the results from P-100
are presented in this section. Each data point we present
here represents the average of 14 runs of each search strat-
egy on one specific tuning parameter configuration. The
performance of each algorithm is measured with different
values of their corresponding hyper-parameters and the



GEMM Tuning Time vs Kernel Time
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Fig. 5: The tuning time to find the best performing
configuration versus the performance of GEMM kernel,
y-axis using the log scale

Convolution Tuning Time vs Kernel Time
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Fig. 6: The tuning time to find the best performing con-
figuration versus the performance of Convolution kernel,
y-axis using the log scale

best results are displayed in Figure 4-9. Exhaustive search
is performed for each kernel to provide the optimal kernel
running time as the baseline.

In Figure 4, the shrinking-sample method creates a
faster version over all other search methods except the ge-
netic algorithm. Pattern-based search has a kernel perfor-

Median Tuning Time vs Kernel Time

Strategy
brute_force
shrinking_sample
pso
genetic_algorithm
simulated_annealing
random_sampling
orthogonal_sample
window_sample
pattern_search

S>> + <0 xnHO

’

Tuning Time (sec)

+

1.8 1.9 2.0 21 22 23 24 25
Kernel Time (ms)

Fig. 7: The tuning time to find the best performing
configuration versus the performance of Median kernel, y-
axis using the log scale

Ray-cast Tuning Time vs Kernel Time
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Fig. 8 The tuning time to find the best performing
configuration versus the performance of Raycast kernel,
y-axis using the log scale

mance competing with that of random sampling method
but the tuning time is higher. For GEMM kernel in
Figure 5, the search space is relatively small and search
methods like pattern-based search and window sampling
have greater tuning time than exhaustive search due to
the overhead in their tuning procedures. Shrinking-sample



Stereo Tuning Time vs Kernel Time
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Fig. 9: The tuning time to find the best performing
configuration versus the performance of Stereo kernel, y-
axis using the log scale

SPMV Tuning Time vs Kernel Time
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Fig. 10: The tuning time to find the best performing
configuration versus the performance of SpMV kernel, y-
axis using the log scale

provides the closest kernel performance to the exhaustive
search though other methods such as genetic algorithm
and PSO have lower tuning time.

For convolution kernel in Figure 6, shrinking-sample and
PSO search methods take similar tuning time and provide
competing performance. For median kernel in Figure 7,

shrinking-sample provides the best performance. However,
genetic algorithm, random sampling and orthogonal search
also provide good kernel performance with less tuning
time. For raycast kernel in Figure 8, shrinking-sample
yields good kernel performance with the least tuning
time though pattern-based search and genetic algorithm
provide better kernel performance. In Figure 9, shrinking-
sample method provides the best performance for stereo
kernel. PSO used less tuning time and lost some kernel per-
formance. As shown in Figure 10, all the search algorithms
have similar kernel performance. The shrinking sample
gained good kernel performance with the least tuning time.
Global search methods(pso, genetic algorithm, simu-
lated annealing and random sampling) provide stable
methods across seven benchmarks. Generally, shrinking-
sample method outperforms most of the search strategies,
however, another global search method can sometimes pro-
vide the same or even better performance than shrinking-
sample (such as genetic algorithm in bilateral and pso in
convolution). For the kernels with tuning parameters hav-
ing a large number of possible values such as raycast and
convolution, shrinking-sample can save much tuning time.
The performance of local search methods (orthogonal
logarithmic, window search and pattern-based search) can
fluctuate across different benchmarks since their efficiency
is influenced by the initial configuration. Window search
method performs poorly since its strategy is prone to
fall into the local optimum. The orthogonal logarithmic
only works well for Median and convolution kernels. The
pattern-based search also has good kernel performance for
most benchmarks, however, longer tuning time is always
needed compared with other methods. Shrinking-sample
method still shows competing performance for the kernels
with small search space size like SpMV and GEMM.

C. Analysis of Results

We now analyze certain aspects of our benchmarks to
understand relative performance of different methods.

First, we focus on the distribution of performance across
different configurations for the benchmark kernels — the
data is shown in Table IV. The density of high-performing
configurations is low in all kernels except GEMM and
SpMV. Overall, shrinking-sample method is within 1-3%
of the execution times of the brute force search method
across all applications. In comparison, the fraction of the
configurations in the search space that are within 5%
higher than optimal kernel running time is 0.04% for ray-
cast, 0.1% for stereo, 0.13% for convolution, and 0.17%
for median. This shows that our method is very effective in
finding points in the entire space that provide optimal or
close to optimal performance. This is because the shrink-
ing sample method treats each parameter independently
and looks at sample points more evenly scattered inside
the search space. This also shows that our hypothesis that
there is a spatial correlation with respect to performance
— taking median of sections of parameter values and
then searching in the section where best performance is
achieved is effective.

On the other hand, certain local search methods (such
as orthogonal search and window search), may find a local
optimal configuration with performance much worse than
the global optimum. That is because the search process
is always executed within the neighborhood of a single



TABLE IV: Distribution of Kernel Configuration Perfor-

mance

The configurations in the search space are divided based on their
kernel running time. A configuration with kernel running time within
5% higher than the optimal kernel running time is considered as
high-performing. The percentages of configurations with different
performance ranges are listed.

GPU Kernel < 5% 5% — 10% > 10%
bilateral 1.68% 2.05% 96.27%
convolution  0.13% 0.44% 99.43%
GEMM 11.11% 88.89% 0

median 0.17% 0.53% 99.30%
raycast 0.04% 0.38% 99.58%
SpMV 16.66% 16.66% 66.68%
stereo 0.10% 0.44% 99.46%

local optimum. The pattern-based search yields better per-
formance compared with the other local search methods
because for each iteration it considers three values of each
tuning parameter (the origin, one step forward and one
step backward). However, more tuning time is spent on
reaching convergence.
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Fig. 11: Relative importance of tuning parameters for
Convolution Kernel

Next, we analyze the tuning parameter importance (for
achieving better performance) by using the random forests
technique. We report typical results for only two applica-
tions: convolution and SpMV. The results for convolution
are shown in Figure 11. Here, four of the five parameters
have a significant impact on the performance - the only
exception is the padding parameter, which is introduced
to avoid shared memory bank conflicts, but its effects are
diminished by using a filter of shape (17 x 17) on GPUs
with 32 memory banks [33] as in Table II. Now, compar-
ing this observation against Figure 6, we see that this
is also the application where shrinking sample performs
extremely well — matching the execution time of brute
force search and a tuning time only slower than two of

Parameter Importance of the SPMV Kernel

0.8

Importance
o
o

I
~

0.2

0.0

y

threads_per_row
block_size_x
read_onl;

Parameters

Fig. 12: Relative importance of tuning parameters for

SpMV Kernel

the other seven methods. This shows the effectiveness of
searching combination of parameter values.

On the other hand, Figure 12 shows that the tuning
parameter, number of threads per row, in SpMV kernel
has a dominating importance. Comparing with results in
Figure 10, we find that many other methods can also
deliver a version that performs similar to the best one.
However, shrinking sample is still a competitive method
both in terms of kernel execution time and tuning time.

VI. CONCLUSIONS

We have developed a model-free search algorithm for
autotuning, called the shrinking-sample method, for GPU
applications. This algorithm focuses on efficient search,
while avoiding random guesses, and ensuring that all parts
of the search space are covered. Like a global search
method, the shrinking-sample method works by decreasing
the search scope for each tuning parameter independently
and reconstructing a smaller search space by combining
possible values for each tuning parameter. However, this
method chooses the best section of possible values of each
tuning parameter for further search in a greedy way just
like a local search method. Therefore, shrinking-sample
method aims to take advantages of both local and global
search strategies. This algorithm is evaluated by using
seven popular benchmark GPU kernels and against four
global and three local search methods. The simulation
shows that shrinking-sample method has robust and ef-
ficient performance among other developed search algo-
rithms considering various search space sizes and different
high-performing configurations density. Across seven ap-
plications, our method not only chooses better configura-
tions than local methods, but almost always outperforms
global methods as well. At the same time, the tuning time
is significantly lower than that of global methods (and in
some cases, also lower than that of local methods).
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