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Abstract—In this paper, considering a heterogeneous set of
drone-mounted base stations (DBSs) that operate on the same
frequency band, we optimize the 3D position of the DBSs
to maximize the aggregate throughput with minimal power
consumption. Given a minimum acceptable received power in the
downlink, we formulate an optimization problem to guarantee
the wireless coverage for all users. However, the interference
between the adjacent cells with overlapping coverage areas can
degrade the downlink transmission rate for users. In order to
decrease the intercell interference, we formulate a novel and
computationally-efficient beamforming method to alleviate the
inter-cell interference between the overlapping DBSs. We find
the closed-form Nash equilibrium for the beamforming vectors
which results in maximum downlink transmission rate without
requiring any coordination among the DBSs. This is particularly
useful for the drone-based wireless network where implementing
computationally-intensive protocols is not a viable option due to
strict constraints over the battery of DBSs. Simulation results
demonstrate the effectiveness of the proposed solution and pro-
vide valuable insights into the performance of the heterogeneous
drone-based small cell networks.

Index Terms—Drone Base Station (DBS); Power efficiency;
Resource optimization; Game Theory.

I. INTRODUCTION

The cellular telecommunications may avail from drone-
mounted base stations (DBSs) to satisfy the coverage and rate
requirements of wireless users in areas which lack coverage or
are heavily congested, such as hotspot areas [1], [2]. However,
developing fully fledged drone-based wireless networks brings
forward unique technical challenges. In particular, the 3D
deployment of DBSs is of paramount importance as it directly
impacts the coverage and power consumption of the network
[3]. Furthermore, managing the network interference becomes
more challenging due to the fact that ground users may receive
strong line-of-sight (LoS) signals from multiple DBSs [4], [5].
On the other hand, the limited on-board energy of the DBSs
calls for effective and yet, computationally efficient algorithms
to address the interference [6].

The deployment of DBSs has been the subject of concerted
research in recent years. The authors in [7], [8] derived
the optimal flight altitude for a single DBS to maximize
the coverage area for a fixed value of transmit power. The
work in [9] extended the previous results for the Rician
fading channels. The positioning and the effect of intercell
interference for two identical DBSs that hover at the same
altitude is studies in [10]. The authors in [11] proposed a
method for fast deployment of identical BSs with overlap-

ping coverage areas without addressing the severe intercell
interference. Most existing studies in the recent of the art,
consider the deployment of homogeneous DBSs in which the
DBSs have identical characteristics such as the flight altitude
and transmit power. Furthermore, the number of DBSs to be
deployed in a region is considered as a known parameter,
whereas in practical scenarios, this parameter depends on the
particular application, the environment, and the availability of
the resources.

In this work, our goal is to bridge this gap by considering
the deployment of a heterogeneous repository of DBSs in an
interference channel where the intercell interference is miti-
gated by a computationally-efficient algorithm. In particular,
the main contributions of this work are as follows:

• Considering a repository of heterogeneous DBSs with
varying transmit power and flight altitude, we jointly
derive the optimal resource allocation strategy (i.e., se-
lecting a subset of available DBSs) and 3D placement
of the DBSs. The goal is to minimize the total transmit
power while maintaining the desired downlink received
signal strength. In contrast to the existing literature, the
type and the number of DBSs that need to be deployed
are not known in advance.

• Assuming that the DBSs are operating in the same
spectrum, we formulate a novel beamforming method in
the context of game theory to alleviate the impact of inter-
cell interference between the DBSs.

The rest of this paper is organized as follows. Section II
presents the system model and describes the air-to-ground
channel model. The problem formulation and the proposed
methodology for optimal horizontal placement of the DBSs
are presented in Section III. The interference management
is addressed in Section IV where a non-cooperative game
is formulated between the neighboring DBSs to optimize
their downlink beamforming vectors and the closed form
solution for Nash Equilibrium is derived. Numerical results
are provided in Section V. Finally, Section VI concludes the
paper and discusses the future path of this research.

II. SYSTEM MODEL

We consider a repository of DBSs in which the DBSs
are classified into C different groups based on their nomi-
nal transmit power. The transmit power of a DBS in class
c ∈ {1, 2, . . . , C} is modeled as Pc ± σc where Pc is the
nominal transmit power and σc is the standard deviation from
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the nominal value. We further assume that there exist Nc DBSs
of type c in the repository such that N =

∑C
c=1 Nc is the total

number of available DBSs. Also, there are K mobile ground
users distributed in a 2D geographical area with low to medium
mobility. Let U denote the set of users.

The air-to-ground (A2G) channel is typically modeled by
considering two different propagation groups, namely the line-
of-sight (LOS) and the non-LoS (NLOS) links. The NLOS
links incur additional loss due to shadowing and scattering.
The total path loss for A2G channel is given by [7]:

Γ
∣∣
dB

= 20 log
(4πfcd

c

)
+ ηξ, (1)

where Γ is the total path loss, fc is the carrier frequency, c
is the speed of light, d is the distance between the DBS and
ground receiver, and ηξ is additional loss which depends on
the propagation group ξ ∈ {LOS,NLOS}. The corresponding
probability of a LOS link is given by the seminal work [7]:

ΨLOS =
[
1 +Ae−B(θ−A)

]−1

, (2)

in which, A and B are constant parameters determined by
the environmental factors and θ = tan−1(dr ) is the elevation
angle between a DBS located at (x, y, z) and a generic user
located as (x′, y′, z) where d =

√
(x− x′)2 + (y − y′)2 + h2

and r =
√
(x− x′)2 + (y − y′)2. The probability of a NLOS

link is ΨNLOS = 1−ΨLOS.
Our goal is find the optimal deployment of DBSs to

guarantee the wireless coverage for all users. A ground user k
is covered if its signal-to-noise ratio is (SNR) γ is greater
than a threshold ϵ, i.e., γk > ϵ It is shown in [12] that
the flight altitude of DBSs can be optimized independently
from their horizontal location. Thus, we assume that all the
deployed DBSs hover at their optimal altitude, which results
in maximum coverage disk for a given transmit power [12].

III. PROBLEM FORMULATION AND PROPOSED
METHODOLOGY

Considering a repository of DBSs, we investigate the joint
problem of selection and the 3D placement for a heterogeneous
set of of DBSs to provide wireless coverage for the ground
users. After the locations of all DBSs are determined, each
ground user is associated with the DBS that has the highest
SINR, which is the common practice in cellular wireless
networks. We formulate the following optimization problem:

minimize
I(c),Mc,(x,y)

C∑
c=1

Mc∑
i=1

I(c)Pc(x, y), (3)

s.t.
I(c) ∈ {0, 1}, (4)
Mc ∈ {0, 1, . . . , Nc}, (5)
Pc − σc ≤ Pc ≤ Pc + σc, (6)
h ≤ hopt, (7)

where I(c) is an indicator function that is set to one if class
c is selected for deployment and otherwise, it is set to zero.

Constraint (5) controls the number of DBSs from each selected
class c to be less than the total available DBSs in that class, i.e.,
Nc. Constraint (6) guarantees that the DBSs transmit at their
nominal power, and constraint (7) requires the flight altitude
to be less than the optimal value, as increasing the altitude
beyond hopt results in smaller coverage area [12]. Note that
hopt is computed to have γk > ϵ for all users k = 1, . . . ,K .
Finally, the goal of this optimization problem is to find the
optimal horizontal location of DBSs as well as the optimal
resource allocation strategy in order to minimize the aggregate
transmit power.

As there is no constraint to prevent potential overlaps
between the adjacent DBSs’ coverage disks, inter-cell inter-
ference is unavoidable. Next, we propose a novel algorithm to
solve the optimization problem (3) and then, we formulate a
Nash Bargaining Solution (NBS) to alleviate the interference.

A. Methodology

Due to its non-convexity, non-linear constraints, and the
large number of unknowns, the optimization problem stated in
(3) is very challenging to solve. Note that restricting the DBS
flight altitude to h ∈ (0, hmax

i ] in (7), causes the coverage
radius to be an increasing function of transmit power P t

i

[12]. Therefore, we can minimize the DBSs’ coverage radii
instead of their transmit power. We will do so by minimizing
the coverage radii of DBSs one at a time, starting from the
largest coverage radius. Indeed, for a given resource allocation
strategy, i.e., for a fixed indicator vector [I(1), . . . , [I(C)], the
problem reduces to the one of covering all ground users with a
set of disks with given radii. Let us consider a simpler problem
in which there is only one coverage disk and its location has
to be optimized in such a way that it covers the maximum
number of ground users. This problem is know as on-center
problem (OCP) in 2D space. A linear time O(n) algorithm for
solving OCP is proposed in [13]. Here, we propose a recursive
algorithm to tackle the optimization problem (3) for a fixed
indicator vector [I(1), . . . , [I(C)].

Without loss of generality, we arrange the DBSs in a
decreasing order of their transmit power. Recall that since the
flight altitude is restricted to h ≤ hopt, the coverage area
is a monotonically increasing function of the transmit power.
Thus, in essence, the DBSs are arranged in decreasing order
of their coverage area. Starting from the DBS class with the
largest coverage disk (i.e., c = 1), the location of DBS (i.e.,
the center of disk) is optimized using linear OCP algorithm
to cover the maximum number of users. Since one DBS of
class 1 is deployed, we update the M1 and subtract M1 from
N1 to update the number of available DBSs of class 1. In the
next step, from the remaining DBS classes, we select one that
covers the maximum number of ”uncovered” users, and the
algorithm continues until either all the users are covered or all
the resources are exhausted. The pseudocode for horizontal
placement of DBS is shown in Table 1.

The pseudocode in Table 1 finds the number of required
DBSs of each class along with their optimal horizontal location
for a given vector of indicator functions. There are 2C such

781

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 25,2022 at 20:56:56 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Horizontal Placement of DBSs
Data: [I(1), . . . , [I(C)], Pc and Nc ∀c, location of

users: Ψ = {(x′
k, y

′
k)|∀k}.

Result: {Mi, (xi, yi)}Ni=1

Initialization: Mi ← 0 for i = 1, 2, . . . , C
U ′ ← ∅

1 repeat
2 for c = 1, 2, . . . , C do
3 if I(c) = 1 then
4 Solve OCP to find the center (xc, yc) that

covers largest user subset K
5 U ′ ← K
6 U ← U −K
7 Mc ←Mc + 1
8 if Mc = Nc then
9 I(c)← 0

10 end
11 end
12 end
13 until U ′ = U or I(c) = 0 ∀c;
14 return {Mi, (xi, yi)}Ni=1

vectors and an exhaustive search to find the best resource
allocation policy can get out of hand for large values of
C. However, in practice, the number of DBSs classes in a
repository that are suitable for a specific task are limited to
small numbers. As the algorithm in Table 1 employs linear
OCP, it is possible to run an exhaustive search over all
indicator vectors to find optimal resource allocation strategy.
For large values of C, however, one can benefit from smart
search algorithms such as genetic algorithm [14] to find a near
optimal solution.

IV. NASH EQUILIBRIUM FOR DOWNLINK BEAMFORMING
VECTORS

Enabling airborne adhoc systems to efficiently operate in
the same spectral band is a key challenge for the drone
small cells. Similar to the terrestrial wireless cells, the inter-
cell interference caused by communication in an interference
channel degrades the quality of received signals on the ground
stations. There are many algorithms and solutions to allevi-
ate the impact of destructive co-channel interference for the
conventional terrestrial networks [15]. However, the difficulty
in the airborne small cell networks stems from the fact that
the DBSs are very battery-limited and thus, implementing the
conventional interference management methods for DBSs is
not a viable option due to overwhelming computational com-
plexity. In this section, we adopt the framework of bargaining
game theory [16] to introduce a simple and low-complexity
beamforming method to address the inter-cell interference.

We consider the scenario whereby M interfering DBSs
are trying to transmit their information in the downlink to
M ground users located in the overlapping region of their
corresponding coverage disks. Assuming that each DBS per-

forms single-stream transmission, and given that all channels
are frequency flat, we have the following complex baseband
symbols ym received by the ground users Tm:

ym = hT
mmwmsm +

M∑
l=1,l ̸=m

hT
lmwlsl + em, (8)

where sm, 1 < m < M is the transmitted symbols from DBS
Dm, hlm represents the K × 1 channel vector between DBS
Dl and user Tm, wm is the k×1 beamforming vector used by
DBS Dm, and nm is the zero mean additive Gaussian noise
with variance σ2. The maximum transmit power per DBS is
normalized to 1 which yields the following power constraint
on each DBS Dm: ∥ wm ∥2≤ 1, ∀m ∈ {1, 2, . . . ,M}.

Each DBS Dm seeks to optimize its weight vector wm

in order to maximize the quality of service received by its
corresponding ground user. However, there exists an interplay
between the strategies (i.e., optimizing the weight vectors) of
the DBSs as any selected value of wm impacts the choice of
wl, l ̸= m, and vice versa. Thus, the key question is how to op-
timize the beamforming vectors so as to maximize the down-
link rate for each individual DBS. To answer this question,
we assess the non-cooperative scenario in which the DBSs
act selfishly with no exchange of information. We formulate a
non-cooperative zero-sum game between the interfering DBSs
for which the Nash equilibrium is the accepted outcome
[17]. It is worth noting however, that allowing cooperation
between the DBSs can improve the performance. However, it
adds noticeable overhead to the system which puts additional
constraint on the battery of DBS. Moreover, the dynamic
nature of networking with DBSs requires frequent channel
estimation and information exchange across the network of
DBSs. Nonetheless, a cooperative beamforming solution with
low complexity is an interesting subject for future research.

In this work, we consider the non-cooperative
downlink beamforming game G as the triplet
G =

{
M, (Sm)|m∈M, (um)|m∈M

}
where:

• M is the set of players, i.e., the interfering DBSs;
• Sm is the strategy of DBS Dm which is its choice of

weight vector wm such that ∥ wm ∥2≤ 1;
• S−m is the vector of strategies of all DBSs except Dm;

S−m = [S1, . . . , Sm−1, Sm+1, . . . , SM ];

• um : [Sm, S−m] → R is the utility of each DBS Dm

which is the rate it achieves at its correponding ground
user.

For a given tuple of beamforming vectors
(w1, w2, . . . , wM ), the received rate at the ground users
is given by:

Rm = log2

(
1 +

|wT
mhmm|2

σ2 +
∑M

l=1,l ̸=m |wT
l hlm|2

)
. (9)

We define the utilities of the DBSs as

um(Sm, S−m) = Rm(w1, w2, . . . , wM ). (10)
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As the utilities depend on the strategies of the competing
players, we have a noncooperative game among the DBSs. In
the absence of coordination among the DBSs, the outcome of
the game will generally be the Nash equilibrium. A vector of
strategies (SNE

1 , SNE
2 , . . . , SNE

M ) is the Nash equilibrium if it
satisfies the following condition:

um(SNE
m , SNE

−m) ≥ um(Sm, SNE
−m), 1 ≤ m ≤M, (11)

which means that no DBS can unilaterally deviate from its
optimal Nash equilibrium strategy without decreasing its own
utility. By substituting (9) and (10) in (11) and by performing
some algebraic manipulations, we can find the unique equilib-
rium strategies as,

wNE
m =

h∗
mm

||hmm||
, 1 ≤ m ≤M, (12)

where h∗
ij is the complex conjugate of hij . The equilibrium

strategies in (12) correspond to the maximum-ratio transmis-
sion beamforming. This conclusion is resulted from the fact
that when DBS Dm uses the beamforming vector wNE

m at the
Nash equilibrium, there exists no other vector that can yield a
larger rate while satisfying the power constraint ∥ wm ∥2≤ 1.

V. SIMULATION RESULTS

For simulations, we consider the drone-based communica-
tions over 2 GHz carrier frequency, i.e., fc = 2 GHz, in an
urban environment with parameters a = 9.61, b = 0.16 [7].
We assume that the minimum allowable received signal power
for a successful transmission is ϵ = −60 dBm. We also
consider a repository of 12 DBSs in which there are three
different types of DBSs with maximum transmit power of
35 dBm, 39 dBm, and 43 dBm, and there are four identical
DBSs of each kind. The goal is to provide wireless coverage
for the ground users that are distributed in a 10 Km × 10
Km area. We consider the uniform and truncated Gaussian
distributions for users location. Assuming that the x-coordinate
and the y-coordinate are independent random variables, these
distributions for a rectangular area with size of Lx × Ly are
respectively given by [18]:

f tG(x, y) =
1

G
exp

(
Lx − µx√

2σx

)2

exp

(
Ly − µy√

2σy

)2

,

(21)

in which G is the normalization constant and µx, σx, µy , σy

are the mean value and standard deviation in the x and y
directions.

Fig. 1 illustrates the optimal resource allocation and the
horizontal placement of the DBSs as well as the user-DBS
association for snapshot of the ground users’ topology. In
particular, Fig. 1 shows the 2D projection of the DBSs and
their corresponding coverage disks. It can be seen that for
each coverage disk, there exists at least two ground users on
its boundary. Consequently, one cannot shrink any of these
coverage disks without leaving some ground user out of the
coverage area. In other words, the DBSs’ coverage radii are
minimized while providing the required service to the ground

-10 -5 0 5 10
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-4

-2

0

2

4

6

8

Y(
km

)

Fig. 1: An illustrative snapshot of the optimal placement of the
DBSs and the user-DBS association. Three classes of DBSs
with coverage radii of approximately 4km, 3km, and 2km are
deployed to cover the ground users.

users. It is seen that the total number of deployed DBSs from
each class are M1 = 1, M2 = 3, and M3 = 4, respectively.

Fig. 2 shows the optimal number of DBSs in order to satisfy
the coverage requirement of the ground users with minimum
average transmit power. In this figure, we can see that number
of DBSs is a monotonically increasing function of the number
of ground users. However, the number of DBSs does not solely
depend on the number of users, it also depends on how the
users are distributed in the area. According to Fig. 2, for a large
number of users, the required number of DBSs in a congested
hotspot scenario is less than the scenario in which the users
are evenly distributed in a larger area.

Figure 3 shows the average number of iterations of the
proposed algorithm for three different network sizes as the
number of users varies. In this figure, we can see that the
number of algorithm iterations is an increasing function of the
number of users and the network size. It shows that the average
number of iterations varies from 1.09 and 1.1 at K = 3 to 7.8
and 10.2 at K = 180, for the cases of 15 DBSs and 25 DSCs,
respectively. Given that the OCP problem in the proposed
algorithm is solvable with time complexity of order O(1),
figure 3 demonstrates that the proposed algorithm converges
within a reasonable number of iterations and scales well with
the network size.

VI. CONCLUSIONS

This paper discusses the practical scenario where a subset
of available DBSs needs to be deployed in a geographical
region to provide wireless connectivity for the ground users.
In particular, considering a heterogeneous repository of DBSs
with varying nominal transmit powers, we propose a novel
technique for optimal resource allocation (i.e., DBS selection)
and deployment of DBSs to satisfy the downlink received

783

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 25,2022 at 20:56:56 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100 120 140 160 180
Number of ground users

0

1

2

3

4

5

6

7

8

9

10
N

um
be

r o
f r

eq
ui

re
d 

D
BS

s

Fig. 2: The number of required DSBs vs. the number of users
for two random models of user distribution. The truncated
Gaussian distribution models the hotspot area where the den-
sity of users is maximum around a particular location and it
gradually fades away as the distance from the center increases.
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Fig. 3: Average number of algorithm iterations for reaching
the optimal horizontal location of DBSs, for different number
of users with N = 25, N = 20, and N = 25 DBSs.

signal strength indicator (RSSI) for one snapshot of the users’
distribution. The selection and deployment of the DBSs are
dictated by the user distribution in the geographical area. The
goal is to cover all the ground users, if possible. Thus, the
coverage disks of the DBSs will unavoidably overlap, which
results in inter-cell interference. We propose a simple and
effective beamforming method for the interfering DBSs in the
downlink to alleviate the effect of interference on the RSSI. In
the proposed technique, a non-cooperative game is formulated
among the interfering DBSs and the optimal strategy which

corresponds to the Nash equilibrium is derived. As for the
future directions of research, it is interesting to investigate the
effect of users’ mobility and dynamic changes in the A2G
channel on the system performance. Moreover, it is promising
to study a cooperative scenario where the DBSs can exchange
local information with adjacent cells to dynamically adjust
their beamforming for improved overall performance.
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