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Abstract—The flexible altitude of unmanned aerial vehicles
(UAVs)-mounted base stations (BSs) and their higher chance
of establishing a line-of-sight (LOS) link towards ground users,
make them an appealing solution for outdoor mmWave communi-
cation. However, the positioning of UAVs is a critical problem that
affects both the coverage performance and energy consumption.
In this work, considering a heterogeneous set of UAVs acting as
aerial mmWave BSs, we develop an effective approach for the 3D
positioning of the UAVs that leads to maximum coverage area
with minimal power consumption. The UAVs have a varying
transmit power and flight altitude range. Given a repository
of UAVs, the proposed method finds an optimal subset of the
available UAVs and determines their 3D position for maximum
LOS coverage area with minimum energy consumption. First,
we formulate an optimization problem to find the best subset
of available UAVs along with their horizontal position. Next,
we optimize the altitude of the UAVs based on the practical
data of the geographical environment, such as the number and
location of the buildings and other structures. Simulation results
demonstrate the effectiveness of the proposed solution and pro-
vide valuable insights into the performance of the heterogeneous
UAV-supported small cell networks.

Index Terms—Unmanned Aerial Vehicle (UAV), mmWave sig-
naling, LOS coverage maximization, constrained circle packing.

I. INTRODUCTION

The 5G NR networks are progressively adopting the

mmWave band (30-300 GHz) as a promising solution to

cope with the steady proliferation of bandwidth-intensive

devices and applications [1]. However, despite offering an

extremely wide spectrum, the mmWave channels suffer from

poor propagation characteristics. Channel measurements using

directional antennas have revealed that mmWave signals are

highly susceptible to blockage and thus, the channel power

would arrive at the user mainly through the line-of-sight

(LOS) path [2]. Furthermore, the excessive pathloss caused

by the mmWave multi-gigahertz frequencies limits the scope

of mmWave signaling to short-range and LOS links. These

difficulties have been halting the ubiquitous implementation

of mmWave signaling for outdoor applications since stationary

and moving obstacles can potentially block the signals.

Meanwhile, the use of UAVs as flying base stations (BSs) to

increase the network capacity has been the subject of neoteric

and concerted research [3]. The UAV-mounted base stations

(UAV-BSs) can be quickly deployed to provide on-demand

wireless coverage and support the terrestrial network [4], [5].

More importantly, thanks to their mobility and adjustable

altitude, the UAV-BSs possess a much higher likelihood of

LOS connections towards the ground users [6]. Thus, if prop-

erly deployed and organized, the UAV-BSs offer an effective

solution for outdoor mmWave signaling by establishing and

maintaining LOS channels towards the users.

The UAV-assisted wireless networks encounter unique de-

sign challenges due to the altitude dimension and the mobility

of the aerial BSs. In particular, the 3D deployment of the

UAVs is arguably the most influential design consideration as

it directly impacts the coverage, quality-of-service (QoS), and

energy consumption of the network [5]. The works in [7], [8]

investigated the optimal altitude of a single UAV operating

under different fading assumptions. The authors in [9], [10]

extended the previous results to the case of two or multiple

identical UAV-BSs having the same transmit power and alti-

tude. In [11], a UAV-enabled small cell placement problem is

investigated in the presence of a terrestrial wireless network

to maximize the number of covered users. Furthermore, the

authors in [12] proposed a deployment plan to minimize the

number of UAVs required for serving a certain number of

ground users. Similar works can be found in [13]–[18].

While these studies address important UAV deployment

scenarios, they implicitly assume that the UAVs are operat-

ing on microwave frequencies and do not consider unique

features of mmWave channels in the deployment problem.

Indeed, only a handful of recent works exist on the integration

of UAV-assisted wireless networks and mmWave commu-

nications [19]–[23]. Furthermore, the aforementioned works

mainly limit their discussions to cases in which there exists

only a single UAV or multiple identical UAVs with the same

capabilities. In practice, however, one might have a repository

of various types of drones with diverse capabilities in terms

of flight altitude range and transmit power. In this context, the

exact number and the type of UAVs that need to be deployed

depend on the environmental factors of the target area such as

the number and distribution of the obstacles.

The main contribution of this paper is to develop a practical

and efficient deployment technique for UAV-assisted mmWave

networks to maximize their total downlink coverage area.

Given a heterogeneous set of UAVs with varying transmit

powers and flight altitude ranges, we jointly optimize the

number and the type of required UAVs as well as their
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3D position to maximize the coverage area with minimal

energy consumption. In order to solve the optimal deployment

problem, we divide it into two sub-problems. First, considering

the statistical model of obstacles in the area, we formulate

an optimization to select a subset of available UAVs and

determine their horizontal location to maximize their total

raw coverage area. Next, considering the exact locations and

dimensions of the obstacles in the environment, we optimize

the altitude of each selected UAV to maximize its actual LOS

coverage area within which, the users may have seamless

mmWave connectivity. The advantage of the proposed method

is that rather than deploying all available UAVs, we use as

many UAVs as needed to provide the network coverage while

maintaining the desired QoS. In fact, the number and the

type of selected UAVs are the design factors to be determined

based on the size and shape of the area of interest. Moreover,

we show that the proposed method has a polynomial time

complexity which translates into good scalability.

The rest of this paper is organized as follows. The system

model is described in Section II. The selection of UAVs and

their optimal horizontal placement is discussed in Section III.

The altitude optimization for maximum mmWave coverage is

presented in Section IV. The simulation results are provided

in Section V while the conclusions are drawn in Section VI.

II. SYSTEM MODEL

The UAVs are equipped with mmWave communication to

deliver high data rates on the downlink. Suppose that UAVs are

of grouped into different classes depending on their maximum

transmit power and flight altitude range. Let U = {Ui}Ni=1

denote the set of N available UAVs in the repository while P t
i

represents the transmit power of UAV Ui. The goal is jointly

allocate and distribute the available resources, i.e., the UAVs,

to service a given geographical area. By the allocation of

resources, we mean selecting an optimal subset of the available

UAVs to be deployed in the area. Further, by the distribution

of resources, we mean the optimal placement of the UAVs to

provide maximum wireless coverage.

Selecting the proper AtG channel model is the crucial step

in formulating the DBS placement problem. In this work, we

adopt the model presented in the seminal work [24]. The

ground stations receive the signal from a UAV through two

main paths; namely, the LOS path or strong non-LOS (NLOS)

path caused by the reflectors in the environment. These two

propagation groups occur with different probabilities depend-

ing on the density and the location of obstacles (e.g., buildings)

relative to the position of the UAV.

In addition to the free space pathloss (FSPL), the radio

signals emitted by a UAV-BS incur a random attenuation due to

their propagation group. The total pathloss for an ATG channel

is given by [8],

Ψ = 20 log
(4πfcd

c

)

+ ηξ, (1)

in which fc is the carrier frequency, c is the speed of light, d
is the distance between the UAV and the ground user. The first

term in (1) accounts for the FSPL while the second term, ηξ,

is a random variable that represents the excessive loss due to

shadowing and scattering. Depending on whether the signal is

received through LOS or NLOS paths, ηξ takes on two values,

i.e., ηLOS and ηNLOS with respective probabilities PLOS and

PNLOS = 1− PLOS. The values of ηLOS and ηNLOS should be

found experimentally and ηNLOS is typically much larger than

ηLOS. The probability of LOS link is given by: [24]:

PLOS(θ) =
1

1 + α exp (−β(θ − α))
, (2)

in which θ = arctan(h
r
) is the elevation angle for a UAV

hovering at altitude h, measured from a user’s location at

horizontal distance r. The parameters α and β depend on the

location, dimension, and distribution of the buildings and are

determined based on the environment’s statistical data. The

probability of NLOS is PNLOS = 1 − PLOS. In this work,

we use the spatial mean of pathloss, i.e., the expected value

of pathloss over all propagation groups. Indeed, as we are

concerned with the deployment of stationary UAV-BSs, we

omit the multipath fading for simplicity. The expected pathloss

is thus written as:

Ψ = FSPL + ηLOSPLOS + ηNLOSPNLOS. (3)

By substituting (1) and (2) into (3), and letting d =
√
h2 + r2

to be the distance between a UAV at altitude h from a user

located at radial distance r, we have,

Ψ = 20 log(d) +
A

1 + α exp(−β(θ − α))
+B, (4)

in which A = ηLOS − ηNLOS and B = ηNLOS + 20 log( 4πfc
c

).

III. HORIZONTAL PLACEMENT OF UAVS FOR MAXIMUM

RAW COVERAGE AREA

In this section, given the heterogeneous repository of UAVs,

we jointly optimize the selection of UAVs as well as their

horizontal location to maximize their aggregate coverage area.

We employ the statistical ATG channel model presented in the

previous section to optimize the horizontal placement of the

UAVs. As the resulting coverage area is obtained from the

statistical model of the environment and does not account for

the exact realization of obstacles in the environment, we call

it the raw coverage area. However, the exact location of the

buildings and obstacles can greatly impact the mmWave chan-

nels. The key advantage of airborne BSs over their terrestrial

counterparts is their adjustable altitude which adds an extra

degree of freedom to system design. In the next section, we

utilize this degree of freedom to optimize the altitude of the

UAVs based on the exact distribution of the obstacles in the

area to maximize the mmWave coverage area.

Definition 1: The raw coverage radius of a UAV with

transmit power P t hovering at altitude h is the maximum

radial distance r from the UAV within which the received

signal power P r = P t−Ψ is above a certain threshold ǫ, i.e.,

R =∆ arg[P r(r) = ǫ].
By substituting (3) in the definition above and setting the

partial derivative ∂P r

∂r
= 0, the value of R is determined for
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each UAV depending on its transmit power and flight altitude.

Usually, there is no closed-form solution to this equation and

we need to resort to numerical methods to find the value of R.

Given the raw coverage radii of the UAVs in the repository,

we will find the best subset of the available UAVs as well as

their horizontal location to maximize the total raw coverage

area. Without loss of generality, we consider the operation

area to be a rectangle with length L and width W . Let

(xi, yi, hi) denote the location of UAV i should it gets selected

for deployment. We formulate the following optimization

problem:

maximize
Ii,xi,yi

N
∑

i=1

Ii
(

πR2
i − ϑP t

i

)

, (5)

s.t.

Ii ∈ {0, 1}, i ∈ {1, 2, · · · , N} (6)

− W

2
+Ri ≤ xi ≤

W

2
−Ri, i ∈ {1, 2, · · · , N}|Ii = 1

(7)

− L

2
+Ri ≤ yi ≤

L

2
−Ri, i ∈ {1, 2, · · · , N}|Ii = 1

(8)
√

(xi − xj)2 + (yi − yj)2 ≥ Ri +Rj ,

i, j ∈ {1, 2, · · · , N}|i 6= j, Ii = Ij = 1. (9)

where N is the total number of available UAVs in the reposi-

tory. In addition, Ii is an indicator function which equals to 1
if UAV Ui ∈ U is selected for covering the region and equals

to 0 otherwise. It governs the resource allocation strategy for

a given area of interest. Moreover, in (5), ϑ is the weighting

factor, where setting ϑ = 0 results in coverage maximization

problem without considering energy efficiency. The objective

function in (5) makes a trade-off between the covered area

and the total transmission power. The constraint in (6) states

that the indicator function can only take on 0 and 1 while

constraints in (7) and (8) ensure that the coverage circle of

UAV Ui with radius Ri does not extend outside the rectangular

area. Finally, the constraint in (9) avoids any coverage overlap

between the cells to reduce the risk of interference between

neighboring cells.

The optimization problem stated in (5)-(9) is very challeng-

ing to solve. This challenge stems from the non-convexity of

the objective function and the non-linearity of the constraints,

as well as the high number of unknowns parameters. In

its simplest form where the indicator function Ii is given

∀i and all the UAVs have the same transmit power (i.e.,

homogeneous network), the proposed problem can be solved

using the standard circle packing (CP) algorithms [25]. In the

CP problem, the task is to arrange a given number of circles,

say K circles on a surface such that no overlapping occurs.

The goal is to maximize the packing density, which is defined

as the proportion of the surface covered by the circles. The

problem is known to be NP-hard [25]. Following the concept

of reduction in algorithm design, we infer that the proposed

optimization is also NP-hard.

A. Proposed Algorithm

Let [−W
2 ,−L

2 ], [W2 ,−L
2 ], [W2 , L

2 ], and [−W
2 , L

2 ] be the

coordinates of the rectangular area in the 2D Cartesian plane.

Assuming that there are already some disks fitted in the

rectangular area we define the locus of the center (LoC) for a

coverage disk as follows:

Definition 2: Consider a rectangle with length L and width

W within which there exists a set of circles C satisfying the

conditions stated in (7), (8), and (9). The LoCi for a coverage

disk with radius Ri is the set of all points (xi, yi) at which its

center can be placed while all the conditions in (7), (8), and

(9) are still satisfied. Formally,

LoCi = {(xi, yi)
∣

∣ | xi |≤| W
2

−Ri |, | yi |≤| L
2
−Ri |,

√

(xi − xj)2 + (yi − yj)2 ≥ Ri +Rj ,

∀j ∈ C, Ij = 1}.
(10)

Given a permutation φ of the coverage disks, the proposed

algorithm places the disks at the lower leftmost possible

position to maximize the density of disks while avoiding any

overlap between the adjacent disks. In order to do so, we

need to find the LoC for each new coverage disk that is

appended to the existing fitted disks. For instance, the LoC1

for the first circle with radius φ(R1) is a smaller rectangle

inside the rectangular surface with its edges having a distance

φ(R1) from the boundaries. If LoC1 is not an empty set, the

algorithm places the center of the first circle on the lower left-

most corner of the LoC1 and flags its corresponding indicator

function. If the LoC1 is empty, the algorithm assigns 0 to

the corresponding indicator function, removes the circle R1

from the list, and proceeds to the next circle in φ. Having

already placed k circles in the desired surface, for the (k+1)th
circle with radius Rk+1, we first compute the LoCk+1. Then,

if LoCk+1 6= ∅, we select the lower left-most point on

the LoCk+1 to place the circle. If the locus is empty, i.e.,

LoCk+1 = ∅, then it is not possible to insert the circle

according to the mentioned constraints. Consequently, the

algorithm removes all the remaining circles with the same

size from the ordered tuple φ and proceeds to the next circle

in the list. It stops when there are no more circles remaining

in the list. Finally, the algorithm produces two subsets of φ:

(a) a subset S of the disks that are placed into the area, and

(b) a subset U of the disks that cannot be fitted in the area.

The pseudocode for the proposed algorithm is provided in

Algorithm 1. Once the solution for a particular permutation of

disks is found, we can find the optimal solution by comparing

the results for all the permutations.

Complexity Analysis: The overall complexity of the pro-

posed algorithm mainly depends on calculating the LoCi, i.e.,

the locus of center for circle φ(Ri). For i = 1, the computation

of LoC1 is trivial. For i ≥ 2, the computation of LoCi requires

solving at most
(

i−1
2

)

+ 4(i− 1) quadratic equations. Having

computed LoCi, if LoCi 6= ∅ we select the lower leftmost

intersection point as the center of φ(Ri) and proceed to the
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Algorithm 1: Horizontal Placement of UAVs

Data: Φ = [φ(R1), φ(R2), . . . , φ(RN )] and the

dimensions of rectangle [W,L]
Result: A feasible solution to the optimization

problem in (5)-(9)

1 Initialization: S ← ∅ and U ← ∅
2 for i ← 1 to N do

3 if φ(Ri) /∈ U then

4 Compute LoCi

5 if LoCi 6= ∅ then

6 Find (ai, bi), the lower leftmost point on

LoCi

7 (xi, yi) ← (ai, bi)
8 Ii ← 1
9 Append φ(Ri) to S

10 else

11 for j ← i to N do

12 if φ(Rj) = φ(Ri) then

13 Append φ(Rj) to U
14 Ij ← 0
15 end

16 end

17 end

18 else

19 continue

20 end

21 end

22 return S and U

next circle in the list (lines 5 to 9 of Algorithm 1). However,

if LoCi = ∅, we add the circle φ(Ri) and all the remaining

circles with the same radius to the list U in order to prevent

repeated calculations for similar circles that cannot be fitted

into the rectangle (lines 11 to 16 of Algorithm 1). In the worst

case scenario, we have LoCi 6= ∅ for all i and the algorithm

calculates LoCi for all circles, as stated in lines 5 to 10. In

addition to finding LoCi, there are two ”assignment” functions

in lines 7 and 8 and an ”append” function in line 9 which are

of O(1) complexity. Moreover, the ”find” function in line 6 is

of linear complexity over a list of 2
(

i−1
2

)

intersection points.

Thus, the lines 5 to 10 require 2
(

i−1
2

)

+ 3 operations in each

iteration. The total number of operations is given by:

N
∑

i=2

[

(2i+ 1)

(

i− 1

2

)

+ 4i− 1
]

= (11)

N
∑

i=2

[

i3 − 5

2
i2 +

9

2
i
]

=
1

4
N4 + g(N),

where g(N) is a polynomial of degree 3. Thus, assuming

that the quadratic equations can be solved in constant time,

the complexity of the proposed algorithm can be written as

O(N4). It can be seen that the algorithm has a polynomial

time complexity which translates into a good scalability.

Fig. 1: LOS and NLOS links in UAV-assited mmWave system

IV. VERTICAL PLACEMENT OF UAVS FOR MAXIMUM LOS

VISIBILITY

Given the horizontal location of the UAVs, in this section we

derive the optimal altitude for a UAV to maximize the actual

mmWave coverage area of each single UAV. Since mmWave

signaling is susceptible to blockage, it is necessary to establish

secure LoS links between the UAVs and users for successful

communications.

Assume that a UAV is located at altitude h0 above the

origin with cylindrical coordinates (z, r, φ) = (h0, 0, 0) where

z denotes the altitude coordinate, r is the radial distance from

the z-axis, and φ is the azimuth angle. Considering a generic

point on the ground located at P = (0, r0, φ0), we investigate

whether it has a clear LOS view towards the UAV or the

LOS view is blocked by buildings, as shown in Figure 1. We

utilize the digital terrain model (DTM) which is a 3D computer

generated model of elevation data for representing the terrain

in an area. The DTM data provides the exact location and

dimension of the environmental obstacles, which is crucial for

mmWave cell planning. As shown in Figure 1, consider the

virtual LOS line connecting a UAV and a generic point P
on the ground. The straight line connecting the UAV and the

ground point P is given by,

x

x− r0 cos(φ0)
=

y

y − r0 sin(φ0)
=

z − h0

z
(12)

from which, we can derive the altitude of each point on the

LOS link as:

z = f(r0, φ0) = h

(

1− r sin(φ)

r0 sin(φ0)

)

(13)

In order to efficiently utilize the DTM data, we discretize

the virtual altitude z with step size ∆z. Next, we can com-

pare the values k∆z for k = 0, . . . , z
∆z

with the practical

elevation of environment obstacles obtained from DTM. We
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define the following indicator function for the generic ground

point P = (0, r0, φ0):

I(r0, φ0) =

{

0 if ∃k
∣

∣k∆f(r0, φ0) ∈ DTM

1 O.W.

The indicator function determines whether any point of

the LOS link is registered on the DTM. In other words,

I(r0, φ0) = 1 indicates a clear LOS link towards the point

P , I(r0, φ0) = 0 shows a blocked LOS view. Note that the

smaller the value of step size ∆z, the more accurate is the

output of the indicator function.

Assuming that the radius of raw coverage area of a UAV

hovering at altitude h with transmit power P t is R(h, P t), the

actual mmWave coverage area of the UAV can be computed

as

A(h) =

∫ 2π

0

∫ R(h,P t)

0

I(r, φ)rdrdφ (14)

in which R is the radius of coverage circle in the absence of

environmental obstacles. Note that if I(r0, φ0) = 1, ∀r0 ≥ 0,

and ∀0 ≤ φ0 ≤ 2π, then A(h) = πR2, which is the maximum

attainable coverage area at altitude h.

Note that due to the practical limitations on the UAV

altitude, we have hmin < h < hmax. The optimal altitude

for maximum mmWave coverage area can be found as,

h∗ = argmaxA(h)
hmin<h<hmax

(15)

V. SIMULATION RESULTS

For simulations, we consider a 10 Km × 10 Km operation

area where the UAVs communicate over 30 GHz carrier

frequency in an urban environment with parameters α = 9.61,

β = 0.16, and (ηLOS , ηNLOS) = (1 dB, 20 dB) [24]. We

assume that the minimum allowable received signal power for

a successful transmission is ǫ = −60 dBm. We also consider

a repository of 16 UAVs in which there are four different

types of UAVs with maximum transmit powers of 35 dBm,

39 dBm, 43 dBm, and 50 dBm and there are four identical

UAVs of each kind. The flight altitude ranges between 400 m

and 4000 m.

Figure 2 illustrates the optimal resource allocation and 3D

placement of the UAVs for providing maximum coverage

without inter-cell interference in the area of interest. It can

be seen that only 13 UAVs out of the 16 available UAVs

are deployed in the area since deploying more UAVs would

unavoidably cause an interference. Indeed, only a single UAV

with transmit power 43 dBm is employed while the UAVs in

other groups are all utilized.

Figure 3 shows the users’ average received data rate versus

the number of users for two different distribution models for

the users. According to Figure 3, the average received data rate

for a given number of users is significantly lower in hotspot

areas (i.e., the truncated Gaussian distribution). This is in fact

due to the severe blockage caused by the neighboring obstacles

located in the hotspot area compared to the more distant and

uniformly distributed user scenario in which more users have

a chance of LOS connection towards the UAVs.

0

0.5

10

1

1.5

8

2

2.5

6

3

10
84

6
42

2
0 0

Fig. 2: The optimal 3D placement of the UAVs for maximum

coverage area while avoiding inter-cell interference.

0 50 100 150
3.8

4

4.2

4.4

4.6

4.8

5

5.2 106

Fig. 3: The deployment of the heterogeneous repository of the

UAVs to provide service for ground users for two different

distributions

Figure 4 shows the coverage percentage and the number

of deployed UAVs as a function of the network size for a

square area. Clearly, the number of deployed UAVs is not a

monotonically increasing function of the size of area. This is

due to the heterogeneity of UAVs and the disparity between

their coverage radii. Interestingly, based on the available

UAVs in the repository, the maximum coverage percentage

is achieved for a 10 Km × 10 Km area using only 13
UAVs. However, as the side length of the area increases to

11 Km, all the 16 UAVs can be deployed without any inter-

cell interference. Therefore, increasing the side length beyond

11 Km accentuates the resource deficiency as the coverage

percentage monotonically decreases. This arrangement of the
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Fig. 4: The coverage percentage and the number of deployed

UAVs for different network sizes.

UAVs is the optimal arrangement satisfying the constraints in

(6)-(9) and yields 71.54% coverage area.

VI. CONCLUSION

This paper developed an effective method for resource

allocation and optimal 3D placement of a set of heterogeneous

UAVs acting as flying mmWave base stations to provide wire-

less coverage for ground users in an area. First, considering the

statistical model of the environment, we derived the optimal

horizontal location of the UAVs to maximize the raw coverage

area. Then, in order to enable seamless mmWave connectivity,

we proposed a geometrical solution to optimize the altitude

of UAVs based on the exact realization of environmental

parameters. The developed method addresses an important

challenge facing the large scale adoption of mmWave for out-

door usage. Finally, simulation results show the effectiveness

of the developed 3D cell-planning and performance of the

proposed algorithm.
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