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ARTICLE INFO ABSTRACT

Keywords: Cooperative ad-hoc UAV networks have been turning into the primary solution set for situations where
FANET establishing a communication infrastructure is not feasible. Search-and-rescue after a disaster and intelligence,
UAV' surveillance, and reconnaissance (ISR) are two examples where the UAV nodes need to send their collected
l;\]?)lliltmg data cooperatively into a central decision maker unit. Recently proposed SDN-based solutions show incredible

performance in managing different aspects of such networks. Alas, the routing problem for the highly dynamic
UAV networks has not been addressed adequately. An optimal, reliable, and adaptive routing algorithm
compatible with the SDN design and highly dynamic nature of such networks is required to improve the
network performance. This paper proposes a load-balanced optimized predictive and adaptive routing (LB-
OPAR), an SDN-based routing solution for cooperative UAV networks. LB-OPAR is the extension of our recently
published routing algorithm (OPAR) that balances the network load and optimizes the network performance in
terms of throughput, success rate, and flow completion time (FCT). We analytically model the routing problem
in highly dynamic UAV network and propose a lightweight algorithmic solution to find the optimal solution
with O(|E|?) time complexity where |E| is the total number of network links. We exhaustively evaluate the
proposed algorithm’s performance using ns-3 network simulator. Results show that LB-OPAR outperforms the
benchmark algorithms by 20% in FCT, by 30% in flow success rate on average, and up to 400% in throughput.'

Load balancing
Performance evaluation

1. Introduction

Cooperative unmanned aerial vehicle (UAV) networks, also known
as flying ad-hoc networks (FANET), recently become extremely popular
for their ease of set-up and use, low price, and high maneuverabil-
ity in 3D space [1]. In such networks, nodes work cooperatively to
make the communication of two far away nodes possible by acting
as intermediate repeaters. Using such networks where implementing
the infrastructure is not feasible, or the infrastructure is damaged, is
crucially important. Wildfire monitoring [2], search and rescue after
a disaster [3], ISR [4], ad hoc UAV cloud service provider [5], and
border surveillance [6] are some examples to name. A promising ar-
chitecture for such networks uses software-defined networking (SDN)
as its cornerstone to add flexibility to the network control and man-
agement [7]. SDN separates the control plane from the data plane to
pass the decision-making process to a software-based controller. There
are excellent efforts in designing SDN-based topology management [7],
resource management [8], path planning [9], node positioning [10],
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and monitoring [11]. The SDN-based routing problem, of how to find
the optimal path from the source node to the destination, is also tackled
for multi-path routing [12], and low mobility UAV networks [13].
However, the SDN-based routing problem for highly dynamic UAV
networks is still a challenging unresolved problem to the best of our
knowledge.

In this paper, we consider a cooperative UAV network with a
central controller. We assume a low-bandwidth reliable communication
channel exists between the controller and the UAV nodes. However, the
UAVs need to transfer a high volume of data, such as high-resolution
pictures, videos, or thermal pictures. Hence, they need a high band-
width communication channel for data transfer. In this way, the control
plane and the data plane are separated, just like any other SDN-based
UAV network. It is worth mentioning that the controller can be a
ground or aerial controller with a line of sight or non-line of sight com-
munication with the nodes. Such communication could be borrowed
from the existing cellular network, be provided by the line-of-sight
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Fig. 1. System model (solid lines represent a direct link where the dashed lines represent a communication which may or may not be direct).

communication with a controller placed at a higher elevation, or use
a dedicated bandwidth for command and control, as it is the common
assumption in many UAV networks [1]. The controller is responsible for
decision-making in all network management processes. We assume the
routing, as one of the control management tasks, is also one of the con-
troller responsibilities. Fig. 1 represents a schematic view of our system
model. Since the controller is responsible for all network management
tasks, any algorithm required to be performed by the controller is
desired to be with a low computation and communication complexity
to prevent any potential delay in network management. This fact makes
the routing problem more challenging in such a network architecture.

Cooperative UAV networks typically use the conventional routing
algorithms designed for the conventional ad-hoc networks such as
Mobile Ad-hoc NETwork (MANET) and Vehicular Ad-hoc NETwork
(VANET). Ad-hoc On-demand Distance Vector (AODV) [14], Destina-
tion Sequenced Distance Vector (DSDV) [15], and Optimized Link State
Routing (OLSR) [16] are some instances. Such algorithms aim at finding
the shortest path between the source and the destination and do not
consider the other network characteristics. Furthermore, the highly
dynamic nature of UAV networks leads to fast disconnection and con-
sequently a need for multiple reroute processes [17]. Multiple reroute
processes dramatically increase the routing communication complexity
as well as overall end-to-end communication delay. In this case, the
data packets belonging to the same data file/stream may traverse
different paths, and hence they arrive out-of-order. The same side effect
is tackling the multi-path routing algorithms. TCP deals with some of
out-of-order packets as the lost packets and orders retransmission.

We recently published an optimized predictive and adaptive rout-
ing (OPAR) [18] for cooperative UAV networks to consider the path
lifetime in addition to the path length in the path selection process.
The aim was to reduce the reroute process’s overheads. We find that
considering the path lifetime can significantly improve UAV networks’
performance in terms of throughput, flow completion time (FCT), and
flow success rate. We further find that considering only the path
lifetime and path length in selecting the paths may cause an unbalanced
network load. Since the network uses a shared medium, unbalanced
load in the network may cause performance degradation in through-
put and consequently FCT, especially in the highly loaded networks.
Accordingly, in this paper, we extend the OPAR algorithm to propose
a load-balanced OPAR (LB-OPAR) routing algorithm by considering
the network load in addition to the path lifetime and path length in
selecting the paths. We show that this consideration does not impose
any extra routing traffic to the network in comparison with OPAR,
in the SDN-based setting. Accordingly, we model the entire problem
of the SDN-based routing algorithm in a cooperative UAV network

with an analytical optimization model. The proposed model is binary
linear programming (BLP) problem. While BLP problems are very well-
known to be NP-complete problems, we show that in the specific case
of the modeled BLP, we can find the optimized path using a graph-
based algorithmic solution. The algorithmic solution is lightweight with
the computational complexity of O(|E?|) where |E| is the number of
network links.

LB-OPAR needs only small-size messages to be sent to the controller
periodically. Each message contains three consequent positions of the
UAV node. The controller predicts the link lifetime of the UAV nodes
and uses the predicted values in solving the optimization problem. The
prediction algorithm is lightweight, with a computation complexity of
O(|V |?) where |V| is the number of UAV nodes. The controller uses its
own data to calculate the communication load on each node. Hence, no
further communication is required. The low communication complexity
and the low computational complexity of the LB-OPAR algorithm make
it a perfect fit for the SDN-based model.

To evaluate the performance of LB-OPAR, we use the ns-3 network
simulator [19]. We simulate the network to compare LB-OPAR with
the well-known baseline routing algorithms AODV, DSDV, and OLSR
as benchmarks. We compare the results with those of OPAR as well.
We show in Section 2 that the state-of-the-art uses these benchmarks
to find the routes in the cooperative UAV networks or build new
routing algorithms on the basis of these benchmarks. We selected the
algorithms for comparison that cover the wide range of reactive and
proactive algorithms as well as distance vector and link-state ones. We
measure the network throughput, FCT, and flow success rate as the
performance metrics. We show that LB-OPAR improves the network
throughput by up to four times the benchmarks. It decreases the FCT
for average 20% and increases the flow success rate by about 30%.

This work’s main contribution is to propose a load-balanced routing
algorithm for SDN-based cooperative ad-hoc networks. More specifi-
cally, (i) it analytically models the routing problem in the mentioned
systems with linear optimization technique and considers the path
length, lifetime, and load altogether; (ii) it proposes an algorithmic
solution for the proposed problem; (iii) it analytically proves the so-
lution’s complexity; (iv) it proposes a lightweight highly accurate link
lifetime prediction method; (v) it exhaustively evaluates the perfor-
mance of the proposed algorithm and compares it with the benchmark
solutions.

The rest of this paper is organized as follows. The state-of-the-art
is reviewed in Section 2. We propose the analytical model with its
theoretical solution of the LB-OPAR in Section 3. The performance of
LB-OPAR is evaluated and compared to the baseline solutions in Section
4. Finally, we conclude the paper in Section 5.
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2. Related work

Cooperative UAV networks typically use conventional routing al-
gorithms, which are proposed originally to be used in mobile ad-hoc
networks (MANETS), vehicular ad-hoc networks (VANETS), or wireless
sensor networks (WSNs). However, there are several routing algorithms
dedicatedly proposed for cooperative UAV networks. Thus, in this
section, we first review the conventional routing algorithms, then
we present the algorithms proposed dedicatedly for UAV networks.
Finally, we review the proposals for SDN-based UAV network routing
algorithms to cover the state-of-the-art.

Generally, there are two categorizations for conventional ad-hoc
routing algorithms [20]. Each of them looks at the problem from a
different viewpoint. However, they all are proposed to find the path
with the least number of hop counts, and they do not consider other
metrics such as path quality, reliability, or lifetime. The first looks
at the algorithms based on their nature of being proactive, reactive,
or hybrid. Proactive routing protocols periodically keep track of the
network topology changes, regardless of the demand for new routes.
Optimized link-state routing protocol (OLSR) [16] and destination
sequence distance vector (DSDV) [15] are two well-known instances
of this category. In contrast to proactive protocols, reactive protocols
attempt to find a route only when a new route is needed. Ad-hoc on-
demand distance vector (AODV) [14] is a very well-known instance
of this category. The second categorization considers the method of
implementing the routing algorithms to be link state or distance vector.
In the link-state approach, each node builds a general view of the
entire network topology to find the optimized paths. The OLSR protocol
belongs to this category. In contrast, each node needs to keep only the
next hop toward the destination and the path cost in the distance-vector
approach. Both AODV and DSDV use this approach in their routing.

Most of the routing algorithms proposed dedicatedly for UAV net-
works are built based on the conventional ad-hoc routing algorithms
and extend them to consider another metric in their path selection
process. As an instance, Bomio et al. [21] proposed enhanced AODV
(E-AODV) by taking into account a route reliability criterion. They
considered a 2D area to check whether two nodes are getting closer
or not. If their distance is going to be increased, the corresponding link
is discarded. Li et al. [22] proposed link-stability estimation-based pre-
emptive routing (LEPR) based on AODV. LEPR finds multiple disjoint
paths using the AODV algorithm, calculates the expected transmission
count (ETX) metric of [23] for each link of the route, and keeps all
routes to use them when the path with the best ETX becomes not
available anymore.

Pu et al. [24] proposed link quality and traffic-load aware OLSR
(LTA-OLSR) to find the path with the highest quality from the set of the
shortest paths found by OLSR. Song et al. [25] proposed OLSR-based
mobility and delay prediction (OLSR-PMD) to choose the more stable
next-hop nodes based on a prediction algorithm. Rosati et al. [26]
proposed predictive OLSR (P-OLSR) to add weight to the ETX metric
of each link based on the corresponding nodes’ relative speeds. Lyu
et al. [27] proposed Q-Network Enhanced Geographic Ad-Hoc Routing
Protocol based on GPSR (QN-GPSR). Authors reduced the premier
forwarding of GPSR [28] algorithm by applying Q-learning, a reinforce-
ment learning algorithm, into the GPSR routing protocol. Their results
show that QN-GPSR has a higher packet delivery ratio and a lower
end-to-end delay than the basic GPSR protocol. However, applying a Q-
network increases the computational complexity of the GPSR algorithm
by order of magnitude. Liu et al. [29] proposed another Q-learning
based Routing protocol for Flying Ad Hoc Networks and named it Q-
learning based multi-objective routing (QMR). Authors show that QMR
provides a higher packet delivery ratio, lower delay, and energy con-
sumption than existing Q-learning-based routing protocols. However,
the vast imposed computational complexity by the Q-learning algo-
rithm is the main drawback of this algorithm. Adaptive and Reliable
Routing Protocol with Deep Reinforcement Learning (ARdeep) [30] is
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also proposed to be applied to UAV networks. Although the authors
show that it performs better than the basic GPSR algorithm in terms
of average end-to-end delay and packet delivery ratio, it increases
the computational complexity by order of magnitude, just like other
deep learning-based algorithms. Although most of the computational
complexity source of ML algorithms belongs to the training phase, a
learned model might not be able to lead to high precision results in a
network with a highly dynamic nature [31]. To address this shortcom-
ing, the learning-based methods keep the learning phase active during
the network operation time to be regularly adjusted with the new live
data where such online learning needs high computational complexity.

Several other routing algorithms are proposed dedicatedly for UAV
networks, but they are special-purpose algorithms or only applicable
to the networks with specific missions. For instance, Sunder et al. [32]
designed a routing protocol for a UAV-based fueling system. Coelho
et al. [33] designed a routing algorithm for UAV networks where
UAVs are used as WiFi repeaters to maximize the coverage. The work
of [34] designed for package delivery networks. Cheriguene et al. [35]
proposed a Swarm energy-efficient multicast routing protocol for UAVs
flying in group formations, to facilitate the control and information
delivery among the UAVs while minimizing inter-UAV packet loss,
packet re-transmission, and end-to-end delay. It is obvious that such
mission-specific routing algorithms cannot be used as general-purpose
routing for all cooperative UAV networks.

An SDN architecture is proposed to be used in UAV networks
to increase the network control flexibility and improves the network
performance. Different architectures are proposed for SDN-based UAV
networks [36-39]. All the proposed architectures have a controller
or a set of distributed controllers that has/have direct, reliable com-
munication with the UAV nodes. Using such an architecture, any of
the network management tasks could be migrated into the controller.
However, the migrated tasks do not impose huge computational or
communication complexity into the controller. Routing, as an essential
network management task, could be migrated into the controller. To
the best of our knowledge, the problem of finding an optimal path in an
SDN-based UAV network has not yet been substantially studied. Several
recently published works mentioned this problem [12,13,39].

Ramaprasath et al. [13] proposed an SDN-based routing algorithm
that utilizes AODV in the initialization phase of the network. Alas, this
proposal cannot capture the high dynamicity of the UAV networks due
to its multiple long wait times during the routing procedure. Hence, this
algorithm’s networks of interest are the UAV networks with deficient
mobility. Authors of [12] proposed an SDN-based routing algorithm
that finds all possible paths toward the destination and divides the en-
tire data file among them. Each part of the data file is then sent through
one of the paths. As the out-of-order packet arrival is one of the main
challenges of the highly dynamic networks, this works increases the
number of such packets by using multiple paths. Authors also assume
that each UAV is equipped with different network interfaces. Hence,
it can send the data file part from different paths concurrently, which
poses a hardware limitation for networks aimed at using this algorithm.
Qi et al. [39] proposed traffic differentiated routing (TDR), a new SDN
architecture for UAV networks that includes two types of controllers,
cluster controllers and a coordination controller. In this architecture,
the network is clustered, and each cluster needs a controller. To arrange
different cluster controllers, a coordination controller is also required.
The routing algorithm of this paper is proposed to find the routes inside
the clusters. Besides their new network architecture, authors assumed
that the controller is aware of the current location and the nodes’ speed.
Using such information, the authors proposed an optimization problem
in which finding the optimal solution is not practically feasible. Hence,
they use approximation methods to find a near-optimal path. As we
mentioned earlier, the routing problem in SDN-based cooperative UAV
networks needs substantial work. Accordingly, we propose LB-OPAR
as a general-purpose routing algorithm for SDN-based UAV networks
in this paper. Table 1 represents a comparison between routing algo-
rithms proposed dedicated for UAV networks or could be used in them,
including LB-OPAR.
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Table 1
Routing Algorithms for Cooperative UAV Networks. (The comparison of this table is partially based on the results of Section 4 of this paper.).
Algorithm Mobility Routing Commun. Comput. SDN-based/ Load Success
Support Metric Overhead Overhead Fully-dist. Balancing Rate
AODV [14] Good Path len. High Low Fully-dist. X Medium
DSDV [15] VLimited Path len. VHigh Low Fully-dist. X VLow
OLSR [16] VLimited Path len. VHigh Low Fully-dist. X VLow
E-AODV [21] Good Distance High Low Fully-dist. X Low
LEPR [22] Good ETX High Low Fully-dist. X Medium
LTA-OLSR [24] VLimited RSSI+load VHigh Low Fully-dist. 4 VLow
OLSR-PMD [25] VLimited Delay VHigh Low Fully-dist. X VLow
P-OLSR [26] VLimited Weighted ETX VHigh Low Fully-dist. X VLow
QN-GPSR [27] Limited Link Quality VHigh VHigh SDN-based X Low
ARdeep [30] Medium PER*? — VHigh SDN-based X —
QMR [29] Limited Delay & Energy VHigh VHigh SDN-based X Low
[12] VLimited Multipath VHigh Low SDN-based X Low
[13] VLimited Path Len. High VHigh SDN-based X VLow
TDR [39] VLimited Link Availability — VHigh SDN-based X —
OPAR [18] VGood Path len. Low VLow SDN-based X VHigh
& lifetime
LB-OPAR VGood Path len., VLow Low SDN-based v VHigh
load & lifetime
aPacket error rate.
3. Proposed algorithm Table 2
Table of notations.
We model the routing problem in SDN-based cooperative UAV n Number of UAVs
networks with a linear programming (LP) optimization model. The i The ith UAV
o . h L . G(V,E) Network Graph
optimization model considers path length, path lifetime, and network v Set of graph vertices
load altogether. We define the path lifetime as the minimum lifetime of E Set of graph edges
all the links forming the path. Hence, we need to know the link lifetime e(i. j) The edge from node u; to node u,
of each network link. Obviously, the link lifetime depends mostly on T Link lifetime prediction matrix
h des’ t. H link lifeti dicti L The vector of nods’ load.
the n.o es’ movement. Hence, we propose a 1n. ifetime prediction o Link lifetime of ¢G, /)
algorithm to support LB-OPAR. We further consider the path load as I, The load of node u,
the maximum node load for the nodes participating in the path. We Xj) Binary variable corresponding to e(i, j)
define the node load as the number of the neighboring nodes engaged T The inverse of path lifetime
with data transmission, affecting the medium access accessible with i g:ﬁ }fgfitrhnew;ﬁl;;t
. . wy
the corresponding node. In other words, the node load is the number w, Path load weight
of nodes, in the corresponding node’s adjacency, that are sending or ¢ The matrix of all lifetime-load costs
forwarding data packets, i.e. they are a source of a data flow or engaged Siy the lifetime-load cost of e ;,
as forwarding nodes in a communication flow. Since the controller Spath i:e ma’f‘?‘“mfhfe“mejload COISt of a path o
manages the routes and knows the nodes’ location, it can calculate xi(to) e position of ; at time 7, along x-axis in 3D space
yi(ty) The position of u; at time 7, along y-axis in 3D space

nodes’ load. The proposed optimization problem variables are Binary,
which means that the model is a Binary LP problem. The Binary LP
problems are well-known to be non-polynomial problems in the NP-
complete category [40]. However, we show that the proposed problem
is an especial case in which its solution could be found using the
graph-based algorithmic method.

In this section, we propose the LP problem, considering that we
know the links’ lifetime and nodes’ load. We then propose the graph-
based algorithmic solution, which can find the solution of the Binary
LP problem. Finally, we present the details of how to predict the
link lifetime and calculate the node load by the controller. Table 2
represents the notations used throughout this paper.

3.1. LB-OPAR: SDN-Based load balanced Optimized Routing

On the one hand, it is generally a challenging problem to consider
multiple metrics in defining an optimization problem. Multi-objective
linear programming (MOLP) is a trivial modeling technique in such
cases. MOLP solution, if feasible, leads in a set of all efficient extreme
points, i.e. all maximal efficient faces. The optimal solution, then, is
based on the weights of importance of different objective functions. On
the other hand, finding a path requires an optimization problem with
integer or Binary variables, where solving the optimization problems, in
most cases, results in non-integer solutions. Rounding the non-integer
solutions to the closest integer value leads to a non-optimal solution.
Finding the optimized solution of most of the proposed optimization

z,(ty)
a,

The position of u; at time 7, along z-axis in 3D space
; The azimuthal degree of node u; direction
0, The polar degree of node u; direction
v;(ty) The speed of node i in time ¢,
The acceleration of node i in time ¢,

(o)
((;’)) Euclidean distance between u; and u; at time 1,
o
((t’), N Euclidean distance traversed by node u; in time [t, 1,]
oot

Communication range

problems in routing and path planning is not feasible [32,34,39]. Ac-
cordingly, the optimization problem’s design has to be such that finding
the optimal solution becomes feasible, if possible. Hence, we carefully
designed the following optimization problem, which is a Binary LP
problem. In this problem, we assume that we have a matrix of all links’
lifetimes, i.e. 7, as well as the vector of all nodes’ load, i.e. L.

min Z wyx; )+ w T +wsL
(i,))EE
i€{l,...,n}
je{l n}
Subject To: Z X5y =1 (€D)]
(s.)EE
Y X =0 )
(i,5)EE
> X =1 3)

(i.d)eE
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> xwp =0 4
(d,)eE
D xan= X Xga )
(i.))EE U.k)EE
i#s jd
X(i.j)
T> "L (6)
)
n
X; = Z X j) @
Jj=0
J#i
L > x;l; (8
x5 €1{0,1} ©)
0<T<1 (10)

The objective function of this problem is to minimize the path length
as well as path load, and maximize the path lifetime. The significance of
each of the path length, lifetime, and load is set by setting the weights
w,, Wy, and ws, respectively, where ZL , w; = 1. The Binary variables
xS represent whether the corresponding network link ¢; ; participate
in the optimal path or not. If the link ¢ ;, is selected to be a part of
an optimized path, x; ;) is set to one, elsewhere it is set to zero. In this
objective function, T and L represent the inverse path lifetime, and
the path load, respectively. While T has to be minimized according to
the objective function, it has to be greater or equal to (’” for all links
X(;,j)S> according to Constraint (6). It is the idea to find the path lifetime,
i.e. the minimum link lifetime for the links participated in the path, and
consider it in the objective function. Similarly, the path load L has to
be minimized. To find the path load we minimize L in the objective
function where in Constraint (8) we force L to be greater than or equal
to x;/;, where according to Constraint (7)x; = Z;:O,j 4i X(.j» and [; is the
network load of node i.

We need Constraints (1) and (2) to let the source node start the path
and prevent it from being in a loop. Similarly, we need Constraints (3)
and (4) to let the destination node be chosen as the last node in the
path and terminate the path selecting operation. Constraint (5) assures
that the intermediate node, which receives an active link, has to have
an outgoing active link. As we discussed earlier, the proposed problem
variables are Binary, which is shown in Constraint (9). Finally, we
need Constraint (10) in practice to remove the links with a very short
lifetime. How short the link could be to be discarded depends on the
metric chosen for link lifetime to be second, millisecond, etc.

3.2. Optimization problem solution

Generally, Binary LP problems are in the NP-complete category
[40], and hence, they do not have a polynomial-time solutions. In this
section, we show that the LB-OPAR problem is a special case of Binary
LP problems where the optimal solution can be found via graph-based
algorithmic solution. Needless to say, the proposed algorithmic solution
might not be applicable to other Binary LP problems. While the solution
is as follows, Algorithm 1 represents the pseudocode of the algorithm.
We prove through Lemma 1 that the output of Algorithm 1 is the
optimal solution of the Binary LP problem proposed in Section 3.1. The
computation and space complexity of Algorithm 1 is also investigated
in Lemma 2.

To find the solution to the proposed optimization problem, i.e. the
optimal path, we consider the network as a graph G(V, E) where V and
E are the sets of graph vertices and edges, respectively. We consider
any UAV node as a vertex in graph G. Any two neighbor UAVs which
are located at the communication range of one another are shown by an
edge in graph G. Thus, the edge ¢ ;) in graph G represents a physical
link between UAV nodes »; and u;. If the communication range between
two nodes is not identical, we can consider e ;) as a directional edge
starting from node u; toward node u;, without loss of generality.

To find the optlmal path, we flI‘St deflne a lifetime-load cost metric
for each edge. We name this metric ¢, ; for edge ¢;; and we can
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ALGORITHM 1: Finding the solution of the optimization problem

objV alue = oo, {Set the initial objective value equal to 0.}
path = @, {Set the initial path to empty path.}
G« M)z% + w;L, {Form ¢, a n X n matrix containing the lifetime-load cost
of all graph edges The lifetime-load cost for each edge ¢ ; is calculated
as ¢ = o~ +w;sl;. ¥
Csorrea = descentSort(g), {Sort the lifetime-load cost matrix in descending
order.}
G'(V,E)=G(V,E), {Let G'(V, E) equal to the main graph G(V, E).}
while isPath(G'(V, E), src,dst) do
newPath = BFS(G'(V, E), src,dst), {To find the shortest path with BFS
algorithm.}
if newObjV alue < objV alue then
path = newPath,{Set the path equal to the new path.}
objV alue = newObjV alue,{Set the objective value equal to the
objective value of the new path.}
end if
Sparn < lifetime Load Cost(newPath), {Calculate the maximum path
lifetime-load cost for the edges forming the newPath.}
G'(V, E) < remove(Syup>Ssoreas G'(V, E)), {Remove all links with the
lifetime-load cost greater than or equal to the ¢,,,.}
end while

calculate this metric as ¢; ;) = w, — +w3l The basic idea of Algorithm
1 is to use the breadth-first searcfl (BFS) algorithm [41] to find the
shortest path in graph G(V, E), regardless of its lifetime or load. BFS
is the algorithm with the lowest computational complexity to find the
shortest path in a graph. We then calculate the objective value for the
path and the lifetime-load cost, i.e. ¢, ;, of all edges forming the path.
Next, we remove all graph edges with less or equal lifetime-load cost
than the maximum ¢ ;, of the path. We apply the BFS algorithm again
on the new graph. If the new path has a lower objective value, we
consider it as the optimal path; elsewhere, we discard the new path.
The procedure is repeated until no more paths stay between the source
and the destination nodes. Algorithm 1 shows the detailed pseudocode
of the proposed algorithm. We show in Lemma 1 that the output of
Algorithm 1 is the optimal path. We then calculate the space and
computational complexity of this algorithm in Lemma 2.

Lemma 1. If there is more than one path from the source node toward
the destination, Algorithm 1 returns the optimal path.

Proof. We prove this lemma using proof by induction. If there is at
least one path, we know that the BFS algorithm will find it at the
first iteration of the algorithm, and it is the optimal path. Assume that
the algorithm runs (n + 1) iterations to return the final answer. Again,
assume that after nth iteration, path p is returned as the optimal path,
and it is optimal until then. To prove the lemma, we need to show that
the output of the last iteration, i.e. (n + 1) iteration, will be optimal,
too. In this case, we have to show that the link(s) that we removed from
the graph in nth iteration did not lead to discarding the optimal path.
We use proof by contradiction to prove it. Hence, we assume that there
exists a path p with an objective value less than that of p, which at least
one of its links is discarded in nth iteration. It is worth mentioning that,
since Algorithm 1 first finds the shortest path and then calculates the
lifetime-load cost and discards some links, p cannot be shorter than p.
If one of p links is discarded, it means that the link has a lifetime-load
cost more than or equal to the maximum lifetime-load cost of p’s links.
When j is not shorter than p, all of its links have to have lifetime-load
costs less than that of the maximum cost of p’s links to become the
optimal path. We meet a contradiction; hence, the lemma is proved.
If there exists more than one path from the source node toward the
destination, Algorithm 1 returns the optimal path. []
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Lemma 2. The computational complexity of Algorithm 1 is O(|E|?) for
connected networks, i.e. there is at least one path between any pair of nodes.
This algorithm’s space complexity is also O(|V'| + | E|).

Proof. We know that the computational complexity of the BFS algo-
rithm is O(|V| + | E|) where |V | and | E| stand for the number of graph
vertices and edges, respectively [41]. In Algorithm 1, in the worst case,
we need to perform BFS | E| times. We further need to sort the lifetimes-
load cost matrix. The worst-case complexity of sorting the lifetime-load
cost matrix is O(|E|log|E|). Hence, the entire algorithm complexity
is O(IE|(IV| + |E]) + |E|log |[E]) = O(E|* + |E||V| + |E|log |E]). We
know that O(|E|) > O(|V]) for the connected networks. Hence, the
computational complexity of Algorithm 1 is O(|E|?). We further know
that the space complexity of the BFS algorithm is O(|V]). We need
further O(|E|) space to store the lifetime-load cost matrix. The space
complexity of the sort is O(1). Hence, the space complexity of Algorithm
1lisO(V| +|ED). O

It is worthy to mention that we have two reasons in choosing our
LP-based methodology instead of workflow scheduling techniques such
as the reference one multi-objective heterogeneous earliest-finish-time
(MOHEFT) [42], and the much improved one Fast workflow schedul-
ing approach based MOHEFT using BAcktracking and CHeckpointing
(FAMOBACH) [43]. Workflow scheduling techniques, in general, work
with much lower computational complexity than LP algorithms and
lead to near-optimal solutions. However, our proposed solution finds
the exact optimal answer to the problem as we proved it in Lemma 1,
and the computational complexity of our solution is O(| E|?) at its worst
case, as we shown in Lemma 2, which is fairly low in comparison with
the mentioned alternatives.

3.3. Link lifetime prediction and node load calculation

The optimization problem of Section 3.1 considers a n x n matrix
7 which contains link lifetimes as well as vector £ with »n elements
which contain nodes’ load. In this section, we describe how we predict
the link lifetimes and calculate node load to form 7 and £. We start
with 7 where we need only three consecutive node locations to fill
it. Each node regularly sends a packet to the controller, including its
last three consecutive locations in 3D space. The controller, in its turn,
calculates the azimuthal and polar directions of each node as well
as their speed and acceleration. Using this information, the controller
calculates the time for each pair of neighboring nodes that they go out
of the communication range of each other. To use simpler notations and
without the loss of generality, we consider the communication range of
all nodes equal and represent it with R. It is worthy to mention that
our predicted lifetimes stay precise if the corresponding nodes do not
change their direction or acceleration.

We represent the location of node u; at time ¢ by the tuple (x; (1), y;(?),
z;(1)). We show the distance traversed by the node y; in the time interval
[t;, t,]byd? and it could be easily calculated by Eq. (11).

(1y.12)

(@)

411 1=V 50— EDPHYH )=y )P H:02) =7 )P 11)

Considering the three consecutive node locations at times ¢, ¢;, and
t,, we calculate the azimuthal angle «; and polar angle ¢; of the node’s
movement direction using Egs. (12) and (13), respectively.

Yi(tp) — y; (1)

12
x;(t2) — x;(ty) a2

a; = tan™!(
z;(1y) — zi(ty)
(@)
(t1:12)
VIxi(ty) = x,(1)P + [yi(ty) — yi ()P
Zi(tz) - Zi(tl)

6, = cos™( ) 13)

= tan_l(

)
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We can calculate speed v; and acceleration g; of node u; respectively
using Egs. (14) and (15).

d(f)
V " (to.t1)
v(t) = t—nl a4

1~ 1o
a(ty) = ilty) — vi(ty) (15)
Iy =1

Next, we can calculate the predicted location of the node ; at time
(t, + 4r) using Eq. (16). Then, we can calculate the distance between
nodes u; and u; at time (t,+4¢) using Eq. (17). We represent this distance
by d ;(t, + At) where At is unknown. Knowing the communication
range of nodes, i.e. R, we can calculate the time Ar using Eq. (18).
This variable is the time required for the nodes to go out of the
communication range of one another and represents the lifetime of
the link e ;. Eq. (18) is a simple nonlinear equation with only one
unknown variable, i.e. Ar. This equation can be easily solved with any
lightweight numerical method such as the Bisection method. It is worth
mentioning that the LB-OPAR is a modular routing algorithm. Hence,
the prediction algorithm proposed here, while its accuracy is validated
in Section 4.2, could be replaced with any other prediction algorithm
with no need for any modification in the overall routing solution.

x;(t, + A1) = x;(t,) + (v; (1) At + %aiAtz)sin(Gi)cos(ai)
Yi(ty + At) = y;(ty) + (v;(t,) At + %a,-Atz)sin(B‘-)sin(ai) (16)
2,(ty + A) = z;(ty) + (0;(t2) At + %aiAtz)cos(Gi)

(x;(ty + A1) — xj(tz + At))2+
d((:;jiAy) = (y,'(tz + At) — yj(t2 + Al))2+ an
(z;(ty + At) — Zj(t2 + At))2

d) —R=0 (18)

(tp+41)

In a wireless network, a node can start transmitting only when
the channel is empty, which happens when no other node in the
communication range of the sending node transmits a packet. If, for any
reason, more than one node attempt to send a packet simultaneously,
a collision will happen. Generally, wireless networks, via their medium
access control (MAC) protocols, try to avoid the collision by preventing
one of the nodes from sending its own packets at the same time. This
fact leads to a delay in flow completion time. In our SDN-based system,
the controller is aware of all transmitting flows and their paths. Hence,
it can calculate the number of nodes that may attempt to send a packet
in the communication range of a sending node. We refer to this number
as the node’s load.

To calculate each node’s load, the controller starts the network oper-
ation with all zeros for the nodes’ load. Any time the controller receives
a route request, it calculates the optimal path and determines the nodes
affected by the new route. Any node included in the new route and all
its one hop neighbors are considered as the nodes affected by the new
route. Since the controller potentially knows all nodes’ locations, it can
also calculate the distance between each pair of nodes, and it further
knows the communication range of each node. Hence the controller
can determine the affected nodes by the new route. The controller then
increases the load of the determined nodes by one. Every time that a
route becomes unavailable, the controller decreases the affected nodes’
load by one. In two cases, a route is considered unavailable. First, the
source node does not receive the TCP acknowledgment packets, and
consequently, the source node orders a reroute. Second, the source node
receives the acknowledgment of the last packet of the file and sends a
flow termination message to the controller.

4. Performance evaluation

To evaluate the performance of LB-OPAR, we use ns-3 network
simulator. Ns-3 is a well-known discrete-event simulator widely used
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Table 3
Simulation setting.

Simulator version ns-3 3.30
Number of UAVs [50 100]

Area size 300 x 2000 X 50 m
Transmission power 7.5 dB m
Number of concurrent flows [1 10]

File size 5 MB

Simulation time 500 s

Speed range [0 50] m/s
Mobility models 3D RWP

TCP NewReno

IEEE 802.11b

Free-space propagation loss
Constant speed propagation delay

Traffic type

Wireless communication standard
Propagation loss model
Propagation delay model

for research and development [19]. We simulate the network for dif-
ferent scenarios with a different number of nodes and a different
number of concurrent file-transfer flows to exhaustively evaluate the
network performance in different situations. Network throughput, flow
completion time, and flow success rate are measured as the perfor-
mance evaluation metrics. To show the significant improvement of
LB-OPAR in the network performance, we compare its results with
the baseline benchmarks AODV, OLSR, DSDV as well as the OPAR
algorithm. We select the baseline algorithms that cover the proactive
and reactive, link-state and distance-vector, as well as SDN-based and
fully distributed routing algorithms. In this section, we first describe the
simulation setting. Next, we evaluate the prediction algorithm proposed
in Section 3.3. Since LB-OPAR is sensitive to its weights w,, w,, and w3,
we then perform an analysis on these weights to find the proper value
for them in different network settings. Finally, we represent the results
of the comparison among LB-OPAR, AODV, DSDV, OLSR, and OPAR,
along with the analysis.

4.1. Simulation setting

We simulate a UAV network with n nodes in a 2000 x 300 x 50
3D space. We perform two sets of simulation scenarios. In the first
set of the simulation scenarios, we vary the number of nodes from 50
to 100 in an increment step of 5. In this set of scenarios, five source
nodes start sending their data to five corresponding destination UAVs.
The generated traffic is FTP over TCP NewReno. A 5 MB data file is
sent in each flow. In the second set of scenarios, we set the number
of nodes equal to fifty, i.e. n = 50, and vary the number of concurrent
flows from one to ten. Each simulation instance is run for 500 s. UAV
nodes move based on two different random movement patterns, 3D ran-
dom waypoint, and 3D Gauss—-Markov model. While random waypoint
chooses its waypoints in a completely random manner, the Gauss—
Markov model is closer to pre-planned scenarios. It prevents the sudden
significant direction change by applying a limitation on the variability
of the movement angle. We choose these two mobility models to show
that LB-OPAR shows excellent performance in both random and pre-
planned scenarios. The speed range is set to [0 50] m/s. We run each
simulation instance 20 times with different random seeds, measure the
parameters of interest, and report the average results.

We set the transmission power to 7.5 dBm for each UAV. We use the
free-space propagation loss model, also known as Friis. The propagation
loss of UAV transmission is very well-known to behave close to the Friis
model. The constant speed propagation model is also selected as the
propagation delay model. UAV nodes use IEEE 802.11b as their wireless
communication standard. Table 3 represents the simulation parameters.

We measure the flow success rate, network throughput, and flow
completion time to make the comparison. We define flow success rate
as the rate of the flows that successfully deliver their entire 5 MB file to
the corresponding destination node in the simulation time. It is worth
mentioning that if the simulation time is infinite, all flows with any
of the routing algorithms can deliver their files successfully. However,
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practically it is not feasible to keep the simulation without stop time.
Hence, if a flow destination does not receive all of the 5 MB file’s
packets in the simulation time, we consider that flow as unsuccessful.
In the real world, each communication flow may have a deadline. The
simulation time is the mapping of the communication deadline concept
in the simulation world.

We use the standard definition for throughput, which is the rate of
successful packet delivery over the communication bandwidth, and it
is measured in Mbps. While we report the average throughput for all
successful flows, we find that it might not be fair to report the average
of raw throughput values. In some cases, a specific routing algorithm
works worse than the others and fails in finding the proper routes. As
an instance, it may successfully deliver just one file out of ten. Assume
that the source node and the destination be physical neighbors for
the successful flow. In this case, it achieves a close to 1 throughput,
where the other routing algorithms, which may have a perfect flow
success rate, will show much lower throughput. Hence, to report a
fair comparison, we weight the throughput with its corresponding flow
success rate.

Finally, we define FCT as the time between the first packet of the
5 MB file sent by the source node and the last packet of the same
file received by the destination node. Since the simulation time is
500 s, some flows may fail in delivering all of their packets to the
corresponding destination in the simulation time. Hence, we consider
the FCT equal to 500 for the unsuccessful flows as the lower bound for
the FCT of those flows.

4.2. Prediction evaluation

To evaluate the prediction algorithm presented in Section 3.3, we
design a simulation scenario and compare its results with those of
the extrapolation algorithm as a standard baseline. We use Newton
divided differences extrapolation [44] to predict node’s position in time
1, + At, using three consequent node positions in times #, f;, and t,.
It is worthy to note that all other standard extrapolation algorithms,
such as Lagrange extrapolation, result in the same value of the Newton
divided differences method [45]. We choose this algorithm for its better
computation complexity in comparison with the others. Next, we put
the predicted position in Eq. (17) to calculate the distance between u;
and u; at time 1, + 4¢, and form Eq. (18). Then, we use a lightweight
numerical method such as Bisection to find the root and equivalently
predict the link lifetime between the corresponding nodes. We measure
the prediction error of the link lifetime as the absolute difference
between the predicted lifetime and the simulated one.

We consider a network with a different number of nodes where
the nodes start moving for a warmup process of 100 s. We perform
the prediction and then continue the simulation for extra 500 s. We
predict the link lifetimes using both the algorithms of Section 3.3 and
the extrapolation. We then watch the links to measure their simulated
lifetimes. Next, We calculate the expected value of the error for both
methods in each scenario. Obviously, we predict the lifetime for the
links that already existed at the time of prediction. We consider the
lifetime of the links that last alive until the end of the simulation as the
remaining simulation time, i.e. 500 s. We further consider the lifetime
of the nodes in which the prediction returned a value more than the
simulation time, equal to the remaining simulation time. We run each
scenario 1000 times and calculate the expected value of the error and
its standard deviation. While the expected value of the error shows the
accuracy of the prediction algorithm, the standard deviation shows its
precision. The precision represents the interval of the error distribution
around the expected value. We find that the curves of all network
densities behave almost identical. Hence, we report only the results for
a network with 50 nodes.

Fig. 2 shows the cumulative distribution function (CDF) for the
results of the expected value and the standard deviation of the error for
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Fig. 2. A comparison of CDF of LB-OPAR prediction algorithm versus extrapolation.

Table 4 Table 5

Path load weight analysis. Weight Analysis for Different Network Loads.
No. of Flows 1 2 3 4 5 6 7 8 9 10 No. of Flows 1 2 3 4 5 6 7 8 9 10

0 0 0 0.1 0 0.3 0.4 0.7 0.6 0.7
s w, 0 0 0 01 0 03 04 07 06 07
No. of UAVs (5)51 go 252 (7)01 352 go z;s (9)0 25 (1)010 w, 03 03 03 02 05 04 04 015 02 015
Ws . . iy . . w, 07 07 07 07 05 03 02 015 02 015
Table 6

both prediction algorithms presented in Section 3.3 and the one use ex-
trapolation. Fig. 2a shows that the prediction algorithm proposed here
is on average about 70 s more accurate than the one use extrapolation.
Fig. 2b shows the CDF of the standard deviation around the expected
value, which represents the prediction precision. The lower standard
deviation value shows higher precision, and consequently, a more reli-
able prediction algorithm. This figure shows that the standard deviation
for the proposed prediction algorithm is averagely around 20 s, where
this value for the extrapolation algorithm is about 90 s. Regardless of
the accuracy of the algorithm, the standard deviation shows that the
proposed algorithm is more reliable than that of extrapolation since it
has fewer fluctuations.

4.3. Weight analysis

In this Section, we analyze the path length, path lifetime, and
path load weights of the LB-OPAR optimization problem, i.e. w;s.
Accordingly, we designed a simulation scenario with the same setting
of Table 3 where we vary the weights to measure the sensitivity of the
network performance versus this variation. In this simulation, we first
analyze the path load weight, i.e. w;. We vary the value of w; from 0
to 1 in an increment step of 0.1 and let w, = w,. Since Z,'3=1 w; =1, the
value of w, and w, could be calculated easily.

Simulation results show that the highest performance in terms of
throughput, success rate, and FCT is achieved for the values of wjs
mentioned in Table 4. The results show that for the network with less
load, assigning a value more than zero to w; might not benefit the
network performance. However, increasing the number of concurrent
flows needs a higher weight for w; to achieve better performance in
terms of all mentioned performance metrics. Furthermore, we find that
there is no optimal case with w; = 1 which means path lifetime and
path length always have an obvious effect in choosing the optimal path.
We also find that increasing the network density has no significant
effect on the value of ws.

Next, we analyze the effect of varying path-length weight, i.e. w,,
versus path lifetime weight, i.e. w,, for the fixed path load weight
represented in Table 4. By fixing the value of w; and varying the
values of w, and w, we find that the best achievable performance
is for the values represented in Tables 5 and 6 for different network
loads and different network densities, respectively. Table 5 shows that
for the network with less number of concurrent communication flows,
i.e. less traffic, the path lifetime weight, i.e. w, is more important in

Weight Analysis for Different Network Densities.
No. of UAVs 50 55 60 65 70 75 80 85 90 95 100

ws 0 0.1 0 02 01 02 O 0 0 0 0.1
w, 05 045 05 04 06 04 05 04 04 05 045
w, 05 045 05 04 03 04 05 06 06 05 045

comparison with path length. However, results show that the weights
of path lifetime and path length are almost equal for the network with
higher traffic. Table 5 also shows that the network density has no
significant effect on the values of path load and path lifetime weights.
Hence, for the network with five concurrent communication flows and
different numbers of UAVs, the best performance is achievable when
w; = w,, in most cases.

4.4. Simulation results

In this section, we compae the LB-OPAR simulation results with
those of OPAR, AODV, DSDV, and OLSR, for both RWP and G-M
mobility models. We compare the results for flow success rate, network
throughput, and flow completion time for different network densities
and different network loads, i.e. concurrent flows.

Fig. 3 shows the results for the flow success rate. DSDV and OLSR
routing protocols show less than 10% of flow success rate, in most
cases, which is mainly because of their inability in catching up with
the high dynamicity of the nodes’ movement in 3D space. AODV,
however, represents better performance in terms of flow success rate
in comparison with DSDV and OLSR. It successfully delivers 30% of
the flows, in average. Indeed, both OPAR and LB-OPAR significantly
outperform the other algorithms by the average of 60% flow success
rate. As it is obvious, increasing the network load leads to more
significant performance improvement for LB-OPAR compared to OPAR
by the average of 5%. For the less number of concurrent flows, since the
network load weight is zero or close to zero, no significant difference
is shown between LB-OPAR and OPAR, as it is the case for the network
with 5 concurrent flows and different densities, i.e. Figs. 3c and 3d.
Something worth mentioning is that AODV, DSDV, and OLSR show
a higher success rate under the RWP mobility model than G-M. It
seems that the randomness of the RWP model helps them to increase
their performance. A similar fact was previously discovered in different
network studies such as [46]. OPAR and LB-OPAR show no significant
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Fig. 4. A comparison of the throughput for different loads and densities.

difference under RWP and G-M mobility models, representing their
stability of performing well in different conditions.

Next, we investigate the network throughput for all the combi-
nations of different network loads, network densities, and mobility
models. Fig. 4 shows the results where the achieved throughput by
DSDV and OLSR is close to zero due to their failure in handling the
fast topology changes. Interestingly and in contrast to the conventional
mobile networks, increasing the number of concurrent flows shows no

significant effect on the throughput, which means in highly dynamic
networks, the bottleneck of the throughput is the reroute process due
to the topology change not the load of the network. For this parameter,
AODV shows much better performance in comparison with DSDV and
OLSR, while OPAR and LB-OPAR outperforms AODV by 100% im-
provements. OPAR and LB-OPAR show competitive behavior. However,
LB-OPAR outperforms OPAR in higher network loads and under the
RWP mobility model for about 20%. For different network densities,
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since there are only five concurrent flows and the network load weight
is zero or close to zero, we see no significant differences between LB-
OPAR and OPAR. However, they outperform AODV by the average of
100% improvements.

Fig. 5 shows the results for flow completion time. As we mentioned
earlier, we consider the simulation time as the lower bound of the FCT
for the failed flows. Hence, the results of Fig. 5 show the lower bound
for the different algorithms’ FCT. This figure includes the combination
of all network densities, loads, and the simulated mobility models.
For all simulation settings, OPAR and LB-OPAR show the lowest FCT
compared to the other routing algorithms. However, LB-OPAR for the
network with higher loads shows around 15% less FCT in comparison
with OPAR, under RWP mobility model. OPAR and LB-OPAR outper-
forms AODV by averagely 10%. AODV, in its turn, shows a significantly
lower FCT than that of OLSR and DSDV where their average FCT is
close to the simulation time, i.e. 500 s, due to their high failure rate.
In many cases, OPAR and LB-OPAR show close FCT results, which is
one of two cases. The first case is when there are one or a few number
of concurrent flows which lead to negligible effect of network load in
choosing the optimal path. The latter case owing to the fact that in
some cases, there is only one path, or there are several paths, but just
one of them has a reasonable objective value, where the others are very
long or with a very short lifetime. Hence, both the OPAR and LB-OPAR
select the same path, which leads to the close results.

5. Conclusions and future work

The highly dynamic nature of cooperative UAV networks causes
the conventional routing algorithms, which aim at finding the shortest
path, to fail in reaching the optimal network performance. While we
have shown, in our recently published work OPAR, that considering
the path lifetime in selecting the routes has a significant impact on
the network performance, in this paper, we extend OPAR to consider
the network load as well. Accordingly, in this paper, we proposed
load-balanced OPAR, an SDN-based routing algorithm for cooperative
UAV networks. We modeled the entire problem with an analytical
model and proposed a lightweight solution for the proposed model.
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We implemented LB-OPAR in the ns-3 network simulator and exhaus-
tively evaluated its performance. We show that LB-OPAR outperforms
the benchmark routing algorithms AODV, DSDV, and OLSR. It also
improves the performance of OPAR when the network works under
higher loads. We further found that the performance bottleneck in
highly dynamic UAV networks is basically the route breaks down,
more than any other reason. Hence, proposing a routing algorithm
to cover the multiple reroutes problem has significant importance in
improving cooperative UAV networks’ performance. Since LB-OPAR
has a lightweight computational and space complexity, we aim at
distributing the SDN controller tasks among all network nodes for fully
distributed networks as future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-20-1-0090 and the
National Science Foundation under Grant Number CNS-2034218. Any
opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the US government or AFRL.

References

[1] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, M. Debbah, A tutorial on UAVs for
wireless networks: Applications, challenges, and open problems, IEEE Commun.
Surv. Tutor. 21 (3) (2019) 2334-2360.

S. Islam, Q. Huang, F. Afghah, P. Fule, A. Razi, Fire frontline monitoring by
enabling UAV-based virtual reality with adaptive imaging rate, in: 2019 53rd

[2]

Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 368-372,
http://dx.doi.org/10.1109/IEEECONF44664.2019.9049048.


http://refhub.elsevier.com/S1570-8705(22)00070-1/sb1
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb1
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb1
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb1
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb1
http://dx.doi.org/10.1109/IEEECONF44664.2019.9049048

M. Gharib et al.

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

H. Peng, A. Razi, F. Afghah, J. Ashdown, A unified framework for joint mobility
prediction and object profiling of drones in UAV networks, J. Commun. Netw.
20 (5) (2018) 434-442, http://dx.doi.org/10.1109/JCN.2018.000068.

C. Kerr, R. Jaradat, N.U. Ibne Hossain, Battlefield mapping by an unmanned
aerial vehicle swarm: Applied systems engineering processes and architectural
considerations from system of systems, IEEE Access 8 (2020) 20892-20903,
http://dx.doi.org/10.1109/ACCESS.2020.2968348.

F.Z. Bousbaa, A. Lakas, A.E. Rezigat, H.S. Benguettache, N. Lagraa, C.A. Kerrache,
A.E.K. Tahari, GTSS-UC: A game theoretic approach for services’ selection in UAV
clouds, in: Proceedings of the 2021 IEEE/ACM 25th International Symposium on
Distributed Simulation and Real Time Applications, in: DS-RT ’21, IEEE Press,
2021, http://dx.doi.org/10.1109/DS-RT52167.2021.9576124.

M.L. Laouira, A. Abdelli, J.B. Othman, H. Kim, An efficient WSN based solution
for border surveillance, IEEE Trans. Sustain. Comput. 6 (1) (2021) 54-65,
http://dx.doi.org/10.1109/TSUSC.2019.2904855.

T. Dapper e Silva, C.F. Emygdio de Melo, P. Cumino, D. Rosério, E. Cerqueira,
E. Pignaton de Freitas, STFANET: SDN-based topology management for flying
Ad Hoc network, IEEE Access 7 (2019) 173499-173514, http://dx.doi.org/10.
1109/ACCESS.2019.2956724.

H. Peng, Q. Ye, X.S. Shen, SDN-based resource management for autonomous ve-
hicular networks: A multi-access edge computing approach, IEEE Wirel. Commun.
26 (4) (2019) 156-162, http://dx.doi.org/10.1109/MWC.2019.1800371.

E. Bozkaya, B. Canberk, SDN-enabled deployment and path planning of aerial
base stations, Comput. Netw. 171 (C) (2020) http://dx.doi.org/10.1016/j.
comnet.2020.107125.

S. ur Rahman, G.H. Kim, Y.Z. Cho, A. Khan, Positioning of UAVs for throughput
maximization in software-defined disaster area UAV communication networks, J.
Commun. Netw. 20 (5) (2018) 452-463, http://dx.doi.org/10.1109/JCN.2018.
000070.

Z. Zhao, P. Cumino, A. Souza, D. Rosdrio, T. Braun, E. Cerqueira, M. Gerla,
Software-defined unmanned aerial vehicles networking for video dissemination
services, Ad Hoc Netw. 83 (2019) 68-77, http://dx.doi.org/10.1016/j.adhoc.
2018.08.023.

G. Secinti, P.B. Darian, B. Canberk, K.R. Chowdhury, Resilient end-to-end
connectivity for software defined unmanned aerial vehicular networks, in:
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications, PIMRC, 2017, pp. 1-5, http://dx.doi.org/10.
1109/PIMRC.2017.8292772.

A. Ramaprasath, A. Srinivasan, C.-H. Lung, M. St-Hilaire, Intelligent wireless ad
hoc routing protocol and controller for uav networks, in: Y. Zhou, T. Kunz (Eds.),
Ad Hoc Networks, Springer International Publishing, Cham, 2017, pp. 92-104.
C. Perkins, E. Belding-Royer, S. Das, Ad hoc On-Demand Distance Vector (AODV)
Routing, RFC 3561, Network Working Group, 2003, pp. 1-37, URL https://tools.
ietf.org/html/rfc3561.

C.E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers, SIGCOMM ’94: Proceedings of the confer-
ence on Communications architectures, protocols and applications, 24 (4), 1994,
pp. 234-244, http://dx.doi.org/10.1145/190809.190336.

T. Clausen, P. Jacquet, Optimized Link State Routing Protocol (OLSR), RFC
3626, Network Working Group, 2003, pp. 1-75, URL https://tools.ietf.org/html/
1fc3626.

M.F. Nowlan, N. Tiwari, J. Iyengar, S.0. Aminy, B. Fordy, Fitting square pegs
through round pipes: Unordered delivery wire-compatible with TCP and TLS, in:
Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, in: NSDI'12, USENIX Association, USA, 2012, p. 28.

M. Gharib, F. Afghah, E. Bentley, OPAR: Optimized predictive and adaptive
routing for cooperative uav networks, in: IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications Workshops, INFOCOM WKSHPS, 2021, pp. 1-6,
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484489.

2020. Link. URL https://www.nsnam.org/.

A. Boukerche, B. Turgut, N. Aydin, M.Z. Ahmad, L. B6l6ni, D. Turgut, Rout-
ing protocols in ad hoc networks: A survey, Comput. Netw. 55 (13) (2011)
3032-3080, http://dx.doi.org/10.1016/j.comnet.2011.05.010.

J.M.M. Biomo, T. Kunz, M. St-Hilaire, Routing in unmanned aerial ad hoc
networks: Introducing a route reliability criterion, in: IFIP Wireless and Mobile
Networking Conference, 2014, pp. 1-7.

X. Li, J. Yan, LEPR: Link stability estimation-based preemptive routing protocol
for flying ad hoc networks, in: 2017 IEEE Symposium on Computers and
Communications, ISCC, 2017, pp. 1079-1084.

D.S.J. De Couto, D. Aguayo, J. Bicket, R. Morris, A high-throughput path metric
for multi-hop wireless routing, in: Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, in: MobiCom ’03, Association
for Computing Machinery, New York, NY, USA, 2003, pp. 134-146, http://dx.
doi.org/10.1145/938985.939000.

11

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

Ad Hoc Networks 132 (2022) 102878

C. Pu, Link-quality and traffic-load aware routing for UAV ad hoc networks,
in: 2018 IEEE 4th International Conference on Collaboration and Internet
Computing, CIC, 2018, pp. 71-79.

M. Song, J. Liu, S. Yang, A mobility prediction and delay prediction routing
protocol for uav networks, in: 2018 10th International Conference on Wireless
Communications and Signal Processing, WCSP, 2018, pp. 1-6.

S. Rosati, K. Kruzelecki, G. Heitz, D. Floreano, B. Rimoldi, Dynamic routing for
flying ad hoc networks, IEEE Trans. Veh. Technol. 65 (3) (2016) 1690-1700.
N. Lyu, G. Song, B. Yang, Y. Cheng, QNGPSR: A Q-network enhanced geographic
ad-hoc routing protocol based on GPSR, in: 2018 IEEE 88th Vehicular Technology
Conference, VTC-Fall, 2018, pp. 1-6, http://dx.doi.org/10.1109/VTCFall.2018.
8690651.

B. Karp, H.T. Kung, GPSR: Greedy perimeter stateless routing for wireless
networks, in: MobiCom ’00, Association for Computing Machinery, New York,
NY, USA, 2000, pp. 243-254, http://dx.doi.org/10.1145/345910.345953.

J. Liu, Q. Wang, C. He, K. Jaffrés-Runser, Y. Xu, Z. Li, Y. Xu, QMR: Q-learning
based multi-objective optimization routing protocol for flying ad hoc networks,
Comput. Commun. 150 (2020) 304-316, http://dx.doi.org/10.1016/j.comcom.
2019.11.011.

J. Liu, Q. Wang, C. He, Y. Xu, ARdeep: Adaptive and reliable routing protocol
for mobile robotic networks with deep reinforcement learning, in: 2020 IEEE
45th Conference on Local Computer Networks, LCN, 2020, pp. 465-468, http:
//dx.doi.org/10.1109/LCN48667.2020.9314848.

A review of Al-enabled routing protocols for UAV networks: Trends, challenges,
and future outlook, Ad Hoc Netw. 130 (2022) 102790, http://dx.doi.org/10.
1016/j.adhoc.2022.102790.

K. Sundar, S. Rathinam, Algorithms for routing an unmanned aerial vehicle in
the presence of refueling depots, IEEE Trans. Autom. Sci. Eng. 11 (1) (2014)
287-294.

A. Coelho, E.N. Almeida, P. Silva, J. Ruela, R. Campos, M. Ricardo, Re-
deFINE: Centralized routing for high-capacity multi-hop flying networks, in:
International Conference on Wireless and Mobile Computing, Networking and
Communications, WiMob, 2018, pp. 75-82.

B.N. Coelho, V.N. Coelho, I.M. Coelho, L.S. Ochi, R.H. K., D. Zuidema, M.S. Lima,
A.R. da Costa, A multi-objective green UAV routing problem, Comput. Oper. Res.
88 (2017) 306-315.

Y. Cheriguene, S. Djellikh, F.Z. Bousbaa, N. Lagraa, A. Lakas, C.A. Kerrache,
A.EK. Tahari, SEMRP: An energy-efficient multicast routing protocol for UAV
swarms, in: Proceedings of the IEEE/ACM 24th International Symposium on
Distributed Simulation and Real Time Applications, in: DS-RT ’20, IEEE Press,
2020, pp. 182-189.

G. Secinti, P.B. Darian, B. Canberk, K.R. Chowdhury, SDNs in the sky: Robust
end-to-end connectivity for aerial vehicular networks, IEEE Commun. Mag. 56
(1) (2018) 16-21, http://dx.doi.org/10.1109/MCOM.2017.1700456.

C. Singhal, K. Rahul, Efficient QoS provisioning using SDN for end-to-end data
delivery in UAV assisted network, in: 2019 IEEE International Conference on
Advanced Networks and Telecommunications Systems, ANTS, 2019, pp. 1-6,
http://dx.doi.org/10.1109/ANTS47819.2019.9118086.

X. Zhang, H. Wang, H. Zhao, An SDN framework for UAV backbone network
towards knowledge centric networking, in: IEEE INFOCOM 2018 - IEEE Confer-
ence on Computer Communications Workshops, INFOCOM WKSHPS, 2018, pp.
456-461, http://dx.doi.org/10.1109/INFCOMW.2018.8406959.

W. Qi, Q. Song, X. Kong, L. Guo, A traffic-differentiated routing algorithm in
flying ad hoc sensor networks with SDN cluster controllers, J. Franklin Inst.
B 356 (2) (2019) 766-790, http://dx.doi.org/10.1016/j.jfranklin.2017.11.012,
Special Issue on Modeling, Analysis and Control of Networked Autonomous
Agents.

R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W.
Thatcher (Eds.), Complexity of Computer Computations, 1972, pp. 85-103.
T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
second ed., The MIT Press, 2001.

J.J. Durillo, H.M. Fard, R. Prodan, MOHEFT: A multi-objective list-based method
for workflow scheduling, in: 4th IEEE International Conference on Cloud Com-
puting Technology and Science Proceedings, 2012, pp. 185-192, http://dx.doi.
0rg/10.1109/CloudCom.2012.6427573.

M.R. Bouzidi, M. Daoudi, B. Ziani, K. Boukhalfa, C.A. Kerrache, N. Lagraa,
FAMOBACH: A fast and survivable workflow scheduling approach based MO-
HEFT using backtacking and checkpointing, Comput. Commun. 171 (2021)
16-27, http://dx.doi.org/10.1016/j.comcom.2021.02.005.

E.E. Kalu, Numerical Methods with Applications: Abridged, 2010.

J. Kiusalaas, Numerical Methods in Engineering with Python, Cambridge
University Press, 2005.

A. Singla, C.-Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: Networking data centers
randomly, in: 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 12, USENIX Association, San Jose, CA, 2012, pp. 225-238.


http://dx.doi.org/10.1109/JCN.2018.000068
http://dx.doi.org/10.1109/ACCESS.2020.2968348
http://dx.doi.org/10.1109/DS-RT52167.2021.9576124
http://dx.doi.org/10.1109/TSUSC.2019.2904855
http://dx.doi.org/10.1109/ACCESS.2019.2956724
http://dx.doi.org/10.1109/ACCESS.2019.2956724
http://dx.doi.org/10.1109/ACCESS.2019.2956724
http://dx.doi.org/10.1109/MWC.2019.1800371
http://dx.doi.org/10.1016/j.comnet.2020.107125
http://dx.doi.org/10.1016/j.comnet.2020.107125
http://dx.doi.org/10.1016/j.comnet.2020.107125
http://dx.doi.org/10.1109/JCN.2018.000070
http://dx.doi.org/10.1109/JCN.2018.000070
http://dx.doi.org/10.1109/JCN.2018.000070
http://dx.doi.org/10.1016/j.adhoc.2018.08.023
http://dx.doi.org/10.1016/j.adhoc.2018.08.023
http://dx.doi.org/10.1016/j.adhoc.2018.08.023
http://dx.doi.org/10.1109/PIMRC.2017.8292772
http://dx.doi.org/10.1109/PIMRC.2017.8292772
http://dx.doi.org/10.1109/PIMRC.2017.8292772
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb13
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb13
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb13
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb13
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb13
https://tools.ietf.org/html/rfc3561
https://tools.ietf.org/html/rfc3561
https://tools.ietf.org/html/rfc3561
http://dx.doi.org/10.1145/190809.190336
https://tools.ietf.org/html/rfc3626
https://tools.ietf.org/html/rfc3626
https://tools.ietf.org/html/rfc3626
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb17
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484489
https://www.nsnam.org/
http://dx.doi.org/10.1016/j.comnet.2011.05.010
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb21
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb21
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb21
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb21
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb21
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb22
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb22
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb22
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb22
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb22
http://dx.doi.org/10.1145/938985.939000
http://dx.doi.org/10.1145/938985.939000
http://dx.doi.org/10.1145/938985.939000
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb24
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb24
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb24
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb24
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb24
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb25
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb25
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb25
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb25
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb25
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb26
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb26
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb26
http://dx.doi.org/10.1109/VTCFall.2018.8690651
http://dx.doi.org/10.1109/VTCFall.2018.8690651
http://dx.doi.org/10.1109/VTCFall.2018.8690651
http://dx.doi.org/10.1145/345910.345953
http://dx.doi.org/10.1016/j.comcom.2019.11.011
http://dx.doi.org/10.1016/j.comcom.2019.11.011
http://dx.doi.org/10.1016/j.comcom.2019.11.011
http://dx.doi.org/10.1109/LCN48667.2020.9314848
http://dx.doi.org/10.1109/LCN48667.2020.9314848
http://dx.doi.org/10.1109/LCN48667.2020.9314848
http://dx.doi.org/10.1016/j.adhoc.2022.102790
http://dx.doi.org/10.1016/j.adhoc.2022.102790
http://dx.doi.org/10.1016/j.adhoc.2022.102790
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb32
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb32
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb32
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb32
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb32
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb33
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb34
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb34
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb34
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb34
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb34
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb35
http://dx.doi.org/10.1109/MCOM.2017.1700456
http://dx.doi.org/10.1109/ANTS47819.2019.9118086
http://dx.doi.org/10.1109/INFCOMW.2018.8406959
http://dx.doi.org/10.1016/j.jfranklin.2017.11.012
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb40
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb40
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb40
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb41
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb41
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb41
http://dx.doi.org/10.1109/CloudCom.2012.6427573
http://dx.doi.org/10.1109/CloudCom.2012.6427573
http://dx.doi.org/10.1109/CloudCom.2012.6427573
http://dx.doi.org/10.1016/j.comcom.2021.02.005
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb44
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb45
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb45
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb45
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb46
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb46
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb46
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb46
http://refhub.elsevier.com/S1570-8705(22)00070-1/sb46

M. Gharib et al.

Mohammed Gharib is a research scholar at the Department
of Electrical and Computer Engineering, Clemson University,
Clemson, SC, US. He received the B.S. degree from the
Department of Computer Engineering, Baghdad University
of Technology, Baghdad, Iraq, in 2007. He received the
M.S. and Ph.D. degrees from the Department of Computer
Engineering, Sharif University of Technology, Tehran, Iran,
in 2009 and 2015, respectively. He was also a postdoctoral
researcher in the School of Computer Science, Institute
for Research in Fundamental Science (IPM), Tehran, Iran,
between 2016 to 2019; a postdoctoral researcher in the
Department of Computer Science, Johns Hopkins Univer-
sity, Batimore, MD, US, 2019-2020; and a postdoctoral
researcher in the School of Informatics, Computation, and
Cyber Systems, Northern Arizona University, Flagstaff, AZ,
US, 2020-2021. His research interests include multi-hop
wireless networks, name data networking, cloud network,
and their security aspects.

Fatemeh Afghah is an Associate Professor with the De-
partment of Electrical and Computer Engineering, Clemson
University. She was affiliated with the School of Infor-
matics, Computing and Cyber Systems, Northern Arizona
University (NAU), Flagstaff, AZ, USA, where she is the
Director of Wireless Networking and Information Processing
(WiNIP) Laboratory. Her research interests include wireless
communication networks, decision making in multi-agent
systems, radio spectrum management, PUF-based security,
and artificial intelligence in healthcare. Her research has
been continually supported by NSF, AFRL, AFOSR, NIH and
ABOR. She is the recipient of several awards including the
Air Force Office of Scientific Research Young Investiga-

12

Ad Hoc Networks 132 (2022) 102878

tor Award in 2019, NSF CAREER Award in 2020, NAU’s
Most Promising New Scholar Award in 2020, and NSF
CRII Award in 2017. She is the author/co-author of over
90 peer-reviewed publications and served as the associate
editor for several journal including Elsevier Ad hoc net-
works, Springer Neural Processing Letters and the organizer
and TPC chair for several international IEEE workshops
in the field of UAV communications and Al, including
IEEE INFOCOM Workshop on Wireless Sensor, Robot, and
UAV Networks (WiSRAN’19), IEEE WOWMOM Workshop
on Wireless Networking, Planning, and Computing for UAV
Swarms (SwarmNet’20&21), and 2021 NSF Smart Health PI
workshop on “Smart Health in the AI and COVID Era”.

Elizabeth Serena Bentley has a B.S. degree in Electri-
cal Engineering from Cornell University, a M.S. degree
in Electrical Engineering from Lehigh University, and a
Ph.D. degree in Electrical Engineering from University
at Buffalo. She was a National Research Council Post-
Doctoral Research Associate at the Air Force Research
Laboratory (AFRL) in Rome, NY. Currently, she is em-
ployed by the AFRL Information Directorate, performing
in-house research and development in the Communication
Technology & Systems Branch and managing the Cross-Layer
Heterogeneous Autonomous Resilient On-Demand Networks
(CHARON) program that focuses on mission responsive
swarm networking. Her research interests are in cross-layer
optimization, swarm networking, directional networking,
wireless multiple-access communications, and modeling and
simulation.



	LB-OPAR: Load balanced optimized predictive and adaptive routing for cooperative UAV networks
	Introduction
	Related work
	Proposed algorithm
	LB-OPAR: SDN-Based load balanced Optimized Routing
	Optimization problem solution
	Link lifetime prediction and node load calculation

	Performance evaluation
	Simulation setting
	Prediction evaluation
	Weight analysis
	Simulation results

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


