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1 | INTRODUCTION

The main objective of this work is to establish theory-driven high-dimensional generalized addi-
tive modeling method with nonlinear links. The methodology includes convergence rate, variable
selection consistency, and tuning parameter selection consistency. Additive models play impor-
tant roles in nonparametric statistical modeling and machine learning. Although this important
statistical learning tool has been used in many important applications and there are free soft-
ware available for implementing these models along with their variations, to our surprise,
there is no literature that has studied the high-dimensional generalized additive model (GAM)
with nonidentity link systematically with theoretical foundation. Generalized additive model-
ing allows nonlinear relationship between a response variable and a set of predictor variables.
This general setup includes the special case, namely, the generalized linear models (GLMs),
by letting each additive component be a linear function. In general, let (y;,X;),i=1, ... ,n be
independent observations, where y;s are response variables whose corresponding p-dimensional
predictor vectors are X;s. A generalized additive model (Hastie & Tibshirani, 1986) is
defined as

Pn
wi=Eyi|IX) =g (Z JS'(Xg)) , 1)

=

where g(-) is a link function, f;s are unspecified smooth functions, and Xj; is the jth component
of vector Xj. One of the functions could be a constant, which is the intercept term, but this is not
necessary. The number of additive components is written as p,, since it sometimes (usually in
high-dimensional setup) increases as n increases. A simple case that many people have studied is
Pn = p, Where the number of additive components is fixed and usually less than the sample size n.
The choice of link function is as simple as in GLMs, where people prefer to choose link functions
that make the distribution of the response variables belong to the popular exponential family. A
widely used generalized additive model has the identity link function g(u) = u, which gives the
classical additive model

Py
yi= ) fiXy) + e ()
J=1

where ¢;s are i.i.d random variables with mean 0 and finite variance ¢2.

On the other hand, high-dimensional data analysis has become a part of many modern days
scientific applications. Often the number of predictors p,, is much larger than the number of obser-
vations n, which is usually written as p, > n. One of the most interesting scale is p, increases
exponentially as n increases, that is, log p, = O(n”) for some constant p > 0. Fan and Lv (2011)
called this as nonpolynomial dimensionality or ultrahigh dimensionality.

In this article, we consider the generalized additive model in a high-dimensional setup. To
avoid identification problems, the functions are assumed to be sparse, that is, only a small pro-
portion of the functions are nonzero and all others are exactly zero. A more generalized setup is
that the number of nonzero functions, denoted s, also diverges as n increases. This case is also
considered in this article.

Many others have worked on generalized additive models. Common approaches use basis
expansion to deal with the nonparametric functions, and perform variable selection and
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estimation methods on the bases. Meier et al. (2009) considered a simpler case (2), with a new
sparsity-smoothness penalty and proved its oracle property. They also performed a simulation
study under logit link with their new penalty; however, no theoretical support was provided.
Huang et al. (2010) focused on the variable selection of (2) with fixed number of nonzero func-
tions and identity link function using a two-step approach: first group lasso (Bakin, 1999; Yuan
& Lin, 2006) on the bases to select the nonzero predictors and then use adaptive group lasso to
estimate the bases coefficients. They then established the selection consistency and provided the
rate of convergence of the estimation. Fan et al. (2011) proposed the nonparametric indepen-
dence screening (NIS) method in screening the model (2). However, the selection consistency
and the generalized link functions were not discussed. Marra and Wood (2011) discussed the
practical variable selection in additive models, but not in the high-dimensional setup. Amato
et al. (2016) reviewed several existing algorithms highlighting the connections between them,
including the nonnegative garrote, COSSO, and adaptive shrinkage, and presented some com-
putationally efficient algorithms for fitting the additive models. Nandy et al. (2017) extended
the consistency and rate of convergence of Huang et al. (2010) to spatial additive models. Fan
and Zhong (2018) studied the GAM with identity link under the endogeneity setting. All work
above are based on model (2). For GAM, that is, model (1), Tutz and Binder (2006) studied fit-
ting GAM and perform variable selection implicitly through likelihood based boosting. Later
Liu et al. (2013) considered a two-step oracally efficient approach in generalized additive mod-
els in the low-dimensional setup, but no variable selection in the high-dimensional setup was
done.

However, though widely used, no systematic theory about selection and estimation con-
sistency or rate of convergence has been established for generalized additive models with
nonidentity link functions in the high-dimensional setup.

In this article, we establish the theory part for generalized additive models with nonidentity
link functions in high-dimensional setup. We develop a two-step selection approach, where in the
first step we use group lasso to perform a screening, which, under mild assumptions, is able to
select all nonzero functions and not overselect too much. In the second step, the adaptive group
lasso procedure is used and is proved to select the true predictors consistently.

Another important practical issue in variable selection and penalized optimization problems
is tuning parameter selection. Various cross-validation techniques have been used in practice for
a long time. Information criteria such as Akaike information criterion (AIC), AICc, Bayesian
information criterion (BIC), Mallow’s Cp,, and so on have been used to select “the best” model
as well. Many equivalences among the tuning parameter selection methods have been shown in
the Gaussian linear regression case. However, the consistency of these selection methods were
not established. Later some variations of the information criteria such as modified BIC (Wang
et al., 2009; Zhang & Siegmund, 2007) extended BIC (Chen & Chen, 2008) and generalized infor-
mation criterion (GIC) (Fan & Tang, 2013) were proposed and shown to have good asymptotic
properties in penalized linear models and penalized likelihoods. However, the results are not use-
ful for grouped variables in additive models, for which basis expansion technique is usually used
and thus brings grouped selection.

In this article, we generalize the result of GIC by Fan and Tang (2013) to group-penalized
likelihood problems and show that under some common conditions and with a good choice of
the parameter in GIC, we are able to select the tuning parameter that corresponds to the true
model.

In Section 2, the model is specified and basic approach is discussed. Notations and basic
assumptions are also introduced in this section. Section 3 gives the main results of the two-step
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selection and estimation procedure. Section 4 develops the tuning parameter selection. Extensive
simulation study and real data example are presented in Section 5 followed by a short discussion
in Section 6. The proofs of all theorems are deferred to supplementary materials.

2 | MODEL

We consider the generalized additive model (1) with the link function corresponding to an expo-
nential family distribution of the response. For each of the n independent observations, the
density function is given as

@) = c(y)exp [ 1<i<n, ;R ?)

ybi — b(9i)]
—% |

Without loss of generality, we assume that the dispersion parameter 0 < ¢ < oo is assumed to
be a known constant. Specifically we assume ¢ = 1. We consider a fixed design throughout this
article, that is, the design matrix X is assumed to be fixed. However, we have shown in Appendix
A that the same theory works for a random design under simple assumptions on the distribu-
tion of X. The additive relationship assumes that the densities of y;s depend on Xjs through the
additive structure ; = Ef:l Ji(Xij). This is the canonical link. If we use other link functions, for
example, A(+), the theory also works as long as the functions A(-) satisfies the Lipschitz conditions
for some order. Let b¥(-) be the kth derivative of b(-), then by property of the exponential family,
the expectation and variance matrix of y = (yy, ... ,y»)", under mild assumptions of b(-), is given
by u(6) and ¢Z(6), where

u®) = (b)), ... .bV@,)" and X(0) = diag{b?(#), ... ,bP(0,)}. @)

The log-likelihood (ignoring the term c(y) which is not interesting to us in parameter estima-

tion) can be written as
n Pn Pn
1=y lyi (Z _ﬁ(x.;,-)) —b (Z fj(Xg))] . (5)
j=1

i=1 j=1

Assume that the additive components belong to the Sobolev space WS ([a, b]). According to
Schumaker (1981), see pages 268-270, there exists B-spline approximation

fi@) =Y Bix), 1<j<p ©)
k=1

with m, = K, + [, where K, is the number of internal knots and [ > d is the order of the splines.
Generally, it is recommended that d = 2 and [ = 4, that is, cubic splines.

Using the approximation above, Huang et al. (2010) proved that f,; well approximates f; in the
sense of rate of convergence that

b
= figll2 = / (500) — foy 0 2dx = O(m2y. @
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Therefore, using the basis approximation, the log-likelihood can be written as

) [ys (Z > ﬂﬁ%cxa)) ~b (Z ) f%‘iwfﬁ)] =3 (50 b (#"0)].

i=1 j=1 k=1 i=1 k=1 i=1
®

where g and ®; are the vector basis coefficients and bases defined below.

It is also worth noting that the number of bases m,, increases as n increases. This is necessary
since Schumaker (1981) mentioned that one need to have sufficient partitions to well approximate
Jiby frj. lf we fix my, thatis, let m, = my, though in the later part we will show the approach to esti-
mate the basis coefficients can have better rate of convergence, the approximation error between
the additive components and the spline functions ||fj(x) — fui(X)[l2 = [ j;b(}j(x) — [ 0))?dx]'/? =
O(1) will increase and lead to inconsistent estimations. Therefore, m,, or more precisely, K,,, need
to increase with n.

Our selection and estimation approach will be based on the bases approximated log likelihood
(8). Before starting the methodology, we list the notations and state the assumptions we need in
this article.

2.1 | Notations

The design matrix is Xuxp,) = (¥1, ... ,x,)". The basis matrix is @ym p,) = (P1, ... , ®,)T, where

D; = (h1061)s - s P, (K1), ee s D1, )y e s P, (Xip, )T

acic Bars - 0 _ 0 0 0 T
The true basis parameters are f° = (ﬁ;]r 'ﬂlm,.‘ Y TR ’ﬁpnm..) € [R™MiPs
We assume the functions fi, ... ,f, are sparse, then ﬁo is blockwise sparse, that is, the blocks
0 0
ﬁ 1= (ﬁ“i}ls LR sﬂ?mn)lr¢ ¢ﬁ P = (ﬂ:l],,l’ LR !ﬂgﬂm")‘r are Sparse'

Let u, be the expectation of y based on the true basis parameters and € =y — p,.

Define the relationship a, < b, as there exists a finite constant ¢ such that a,, < cb,,.

For any function f define ||f]l, = [ fabf 2(x)dx]'/2, whenever the integral exists.

For any two collections of indices S, S C {1, ... ,pn}, the difference set is denoted S — S. The
cardinality of S is denoted card(S). For any 6 € R™Pn, define 81, ... , 8, as its subblocks, where

6; € R™», and define the blockwise support

suppy(8) = [j € {1, ... ,pa}: 8; # 0}.

Define the blockwise cardinality cardp(8) = card(suppg(6)).

For S = {sy, ... .84} € {1, ... ,pn), define subblock vector &s :(63:, ,53;)7'.

The number of additive components is denoted p,, which is possible to grow faster than the
sample size n. Let T = suppg(ﬁﬂ) and T* be the complementary set. Let card(T) = s,,, where s, is
allowed to diverge slower than n.

Foreach U C {1, ... ,pn} with card(U — T) < m for some m, define

B(U) = {6 € R™Pr; suppy(8) C U},
B(m) = {B(U);forany U C {1, ... ,p,}; Card(U — T) < m}.
Let g be an integer such that g > s, and q = o(n). Define

By = {p € B : cardp(p) < q},

where B is a sufficiently large, convex, and compact set in [RP»",
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2.2 | Assumptions

Assumption 1 (On design matrix). Using the normalized B-spline bases, the basis matrix ®
has each covariate vector ®;,j = 1, ... , myp, bounded, thatis, 3 cg such that ||®;||, < \/r_‘!c(p,Vj =
1, ... ,my X pp.

Assumption 2 (Restricted eigenvalues RE). For a given sequence N,, there exist y and y; such
that

4 _8'oTos _
yoygsnmnl < e < ylmnly (9)
nll8|l;

where y; is a positive constant such that 0 < y, < 0.5, for all 8 € C, where 6 = (63', s 6;;) and

C={6€RP" : |||, # 0, ||6]l2 < N, and cardp(8) = o(s)} . (10)
Assumption 3 (On the exponential family distribution). The function b(@) is three times dif-

ferentiable with ¢; < b”(0) < ¢;! and |b"”'(0)| < ¢! in its domain for some constant ¢; > 0. For

unbounded and non-Gaussian distributed Y;, there exists a diverging sequence M,, = o( \/r_:) such
that

sSup max
peB, 1<i<n

b (|<I:,.Tﬁ|)) <M,. (11)

Additionally the error term ¢; = y; — yy,s follow the uniform sub-Gaussian distribution, that is,
there exist constants ¢; > 0 such that uniformly foralli =1, ... , n, we have

P(le;] > t) < 2exp(—cyt®) forany ¢ > 0. (12)

Assumption 4 (On nonzero function coefficients). There exist a sequence cy,, that may tend to
zero as n — oo such that for all j € T, the true nonzero functions f; satisfy

min||fi|l2 = ¢fap.
jeT "fj"Z = Lfn

We note that Assumption 1 is a standard assumption in high-dimensional models, where
the design matrix needs to be bounded from above. Assumption 2 is a well-known condition in
high-dimension setup on the empirical Gram matrix (Bickel et al., 2009). It is different from the
regular eigenvalue condition, since when n < p, the p X p Gram matrix has rank less than p, thus
it must have zero eigenvalues. Therefore, it is not realistic to bound the eigenvalues away from
zero for all v € RP»™», but we need to restrict to some space C. In our setup, C is the restricted
subblock eigenvalue condition on subblocks of the Gram matrix studied by Belloni and Cher-
nozhukov (2013). Though the lower bound and upper bound are imposed on the fixed design
matrix, we gave a derivation in supplementary materials that this condition holds when X is drawn
from a continuously differentiable density function which is bounded away from 0 and infinity
on the domain of X. This result is similar to the results in Huang et al. (2010).

Assumption 3 is a standard assumption to generalized models. Equations (11) and (12)
together control the tail behavior of the responses, and as mentioned by Fan and Tang (2013),
ensure a general and broad applicability of the method. Analogous assumptions to (11) can also
be seen in Fan and Song (2010) and Biihlmann and van de Geer (2011). Specifically, for example,
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for GAM with logit link function, we have b(0) = log(1 + exp(6)). It is easy to verify that both
its second and third derivatives have their absolute values all bounded from above by 1. For
Equation (11), observe that the first derivative is the mean of Bernoulli distribution, and thus
it is also bounded. The error term is also bounded by 1, therefore, taking c; = log(2) will make
Equation (12) satisfy all logistic regression cases. Moreover, bounded second moment in logis-
tic regression ensure that there exists e such that the probability p; of each observation satisfies
e<p<l-—e

Assumption 4 appears often in variable selection methodologies, because intuitively anonzero
function or covariate has to contribute enough to the response in order to be considered nonzero.

Remark 1. In Assumption 2, 8 = g — f, is the difference vector between a § and the true
coefficients f, thus we can view C as a restricted neighborhood of g, that is,

NgE = {B : |IB = Boll2 < Ny, my x cardp(8) < n* = o(n)} .

If B € N4¥, then by Assumption 2 we have

BB O DB By a
> yors " myl.
np—poz ™

This, together with the bounded variance assumption in Assumption 3, ensures the restricted
strong convexity of the target function, that is, for a g* € N ;f, we have

(B" — By)" @ Z(BYP(B” — Bo)
nllB = Boll;

> yocrz, " my', Ve NG (13)

3 | METHODOLOGY AND THEORETICAL PROPERTIES

We propose a two-step procedure for selecting high-dimensional additive models with generalized
link that has improved convergence rates compared with a single stage selection.

3.1 | Firststep: Model screening

The objective of this step is to recover the true support T of the additive components. Let T
be a random support given by a model selection procedure and |T| be the number of variables
selected. A good model selection procedure should satisfy the common screening consistency
conditions

T c T, |T| = O(s,), w.p.converging to 1. (14)

There have been many variable selection penalization (Fan & Lv, 2011; Fan & Peng, 2004; Fan
& Song, 2010; Van de Geer, 2008) in GLMs and (Huang et al., 2010) in linear additive models
where this condition holds. Specifically, Fan and Song (2010) satisfies the requirements in (14)
in GLMs and Huang et al. (2010) also satisfies (14) in additive models. In this article, we show
that under mild conditions, by maximizing the log-likelihood with group lasso-like penalization,
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we can select a model that satisfies (14). We also provide a rate of convergence of this first step
selection.
Define the objective function to be

n P
LB an) = =2 > [ (B7®0) — b (7)) + 4 Y. 1B (15)
J=1

i=1

Let B be the optimizer for (15), that is,

B = arg min L(B; An).
ﬁeRﬂnmn

Let T = suppy(B).

The objective function is the negative log-likelihood plus the group lasso penalization term,
and the parameters are estimated as the minimizers of the objective function. Here the negative
log likelihood function is averaged among the n observations to ensure that it is under the same
scale as the penalization function.

With this group lasso type penalized log-likelihood, the selected model has the following
properties.

Theorem 1. Consider the model T obtained by minimizing (15). Under Assumptions 1-4, for some
constant C and any diverging sequence y, > 0, choose the regularization parameter

i = v/ Yn + log(pnmn)
for bounded response (i.e., |y;i| < c), and the regularization parameter
Aub \/nT,, Yo log(p,, ny)
for unbounded sub-Gaussian response, as the sample size increases,
(i) With probability tending to 1,
|T| = OCsp)-

(ii) With probability tending to 1,
_25, M log(p,my) s
“ﬁo 3 ” = Op ( > L) + O(lnl mn?nyz )+ O(s2m y22 ")
for the bounded response and

P 2 _os M2 log(pamy) 2
D ”ﬁf _31"2 =0p (Snrf”rn%) + OO m2s,y, ) + O(s3ml 24y %)
=

for any diverging sequence y, and unbounded sub-Gaussian response.
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(i) If s,,y;?s"mﬁ log(ppmpu)/n << ¢pp (s,,yz_zs"mﬁy,, log(pnmy)/n << cs, in the unbounded case),
yz_zs"miiils,,fmn << ¢rpand sﬁm},‘my;%" << ¢f, with probability tending to 1, all nonzero

coefficients are selected.

The proof of this theorem is given in supplementary materials.

Remark 2. In practice, for a specific data set, to avoid estimability issues, the constants C is
selected to be large enough such that the number of parameters to be estimated, that is, the num-
ber of selected nonzero functions | 7| multiplied by the number of basis function m,, should be less
than or equal to n. Moreover, considering the multicollinearity in the design matrix, the constants
are chosen such that m, x |T| << n.

Remark 3. The additional term y, in the convergence rate is due to unboundedness nature of the
response variable rather than due to nonlinear link function.

Remark 4. For the special case, linear (Gaussian) additive model, our results coincide with
Huang et al. (2010). The difference is that we study a fixed design with assumptions on the
eigenvalues of the design matrix and they studied a random design with assumption on the
distribution of the design matrix. We have put further assumption on the eigenvalue due to
the divergence of s,, the number of nonzero variables. In the special case that s, is fixed, our
assumptions coincides with the assumptions in Huang et al. (2010). Another difference is that we
include a diverging term y, that establishes the rate of convergence with probability converging
to one.

There are three terms in the convergence rate: the first term comes from the regression itself,
the second term comes from shrinkage, and the third term comes from the spline approximation
error.

Remark 5. Let f‘nj(x) = E::‘lﬁjk(pk(x). We can also state the results of the first selection step in
terms of functions, which is a direct consequence of theorem 1. First, we have (i) | T| = O(s,) with
probability tending to 1, and (ii) if snm,,y;?s” log(pnmy)/n << cfpn (s,,m,,yz_zs"yn log(pamp)/n <<
¢f.» in the unbounded case), A2, s,mpy, P ¢rn and s2m; 2y B o< ¢f.n, With probability tend-
ing to 1, all nonzero coefficients are selected.

Moreover, by the properties of spline in De Boor (2001), see, for example, Stone (1986) and
Huang et al. (2010), there exist positive constants ¢; and ¢, such that

1My 1By = Bull3 < Wy — Fill3 < com 1B — Bl (16)

we have

Pn
Z ".f; _j.nj
Jj=1

for the bounded response case and

Py
Z ”fj _fnj
=1

for the unbounded case, for any diverging sequence y,,.

n

2 _2s My lo my) 2 _2s a4 —2s
, = Op (Srl?’g %(p"“) + O(J."’l MuSn¥, ")+O(sﬁmn2d}’2 ")

2 -2 _2d_ =25,
) + O(AN Mpsny, ") + O(spmy >4y, ™)

n

2 _ my lo m
2~ 0 (s oo
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Remark 6. The theorem and its remark together tell us that under Assumptions 1-4, by choosing
proper y,, the functions selected by minimizing the first target function satisfy

TcT and |T|=0(n)

with probability converging to 1, that is, we obtained screening consistency.

3.2 | Second step: Postselection

After we have a “good” initial estimator, we use the adaptive group lasso to recover the true
model (Huang et al., 2010) and we are able to achieve selection consistency in probability under
some mild assumptions. The adaptive group lasso idea is similar to adaptive lasso (Zou, 2006)
which enjoys better theoretical properties than simple lasso. Chatterjee and Lahiri (2013) and
Das et al. (2017) studied rate of convergence and other asymptotic properties of the adaptive lasso
estimator. Define the objective function to be

n Py
1
La(: An2) = =— 3 [yi (B"®:) = b (BT®i)] + Ao 3 w2, (17)
i=1 =
where the weights depend on the screening stage group lasso estimator
AZY, if |IBill2 >0
- {u:?gu2 it 1Byl >0 as)
o, if[IBll2=0

Let B c;, be the optimizer for (17), that is,

BacL = arg min Ly(B; An).
peRmar

For the choice of weights, the first stage estimators need not to be necessarily the solution of group
lasso, but could be more general estimators that satisfy following assumptions.

Assumption 5. The initial estimator ﬂ is r, consistent at zero, that is,

ramax||B; — B ll2 = Op(1), (19)
JeT®

and there exists a constant ¢ such that

P (minlBll > cib ) = 1. (20)
JeT

where b,y = minjer || 5] |l2-

Assumption 6. Let s}, = p, — s, be the number of zero components. The tuning parameter A,
satisfies

\% lOg(S: mp) Sn Anatn

+ +
NP2t daram®?  yafsa/n

for any diverging sequence y,,.

=o(1) (21)
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Assumption 5 gives the restrictions on the initial estimator. We do not require our initial esti-
mator to be the group lasso estimator. Any initial estimator satisfying Assumption 5 will be able
to make the adaptive group lasso estimator consistently selects and estimates the true nonzero
components. However, the rate of convergence of the adaptive group lasso estimator depends on
the rate of convergence of the initial estimator, which is assumed to be r, in Assumption 5. More-
over, the initial estimator must not have a 0 estimation for the nonzero components, otherwise
it will mislead the results in the proceeding step. Assumption 6 put restrictions on the tuning
parameter A, in the adaptive group lasso step. The first two terms gives the lower bound for A,
and the third term gives the upper bound. Only with “appropriate” choice of 4,; we can have the
selection consistency and estimation consistency.

Itis worth noting that if we take the group lasso estimator as our initial estimator, Assumptions
5 and 6 are automatically satisfied. Specifically, a trivial choice of r, would be

= 051 ( A/ LoV 08 Pnn) 108@nimn)
P 2 \/;l

for the bounded response and

rn = O3 ( Sy "/ Tn

) + 07 (A M /5u7, ™) + O (sumS >y ™)

my/log(p,m,)
N

for the unbounded case and any diverging sequence y,, since we observe that for j € T¢, p; is
either estimated as zero, or has a rate of convergence to f; bounded by the rate of convergence
in theorem (1). For Equation (20), we observe that the rate of convergence of the group lasso
estimator is higher-order infinitesimal of the minimal signal strength of nonzero coefficients, thus
taking c; = 0.5 is sufficient. In Assumption 6, with our trivial choice of r,, we are able to find a
range of tuning parameters that satisfy Equation (21). Therefore, it is reasonable to take the group
lasso estimator as an initial estimator for the adaptive group lasso.

Let the notation n 2 B° denote that the sign of each ﬁj and ﬂ;’ are either both zero or both
nonzero. Then we have the following asymptotic properties for the adaptive group lasso estimator.

) + 07 (At a5y, ™) + 07 (sumy ™4y,

Theorem 2. Assume Assumptions 1-6 hold, consider the estimator Bng; by minimizing (17), we

have

(D) If crn >> /sn/n, the adaptive group lasso consistently selects the true active predictors with
probability converging to 1, that is,

P (BAGL ! ﬁu) - 1 (22)

(i) The rate of convergence of the adaptive group lasso estimator is given by

D lBacr - Bl =0y

( —2g 2 log(sn mn)
JET

—2s — —2
Sn mf) + OG5y, "my %) + O(A7,misny, )
for the bounded response case and

25, 5 l0g(Snmy) 25, 1 _as,
D lIBacr ;= BY1I3 =0, (ynsnyz mp—=—— ) + Olspy, "y ) + O(Aymisny, ™)
JjeT

for the unbounded response case, where y, is any diverging sequence.
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The proof of this theorem is given in the supplementary materials. It is interesting to com-
pare the adaptive group lasso results with Wang and Tian (2019), who studied the asymptotic
properties of the adaptive group lasso for GLMs. It is worth noting that we considered a more
general case by allowing the group size to diverge with n, and the eigenvalue to be bounded by
sequences that depending on n on a broader domain. In the special case that corresponds to their
assumptions, our results (Theorem 2) coincide with their results.

Similar to the group lasso estimator, we also derive the results for the nonparametric function
estimations, stated in the following remark.

Remark 7. Letf gy, j&x) = <Dj(x)ﬁ aclL j- We can also state the results of the second selection step in
terms of functions, which is a direct consequence of theorem 2. First, we have the true nonzero
subset is recovered with probability tending to 1. Moreover, by the same properties of spline as in
Remark 5, we have

—2s _ —2
+O(sky, "my*) + O(A2,muspy, ™)

n

Z"ﬁmu _fj"% =0p

JEr

Sn¥y "Mp

25, log(s,m,)
n

for the bounded response case and

. a5, log(symy) 3, s,
Z"fAGLj ~fil;=0p (yns,,yz ’ mn% +O0(shy, m ) + O(A2ymnsnyy ")
JjeT

for the unbounded case, for any diverging sequence y,.

The convergence rate for the group lasso estimator is

P a2 _os My log(pamy) 2 25 25
> |lﬁ =[], = Or (wz 2“%) + 0L “mpsayy ) + O(s2my 2y, ),
Jj=1

while for the adaptive group lasso estimator it is

. a5, log(spmy) 25, —25,  _
Z”fAGLj —fil; =0y (5?*?’2 " m,,% + O(’ligmnsn}'g )+ O(Sﬁ}’g * my2d).
JET

The regression term differs by the size of candidate set. The price we pay by not knowing the
true set is log(pm,) in the group lasso step, and becomes log(s,m,) in the adaptive group lasso
step, since the initial estimator has recovered a super set of the true set with cardinality O(s,).
The penalty term’s difference appears on the tuning parameter, where 4, is of a smaller order
than A, with a multiplier of r;!. According to our choice of A, it has a trivial upper bound
which is of order O(42)). Therefore, the tuning parameter part in the penalty convergence rate
term becomes quadratic. The approximation error term is not affected by the adaptive group lasso
step.

The adaptive group lasso is important in two reasons: first, with probability tending to 1, this
is able to select the true nonzero components accurately, which is not always the case in group
lasso; second, the rate of convergence of the adaptive group lasso estimator is faster than the rate
of convergence of the group lasso estimator. The difference in the leading terms are in the order of
r; 1. This makes the adaptive group lasso estimator to achieve a better error with the same sample
size, or the same error with a smaller sample size.
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The theorem and remark in this section ensure that under mild assumptions, we are able to
recover the true model with probability tending to 1 and achieve a rate of convergence better than
the initial estimator. Particularly, if the restrictions of n, p,, m,, and s, in the previous section
satisfy, the group lasso estimator is actually a good initial estimator. Therefore, this two-step
procedure actually is a complete procedure that gives us a way to do this model selection and
estimation on any high-dimensional generalized additive model. However, the procedure is not
practically complete without proper selection of the tuning parameter A. Therefore, we propose a
theoretically validated tuning parameter selection in the next section.

4 | TUNING PARAMETER SELECTION

One important issue in penalized methods is choosing a proper tuning parameter. It is known
that the selection results are sensitive to the choice of tuning parameters. The theoretical results
only provide the order of the tuning parameter, which is not very useful in practice. The reason
is that the order of a sequence describes the limiting properties when n goes to infinity. In reality,
our n is a fixed number, so we must have a practical instruction on selecting the tuning parameter.

Despite its importance, there is no much development for tuning parameter selection in the
high-dimensional literature. The conventional tuning parameter selection criteria tend to select
too many predictors, thus is hard to reach selection consistency. Another reason, especially in
group lasso problems, is that the solution path of group lasso is piecewise nonlinear, which
makes the testing procedures even harder. Here, we propose the GIC (Fan & Tang, 2013; Zhang
et al., 2010) that supports consistent model selection.

Let ﬁ" be the adaptive group lasso solution with tuning parameter A. The GIC is defined as

GIC(A) = %{D(m;nmnmn, 23)

where D(i;;Y)=2{I(Y;Y)—1l(ji;;Y)}. Here the [(u:Y) is the log-likelihood function in
Equation (3) expressed as a function of the expectation u and Y. [(Y; Y) represents the saturated
model with y = Y, and ji;, = b'(Zf:lf;(xﬁ)) = b’(rﬁB‘l) is our estimated expectation when the tun-
ing parameter is A. The hyperparameter a, is to penalize the size of the model. Using GIC, under
proper choice of a,, we are able to select all active predictors consistently.

The importance of the following consistency theorem is that the result in the previous section
guarantees that with probability converging to 1, there exists a A, that will be able to identify the
true model. Therefore, a good choice of a,, will be able to identify the true model with probability
converging to 1. For asupport A C {1, ... ,p} such that |A| < q,, where g, > s, and g, = o(n), let

n

I(B(A) = E [log(f* /ga)] = . [P/ (@iB")®[ (B — B(A)) — b(@] B°) + b(@®] B(A)]  (24)

i=1

be the Kullback-Leibler (KL) divergence between the true model and the selected model, where
[* is the density of the true model, and g, is the density of the model with population parameter
B(A). Let p*(A) be the model with the smallest KL divergence over all models with support A,
and let

bn = inf LIGB(A).

1Al =g
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Here we note that if T C A, the minimizer is automatically ° and thus the KL divergence is zero.
For an underfitted models T ¢ A, 6, describes how easily one can distinguish the models from
the true model by measuring the minimum distance from the true model to the “best estimated
models.” Later in the theorems we will need to assume lower bounds on &, so that we will be
able to reach our consistency results. The following theorem proves that GIC works under mild
conditions.

Theorem 3. Under Assumptions 1-6, suppose that 5,q 'R;! — oo, hé,s;'a;! = co and ayy™' —
oo, where R, and y,, are defined in Lemmas B.3 and B.4, we have, as n — oo,

P{ inf GIC, (4) > GIC, (An)} — 1, (25)
leQ_uQ, " "

where
Q= {'1 € [Amin> Amax] : T3 P T},
Q, = {4 € [Amin> Amax] : TA D T and T; # T},

where T is the set of predictors selected by tuning parameter A. Amin can be chosen as the smallest
A such that the selected model has size q that satisfies the theorem assumption, and Amax simply
corresponds to a model with no variables.

The proof of this theorem is given in supplementary materials. In practice, a choice of a, is
proposed to be m,, log(log(n)) log(p,)- We have

Corollary 1. Under Assumptions 1-6, with choice of a, = m, log(log(n))log(p,), we have

P{, jnf, GIC4,(A)> GIC,, (ho)) = 1.

In our two-step procedure, there are two tuning parameters to be selected: 4, in the group
lasso step and A, in the adaptive group lasso step. The choice of 4, is of more importance, since
An1 only serve as the parameter in screening. As long as we have a screening step that satisfies (14),
we are ready for the adaptive group lasso step. To be simple, we propose to use GIC for selecting
both 4,1 and A,». As a result of the previous theorem, we are able to reach selection consistency.
It is worth noting that the range of candidate tuning parameters is not explicitly specified by the
assumptions. A practical guidance is to choose Apin to be the minimum value such that the model
is still estimable, and to choose A, such that we obtain a null model.

5 | NUMERICAL PROPERTIES

In this section we conduct various empirical exercises to illustrate our theoretically guided
method in practice. To optimize the group lasso problems, we apply the algorithm named
groupwise-majorization-descent (GMD) by Yang and Zou (2015), which approximates the convex
log-likelihood part with second-order Taylor expansion and solves it with a quadratic function’s
closed-form solution, wrapped in a block coordinate descent algorithm. We made the algorithm
in GAM available as a python class, which is accessible at https://github.com/KaixuYang/
penalisedGAM.
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As smoothness is a concern in practical GAM computations, we bring the P-spline (Eilers
& Marx, 1996) penalty into the model while implementing the model numerically. The P-spline
penalty controls the differences between coefficients of consecutive basis functions, and thus
yields smoother spline functions.

Specifically, let I(B; X,y) be the objective function in Section 3, either the group lasso objective
function or the adaptive group lasso objective function. The objective function with smoothness
penalty is defined as

P
L(B: X.y) = l(B; X.y) + 45 ). B/ DB;, (26)
i=1
where
1 -1 0
-1 2 -1
D:
0o -1 2

It is worth noting that the penalty term in (26) is different from the smooth-sparsity penalty terms
in some existing literature (Amato et al., 2016; Meier et al., 2009). The difference mainly lies on
whether square root is taken on the quadratic smoothness penalty. In our case, as we only need
a smoothness penalty to work along with the sparsity penalty, the effect of the square root can be
obtained with a proper choice of the independent smoothness penalty A;. The examples in this
section shows the effectiveness of this penalty combination in terms of accurate variable selec-
tion. On the other hand, smoothness penalty without the square root brings more efficiency in
computation. A slightly modified soft-thresholding function is used to handle the combination of
the group lasso penalty and the smoothness penalty.

5.1 | Simulated examples

Here we undertake extensive simulation study to see the performance of our proposed two-step
selection and estimation approach. We investigate the performance of both uncorrelated and cor-
related covariates and we consider different sample sizes and varying number of predictors in
each case.

In this section, we consider three different types of generalized models: the logistic regression
(Bernoulli distribution), the Poisson regression (Poisson distribution), and the Gamma regression
(Gamma distribution). Through the whole subsection, we choose [ = 4 which implies a cubic
B-spline. We choose m,, = 9 for most cases unless stated otherwise. The choice of { and m,, implies
that there are m,, — [ = 5inner knots, which are evenly placed over the empirical percentiles of the
training data. In this subsection, we compare the performance of the two-step approach with the
Lasso (Tibshirani, 1996), the GAMBoost (Tutz & Binder, 2006) and the GAMSEL (Chouldechova
& Hastie, 2015). We implement our two-step approach with our own package mentioned above.
The Lasso is implemented with the scikit-learn package in python. The GAMBoost and GAMSEL
methods are implemented using their packagesin R. In the group lasso step, we choose the tuning
parameter corresponding to n, variables, where ng is the largest number such that ng X m, <= n.
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This choice prevents estimation issues when we have too many parameters. The GIC procedure
is applied in the adaptive group lasso step to select tuning parameters. In the GIC procedure, the
tuning parameter selection criterion is defined as

GICK) = (DY) + aplT1). @7)

From our results in the previous section, we choose a, = (loglog n)(log p)m,.

5.1.1 | Logistic regression
First, we consider the logistic regression

yi ~ Bernoulli(6;), i=1, ... ,n, (28)

o

where 0; = logit'l[a + Zj Jita)1 and x;; is the (i, j)th element of the design matrix X.

Example 1. We first consider the logistic additive model on an independent design matrix
case, where each predictor in X is independent of other predictors. Each element of the design
matrix is generated from a Unif(—1, 1) distribution. We consider three different cases with all n,
p, and s increasing, which coincides with our theory in Section 3. Specifically, the three cases
are: n =100, p =200, and s = 3; n = 200, p = 500, and s =4; n =300, p =3000, and s = 5. A
testing sample of size 1000 is generated independently to measure the performance. For all
three cases, we have nonzero functions fj(x) = 5sin(3x), fo(x) = —4x* + 9.33x* + 5x2 — 8.33x, and
f3(x) = x(1 — x*) exp(3x) — 4. These three general terms include a periodic term, a polynomial
term, and an exponential term. The last two cases have one more function of fy(x) = 4x, a linear
term. Finally, the last case has an addition f5(x) = 4 sin(—5log(1/x + 3), a complicated composite
function. Without loss of generality, the first s functions are set to be nonzero. The constants in
the functions are to ensure similar signal strength and smoothness. The other functions fg,1(x) =
c=fpx) = 0.

Our results focus on NV, the average number of variables being selected; TPR, the true positive
rate (what percent of the truly nonzero variables are selected); FPR, the false positive rate (what
percent of the zero variables are selected); and PE, the prediction error. In the logistic regression
problem, our metric to measure the prediction error will be the misclassification rate, which is
also the measurement in Chouldechova and Hastie (2015). The simulation results are averaged
over 100 repetitions.

The simulation results are summarized in Table 1. Compared with the classical method
Lasso and the existing GAM methods GAMSEL and GAMBoost, the two-step approach per-
forms the best in terms of both variable selection and estimation in the high-dimensional setup.
The two-step approach performs significantly better in prediction errors. In variable selection, the
two-step approach selects the closest number of variables to the ground truth, while keeping the
TPR high and FPR low. The existing GAM algorithms have similar TPR but includes too many
false positives. The existing GAM algorithms were not intended for very high-dimensional data,
and thus fails to handle the variable selection and prediction at the same time. As mentioned in
Fan and Li (2001), the tuning parameter in the Lasso for consistent variable selection is not the
same as the tuning parameter for best prediction. We can see this may also be true for the group
lasso case, since the estimated nonzero coefficients in the group lasso step are overpenalized.
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TABLE 1 Simulation results for the two-step approach compared with the Lasso, GAMSEL, and GAMBoost
in the three cases of Example 1

n=100,p =200,s =3 n=200,p=500,s=4 n = 300,p = 3000,s =5

NV TPR FPR PE NV TPR FPR PE NV TPR FPR PE

Two-step 3.56 0920 0004 0148 482 0989 0002 0128 492 0968 0.000 0.122
(1.19) (0.146) (0.005) (0.027) (1.02) (0.057) (0.002) (0.018) (0.535) (0.086) (0.000) (0.018)

Lasso 30.0 0920 0138 0249 647 0978 0122 0229 852 0.816 0.027 0211
(17.9) (0.144) (0.090) (0.041) (19.2) (0.452) (0.039) (0.024) (68.3) (0.243) (0.022) (0.024)

GAMSEL 10.1 0.820 0039 0241 140 0943 0021 0214 339 098 0010 0.208
(11.1)  (0.209) (0.055) (0.035) (12.6) (0.112) (0.025) (0.023) (27.9) (0.065) (0.009) (0.016)

GAMBoost 44.7  0.738 0213 0231 854 1.00 0164 0.196 138 0.996 0.044 0.186
(4.84) (0.055) (0.025) (0.027) (6.88) (0.000) (0.014) (0.018) (9.64) (0.028) (0.003) (0.015)

Note: Results are averaged over 100 repetitions. Enclosed in parentheses are the corresponding standard errors.
Abbreviations: FPR, the false positive rate; NV, average number of the variables being selected; PE, prediction error (here is the
misclassification rate); TPR, the true positive rate.

This also proves that an adaptive group lasso step is important, in terms of both variable selection
and prediction.

In practice, the predictors are sometimes correlated to each other. It is interesting to see how
well the procedure performs in correlated predictor cases. Therefore, we also perform the same
comparison on correlated predictors.

Example 2. In this example, we study the case where the design matrix contains correlated
predictors. We generate the data in the following way. First we generate each element of X,
independently from Unif(—1, 1). Then we generate u from Unif(—1, 1), independently from X,,.

Then all columns of X are transformed using X; = (Xj + tu)/+/1 + 2. This procedure controls the
correlation among predictors through ¢ such that corr(xy, x;;) = t2/(1 + t%). Here the simulation is
run on 1 = 100, p = 200, and s = 3. All other setups are kept same as Example 1. In our example,
we choose t = \/3/_‘?, where the correlation is 0.3 and t = m, where the correlation is 0.7.

The results are summarized in Table 2. In the correlated cases, all four methods are influ-
enced, more or less. In terms of variable selection, the two-step approach still has the closest
number of selected variables. The methods behave differently in terms of TPR and FPR. GAM-
Boost tends to have greater numbers in both TPR and FPR, while GAMSEL tends to have both
lower numbers. The two-step approach balances between those two methods, while maintaining
the smallest FPR among all methods. In terms of the prediction error, the two-step approach sig-
nificantly beats the other methods. The results show good performance of the two-step approach,
and again emphasize that the adaptive group lasso step is necessary for better selection and
estimation.

This underselection for correlated predictors has been an issue for the lasso and adaptive lasso
methods. For nonparametric additive models, Huang et al. (2010) found the same issue when
dealing with correlated predictors. Also the NIS proposed by Fan et al. (2011) did not perform well
in correlated predictors compared with uncorrelated case. Our two-step approach is not affected
too much with the correlation, in terms of both variable selection and prediction.

It also happens in the real world that the signal strength is low. Therefore, it is interesting to
consider a case where we have lower signal strength than in Example 1.
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TABLE 2 Simulation results for the two-step approach compared with the Lasso, GAMSEL, and
GAMBoost in Example 2 with correlation 0.3 and 0.7 for n = 100, p = 200, and s = 3

Cor=10.3 Cor =0.7

NV TPR FPR PE NV TPR FPR PE
Two-step 2.82 0.753 0.003 0.171 2.05 0.557 0.002 0.174

(0.994) (0.229) (0.004) (0.033) (0.829) (0.170) (0.003) (0.022)
Lasso 37.0 0.690 0.176 0.312 21.9 0.327 0.103 0.288

(38.2) (0.259) (0.194) (0.069) (37.9) (0.291) (0.193) (0.047)
GAMSEL 154 0.573 0.069 0.342 12.5 0.397 0.057 0.264

(16.0) (0.285) (0.079) (0.065) (9.15) (0.271) (0.044) (0.033)
GAMBoost  44.2 0.977 0.209 0.268 33.7 0.860 0.158 0.203

(5.21) (0.085) (0.026) (0.033) (4.52) (0.178) (0.014) (0.026)

Note: Results are averaged over 100 repetitions. Enclosed in parentheses are the corresponding standard errors.
Abbreviations: NV, average number of the variables being selected; FPR, the false positive rate; PE, prediction error (here is
the misclassification rate); TPR, the true positive rate.

TABLE 3 Simulation results for the two-step approach compared with the Lasso,
GAMSEL, and GAMBoost in Example 3, with n = 100, p = 200, s = 3, and reduced signal

strength
NV TPR FPR PE
Two-step 3.91 (2.05) 0.703 (0.240) 0.009 (0.009) 0.218 (0.033)
Lasso 30.0 (30.5) 0.770 (0.304) 0.142 (0.154) 0.258 (0.036)
GAMSEL 15.3(18.0) 0.510 (0.266) 0.070 (0.090) 0.377 (0.054)

GAMBoost 50.3(5.11) 0.980 (0.079) 0.240 (0.026) 0.308 (0.028)

Note: Results are averaged over 100 repetitions. Enclosed in parentheses are the corresponding standard
erTors.

Abbreviations: FPR, the false positive rate; NV, average number of the variables being selected; PE,
prediction error (here is the misclassification rate); TPR, the true positive rate.

Example 3. In the next example, we reduce the signal strength of Example 1 by a factor of 2,
while all other assumptions are kept the same. The results are shown in Table 3. From the table
we see that minimal signal strength is an important factor to the performance of variable selection
in the generalized models. The performance is impacted by the signal strength for all models. The
two-step approach still have the closest number of nonzero variables to the ground truth. Though
the true positive rate is lower than that of the lasso or the GAMBoost, the latter two methods
have too many false positives. The Lasso or GAMBoost selects too many variables and should not
be considered as good variable selection methods. Moreover, the prediction error of the two-step
approach remains the best among all four methods.

5.1.2 | Other link functions

In this subsection, we study the performance of the two-step approach numerically on the Poisson
regression and Gamma regression. In the Poisson regression, we have

yi ~ Poisson(#;), i=1, ... ,n, (29)
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TABLE 4 Simulation results for the two-step approach compared with the Lasso, GAMSEL, and
GAMBoost in Example 4 for Poisson regression and Gamma regression with n = 100, p = 200, and s = 3

Poisson regression Gamma regression

NV TPR FPR PE NV TPR FPR PE
Two-step 4.30 0.930 0.008 2.34 3.57 0.997 0.003 14.4

(1.51) (0.172)  (0.009)  (0.703)  (0.98) (0.033)  (0.005)  (19.5)
Lasso 13.4 0.867 0.054 3.51 12.5 0.887 0.048 42.3

(9.79) (0.189) (0.050) (0.403) (7.72) (0.196) (0.039) (11.5)
GAMBoost 82.1 1.00 0.401 15.4 NA NA NA NA

(4.27) 0.000)  (0.022) (2.12)

Note: Results are averaged over 100 repetitions. Enclosed in parentheses are the corresponding standard errors. The
GAMBoost method does not support Gamma regression with noncanonical link function, while the canonical link falls
outside of range, therefore it does not support Gamma regression.

Abbreviations: FPR, the false positive rate; NV, average number of the variables being selected; PE, prediction error (here is
the misclassification rate); TPR, the true positive rate.

where 8; = expla + Zle fi(xi))] and x;; is the (i, j)th element of the design matrix X. In the Gamma
regression, we have

yi ~ Gamma(6;,¢), i=1,...,n, (30)

where 8; = expla + Efﬂj}(xg)J and x;; is the (i, j)th element of the design matrix X. The dispersion
parameter ¢ is assumed to be known. Without loss of generality, we take ¢ = 1.

Example 4. In this example, we keep the same setup as in Example 1 to generate the design
matrix, and use the Poisson distribution/Gamma distribution above to generate response vari-
ables. All other parameters are kept the same as in Example 1, but the signal strength is set to 1/4
of the original signal strength, and we set n = 100, p = 200, and s = 3. We compare the two-step
approach with GLMs and the GAMBoost. Note that the GAMSEL only supports Gaussian and
binomial link, thus is not used as a comparison here. The GAMBoost only supports generalized
models with canonical link. The canonical link for Gamma regression suffers from the risk that
the mean might fall outside of its range, thus the canonical link is not useful in practice. There-
fore, we only use GAMBoost in Poisson regression as a comparison. Our algorithm works for both
Gamma regression and Poisson regression, and to the best of our knowledge, is the only publicly
available algorithm that supports both in the high-dimensional settings. The GLMs are run with
the scikit-learn package in python.

The results are provided in Table 4. We see the two-step approach works significantly better
than the linear model, and than the GAMBoost in the Poisson regression case, except for the true
positive rate. The GAMBoost has a perfect true positive rate, which is slightly better than that of
our two-step approach. However, the same issue as before is that it selected too many variables and
make the false positive rate much higher than tolerable. Moreover, the prediction performance
on the two-step approach is also in the first place in both the cases.

5.2 | Real data examples

In this section, we provide three real data examples to illustrate our procedure. In the first
example, we consider the case n > p in the classification setup, in the second example, we consider
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FIGURE 1 Theclassification accuracy against the number of nonzero variables measured on a testing set
for Example 5 over 50 repetitions. The two-step approach, the logistic regression with Lasso, the [; norm
penalized SVM, and the sparse group lasso neural network are included for comparison [Colour figure can be
viewed at wileyonlinelibrary.com|

the high-dimensional setup n < pin the classification setup, and in the third example, we consider
a Gamma regression model.

Example 5. In this example, we use the data set in Example 5 of Friedman et al. (2001), the
spam data as an example of the case n > p. The data set is available at https://web.stanford.edu/~
hastie/ElemStatLearn/data.html. This data set has been studied in many different contexts with
the objective being to predict whether an email is a spam or not based on a few features of the
emails. There are n = 4601 observations, among which 1813 (39.4%) are spams. There are p = 57
predictors, including 48 continuous real [0, 100] attributes of the relative frequency of 48 “spam”
words out of the total number of words in the email, six continuous real [0, 100] attributes of the
relative frequency of six “spam” characters out of the total number of characters in the email,
one continuous real attribute of average length of uninterrupted sequences of capital letters, one
continuous integer attribute of length of longest uninterrupted sequence of capital letters, and
one continuous integer attribute of total number of capital letters in the email. The data were
first log transformed, since most of the predictors have long-tailed distribution, as mentioned in
Friedman et al. (2001). They were then centered and standardized.

The data were split into a training data set with 3067 observations and a testing data set with
1534 observations. We choose order [ = 4 which implies a cubic B-spline. We choose m,, = 15,
which implies there are 11 inner knots, evenly placed over the empirical percentiles of the
data. We compare the result with the logistic regression with Lasso penalty, the support vector
machine (SVM) with Lasso penalty, and the sparse group lasso neural network (SGLNN, Feng
& Simon, 2017, see also Yang & Maiti, 2020). The Lasso and SVM are implemented with the
scikit-learn module in python, and the SGLNN is implemented with the algorithm in the paper in
python. By changing the tuning parameter or stopping criterion, we get estimations with different
sparsity levels. All results are averaged over 50 repetitions. The classification error with different
level of sparsity is shown in Figure 1. The two-step approach and the neural network perform bet-
ter than the linear models, which indicates a nonlinear relationship. The two-step approach has
maximum accuracy 0.944, while that for the neural network is 0.946. The neural network per-
forms a little better than the two-step approach due to its ability to model the interactions among
predictors, but this difference is not significant. However, neural network has no interpretation
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FIGURE 2 The estimated functions for the most frequently selected functions for Example 5 [Colour
figure can be viewed at wileyonlinelibrary.com]

and takes longer to train. All four methods have performance increase as more predictors are
included, which indicates that all predictors contributes to some effect to the prediction. However,
we are able to reach more than 0.9 accuracy with only 15 predictors included. With the GIC cri-
terion, the two-step approach selects 14.6 + 1.52 predictors, with an average accuracy of 0.914 +
0.015. The most frequently selected functions are shown in Figure 2, which also shows that these
functions are truly nonlinear. The plots are of the original functions, that is, before the logarithm
transformation. The estimated functions are close to the results in Friedman et al. (2001), chap-
ter 9, with slight scale difference due to different penalization. The results show that the additive
model by the adaptive group lasso is more suitable for this data than linear models.

Example 6. For high-dimensional classification example, we use the prostate cancer gene
expression data described in http://featureselection.asu.edu/datasets.php. The data set has a
binary response. 102 observations were studied on 5966 predictor variables, which indicates that
the data set is really a high-dimensional data set. The responses have values 1 (50 sample points)
and 2 (52 sample points), where 1 indicates normal and 2 indicates tumor. All predictors are
continuous predictors, with positive values.

To see the performance of our procedure, we ran 100 replications. In each replication, we
randomly choose 76 of the observations as training data set and the rest 26 observations as testing
data set. We choose order [ = 4 which implies a cubic B-spline. We choose m,, = 9, which implies
there are five inner knots, evenly placed over the empirical percentiles of the data. Similar to the
last example, we compare the result with the logistic regression with Lasso penalty, the SVM with
Lasso penalty, and SGLNN. The classification error with different level of sparsity is shown in
Figure 3. From the figure we see that compared with linear methods such as the logistic regression
or SVM, the nonparametric approaches converges faster. The two-step approach reaches a testing
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FIGURE 3 The classification accuracy against the number of nonzero variables measured on a testing set
for Example 6 over 500 repetitions. The two-step approach, the logistic regression with Lasso, the [; norm
penalized SVM, and the sparse group lasso neural network are included for comparison [Colour figure can be
viewed at wileyonlinelibrary.com]

accuracy of 0.945 when around 15 variables are included in the model, while the linear methods
need over 30 variables to reach competitive results. Compared with neural network, the two-step
approach is easier to implement with stabilized performances. A drawback of the nonparametric
methods is to easily overfit for small sample, and that is the reason the performance drops as
too many variables entered the into the model. With the GIC criterion, the two-step approach
selects 3.25 + 1.67 predictors, with an average accuracy of 0.914 + 0.016. To show the nonlinear
relationship, Figure 4 shows the estimated functions for the six most frequently selected variables.

Example 7. Inthisexample, we investigate the performance of the two-step approach on Gamma
regression. The data set is from National Oceanic and Atmospheric Administration (NOAA). We
use the storm data, which includes the occurrence of storms in the United States with the time,
location, property damage, a narrative description, and so on. Here we only take the data in
Michigan from 2010 to 2018 and keep the narrative description as our predictor variable and the
property damage as our response variable. The description is in text, therefore we applied word-
ing embedding algorithm Word2vec (Mikolov et al., 2013) to transform each description into a
numeric representation vector of length p = 701, similar word embedding preprocessing can be
found in Lee et al. (2020). The response variable property damage has a long tail distribution, thus
we use a Gamma regression here. After removing outliers, the data set contains 3085 observations.
In order to study the high-dimensional case, we randomly sample 10% of the observations as our
training data (n = 309) and the rest are used for validation. Moreover, the response is normalized
with the location and scale parameters of gamma distribution.

To see the performance of our procedure, we ran 50 replications. We choose order [ = 4 which
implies a cubic B-spline. We choose m, =9, which implies there are five inner knots, evenly
placed over the empirical percentiles of the data. Since there is limited libraries available for vari-
able selection under high-dimensional gamma model, we compare the two-step approach with
the linear regression with Lasso on a logarithm transformation on the response variable. The pre-
diction error with different level of sparsity is shown in Figure 5. With the GIC criterion, the
two-step approach selects 34.45 + 3.52 predictors, with an average mean squared error (MSE) of
0.004334 + 0.000115. However, from the plot we see that the linear model was not able to reach
this accuracy through the whole solution path, with the best accuracy of 0.004337 at around 80
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FIGURE 4 The estimated functions for the most frequently selected functions ordered by descending in
frequency for Example 6 [Colour figure can be viewed at wileyonlinelibrary.com|
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Example 7 over 50 repetitions. The two-step approach and logarithm transformation with the Lasso are included
for comparison [Colour figure can be viewed at wileyonlinelibrary.com|

nonzero variables. This example also shows the superior of the nonparametric model over linear
models.

6 | DISCUSSION

In this article, we considered ultrahigh-dimensional (log p, = O(n*)) generalized additive model
with a diverging number of nonzero functions (s, — 0 as n — o0). After using basis expansion
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on the nonparametric functions, we used two-step procedures—group lasso and adaptive group
lasso to select the true model. We have proved the screening consistency of the group lasso estima-
tor and the selection consistency of the adaptive group lasso estimator. The rates of convergence
of both estimators were also derived, which proved that the adaptive group lasso does have an
improvement on the estimator. The whole article provides a solid foundation for the existing
methods. Finally we proved that under this nonparametric setup, the GIC is a good way to select
the tuning parameter that consistently selects the true model.

In this article, we used a fixed design on the data matrix X. A random design on X could
be considered, that is, X has a continuous distribution function fx(X) on its interval [a, b];
however, extra assumptions such as the boundedness of the density function are needed to
reach the same result. Also we proved the selection consistency of the GIC procedure on the
adaptive group lasso estimator, conditioning that the initial estimator satisfies (14), which is
possessed by the group lasso procedure with probability tending to 1. However, the properties
of the group lasso initial estimator could be further studied beyond the screening consistency,
for example, could it have selection consistency under appropriate conditions? This is a chal-
lenging problem, since there does not have to exist a tuning parameter that gives selection
consistency in the group lasso procedure, but this is an interesting problem that deserves further
investigation.

Moreover, the heteroscedastic error case is also attractive in high-dimensional GAM. The
square root Lasso (Belloni et al., 2011) has been proved to overcome this issue; however, it has not
been extended to the nonparametric setup. It could be interesting to apply square root Lasso on
the GAM to incorporate this case. This is a demanding topic that deserves further investigation
as well.
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