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Abstract—The flexible altitude of unmanned aerial vehicles
(UAVs)-mounted base stations (BSs) and their higher chance
of establishing a line-of-sight (LOS) link towards ground users,
make them an appealing solution for outdoor mmWave communi-
cation. However, the positioning of UAVs is a critical problem that
affects both the coverage performance and energy consumption.
In this work, considering a heterogeneous set of UAVs acting as
aerial mmWave BSs, we develop an effective approach for the 3D
positioning of the UAVs that leads to maximum coverage area
with minimal power consumption. The UAVs have a varying
transmit power and flight altitude range. Given a repository
of UAVs, the proposed method finds an optimal subset of the
available UAVs and determines their 3D position for maximum
LOS coverage area with minimum energy consumption. First,
we formulate an optimization problem to find the best subset
of available UAVs along with their horizontal position. Next,
we optimize the altitude of the UAVs based on the practical
data of the geographical environment, such as the number and
location of the buildings and other structures. Simulation results
demonstrate the effectiveness of the proposed solution and pro-
vide valuable insights into the performance of the heterogeneous
UAV-supported small cell networks.

Index Terms—Unmanned Aerial Vehicle (UAV), mmWave sig-
naling, LOS coverage maximization, constrained circle packing.

I. INTRODUCTION

The 5G NR networks are progressively adopting the
mmWave band (30-300 GHz) as a promising solution to
cope with the steady proliferation of bandwidth-intensive
devices and applications [1]. However, despite offering an
extremely wide spectrum, the mmWave channels suffer from
poor propagation characteristics. Channel measurements using
directional antennas have revealed that mmWave signals are
highly susceptible to blockage and thus, the channel power
would arrive at the user mainly through the line-of-sight
(LOS) path [2]. Furthermore, the excessive pathloss caused
by the mmWave multi-gigahertz frequencies limits the scope
of mmWave signaling to short-range and LOS links. These
difficulties have been halting the ubiquitous implementation
of mmWave signaling for outdoor applications since stationary
and moving obstacles can potentially block the signals.

Meanwhile, the use of UAVs as flying base stations (BSs) to
increase the network capacity has been the subject of neoteric
and concerted research [3]. The UAV-mounted base stations
(UAV-BSs) can be quickly deployed to provide on-demand
wireless coverage and support the terrestrial network [4], [5].
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More importantly, thanks to their mobility and adjustable
altitude, the UAV-BSs possess a much higher likelihood of
LOS connections towards the ground users [6]. Thus, if prop-
erly deployed and organized, the UAV-BSs offer an effective
solution for outdoor mmWave signaling by establishing and
maintaining LOS channels towards the users.

The UAV-assisted wireless networks encounter unique de-
sign challenges due to the altitude dimension and the mobility
of the aerial BSs. In particular, the 3D deployment of the
UAVs is arguably the most influential design consideration as
it directly impacts the coverage, quality-of-service (QoS), and
energy consumption of the network [5]. The works in [7], [8]
investigated the optimal altitude of a single UAV operating
under different fading assumptions. The authors in [9], [10]
extended the previous results to the case of two or multiple
identical UAV-BSs having the same transmit power and alti-
tude. In [11], a UAV-enabled small cell placement problem is
investigated in the presence of a terrestrial wireless network
to maximize the number of covered users. Furthermore, the
authors in [12] proposed a deployment plan to minimize the
number of UAVs required for serving a certain number of
ground users. Similar works can be found in [13]-[18].

While these studies address important UAV deployment
scenarios, they implicitly assume that the UAVs are operat-
ing on microwave frequencies and do not consider unique
features of mmWave channels in the deployment problem.
Indeed, only a handful of recent works exist on the integration
of UAV-assisted wireless networks and mmWave commu-
nications [19]-[23]. Furthermore, the aforementioned works
mainly limit their discussions to cases in which there exists
only a single UAV or multiple identical UAVs with the same
capabilities. In practice, however, one might have a repository
of various types of drones with diverse capabilities in terms
of flight altitude range and transmit power. In this context, the
exact number and the type of UAVs that need to be deployed
depend on the environmental factors of the target area such as
the number and distribution of the obstacles.

The main contribution of this paper is to develop a practical
and efficient deployment technique for UAV-assisted mmWave
networks to maximize their total downlink coverage area.
Given a heterogeneous set of UAVs with varying transmit
powers and flight altitude ranges, we jointly optimize the
number and the type of required UAVs as well as their
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3D position to maximize the coverage area with minimal
energy consumption. In order to solve the optimal deployment
problem, we divide it into two sub-problems. First, considering
the statistical model of obstacles in the area, we formulate
an optimization to select a subset of available UAVs and
determine their horizontal location to maximize their total
raw coverage area. Next, considering the exact locations and
dimensions of the obstacles in the environment, we optimize
the altitude of each selected UAV to maximize its actual LOS
coverage area within which, the users may have seamless
mmWave connectivity. The advantage of the proposed method
is that rather than deploying all available UAVs, we use as
many UAVs as needed to provide the network coverage while
maintaining the desired QoS. In fact, the number and the
type of selected UAVs are the design factors to be determined
based on the size and shape of the area of interest. Moreover,
we show that the proposed method has a polynomial time
complexity which translates into good scalability.

The rest of this paper is organized as follows. The system
model is described in Section II. The selection of UAVs and
their optimal horizontal placement is discussed in Section III.
The altitude optimization for maximum mmWave coverage is
presented in Section IV. The simulation results are provided
in Section V while the conclusions are drawn in Section VI.

II. SYSTEM MODEL

The UAVs are equipped with mmWave communication to
deliver high data rates on the downlink. Suppose that UAVs are
of grouped into different classes depending on their maximum
transmit power and flight altitude range. Let U = {U;} ¥,
denote the set of N available UAVSs in the repository while P!
represents the transmit power of UAV U;. The goal is jointly
allocate and distribute the available resources, i.e., the UAVs,
to service a given geographical area. By the allocation of
resources, we mean selecting an optimal subset of the available
UAVs to be deployed in the area. Further, by the distribution
of resources, we mean the optimal placement of the UAVs to
provide maximum wireless coverage.

Selecting the proper AtG channel model is the crucial step
in formulating the DBS placement problem. In this work, we
adopt the model presented in the seminal work [24]. The
ground stations receive the signal from a UAV through two
main paths; namely, the LOS path or strong non-LOS (NLOS)
path caused by the reflectors in the environment. These two
propagation groups occur with different probabilities depend-
ing on the density and the location of obstacles (e.g., buildings)
relative to the position of the UAV.

In addition to the free space pathloss (FSPL), the radio
signals emitted by a UAV-BS incur a random attenuation due to
their propagation group. The total pathloss for an ATG channel
is given by [8],

A fod

c

¥ = 201log ( ) + e (D

in which f. is the carrier frequency, c is the speed of light, d
is the distance between the UAV and the ground user. The first
term in (1) accounts for the FSPL while the second term, 7,

is a random variable that represents the excessive loss due to
shadowing and scattering. Depending on whether the signal is
received through LOS or NLOS paths, 7 takes on two values,
i.e., nLos and nNros With respective probabilities Py og and
Pnios = 1 — Pros. The values of 71,05 and nnros should be
found experimentally and 7nr,0g is typically much larger than
NLos. The probability of LOS link is given by: [24]:

1
- 1+ aexp (—=B(0 —a))’

in which ¢ = arctan() is the elevation angle for a UAV

hovering at altitude h, measured from a user’s location at
horizontal distance r. The parameters « and 3 depend on the
location, dimension, and distribution of the buildings and are
determined based on the environment’s statistical data. The
probability of NLOS is Pnros = 1 — Pros. In this work,
we use the spatial mean of pathloss, i.e., the expected value
of pathloss over all propagation groups. Indeed, as we are
concerned with the deployment of stationary UAV-BSs, we
omit the multipath fading for simplicity. The expected pathloss
is thus written as:

Pros (9) (2)

W = FSPL + nLosPros + nLos Paios- (3)

By substituting (1) and (2) into (3), and letting d = /h? + r2
to be the distance between a UAV at altitude h from a user
located at radial distance r, we have,

A

¥ = 20log(d) + 1+ aexp(—5(0 — a))

+B, 4

47ch).

c

in which A = nLos — 7NLos and B = nnLos + 20 log(

III. HORIZONTAL PLACEMENT OF UAVS FOR MAXIMUM
RAW COVERAGE AREA

In this section, given the heterogeneous repository of UAVs,
we jointly optimize the selection of UAVs as well as their
horizontal location to maximize their aggregate coverage area.
We employ the statistical ATG channel model presented in the
previous section to optimize the horizontal placement of the
UAVs. As the resulting coverage area is obtained from the
statistical model of the environment and does not account for
the exact realization of obstacles in the environment, we call
it the raw coverage area. However, the exact location of the
buildings and obstacles can greatly impact the mmWave chan-
nels. The key advantage of airborne BSs over their terrestrial
counterparts is their adjustable altitude which adds an extra
degree of freedom to system design. In the next section, we
utilize this degree of freedom to optimize the altitude of the
UAVs based on the exact distribution of the obstacles in the
area to maximize the mmWave coverage area.

Definition 1: The raw coverage radius of a UAV with
transmit power P! hovering at altitude h is the maximum
radial distance r from the UAV within which the received
signal power P" = P! — W is above a certain threshold ¢, i.e.,
R £ arg[P"(r) = €.

By substituting (3) in the definition above and setting the

partial derivative aa—ljr = 0, the value of R is determined for
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each UAV depending on its transmit power and flight altitude.
Usually, there is no closed-form solution to this equation and
we need to resort to numerical methods to find the value of R.

Given the raw coverage radii of the UAVs in the repository,
we will find the best subset of the available UAVs as well as
their horizontal location to maximize the total raw coverage
area. Without loss of generality, we consider the operation
area to be a rectangle with length L and width W. Let
(24, i, h;) denote the location of UAV 4 should it gets selected
for deployment. We formulate the following optimization
problem:

N

m?x;mylze ;Ii (wR?—ﬂPf), (5)

S.t.

I; € {0,1}, i€{1,2,---,N} (6)

—g+Ri§xi§¥—Ri, ie{l,2,-- N}, =1
(7

ngrR,;gyng—R,;, ie{l,2,- N}L=1
®)

\/(fci —2;)* + (i —v;)* 2 Ri + Ry,

i,je{1,2,--- ,N}i#j, I, =1, =1. )

where NV is the total number of available UAVs in the reposi-
tory. In addition, /; is an indicator function which equals to 1
if UAV U; € U is selected for covering the region and equals
to 0 otherwise. It governs the resource allocation strategy for
a given area of interest. Moreover, in (5), ¥ is the weighting
factor, where setting ¥ = 0 results in coverage maximization
problem without considering energy efficiency. The objective
function in (5) makes a trade-off between the covered area
and the total transmission power. The constraint in (6) states
that the indicator function can only take on O and 1 while
constraints in (7) and (8) ensure that the coverage circle of
UAV U, with radius R; does not extend outside the rectangular
area. Finally, the constraint in (9) avoids any coverage overlap
between the cells to reduce the risk of interference between
neighboring cells.

The optimization problem stated in (5)-(9) is very challeng-
ing to solve. This challenge stems from the non-convexity of
the objective function and the non-linearity of the constraints,
as well as the high number of unknowns parameters. In
its simplest form where the indicator function I; is given
Vs and all the UAVs have the same transmit power (i.e.,
homogeneous network), the proposed problem can be solved
using the standard circle packing (CP) algorithms [25]. In the
CP problem, the task is to arrange a given number of circles,
say K circles on a surface such that no overlapping occurs.
The goal is to maximize the packing density, which is defined
as the proportion of the surface covered by the circles. The
problem is known to be NP-hard [25]. Following the concept
of reduction in algorithm design, we infer that the proposed
optimization is also NP-hard.

A. Proposed Algorithm

Let [_%a _%]’ [%7 _%L [%7 %]’ and [_%a %] be the
coordinates of the rectangular area in the 2D Cartesian plane.
Assuming that there are already some disks fitted in the
rectangular area we define the locus of the center (LoC) for a
coverage disk as follows:

Definition 2: Consider a rectangle with length L. and width
W within which there exists a set of circles C satisfying the
conditions stated in (7), (8), and (9). The LoC; for a coverage
disk with radius R; is the set of all points (z;,y;) at which its
center can be placed while all the conditions in (7), (8), and
(9) are still satisfied. Formally,

w L
LoC; = {(zi, yi)| | = |<| -5 =R |, yi [<] 3 - R; |,

Vs =)+ (= 93?2 Ri+ B,
RS C,Ij = 1}.
(10)

Given a permutation ¢ of the coverage disks, the proposed
algorithm places the disks at the lower leftmost possible
position to maximize the density of disks while avoiding any
overlap between the adjacent disks. In order to do so, we
need to find the LoC for each new coverage disk that is
appended to the existing fitted disks. For instance, the LoC;
for the first circle with radius ¢(R;) is a smaller rectangle
inside the rectangular surface with its edges having a distance
¢(Ry) from the boundaries. If LoC; is not an empty set, the
algorithm places the center of the first circle on the lower left-
most corner of the LoC; and flags its corresponding indicator
function. If the LoC; is empty, the algorithm assigns O to
the corresponding indicator function, removes the circle R;
from the list, and proceeds to the next circle in ¢. Having
already placed k circles in the desired surface, for the (k+1)th
circle with radius Ry, we first compute the LoCy1. Then,
if LoCry1 # 0, we select the lower left-most point on
the LoCj1 to place the circle. If the locus is empty, i.e.,
LoCiy1 = (0, then it is not possible to insert the circle
according to the mentioned constraints. Consequently, the
algorithm removes all the remaining circles with the same
size from the ordered tuple ¢ and proceeds to the next circle
in the list. It stops when there are no more circles remaining
in the list. Finally, the algorithm produces two subsets of ¢:
(a) a subset S of the disks that are placed into the area, and
(b) a subset U of the disks that cannot be fitted in the area.
The pseudocode for the proposed algorithm is provided in
Algorithm 1. Once the solution for a particular permutation of
disks is found, we can find the optimal solution by comparing
the results for all the permutations.

Complexity Analysis: The overall complexity of the pro-
posed algorithm mainly depends on calculating the LoC;, i.e.,
the locus of center for circle ¢(R;). For i = 1, the computation
of LoC; is trivial. For 7 > 2, the computation of LoC; requires
solving at most (';1) +4(i — 1) quadratic equations. Having
computed LoC;, if LoC; # () we select the lower leftmost
intersection point as the center of ¢(R;) and proceed to the
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Algorithm 1: Horizontal Placement of UAVs

Data: ® = [¢(R1), d(R2),...,d(Rx)] and the
dimensions of rectangle [V, L]
Result: A feasible solution to the optimization
problem in (5)-(9)
1 Initialization: S < () and U < 0)
2 for 1 < 1 to N do

3 if 9(R;) ¢ U then

4 Compute LoC;

5 if LoC; # () then

6 Find (a;, b;), the lower leftmost point on

LOCi

7 (i, i) < (as, bi)

8 I; 1

9 Append ¢(R;) to S

10 else

11 for j < i to N do

12 if o(R;) = ¢(R;) then
13 Append o(R;) to U
14 I; <0

15 end

16 end

17 end

18 else

19 | continue

20 end
21 end

22 return S and U

next circle in the list (lines 5 to 9 of Algorithm 1). However,
if LoC; = (0, we add the circle ¢(R;) and all the remaining
circles with the same radius to the list U in order to prevent
repeated calculations for similar circles that cannot be fitted
into the rectangle (lines 11 to 16 of Algorithm 1). In the worst
case scenario, we have LoC; # () for all 4 and the algorithm
calculates LoC; for all circles, as stated in lines 5 to 10. In
addition to finding LoC;, there are two “assignment” functions
in lines 7 and 8 and an “append” function in line 9 which are
of O(1) complexity. Moreover, the find” function in line 6 is
of linear complexity over a list of 2(*,") intersection points.
Thus, the lines 5 to 10 require 2(i;1) + 3 operations in each
iteration. The total number of operations is given by:

(11)

where ¢g(NN) is a polynomial of degree 3. Thus, assuming
that the quadratic equations can be solved in constant time,
the complexity of the proposed algorithm can be written as
O(N*). It can be seen that the algorithm has a polynomial
time complexity which translates into a good scalability.

Blocked LOS link

Fig. 1: LOS and NLOS links in UAV-assited mmWave system

IV. VERTICAL PLACEMENT OF UAVS FOR MAXIMUM LOS
VISIBILITY

Given the horizontal location of the UAVs, in this section we
derive the optimal altitude for a UAV to maximize the actual
mmWave coverage area of each single UAV. Since mmWave
signaling is susceptible to blockage, it is necessary to establish
secure LoS links between the UAVs and users for successful
communications.

Assume that a UAV is located at altitude hg above the
origin with cylindrical coordinates (z,r, ¢) = (hg, 0,0) where
z denotes the altitude coordinate, r is the radial distance from
the z-axis, and ¢ is the azimuth angle. Considering a generic
point on the ground located at P = (0, ro, ¢o), we investigate
whether it has a clear LOS view towards the UAV or the
LOS view is blocked by buildings, as shown in Figure 1. We
utilize the digital terrain model (DTM) which is a 3D computer
generated model of elevation data for representing the terrain
in an area. The DTM data provides the exact location and
dimension of the environmental obstacles, which is crucial for
mmWave cell planning. As shown in Figure 1, consider the
virtual LOS line connecting a UAV and a generic point P
on the ground. The straight line connecting the UAV and the
ground point P is given by,

T Y z — hg

= = 12
r —rgcos(¢o) Y — rosin(eo) z (12

from which, we can derive the altitude of each point on the
LOS link as:

13)

= f(ro, do) =h(1_7"5m@5))

70 8in(¢o)

In order to efficiently utilize the DTM data, we discretize
the virtual altitude z with step size Az. Next, we can com-
pare the values kAz for k = 0,..., z7 with the practical
elevation of environment obstacles obtained from DTM. We
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define the following indicator function for the generic ground
point P = (0,70, ¢o):

0 if 3k|kAf(ro, o) € DTM

I(r()vd)o):{l OW

The indicator function determines whether any point of
the LOS link is registered on the DTM. In other words,
I(rg,¢0) = 1 indicates a clear LOS link towards the point
P, I(ro,¢0) = 0 shows a blocked LOS view. Note that the
smaller the value of step size Az, the more accurate is the
output of the indicator function.

Assuming that the radius of raw coverage area of a UAV
hovering at altitude i with transmit power P? is R(h, P?), the
actual mmWave coverage area of the UAV can be computed

as
o rR(h,PY)
A(h) = /0 /0 I(r,¢)rdrdd

in which R is the radius of coverage circle in the absence of
environmental obstacles. Note that if I(rg, ¢g) = 1, Vrg > 0,
and Y0 < ¢y < 27, then A(h) = 7R2, which is the maximum
attainable coverage area at altitude h.

Note that due to the practical limitations on the UAV
altitude, we have hpin < h < hpax. The optimal altitude
for maximum mmWave coverage area can be found as,

h* = argmax A(h)
hmin <h<hmax

V. SIMULATION RESULTS

(14)

(15)

For simulations, we consider a 10 Km x 10 Km operation
area where the UAVs communicate over 30 GHz carrier
frequency in an urban environment with parameters o = 9.61,
B = 0.16, and (nLos,nvros) = (1 dB, 20 dB) [24]. We
assume that the minimum allowable received signal power for
a successful transmission is € = —60 dBm. We also consider
a repository of 16 UAVs in which there are four different
types of UAVs with maximum transmit powers of 35 dBm,
39 dBm, 43 dBm, and 50 dBm and there are four identical
UAVs of each kind. The flight altitude ranges between 400 m
and 4000 m.

Figure 2 illustrates the optimal resource allocation and 3D
placement of the UAVs for providing maximum coverage
without inter-cell interference in the area of interest. It can
be seen that only 13 UAVs out of the 16 available UAVs
are deployed in the area since deploying more UAVs would
unavoidably cause an interference. Indeed, only a single UAV
with transmit power 43 dBm is employed while the UAVs in
other groups are all utilized.

Figure 3 shows the users’ average received data rate versus
the number of users for two different distribution models for
the users. According to Figure 3, the average received data rate
for a given number of users is significantly lower in hotspot
areas (i.e., the truncated Gaussian distribution). This is in fact
due to the severe blockage caused by the neighboring obstacles
located in the hotspot area compared to the more distant and
uniformly distributed user scenario in which more users have
a chance of LOS connection towards the UAVs.

The Profile of UAVs
P, =(35 dBm, 0.36 Km, 0.4 Km)
P, = (39 dBm, 0.57 Km, 0.64 Km)
Py =(43 dBm, 0.91 Km, 1 Km)
P, =(50 dBm, 2.04 Km, 2.41 Km) | ¢

O # O 3

25

Q

Flight Altitude (Km)

05

x (Km)

Fig. 2: The optimal 3D placement of the UAVs for maximum
coverage area while avoiding inter-cell interference.
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Fig. 3: The deployment of the heterogeneous repository of the
UAVs to provide service for ground users for two different
distributions

Figure 4 shows the coverage percentage and the number
of deployed UAVs as a function of the network size for a
square area. Clearly, the number of deployed UAVs is not a
monotonically increasing function of the size of area. This is
due to the heterogeneity of UAVs and the disparity between
their coverage radii. Interestingly, based on the available
UAVs in the repository, the maximum coverage percentage
is achieved for a 10 Km x 10 Km area using only 13
UAVs. However, as the side length of the area increases to
11 Km, all the 16 UAVs can be deployed without any inter-
cell interference. Therefore, increasing the side length beyond
11 Km accentuates the resource deficiency as the coverage
percentage monotonically decreases. This arrangement of the
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Fig. 4: The coverage percentage and the number of deployed
UAVs for different network sizes.

UAVs is the optimal arrangement satisfying the constraints in
(6)-(9) and yields 71.54% coverage area.

VI. CONCLUSION

This paper developed an effective method for resource
allocation and optimal 3D placement of a set of heterogeneous
UAVs acting as flying mmWave base stations to provide wire-
less coverage for ground users in an area. First, considering the
statistical model of the environment, we derived the optimal
horizontal location of the UAVs to maximize the raw coverage
area. Then, in order to enable seamless mmWave connectivity,
we proposed a geometrical solution to optimize the altitude
of UAVs based on the exact realization of environmental
parameters. The developed method addresses an important
challenge facing the large scale adoption of mmWave for out-
door usage. Finally, simulation results show the effectiveness
of the developed 3D cell-planning and performance of the
proposed algorithm.
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