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Abstract
Multimodal data arise in various applications where information about the same
phenomenon is acquired from multiple sensors and across different imaging
modalities. Learning from multimodal data is of great interest in machine learn-
ing and statistics research as this offers the possibility of capturing complemen-
tary information among modalities. Multimodal modeling helps to explain the
interdependence between heterogeneous data sources, discovers new insights
that may not be available from a single modality, and improves decision-making.
Recently, coupled matrix–tensor factorization has been introduced for multi-
modal data fusion to jointly estimate latent factors and identify complex interde-
pendence among the latent factors. However, most of the prior work on coupled
matrix–tensor factors focuses on unsupervised learning and there is little work
on supervised learning using the jointly estimated latent factors. This paper con-
siders the multimodal tensor data classification problem. A coupled support
tensor machine (C-STM) built upon the latent factors jointly estimated from
the advanced coupled matrix–tensor factorization is proposed. C-STM com-
bines individual and shared latent factors with multiple kernels and estimates
a maximal-margin classifier for coupled matrix–tensor data. The classification
risk of C-STM is shown to converge to the optimal Bayes risk, making it a sta-
tistically consistent rule. C-STM is validated through simulation studies as well
as a simultaneous analysis on electroencephalography with functional mag-
netic resonance imaging data. The empirical evidence shows that C-STM can
utilize information from multiple sources and provide a better classification
performance than traditional single-mode classifiers.
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1 INTRODUCTION

Advances in clinical neuroimaging and computational
bioinformatics have dramatically increased our under-
standing of various brain functions using multiple modali-
ties such as magnetic resonance imaging (MRI), functional
MRI (fMRI), electroencephalography (EEG), and positron
emission tomography (PET). Their strong connections
to the patients’ biological status and disease pathology
suggest the great potential of their predictive power in
disease diagnostics. Numerous studies using vector- and
tensor-based statistical models illustrate how to utilize
these imaging data both at the voxel- and region-of-interest
(ROI) level and develop efficient biomarkers that predict
disease status. For example, Anderson et al. [7] propose
a classification model using functional connectivity MRI
for autism disease and reach 89% diagnostic accuracy for
subjects under 20. Schindlbeck and Eidelberg [64] uti-
lize network models and brain imaging data to develop
novel biomarkers for Parkinson’s disease. Many works in
Alzheimer’s disease research such as [21, 27, 37, 49, 52,
54, 55] use EEG, MRI, and PET imaging data to predict
patient’s cognition and detect early-stage Alzheimer’s dis-
eases. Although these studies have provided impressive
results, utilizing imaging data from a single modality such
as individual MRI sequences are known to have limited
predictive capacity, especially in the early phases of the dis-
ease. For instance, Li et al. [49] use brain MRI volumes
from ROIs to identify patients in early-stage Alzheimer’s
disease. They use 1-year MRI data from Alzheimer’s dis-
ease neuroimaging initiative (ADNI) and obtain 77% pre-
diction accuracy. Although such a performance is favor-
able compared to other existing approaches, the diagnostic
accuracy is relatively low due to the limited information
from MRI data. In recent years, it has been common to
acquire multiple neuroimaging modalities in clinical stud-
ies such as simultaneous EEG-fMRI or MRI and fMRI.
Even though each modality measures different biological
signals, they are interdependent and mutually informa-
tive. Learning from multimodal neuroimaging data may
help integrate information from multiple sources and facil-
itate biomarker developments in clinical studies. It also
raises the need for novel supervised learning techniques
for multimodal data in statistical learning literature.

The existing statistical approaches to multimodal data
science are dominated by unsupervised learning methods.
These methods analyze multimodal neuroimaging data
by performing joint matrix decomposition and extract-
ing common information across different modalities. Dur-
ing optimization, the decomposed factors bridging two or
more modalities are estimated to interpret the connections
between different modalities. Examples of these meth-
ods include matrix-based joint independent component

analysis [6, 16, 30, 44, 51, 67], which assume bilinear
correlations between factors in different modalities. How-
ever, these matrix–vector-based models cannot preserve
the multilinear nature of original data and the spatiotem-
poral correlations across modes as most neuroimaging
modalities are naturally in tensor format. Recently, vari-
ous coupled matrix–tensor decomposition methods have
been introduced to address this issue [4–6, 17, 18, 36,
56]. These methods impose different soft or hard multilin-
ear constraints between factors from different modalities
providing more flexibility in data modeling.

Current supervised learning approaches for multi-
modal data mostly concatenate data modalities as extra
features without exploring their interdependence. For
example, Li et al. [48] and Zhou et al. [77] build gener-
alized regression models by appending tensor and vector
predictors linearly for image prediction and classification.
Pan et al. [60] develop a discriminant analysis by includ-
ing tensor and vector predictors in a linear fashion. Li
and Li [46] propose an integrative factor regression for
multimodal neuroimaging data assuming that data from
different modalities can be decomposed into latent fac-
tors. More recently, Gahrooei et al. [26] proposed multiple
tensor-on-tensor regression for multimodal data, which
combines tensor-on-tensor regression from [53] with tra-
ditional additive linear model. Another type of integration
utilizes kernel tricks and combines information from mul-
timodal data with multiple kernels. Gönen and Alpayd𝚤n
[29] provide a survey on various multiple kernel learning
(MKL) techniques for multimodal data fusion and classifi-
cation with support vector machines (SVMs). Combining
kernels linearly or nonlinearly instead of original data
in different modalities provides more flexibility in infor-
mation integration. Bach [10] proposed a multiple kernel
regression model with group lasso penalty, which inte-
grates information by multiple kernels and selects the most
predictive data modalities.

Despite these accomplishments, the current
approaches have several shortcomings. First, they mainly
focus on exploring the interdependence between mul-
timodal imaging data, ignoring the representative and
discriminative power of the learned components. Thus,
the methods cannot further bridge the imaging data to
the patients’ biological status, which is not helpful in
biomarker development. Second, the supervised tech-
niques such as integrate information primarily by data
or feature concatenation without explicitly considering
the possible correlations between different modalities.
This lack of consideration of interdependence may cause
issues like overfitting and parameter identifiability. Third,
even though methods from [26, 46] have considered
latent structures for multimodal data, these models are
designed primarily for linear regression and are not
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directly applicable to classification problems. Fourth, the
aforementioned multimodal analysis methods are mainly
vector based methods, which cannot handle large-size
multidimensional data encountered in contemporary data
science. As discussed in [14], tensors provide a powerful
tool for analyzing multidimensional data in statistics. As
a result, developing a novel multimodal tensor-based sta-
tistical framework for supervised learning can be of great
interest. Finally, although many empirical studies demon-
strate the success of using multimodal data, there is a lack
of mathematical and statistical clarity to the extent of gen-
eralizability and associated uncertainties. The absence of
a solid statistical framework for multimodal data analysis
makes it impossible to interpret the generalization ability
of a certain statistical model.

In this paper, we propose a two-stage coupled sup-
port tensor machine (C-STM) for multimodal tensor-based
neuroimaging data classification. The proposed model
addresses the current issues in multimodal data science
and provides a sound statistical framework to interpret
the interdependence between modalities and quantify the
model consistency and generalization ability. The major
contributions of this work are as follows:

1. Individual and common latent factors are extracted
from multimodal tensor data, for each sample or sub-
ject, using advanced coupled matrix–tensor factoriza-
tion (ACMTF) [3, 5]. The extracted components are
then utilized in a statistical framework. Most of the
works on ACMTF do not work on each subject sepa-
rately and the extracted factors are utilized for a sig-
nal analysis rather than a subsequent statistical learn-
ing framework. Specifically, the work on supervised
approaches with CMTF is limited.

2. Building a novel C-STM with both the coupled and
noncoupled tensor CP factors for classification. In this
regard, MKL approaches are adopted to integrate com-
ponents from multimodal data.

3. For the validation of our work, we provide both theo-
retical and empirical evidence. We provide theoretical
results such as classification consistency for statistical
guarantee. A thorough numerical study has been con-
ducted, including a simulation study and experiments
on real data to illustrate the usefulness of the proposed
methodology.

A Matlab package is also provided in the supplemental
material, including all functions for C-STM classification.
The source codes are available at our Github repository.1

1https://github.com/PeterLiPeide/Coupled_MatrixTensor_
SupportTensor_Machine

2 RELATED WORK

In this section, we review some background and prior
work on tensor decompositions and MKL.

2.1 Notations

In this work, we denote numbers and scalars by letters
such as x, y,N. Vectors are denoted by boldface lowercase
letters, for example, x, y. Matrices are denoted by bold-
face capital letters like X,Y. Multidimensional tensors are
denoted by boldface Euler script letters such as 𝒳 ,𝒴 . The
order of a tensor is the number of dimensions of the data
hypercube, also known as ways or modes. For example, a
scalar can be regarded as a zeroth-order tensor, a vector is
a first-order tensor, and a matrix is a second-order tensor.

Let 𝒳 ∈ R
I1×I2×···×IN be a tensor of order N, where

xi1,i2,… ,iN denotes the (i1, i2, … , iN) th element of the ten-
sor. Vectors obtained by fixing all indices of the tensor
except the one that corresponds to nth mode are called
mode-n fibers and denoted as xi1,… in−1,in+1,… ,iN ∈ R

In . The
mode-n unfolding of 𝒳 is defined as 𝒳(n) ∈ R

In×
∏N

n′=1,n′≠nIn′ ,
where the mode-n fibers of the tensor𝒳 are the columns of
𝒳(n) and the remaining modes are organized accordingly
along the rows.

2.2 Canonical/polyadic decomposition

Let 𝒳 ∈ R
I1×I2×…×Id be a tensor with d modes. Rank-r

canonical/polyadic decomposition of 𝒳 is defined as:

𝒳 ≈
r∑

k=1
x(1)

k ◦x(2)
k · · · ◦x(d)

k =
⟦

X(1), … ,X(d)⟧ , (1)

where X(𝑗) ∈ R
I𝑗×r, 𝑗 = 1, .., d are defined as factor matri-

ces whose columns are x(𝑗)
r and “◦” represents the vec-

tor outer product. The second equality in (1) is called
Kruskal tensor [40], which is a convenient representa-
tion for CP tensors. We denote a Kruskal tensor by 𝖀x =
X(1), … ,X(d) or 𝖀x = 𝜁 ;X(1), … ,X(d), where 𝜁 ∈ R

r is a
vector whose entries are the weights of rank one tensor
components. In the special case of matrices, 𝜁 corresponds
to singular values of a matrix. In general, it is assumed
that the rank r is small so that Equation (1) is also called
low-rank approximation for a tensor 𝒳 . Such an approx-
imation can be estimated by an alternating least square
approach [39].

Although there are other tensor decomposition struc-
tures such as Tucker decomposition or tensor train decom-
position, the advantage of CP is that the factors extracted
by a CP decomposition are unique up to permutation. The

https://github.com/PeterLiPeide/Coupled_MatrixTensor_SupportTensor_Machine
https://github.com/PeterLiPeide/Coupled_MatrixTensor_SupportTensor_Machine
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uniqueness of the factors makes CP decomposition more
interpretable.

2.3 Coupled matrix–tensor
factorization

Motivated by the fact that joint analysis of data from multi-
ple sources can potentially unveil complex data structures
and provide more information, CMTF [2] was proposed for
multimodal data fusion. CMTF estimates the underlying
latent factors for both tensor and matrix data simultane-
ously by taking the coupling between tensor and matrix
data into account. This feature makes CMTF a promising
model in analyzing heterogeneous data, which generally
have different structures and modalities.

During latent factor estimation, CMTF solves an objec-
tive function that approximates a CP decomposition for
the tensor modality and a singular value decomposition
for the second modality with the assumption that the fac-
tors from one mode of each modality are the same. Given
𝒳1 ∈ R

I1×I2×…×Id and X2 ∈ R
I1×J2 , without loss of general-

ity assume that the factors from the first mode of the tensor
𝒳1 span the column space of the matrix X2. CMTF then
tries to estimate all factors by minimizing:

Q (𝔘1,V) = 1
2
‖‖‖‖𝒳1 −

⟦
X(1)

1 ,X(2)
1 , … ,X(d)

1

⟧‖‖‖‖
2

Fro

+ 1
2
∥ X2 − X(1)

2 X(2)T
2 ∥2

Fro, s.t. X(1)
1 = X(1)

2 , (2)

where X(m)
p are the factor matrices for modality p and mode

m. The factor matrices X(1)
1 = X(1)

2 are the coupled factors
between tensor and matrix data. An illustration of this cou-
pling is given in Figure 1. These factor matrices can also be
represented in Kruskal form, 𝖀1 =

⟦
X(1)

1 ,X(2)
1 , … ,X(d)

1

⟧
and 𝖀2 =

⟦
X(1)

2 ,X(2)
2

⟧
. By minimizing the objective func-

tion Q (𝔘1,𝔘2), CMTF estimates latent factors for the
tensor and matrix data jointly which allows it to utilize
information from both modalities. Acar et al. [2] use a gra-
dient descent algorithm to optimize the objective function
(2). Although this model is formulated for the joint decom-
position of a dth order tensor and a matrix, extensions to
two or more tensors with couplings across multiple modes
are possible.

In real data, couplings across different modalities
might include shared or modality-specific (individual)
components. Shared components correspond to those
columns of the factor matrices that contribute to the
decomposition of both modalities, while individual com-
ponents carry information unique to the correspond-
ing modality. Although CMTF provides a successful

F I G U R E 1 Illustration of coupled tensor matrix model

framework for joint data analysis, it often fails to obtain
a unique estimation for shared or individual components.
As a result, any further statistical analysis and learning
from CMTF estimation will suffer from the uncertainty in
latent factors. To address this issue, Acar et al. [3] proposed
ACMTF by introducing a sparsity penalty to the weights
of latent factors in the objective function (2), and restrict-
ing the norm of the columns of the factors to be unity to
provide uniqueness up to a permutation. This modifica-
tion provides a more precise estimation for latent factors
compared to CMTF [3, 4]. In our framework, we utilize
ACMTF to extract the latent factors which are in turn used
to build a classifier for multimodal data.

2.4 CP-STM for tensor classification

CP-STM has been previously studied by He et al. [32,
33] and Tao et al. [69] and uses CP tensor to con-
struct STM types of model. Assume there is a collection
of data Tn = {(𝒳1y1) , (𝒳2y2) , … , (𝒳nyn)}, where 𝒳t ∈
𝒳 ⊂ R

I1×I2×…×Id are d-way tensors. 𝒳 is a compact tensor
space, which is a subspace of R

I1×I2×…×Id . yt ∈ {1,−1} are
binary labels. CP-STM assumes the tensor predictors are
in CP format, and can be classified by the function which
minimizes the objective function

min 𝜆||f||2 + 1
n

n∑
t=1

 (f (𝒳t) , yt) . (3)

By using tensor kernel function

K (𝒳1,𝒳2) =
r∑

l,m=1

d∏
𝑗=1

K(𝑗)
(

x(𝑗)
1,l , x

(𝑗)
2,m

)
, (4)

where 𝒳1 =
∑r

l=1x(1)
1l ◦ … ◦x(d)

1l and 𝒳2 =
∑r

l=1x(1)
2l ◦ …

◦x(d)
2l . The STM classifier can be written as

f(𝒳 ) =
n∑

t=1
𝛼tytK (𝒳t,𝒳 ) = 𝛂TDyK(𝒳 ) (5)
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where 𝒳 is a new d-way rank-r tensor, 𝛂 = [𝛼1, … , 𝛼n]T

is the coefficient vector, Dy is a diagonal matrix
whose diagonal elements are y1, … , yn and K(𝒳 ) =
[K (𝒳1𝒳 ) , … ,K (𝒳n𝒳 )]T is a column vector, whose val-
ues are kernel values computed between training and test
data. We denote the collection of functions in the form
of (5) with , which is a functional space also known as
reproducing kernel Hilbert space (RKHS). The optimal
classifier CP-STM f ∈  can be estimated by plugging
function (5) into objective function (3), and minimize it
with hinge or squared hinge loss. The coefficients of the
optimal CP-STM model are denoted by 𝛂∗. The classifica-
tion model is statistically consistent if the tensor kernel
function satisfying the universal approximating property,
which is shown by Li and Maiti [45].

2.5 Multiple kernel learning

MKL creates new kernels using a linear or nonlinear
combination of single kernels to measure inner products
between data. Statistical learning algorithms such as SVM
and kernel regression can then utilize the new combined
kernels instead of single kernels to obtain better learning
results and avoid the potential bias from kernel selec-
tion [29]. A more important and related reason for using
MKL is that different kernels can take inputs from vari-
ous data representations possibly from different sources or
modalities. Thus, combining kernels and using MKL is one
possible way of integrating multiple information sources.

Given a collection of kernel functions {K1(⋅, ⋅),
… ,Km(⋅, ⋅)}, a new kernel function can be constructed by

K(⋅, ⋅) = f𝛈 ({K1(⋅, ⋅), … ,Km(⋅, ⋅)} |𝛈) , (6)

where f𝜂 is a linear or nonlinear function and 𝛈 is a vector
whose elements are the weights for the kernel combina-
tion. Linear combination methods are the most popular in
MKL, where the kernel function is parameterized as

K(⋅, ⋅) = f𝛈 ({K1(⋅, ⋅), … ,Km(⋅, ⋅)} |𝛈)
=

m∑
l=1

𝜂lKl(⋅, ⋅). (7)

The weight parameters 𝜂l can be simply assumed to
be the same (unweighted) [12, 61], or be determined
by looking at some performance measures for each
kernel or data representation [63, 68]. There are few
more advanced approaches such as optimization-based,
Bayesian approaches, and boosting approaches that can
also be adopted [13, 19, 25, 28, 38, 43, 71]. In this work, we
only consider linear combination (7), and select the weight

parameters in a heuristic data-driven way to construct our
C-STM model.

3 METHODOLOGY

Let Tn =
{(

𝒳1,1,X1,2, y1
)
, … ,

(
𝒳n,1,Xn,2, yn

)}
be train-

ing data, where each sample t ∈ {1, … ,n} has two data
modalities 𝒳t,1,Xt,2 and a corresponding binary label yt ∈
{1,−1}. In this work, following [2], we assume that the
first data modality is a third-order tensor, 𝒳t,1 ∈ R

I1×I2×I3 ,
and the other is a matrix, Xt,2 ∈ R

I4×I3 . The third mode of
𝒳t,1 and the second mode of Xt,2 are assumed to be cou-
pled for each t, that is, the factor matrix is assumed to
be fully or partially shared across these modes. Utilizing
this coupling, one can extract factors that better repre-
sent the underlying structure of the data, and preserve
and utilize the discriminative power of the factors from
both modalities. Our approach, C-STM, consists of two
stages: multimodal tensor factorization, that is, ACMTF,
and C-STM as illustrated in Figure 2. In this section, we
present both stages and the corresponding procedures.

3.1 Multimodal tensor factorization

In this work, the first aim is to perform a joint factor-
ization across two modalities for each training sample, t.
Let 𝔘t,1 =

⟦
𝜁 ;X(1)

t,1 ,X
(2)
t,1 ,X

(3)
t,1

⟧
denote the Kruskal tensor of

𝒳t,1, and 𝔘t,2 =
⟦
𝜎;X(1)

t,2 ,X
(2)
t,2

⟧
denote the singular value

decomposition of Xt,2. The weights of the columns of each
factor matrix X(m)

t,p , where p is the index for modality and m
denotes the mode, are denoted by 𝜁 and 𝜎 and the norms of
these columns are constrained to be 1 to avoid redundancy.
The objective function of ACMTF [3, 5] is then given by:

Q
(
𝔘t,1,𝔘t,2

)
= 𝛾

‖‖‖‖𝒳t,1 −
⟦
𝜁 ;X(1)

t,1 ,X
(2)
t,1 ,X

(3)
t,1

⟧‖‖‖‖
2

Fro

+ 𝛾 ∥ Xt,2 − X(1)
t,2 SX(2)⊤

t,2 ∥2
Fro

+ 𝛽 ∥ 𝜁 ∥0 +𝛽 ∥ 𝜎 ∥0

s.t. X(3)
t,1 = X(2)

t,2

∥ x(1)
t,1,k ∥2=∥ x(2)

t,1,k ∥2=∥ x(3)
t,1,k ∥2

=∥ x(1)
t,2,k ∥2=∥ x(2)

t,2,k ∥2= 1,

∀k ∈ {1, … , r}, (8)

where Σ is a diagonal matrix whose elements are the sin-
gular values 𝜎 of the matrix Xt,2 and x(𝑗)

t,m,k ∈ R
I𝑗 denotes

the columns of the factor matrices for the object 𝒳t,m.
The objective function in (8) includes penalties for the
number of nonzero weights in both tensor and matrix
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F I G U R E 2 Coupled support tensor machine (C-STM) model pipeline

decomposition. Thus, the model identifies the shared and
individual components. These factors are then considered
as different data representations for multimodal data, and
used to predict the labels yt in C-STM classifier.

3.2 Coupled support tensor machine

C-STM uses the idea of MKL and considers the coupled
and uncoupled factors from ACMTF decomposition as
various data representations. As a result, we use three dif-
ferent kernel functions to measure their similarity, that is,
inner products. One can think of these three kernels induc-
ing three different feature maps transforming multimodal
factors into different feature spaces. In each feature space,
the corresponding kernel measures the similarity between
factors in this specific data modality. The similarities of
multimodal factors are then integrated by combining the
kernel measures through a nonlinear combination. This
combination should be able to take individual and shared
components into account separately for better adaptability
depending on the size and corruptions on the data as the
coupled modes are likely to be better estimated than the
individual modes. Thus, we use tensor kernels for individ-
ual modes of each modality and combine these with the
kernels of the coupled modes as illustrated in Figure 2. The
kernel function for C-STM is defined as

K
((
𝒳t,1Xt,2

)
,
(
𝒳i,1Xi,2

))
= K

((
𝔘t,1𝔘t,2

)
,
(
𝔘i,1𝔘i,2

))
=

r∑
k,l=1

w1K(1)
1

(
x(1)

t,1,k, x
(1)
i,1,l

)
K(2)

1

(
x(2)

t,1,k, x
(2)
i,1,l

)

+ w2K(3)
1

(
x(3)∗

t,1,k, x
(3)∗
i,1,l

)
+ w3K(1)

2

(
x(1)

t,2,k, x
(1)
i,2,l

)
(9)

for two pairs of decomposed tensor matrix factors(
𝔘t,1,𝔘t,2

)
and

(
𝔘i,1,𝔘i,2

)
. x(3)∗

t,1,k is the average of the

estimated shared factors 1
2

[
x(3)

t,1,k + x(2)
t,2,k

]
. This kernel is

inspired by the idea of MKL with linear combination of
multiple kernels for multimodal data. Few more details
regarding chosing such kernel combination are provided
in Section 6.1. w1, w2, and w3 are the three weight
parameters combining the three kernel functions. As dis-
cussed in [29], there is no unique choice for determining
these weights, in this paper, we adopt a cross-validation
approach as explained in the Appendix C.2.

With the kernel function in (9), C-STM model tries to
estimate a bivariate decision function f from a collection
of functions  such that

f = arg min 𝜆 ⋅ ||f||2 + 1
n

n∑
t=1

 (f (𝒳t) , yt) , (10)

where  (𝒳t, yt) = max (0, 1 − f (𝒳t) ⋅ yt) is Hinge loss. 
is defined as the collection of all functions in the form of

f (𝒳1,X2) =
n∑

t=1
𝛼tytK

((
𝒳t,1Xt,2

)
, (𝒳1X2)

)
= 𝛼TDyK (𝒳1,X2) (11)

due to the well-known representer theorem [8] for any
pair of testing data (𝒳1,X2) and for 𝛂 ∈ R

n. For all
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possible values of 𝛂, Equation (11) defines the data
collection . Dy is a diagonal matrix whose diagonal ele-
ments are labels from the training data Tn. K (𝒳1,X2)
is a n × 1 vector whose t-th element is K

((
𝒳t,1Xt,2

)
,

(𝒳1X2)
)
. The optimal C-STM decision function, denoted

by fn = 𝛂∗TDyK (𝒳1,X2), can be estimated by solving the
quadratic programming problem

min
𝛼∈R

n

1
2
𝛂TDyKDy𝛂 − 1T𝛂,

s.t. 𝛂Ty = 0,

0 ≼ 𝛂 ≼
1

2n𝜆
, (12)

where K is the kernel matrix constructed by function (9).
Problem (12) is the dual problem of (10), and its opti-
mal solution 𝛂∗ also minimizes the objective function (10)
when plugging functions in the form of (11). For a new
pair of test points (𝒳1,X2), the class label is predicted as
sign (fn (𝒳1,X2)).

4 MODEL ESTIMATION

In this section, we first present the estimation procedure
for coupled matrix–tensor decomposition (8), and then
combine it with the classification procedure to summarize
the algorithm for C-STM.

To satisfy the constraints in the objective function (8),
the function Q

(
𝔘t,1,𝔘t,2

)
is converted to a differentiable

and unconstrained form given by:

Q
(
𝔘t,1,𝔘t,2

)
= 𝛾

‖‖‖‖𝒳t,1 −
⟦
𝜁 ;X(1)

t,1 ,X
(2)
t,1 ,X

(3)
t,1

⟧‖‖‖‖
2

Fro

+ 𝛾 ∥ Xt,2 − X(1)
t,2 SX(2)⊤

t,2 ∥2
Fro

+ 𝜉 ∥ X(3)
t,1 − X(2)

t,2∥
2
Fro

+
r∑

k=1

[
𝛽

√
𝜁2

r + 𝜀 + 𝛽

√
𝜎2

r + 𝜀

+ 𝜃

[(
∥ x(1)

t,1,k ∥2 −1
)2

+
(
∥ x(2)

t,1,k ∥2 −1
)2

+
(
∥ x(3)

t,1,k ∥2 −1
)2

+
(
∥ x(1)

t,2,k ∥2 −1
)2

+
(
∥ x(2)

t,2,k ∥2 −1
)2

]]
, (13)

where 𝓁1 norm penalties in (8) are replaced with differ-
entiable approximations; 𝜉 and 𝜃 are Lagrange multipliers
and 𝜀 > 0 is a very small number. This unconstrained
optimization problem can be solved by nonlinear conju-
gate gradient descent [2, 5, 56].

Let 𝒯t be the full (created by converting Kruskal
tensor, or the factor matrices into multidimensional array
form) tensor of 𝔘t,1, and Mt = X(1)

t,2 SX(2)⊤
t,2 , the partial

derivative of each latent factor can be derived as follows:

𝛿Q
(
𝔘t,1,𝔘t,2

)
𝛿X(1)

t,1

= 𝛾
(
𝒯t −𝒳t,1

)
(1)

(
𝜁⊤ ⊙ X(3)

t,1 ⊙ X(2)
t,1

)
+ 𝜃

(
X(1)

t,1 − X
(1)
t,1

)
, (14)

𝛾
𝛿Q

(
𝔘t,1,𝔘t,2

)
𝛿X(2)

t,1

=
(
𝒯t −𝒳t,1

)
(2)

(
𝜁⊤ ⊙ X (3)

t,1 ⊙ X(1)
t,1

)
+ 𝜃

(
X(2)

t,1 − X
(2)
t,1

)
, (15)

𝛾
𝛿Q

(
𝔘t,1,𝔘t,2

)
𝛿X(3)

t,1

=
(
𝒯t −𝒳t,1

)
(3)

(
𝜁⊤ ⊙ X (2)

t,1 ⊙ X(1)
t,1

)
+ 𝜉

(
X(3)

t,1 − X(2)
t,2

)
+ 𝜃

(
X(3)

t,1 − X
(3)
t,1

)
, (16)

𝛾
𝛿Q

(
𝔘t,1,𝔘t,2

)
𝛿X(1)

t,2

=
(
Mt − Xt,2

)
X(2)

t,2𝚺 + 𝜃
(

X(1)
t,2 − X

(1)
t,2

)
,

(17)

𝛾
𝛿Q

(
𝔘t,1,𝔘t,2

)
𝛿X(2)

t,2

=
(
Mt − Xt,2

)⊤X(1)
t,2𝚺+

𝜏
(

X(2)
t,2 − X(3)

t,1

)
+ 𝜃

(
X(2)

t,2 − X
(2)
t,2

)
, (18)

𝛿Q
(
𝔘t,1,𝔘t,2

)
𝛿𝜎k

= x(1)⊤
t,2,k

(
Mt − Xt,2

)
x(2)

t,2,k

+ 𝛽

2
𝜎k√
𝜎2

k + 𝜀

, k ∈ {1, … , r}, (19)

𝛿Q
(
𝔘t,1,𝔘t,2

)
𝛿𝜁k

= vec
(
𝒯t −𝒳t,1

)⊤
×
(

x(3)
t,1,k ⊙ x(2)

t,1,k ⊙ x(1)
t,1,k

)
+ 𝛽

2
𝜁k√
𝜁2

k + 𝜀

, k ∈ {1, … , r}, (20)

where (vec(.)) is a vectorization operator that stacks all
elements of the operand in a column vector, 𝒯(𝑗) denotes
the mode-j unfolding of a tensor 𝒯 , and ⊙ denotes
Khatri–Rao product. M is a normalized matrix whose
columns have unit 𝓁2 norms.

By combining all of the partial derivatives, the partial
derivative of the objective function is given by:

∇Q
(
𝔘t,1,𝔘t,2

)
=

[
𝛿Q

(
𝔘t,1𝔘t,2

)
𝛿X(1)

t,1

,
𝛿Q

(
𝔘t,1𝔘t,2

)
𝛿X(2)

t,1

,
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𝛿Q
(
𝔘t,1𝔘t,2

)
𝛿X(3)

t,1

,
𝛿Q

(
𝔘t,1𝔘t,2

)
𝛿X(2)

t,2

,

𝛿Q
(
𝔘t,1𝔘t,2

)
𝛿𝜁1

, … ,
𝛿Q

(
𝔘t,1𝔘t,2

)
𝛿𝜎1

, …

]⊤

which is a 2r + 5 dimensional vector. As mentioned
in [5], a nonlinear conjugate gradient method with
Hestenes–Stiefel updates is used to optimize (13). The
procedure is described in Algorithm 1.

Once the factors for all data pairs in the training set Tn
are extracted, we can create the kernel matrix using the
kernel function in (9). By solving the quadratic program-
ming problem (12), we can obtain the optimal decision
function fn. This two-stage procedure for C-STM estima-
tion is summarized in Algorithm 2.

5 THEORY

In this section, we provide some preliminary theoretical
results to validate the C-STM model. The first proposition
provides a sketch of proof of convergence for the coupled
matrix–tensor decomposition.

Proposition 1. Suppose for every pair of multimodal
data 𝒳t,1 and Xt,2, the optimal latent factor estimate is
the optimal solution for the objective function (8), which
is denoted by 𝔘∗

t,1,𝔘
∗
t,2. The conjugate gradient descent

Algorithm 1 converges to stable estimates for tensor and
matrix components 𝔘∗

t,1,𝔘
∗
t,2, where:

D
((

𝔘𝜏
t,1𝔘

𝜏
t,2

)
,
(
𝔘∗

t,1𝔘
∗
t,2
))

→ 0, as 𝜏 → ∞, (22)

Algorithm 1. ACMTF decomposition

1: Input: Multimodal data (𝒳1,X2), r, 𝜂, S (Upper limit
for the number of iterations)

2: Output: 𝔘∗
t,1,𝔘

∗
t,2

3: 𝔘t,1,𝔘t,2 = 𝔘0
t,1,𝔘

0
t,2 ⊳ Initial value

4: 𝚫0 = −▿Q(𝔘0
t,1,𝔘

0
t,2)

5: 𝜑0 = arg min𝜑 Q
[
(𝔘0

t,1,𝔘
0
t,2) + 𝜑𝚫0

]
6: 𝔘1

t,1,𝔘
1
t,2 = (𝔘0

t,1,𝔘
0
t,2) + 𝜑0𝚫0

7: g0 = 𝚫0
8: while s< S and ‖Q(𝔘s

t,1,𝔘
s
t,2) − Q(𝔘s−1

t,1 ,𝔘s−1
t,2 )‖ ⩾ 𝜂 do

9: 𝚫s+1 = −▿Q(𝔘s
t,1,𝔘

s
t,2)

10: gs+1 = 𝚫s+1 +
𝚫⊤

s+1(𝚫s+1−𝚫s)
−g⊤

s (𝚫s+1−𝚫s)
gs

11: 𝜑s+1 = arg min𝜑 Q
[
(𝔘s

t,1,𝔘
s
t,2) + 𝜑gs+1

]
12: 𝔘s+1

t,1 ,𝔘s+1
t,2 = (𝔘s

t,1,𝔘
s
t,2) + 𝜑s+1gs+1

13: end while

Algorithm 2. Coupled support tensor machine

1: procedure C-STM
2: Input: Training set Tn = {(𝒳1,1,X1,2, y1), ...,

(𝒳n,1,Xn,2, yn)}, y, kernel function K, r, 𝜆, 𝜂, S
3: for t = 1, 2,...n do
4: 𝔘∗

t,1,𝔘
∗
t,2 = ACMTF

(
(𝒳t,1,Xt,2), r, 𝜂, S

)
5: end for
6: Create initial matrix K ∈ Rn×n

7: for t = 1,...,n do
8: for i = 1,...,n do
9: K[i, t] = K

(
(𝔘t,1,𝔘t,2),
(𝔘i,1,𝔘i,2)

)
⊳ Kernel values

10: K[i, t] = K[t, i]
11: end for
12: end for
13: Solve the quadratic programming problem (12)

and find the optimal 𝜶∗.
14: Output: 𝜶∗

15: end procedure

where 𝜏 is the number of iterations and D(., .) is a dis-
tance measure between Kruskal tensor sets such as 𝓁2
distance between factors with an appropriate selection of
permutations. This proposition is a direct result of the con-
vergence property of nonlinear conjugate gradient descent
algorithm with line search [31, 58, 73, 74, 78]. The con-
vergence rate of nonlinear conjugate gradient descent is
linear. For detailed convergence properties of nonlinear
conjugate gradient descent with Hestenes–Stiefel updates
on nonconvex objectives, the readers are referred to [58,
62].

The next result discusses the statistical property of
C-STM. Let us assume the risk of a decision function, f, is
(f) = E𝒳×𝒴 [1{f(𝒳 ) ≠ y}], where 𝒳 ⊂ R

I1×..×Id is a sub-
space of R

I1×..×Id . 𝒴 = {1,−1}. The expectation is taken
over the joint distribution defined on 𝒳 ×𝒴 , which is a
data domain. The function 1{⋅} is an indicator function
measuring the loss of classification function f. It is also
known as the “zero–one” loss since its value is zero when
the decision function provides correct prediction and is
one otherwise. If there is a f∗ ∶ 𝒳 → 𝒴 from the collection
of all measurable functions such that f∗ = arg min(f), its
risk is called the Bayes risk for the classification problem
with data from 𝒳 ×𝒴 . We denote the Bayes risk as ∗ =
 (

f∗
)
. With different training sets Tn, we can estimate a

sequence of decision functions fn under the same train-
ing procedure. This sequence of decision function {fn}
is called a decision rule. Obviously, C-STM is a decision
rule if different training sets are provided. A decision rule
is statistically consistent if  (fn) converges to the Bayes
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risk ∗ as the size of training data n increases [20]. The
consistency property is desirable for classification rules,
because a consistent rule guarantees to reconstruct the
whole data distribution with more training data/observa-
tions. The reconstruction here means the Bayes risk of the
classification problem will be eventually the same as the
risk of estimated classifier with sufficient training data,
and thus will be known. Our next result shows that C-STM
is a statistically consistent decision rule.

Proposition 2. Given the tensor and matrix factors for all
data in the domain, the classification risk of C-STM, (fn),
converges to the optimal Bayes risk almost surely, that is,

 (fn) → ∗ a.s. n → ∞

if the following conditions are satisfied:

AS.1 The loss function  is self-calibrated [66], and is
C(W) local Lipschitz continuous in the sense that for |a| ≤
W < ∞ and |b| ≤ W < ∞

|(a, y) − (b, y)| ≤ C(W)|a − b|
In addition, we need sup

y∈{1,−1}
(0, y) ≤ L0 < ∞.

AS.2 The kernel functions K(1)
1 (⋅, ⋅), K(2)

1 (⋅, ⋅), K(3)
1 (⋅, ⋅),

and K(1)
2 (⋅, ⋅) used to compose the coupled tensor kernel

(9) are regular vector-based kernels satisfying the univer-
sal approximating property. A kernel has this property if it
satisfies the following condition. Suppose 𝒳 is a compact
subset of the Euclidean space R

p, and C(𝒳 ) = {f ∶ 𝒳 →
R} is the collection of all continuous functions defined on
𝒳 . The kernel function is also defined on 𝒳 ×𝒳 , and its
RKHS is . Then ∀g ∈ C(𝒳 ), ∃f ∈  such that ∀𝜀 > 0

||g − f||∞ = sup
x∈𝒳

|g(x) − f(x)| ≤ 𝜀.

AS.3 The kernel functions K(1)
1 (⋅, ⋅), K(2)

1 (⋅, ⋅), K(3)
1 (⋅, ⋅),

and K(1)
2 (⋅, ⋅) used to composite the coupled tensor kernel

(9) are all bounded, and are satisfying√
sup K(⋅, ⋅) ≤ Kmax < ∞,

for every kernel function mentioned above.
AS.4 The hyper-parameter in the regularization term

𝜆 = 𝜆n satisfies:

𝜆n → 0 as n → ∞
n𝜆n → ∞ as n → ∞.

This proposition is an extension of our previous result for
the statistical consistency of CP-STM. The proof of this
proposition is provided in Appendix A.

6 SIMULATION STUDY

We present a simulation study to demonstrate the benefit
of utilizing C-STM with multimodal data in classification
problems. To show the advantage of using multimodalities
in C-STM, we include CP-STM from [32], constrained mul-
tilinear discriminant analysis (CMDA), and direct general
tensor discriminant analysis (DGTDA) from [47] as com-
petitors. These existing approaches can only take a single
tensor–matrix as the feature for classification. As a result,
they are not able to enjoy the multimodalities in the simu-
lated data. We apply these approaches on every single data
modality in our simulated data, and compare their classi-
fication performance with C-STM which uses multimodal
data.

We generate synthetic data using the idea from [23].
Suppose the two data modalities in our classification prob-
lems are

𝒳t,1 =
3∑

k=1
x(1)

k,t,1◦x(2)
k,t,1◦x(3)

k,t,1,

Xt,2 =
3∑

k=1
x(1)

k,t,2◦x(2)
k,t,2, (23)

where 𝒳t,1 are three-way tensors in the size of 30 by 20 by
10. Xt,2 are matrices in the size of 50 by 10. Both of them
have CP ranks equal to 3. To generate data for the simu-
lation study, we first generate the latent factors (vectors)
from various multivariate normal distributions, and then
convert these factors into full tensors 𝒳t,1 and matrices
Xt,2 using Equation (23). The multivariate normal distri-
butions we used to generate columns of the latent factors
in Equation (23) are specified in Table 1 below. In Table 1,
we use c = 1, 2 to denote data from two different classes.

There are eight different cases in our simulation study.
In Cases 1–5, one of the tensor factors and the matrix
factors are generated from different multivariate normal
distributions for data in different classes. This means the
tensor and matrix data both contain certain class informa-
tion (discriminant power) which are different in different
data modalities. Notice that the discriminant power in one
of the tensor factor remains the same among Cased 1–5,
while the power in the matrix factor increases. Cases 6
and 7 assume the class information exists only in a sin-
gle data modality. In Case 6, only one of the tensor factors
are generated from different distributions for data in differ-
ent classes. This factor then becomes the matrix factor in
Class 7. In Case 8, the shared factors are sampled from dif-
ferent distributions, meaning that both tensor and matrix
data modalities have class information. However, such
class information are from the shared factors are the same
between different modalities.
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T A B L E 1 Distribution specifications for simulation study MVN stands for multivariate normal distribution. I indicates identity
matrices. Bold numbers are vectors whose elements are all equal to the numbers

Tensor factors Shared factors Matrix factors

Simulation c x(1)
k,t,1

x(2)
k,t,1

x(3)
k,t,1

= x(2)
k,t,2

x(1)
k,t,2

Case 1 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(1.25, I)

Case 2 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(1.5, I)

Case 3 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(1.75, I)

Case 4 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(2, I)

Case 5 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(2.25, I)

Case 6 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(2, I) MVN(1, I) MVN(1, I) MVN(1, I)

Case 7 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1, I) MVN(1, I) MVN(1, I) MVN(2, I)

Case 8 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)

2 MVN(1, I) MVN(1, I) MVN(2, I) MVN(1, I)

For each simulation case, we generate 50 pairs of ten-
sor and matrix from both classes, collecting 100 pairs of
observations in total. We then perform a random train-
ing and testing set separation by randomly choosing 20
samples as the testing set, and use the remaining data
as the training set. The random selection of testing set
is conducted in a stratified sampling manner such that
the proportion of samples from each class remains the
same in both training and testing sets. For all models,
we report the model prediction accuracy, the proportion
of correct predictions over total predictions, on the test-
ing set as the performance metric. The random training
and testing set separation is repeated for 50 times and
the average prediction accuracy of these 50 repetitions for
all the cases are reported in Figure 3. In addition, the
SDs are illustrated by the error bars in the figure. The
results of CP-STM, CMDA, and DGTDA with tensor data
are denoted by CP-STM1, CMDA1, and DGTDA1, respec-
tively, in the figure. The results using matrix data are
denoted by CP-STM2, CMDA2, and DGTDA2.

From Figure 3, we can conclude that our C-STM has
a more favorable performance in this multimodal classi-
fication problem comparing with other competitors. Its
accuracy rates are significantly larger than other meth-
ods in most cases. Particularly, we can see that the accu-
racy rates of C-STM (orange) are increasing from Case
1 to Case 5, while the accuracy rates of CP-STM using

tensor data remain the same. This is because the differ-
ence between class mean vectors for the first tensor factor
does not change from Case 1 to Case 5. However, the gap
between class mean vectors in matrix factor increases. Due
to this fact, both C-STM and CP-STM (yellow) which uti-
lize matrix data are getting better performance from Case
1 to Case 5. More importantly, C-STM always outperforms
CP-STM with matrix data as it enjoys the extra class infor-
mation from multimodalities. In Case 6 and Case 7 where
class information are in single data modalities, the advan-
tage of C-STM is not as significant as the previous cases,
though its performances are slightly better than CP-STM.
This indicates C-STM can provide robust classification
results even when extra data modalities do not provide any
other class information, as it can extract more accurate
estimates of the factors in the decomposition step. In Case
8 where the class information is from the shared factors,
C-STM recovers the shared factors accurately and provides
significantly better classification accuracy. Through this
simulation, we showed that C-STM has a clear advantage
of using multimodal data in classification problems, and is
robust to redundant data modalities.

6.1 Kernel selection

In this section, we evaluate and justify the choice of the
kernel function presented in (9). In this formulation, the
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F I G U R E 3 Simulation result: average accuracy rates shown in bar plots; SD of accuracy rates shown by error bars
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individual and coupled modes for each modality are first
separated and then the individual modes of each modal-
ity are combined as a tensor kernel function. The kernels
from the individual modes are then added to those from
the coupled modes to obtain the final form where the
weights for the individual and coupled parts can be opti-
mized as discussed in the Appendix. This kernel formu-
lation separates the coupled and individual information
and integrates them as a linear combination. Although
this is not the only way to integrate kernels, the relatively
simple structure of such combination provides us with
several benefits such as interpretability, convenient param-
eter tuning, and generalizability for multimodal data. With
Equation (9), it is possible to explain the contribution of
different data modalities to discrimination power by look-
ing at the weights parameters. Further, with linear com-
bination of kernels, the weight parameters can be tuned
with the different approaches introduced in [29] such as
group lasso. Even though we do not adopt these tuning
techniques in this work, it still shows the advantage of
choosing such a combination and can be the foundation
for future work. Lastly, this kernel combination can be
extended for data with more modalities easily since kernels
are appended linearly.

Besides the aforementioned reasons, we also provide
numerical experiments to illustrate the performance of
our choice against other kernel combination choices. In
these experiments, the factor sizes are the same (𝒳1 ∈
R

40×40×40, and X2 ∈ R
40×40, r = 3) so that the kernels are

balanced across the modes. We consider two cases, that
is, Case 8 in Table 1, and Case 9 where the columns of
the latent factors corresponding to all individual and cou-
pled modes of the second class are from the distribution
MVN(2, I). Although there can be many different kernel
combinations, we select four particular formulations for
comparison as they can be a basis for other choices. The
particular formulations are the weighted combination of
individual kernels from all modes (K2), the weighted com-
bination of the tensor kernels corresponding to the two
modalities (K3) and the tensor kernel corresponding to all
modes across modalities (K4). The formulations for the
different kernels are given in Table 2. We report average
classification accuracy across 50 simulations, where the
simulated tensors are randomly initialized.

In Table 3, we can see that the kernel selection Schemes
K1 and K2 perform the best. K3 performs slightly worse as
it is not as flexible as the previous two. Finally, K4 performs
the worst as it is affected by all modes simultaneously, and
cannot generalize well. Although the difference in perfor-
mance between the kernels is not significant, K3 and K4
cannot determine whether the observed class differences
are due to an individual mode or a coupled mode. Thus,
K1 and K2 are better in terms of explaining the results. For

T A B L E 2 Various kernel combination schemes. Note that
K(2)

2 = K(3)
1

Combination scheme

K1 w1K(1)
1 K(2)

1 + w2K(3)
1 + w3K(1)

2

K2 w1K(1)
1 + w2K(2)

1 + w3K(3)
1 + w4K(1)

2

K3 w1K(1)
1 K(2)

1 K(3)
1 + w2K(1)

2 K(2)
2

K4 K(1)
1 K(2)

1 K(3)
1 K(1)

2

T A B L E 3 Classification accuracy using different kernel
combinations

K1 K2 K3 K4

Case 9 0.91 ± 0.036 0.9 ± 0.043 0.87 ± 0.038 0.82 ± 0.045

Case 8 0.90 ± 0.039 0.9 ± 0.038 0.88 ± 0.036 0.83 ± 0.06

Case 8, in most cases, cross-validation across a range of
weight parameters for K1 and K2 yields w2 = 1 and w3 = 1,
respectively, and the remaining weights are equal to zero.
This directly identifies the source of discriminability and
allows for better interpretability, which is not possible for
K3 and K4. Finally, K1 has less number of parameters
than K2 and this can be advantageous in cases with high
number of modalities. The smaller number of parame-
ters makes cross-validation simpler, while still allowing for
some interpretability.

7 TRIAL CLASSIFICATION FOR
SIMULTANEOUS EEG-FMRI DATA

In this section, we present the application of the proposed
method on simultaneous EEG-fMRI data. The simulta-
neous EEG-fMRI is one of the most popular noninvasive
multimodal brain imaging techniques to study human
brain function. EEG records electrical activity from the
scalp resulting from ionic current within the neurons of
the brain. Its millisecond temporal resolution makes it
possible to record event-related potentials that occur in
response to visual, auditory and sensory stimuli [1, 70].
Although EEG provides high temporal resolution, its spa-
tial resolution is limited by the number of electrodes
placed on the scalp and thus provides less spatial resolu-
tion compared to other neuroimaging modalities such as
MRI and PET. As a result, it has been commonplace to
record EEG data in conjunction with a high spatial res-
olution modality. As another powerful tool in studying
human brain function, blood oxygenation level-dependent
(BOLD) fMRI provides signals with much higher spa-
tial resolution to reflect hemodynamic changes in blood
oxygenation level at all voxels related to neuronal activities
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[11, 24, 41, 59]. Recording simultaneous EEG and fMRI
can provide high-resolution information at both the spatial
and temporal dimensions at the same time. Thus, develop-
ing novel machine learning techniques to utilize such mul-
timodal data is of great significance. In this application,
we apply our C-STM model to a binary trial classification
problem on a simultaneous EEG-fMRI data.

The data are obtained from the study of Walz et al.
[72]. In this study, there are 17 individuals (6 females,
average age 27.7) participated in 3 runs each of analogous
visual and auditory oddball paradigms. The 375 (125 per
run) total stimuli per task were presented for 200 ms each
with a 2–3 s uniformly distributed variable inter-trial inter-
val. A trial is defined as a time window in which subjects
receive stimuli and make responses. In the visual task,
a large red circle on isoluminant gray backgrounds was
considered as the target stimuli, and a small green cir-
cle were the standard stimuli. For the auditory task, the
standard and oddball stimuli were, respectively, 390 Hz
pure tones and broadband sounds which sound like “laser
guns.” During the experiment, the stimuli were presented
to all subjects, and their EEG and fMRI data are collected
simultaneously and continuously. We obtain the EEG and
fMRI data from OpenNeuro website (https://openneuro.
org/datasets/ds000116/versions/00003). We utilize both
EEG and fMRI in this data set with our C-STM model to
class stimulus types in all the trials. Through our numer-
ical study, we want to demonstrate the fact our C-STM
model enjoys the advantage of data multimodality and
provides more accurate class predictions. The data from
Subject 4 are dropped since its fMRI data are corrupted.
Due to the fact that the number of trials from each subject
is different, we further provide Table B1 in Appendix B to
show the number of trials for each subject.

We preprocess both the EEG and fMRI data with sta-
tistical parametric mapping (SPM 12) [9] and Matlab. The
EEG data are collected by a custom built MR-compatible
EEG system with 49 channels. Walz et al. [72] provide a
version of re-referenced EEG data with 34 channels which
are used in our experiment. This version of EEG data
is sampled at 1000 Hz and is downsampled to 200 Hz at
the beginning of pre-processing. We then remove both
low-frequency and high-frequency noise in the data using
SPM filter functions. As the last step of EEG preprocess-
ing, we define trials from brain imaging data structure
files [57] and extract EEG data epochs recorded within
the trial-related time windows. The time window for each
trial is considered to go from 100 ms before the stimulus
onset until 500 ms after the stimulus. For each trial, we
construct a three-mode tensor corresponding to the EEG
data for all subjects where the modes represent channel ×
time × subject. We denote it as 𝒳t,1 ∈ R

34×121×16. The fMRI
data are collected by 3 T Philips Achieva MR Scanner with

170 volumes (TR = 2 s) per session. Each 3D volume con-
tains 32 slices. The voxel size in the image is 3× 3× 4 mm.
For each subject, we realign all the fMRI volumes from
multiple sessions to the mean volume, and co-register the
participant’s T1-weighted anatomical scan to the mean
fMRI volume. Next, we normalize all the fMRI volumes to
match the MNI brain template [42] by creating segments
from co-registered T1-weighted scan, and keep the voxel
size as 3× 3× 4 mm. All normalized fMRI volumes are
then smoothed by 3D Gaussian kernels with full width at
half maximum (FWHM) parameter being 8 × 8 × 8. After
the preprocessing, we further perform a regular statistical
analysis [50, 75] to extract fMRI volumes from visual and
auditory stimulus related voxels. Such data are also known
as ROI data. We describe the ROI voxel identification and
data extraction in Appendix B. We extract fMRI volumes
from 178 voxels (in Figure 4a) for auditory oddball tasks,
and 112 voxels for auditory tasks. As a result, fMRI data are
modeled by matrices whose rows and columns stand for
voxels and subjects: 𝒳t,2 ∈ R

16×178 for auditory task data,
and 𝒳t,2 ∈ R

16×112 for visual task data. There is no time
mode in fMRI data because the trial duration is less than
the repetition time of fMRI (time for obtaining a single 3D
volume fMRI). For each trial, there is only one 3D scan of
fMRI collected from a single subject. The ROI data then
become a vector for this subject in the trial as we extract
volumes from the ROI.

To classify trials with oddball and standard stimulus,
we collect 140 multimodal data samples

(
𝒳t,1,𝒳t,2

)
from

auditory tasks, and 100 samples from visual tasks. For
both types of tasks, the numbers of oddball and stan-
dard trials are equal. We consider the trials with oddball
stimulus as the positive class, and the trials with stan-
dard stimulus as the negative class. Like the procedures
in our simulation study, we select 20% of data as testing
set, and use the remaining 80% for model estimation and
validation. The classification accuracy, precision (positive
predictive rate), sensitivity (true positive rate), and speci-
ficity (true negative rate) of classifiers are calculated using
the test set at each experiment. The experiment is repeated
multiple times, and the average accuracy, precision, sen-
sitivity, and specificity, and their SDs (in subscripts) are
reported in Table 4. The single mode classifiers CP-STM,
CMDA, and DGTDA are also applied on either EEG or
fMRI data as a comparison. The single-mode classifiers
applied on EEG data are denoted by appending the num-
ber “1” after their names, and those applied on fMRI data
are denoted by appending the number “2.” The area under
the curve (AUC) for all the classifiers is also reported
in Table 4.

The results in Table 4 show that the trial classifica-
tion accuracy for C-STM using multimodal data is bet-
ter than any classifier based on single modality with a

https://openneuro.org/datasets/ds000116/versions/00003
https://openneuro.org/datasets/ds000116/versions/00003
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(a) Auditory Task

(b) Visual Task

F I G U R E 4 Region of interest (ROI)

significant improvement in terms of average accuracy rates
and average AUC values. This improvement is observed for
classification of both auditory and visual tasks. This obser-
vation agrees to the conclusion from our simulation study.
Similar to our simulation study, the tensor discriminant
analysis does not work as well as CP-STM and C-STM. In
addition, it is obvious that the performance of tensor dis-
criminant analysis using fMRI data is better than using
EEG data. This is within our expectation, since the regions
we extracted from fMRI data are identified by group-level

fMRI statistical analysis (see Appendix B). The data in
these regions have already shown significant differences
between different trials in the traditional study, and thus
are easy to classify. On the other hand, there is no prior
analysis and feature extraction procedure applied on EEG
data, leaving a low signal to noise ratio in EEG data.
However, C-STM still can take advantage of using EEG
data and further increase the classification accuracy, high-
lighting its robustness and potential in processing noisy
multimodal tensor data.
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T A B L E 4 Real data result: simultaneous EEG-fMRI data trial classification (mean of performance metrics with SDs in subscripts)

Task Method Accuracy Precision Sensitivity Specificity AUC

Auditory C-STM 0.890.05 0.830.07 1.000.00 0.770.11 0.890.06

CP-STM1 0.800.08 0.710.11 1.000.00 0.600.12 0.780.06

CP-STM2 0.830.06 0.760.07 0.990.05 0.650.11 0.820.05

CDMA1 0.550.10 0.510.09 0.960.09 0.200.21 0.550.06

CDMA2 0.670.09 0.610.11 0.920.07 0.460.14 0.700.08

DGTDA1 0.550.09 0.510.09 0.940.07 0.230.12 0.590.06

DGTDA2 0.670.09 0.600.10 0.900.09 0.460.13 0.680.08

Visual C-STM 0.860.06 0.820.09 0.930.07 0.770.12 0.860.06

CP-STM1 0.760.08 0.660.11 1.000.00 0.540.12 0.780.05

CP-STM2 0.770.08 0.700.11 0.980.08 0.580.17 0.770.07

CDMA1 0.530.12 0.520.11 0.940.11 0.110.18 0.540.08

CDMA2 0.650.13 0.610.14 0.910.09 0.430.19 0.660.09

DGTDA1 0.560.11 0.540.11 0.940.06 0.170.12 0.560.07

DGTDA2 0.640.10 0.600.13 0.860.10 0.440.18 0.640.07

Abbreviations: AUC, area under the curve; CMDA, constrained multilinear discriminant analysis; C-STM, coupled support tensor machine; DGTDA, direct
general tensor discriminant analysis; EEG, electroencephalography; fMRI, functional magnetic resonance imaging.

8 CONCLUSION

In this work, we have proposed a novel C-STM classi-
fier for multimodal data by combining the ACMTF and
STM. The most distinctive feature of this classifier is its
ability to integrate features across different modalities
and structures. The proposed approach can simultane-
ously take matrix- and tensor-shaped data for classifica-
tion and can be easily extended to inputs with more than
two modalities. The coupled matrix–tensor decomposi-
tion unveils the intrinsic correlation structure between
data across different modalities, making it possible to inte-
grate information from multiple sources efficiently. Such
decomposition also makes the whole method robust and
applicable to large-scale noisy data with missing values.
The newly designed kernel functions in C-STM provide
feature-level information fusion, combining discriminant
information from different modalities. Moreover, the ker-
nel formulation makes it possible to utilize the most dis-
criminative features from each modality by tuning the
weight parameters in the function. Our theoretical results
demonstrate that the C-STM decision rule is statistically
consistent.

The most important theoretical extension of our cur-
rent approach would be the development of excess risk
for C-STM. In particular, we are looking for an explicit
expression for the excess risk in terms of data factors from
multiple modalities to quantify the contribution of every

single modality in minimizing the excess risk. By doing
so, we are able to interpret the importance of each data
modality in classification tasks. In addition, quantifying
the uncertainty of tensor and matrix factors estimation and
their impact on the excess risk will build the foundation to
the next level.

Future work will focus on learning the weight parame-
ters in the kernel function via optimization. As Gönen and
Alpayd𝚤n [29] introduced, the weights in the kernel func-
tion can be further estimated by including a group lasso
penalty in the objective function. Such a weight estimation
procedure can identify the most significant data compo-
nents and reduce the burden of parameter selection. In
addition, the proposed framework can be extended to mul-
timodal tensors with more than two modalities, and for
regression problems.

In conclusion, we believe C-STM offers many encour-
aging possibilities for multimodal data integration and
analysis. Its capability of handling multimodal tensor
inputs will make it appropriate in many advanced data
applications in neuroscience and medical research. We
anticipate that this method will play an important role in
a variety of applications.

ACKNOWLEDGMENTS
The authors like to thank the reviewers and the editors for
their helpful comments. This work was in part supported
by NSF DMS-1924724.



16 LI et al.

DATA AVAILABILITY STATEMENT
Data for the simulation study is generated by our own pro-
cedures and the codes are provided for this. Data for the
real data experiments are available online and the iden-
tifiers and necessary references are provided within the
manuscript.

ORCID
Seyyid Emre Sofuoglu https://orcid.org/0000-0003-
3699-0053

REFERENCES
1. R. Abreu, A. Leal, and P. Figueiredo, EEG-informed fMRI: A

review of data analysis methods, Front. Hum. Neurosci. 12
(2018), 29.

2. E. Acar, T. G. Kolda, and D. M. Dunlavy, All-at-once optimiza-
tion for coupled matrix and tensor factorizations. arXiv Preprint
arXiv:1105.3422, 2011

3. E. Acar, Y. Levin-Schwartz, V. D. Calhoun, and T. Adali, ACMTF
for fusion of multi-modal neuroimaging data and identification
of biomarkers, 2017 25th Eur. Signal Process. Conf. (EUSIPCO),
IEEE, Kos, Greece, 2017, pp. 643–647.

4. E. Acar, Tensor-based fusion of EEG and fMRI to under-
stand neurological changes in schizophrenia, 2017 IEEE Int.
Symp. Circ. Syst. (ISCAS), IEEE, Baltimore, MD, USA, 2017,
pp. 1–4.

5. E. Acar, E. E. Papalexakis, G. Gürdeniz, M. A. Rasmussen, A. J.
Lawaetz, M. Nilsson, and R. Bro, Structure revealing data fusion,
BMC Bioinform. 15 (2014), no. 1, 1–17.

6. E. Acar, C. Schenker, Y. Levin-Schwartz, V. D. Calhoun, and
T. Adali, Unraveling diagnostic biomarkers of schizophrenia
through structure-revealing fusion of multi-modal neuroimaging
data, Front. Neurosci. 13 (2019), 416.

7. J. S. Anderson, J. A. Nielsen, A. L. Froehlich, M. B. DuBray,
T. J. Druzgal, A. N. Cariello, J. R. Cooperrider, B. A. Zielinski,
C. Ravichandran, P. T. Fletcher, A. L. Alexander, E. D. Bigler,
N. Lange, and J. E. Lainhart, Functional connectivity magnetic
resonance imaging classification of autism, Brain 134 (2011), no.
12, 3742–3754.

8. A. Argyriou, C. A. Micchelli, and M. Pontil, When is there a repre-
senter theorem? Vector versus matrix regularizers, J. Mach. Learn.
Res. 10 (2009), 2507–2529.

9. J. Ashburner, G. Barnes, C.-C. Chen, J. Daunizeau, G. Flandin,
K. Friston, S. Kiebel, J. Kilner, V. Litvak, R. Moran, W. Penny,
K. Stephan, P. Zeidman, D. Gitelman, R. Henson, C. Hutton,
V. Glauche, J. Mattout, and C. Phillips, Spm12 manual, Well-
come Trust Centre for Neuroimaging, London, UK, 2014 p. 2464.

10. F. R. Bach, Consistency of the group lasso and multiple kernel
learning, J. Mach. Learn. Res. 9 (2008), no. 6.

11. J. Belliveau, D. Kennedy, R. McKinstry, B. Buchbinder, R. Weis-
skoff, M. Cohen, J. Vevea, T. Brady, and B. Rosen, Functional
mapping of the human visual cortex by magnetic resonance imag-
ing, Science 254 (1991), no. 5032, 716–719.

12. A. Ben-Hur and W. S. Noble, Kernel methods for predict-
ing protein–protein interactions, Bioinformatics 21 (2005), no.
suppl_1, i38–i46.

13. K. P. Bennett, M. Momma, and M. J. Embrechts, Mark: A
boosting algorithm for heterogeneous kernel models, Proc. Eighth

ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, Alberta,
Canada, 2002, pp. 24–31.

14. X. Bi, X. Tang, Y. Yuan, Y. Zhang, and A. Qu, Tensors in statistics,
Annu. Rev. Stat. Appl. 8 (2020), 345–368.

15. M. Brett, K. Christoff, R. Cusack, and J. Lancaster, Using the
talairach atlas with the MNI template, NeuroImage 13 (2001), no.
6, 85.

16. V. D. Calhoun, T. Adali, N. Giuliani, J. Pekar, K. Kiehl, and
G. Pearlson, Method for multimodal analysis of independent
source differences in schizophrenia: Combining gray matter struc-
tural and auditory oddball functional data, Hum. Brain Mapp.
27 (2006), no. 1, 47–62.

17. C. Chatzichristos, M. Davies, J. Escudero, E. Kofidis, and
S. Theodoridis, Fusion of EEG and fMRI via soft coupled ten-
sor decompositions, 2018 26th Eur. Signal Process. Conference
(EUSIPCO), Rome, Italy, IEEE, 2018, pp. 56–60.

18. C. Chatzichristos, E. Kofidis, L. De Lathauwer, S. Theodoridis,
and S. Van Huffel, Early soft and flexible fusion of EEG and fMRI
via tensor decompositions. arXiv Preprint arXiv:2005.07134,
2020.

19. M. Christoudias, R. Urtasun, and T. Darrell, Bayesian local-
ized multiple kernel learning, University of California, Berkeley,
Berkeley, CA, 2009.

20. L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of
pattern recognition, Vol 31, Springer Science & Business Media,
Berlin, Germany, 2013.

21. Y. Ding, J. H. Sohn, M. G. Kawczynski, H. Trivedi, R. Harnish,
N. W. Jenkins, D. Lituiev, T. P. Copeland, M. S. Aboian, C. Mari
Aparici, S. C. Behr, R. R. Flavell, S.-Y. Huang, K. A. Zalocusky,
L. Nardo, Y. Seo, R. A. Hawkins, M. H. Pampaloni, D. Hadley,
and B. L. Franc, A deep learning model to predict a diagnosis of
alzheimer disease by using 18f-fdg pet of the brain, Radiology 290
(2019), no. 2, 456–464.

22. R. Durrett, Probability: Theory and examples, Vol 49, Cambridge
University Press, Cambridge, United Kingdom, 2019.

23. H. Fanaee-T and J. Gama, Simtensor: A synthetic tensor data
generator. arXiv Preprint arXiv:1612.03772, 2016.

24. M. Filippi, N. DeStefano, V. Dousset, and J. C. McGowan, MR
imaging in white matter diseases of the brain and spinal cord,
Springer, Berlin, Germany, 2005.

25. G. Fung, M. Dundar, J. Bi, and B. Rao, A fast iterative
algorithm for fisher discriminant using heterogeneous kernels,
Proc. Twenty-First Int. Conf. Mach. Learn., 2004, p. 40.

26. M. R. Gahrooei, H. Yan, K. Paynabar, and J. Shi, Multiple
tensor-on-tensor regression: An approach for modeling processes
with heterogeneous sources of data, Technometrics 63 (2021), no.
2, 147–159.

27. G. Gavidia-Bovadilla, S. Kanaan-Izquierdo, M. Mataró-Serrat,
A. Perera-Lluna, and ADNI, Early prediction of alzheimer’s dis-
ease using null longitudinal model-based classifiers, PLoS One 12
(2017), no. 1, e0168011.

28. M. Girolami and M. Zhong, Data integration for classification
problems employing Gaussian process priors, Advances in Neural
Information Processing Systems 19, Proc. 2006 Conf., Vancou-
ver, Canada, vol. 19, MIT Press, 2007, p. 465.

29. M. Gönen and E. Alpayd𝚤n, Multiple kernel learning algorithms,
J. Mach. Learn. Res. 12 (2011), 2211–2268.

30. A. R. Groves, C. F. Beckmann, S. M. Smith, and M. W. Wool-
rich, Linked independent component analysis for multimodal
data fusion, NeuroImage 54 (2011), no. 3, 2198–2217.

https://orcid.org/0000-0003-3699-0053
https://orcid.org/0000-0003-3699-0053
https://orcid.org/0000-0003-3699-0053


LI et al. 17

31. W. W. Hager and H. Zhang, A survey of nonlinear conjugate
gradient methods, Pacific J. Optim. 2 (2006), no. 1, 35–58.

32. L. He, X. Kong, P. S. Yu, X. Yang, A. B. Ragin, and Z. Hao, Dusk:
A dual structure-preserving kernel for supervised tensor learning
with applications to neuroimages, Proc. 2014 SIAM Int. Conf.
Data Mining, SIAM, Shenzen, China, 2014, pp. 127–135.

33. L. He, C.-T. Lu, G. Ma, S. Wang, L. Shen, P. S. Yu, and
A. B. Ragin, Kernelized support tensor machines, Proc. 34th Int.
Conf. Mach. Learn., Sydney, Australia, vol. 70, JMLR.org, 2017,
pp. 1442–1451.

34. R. N. Henson, H. Abdulrahman, G. Flandin, and V. Litvak, Mul-
timodal integration of M/EEG and f/MRI data in spm12, Front.
Neurosci. 13 (2019), 300.

35. M. H. Kamstrup-Nielsen, L. G. Johnsen, and R. Bro, Core con-
sistency diagnostic in parafac2, J. Chemom. 27 (2013), no. 5,
99–105.

36. E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A.
Valdés-Hernández, and P. A. Valdes-Sosa, Tensor analysis and
fusion of multimodal brain images, Proc. IEEE 103 (2015), no. 9,
1531–1559.

37. A. Khazaee, A. Ebrahimzadeh, and A. Babajani-Feremi, Appli-
cation of advanced machine learning methods on resting-state
fMRI network for identification of mild cognitive impairment
and Alzheimer’s disease, Brain Imaging Behav. 10 (2016), no. 3,
799–817.

38. M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and
A. Zien, Efficient and accurate LP-norm multiple kernel learning,
NIPS 22 (2009), 997–1005.

39. T. G. Kolda and B. W. Bader, Tensor decompositions and applica-
tions, SIAM Rev. 51 (2009), no. 3, 455–500.

40. J. B. Kruskal, Three-way arrays: Rank and uniqueness of trilin-
ear decompositions, with application to arithmetic complexity and
statistics, Linear Algebra Appl. 18 (1977), no. 2, 95–138. https://
doi.org/10.1016/0024-3795(77)90069-6.

41. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M.
Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S.
Cohen, and R. Turner, Dynamic magnetic resonance imaging of
human brain activity during primary sensory stimulation, Proc.
Natl. Acad. Sci. 89 (1992), no. 12, 5675–5679.

42. J. L. Lancaster, D. Tordesillas-Gutiérrez, M. Martinez, F.
Salinas, A. Evans, K. Zilles, J. C. Mazziotta, and P. T. Fox,
Bias between MNI and Talairach coordinates analyzed using the
ICBM-152 brain template, Hum. Brain Mapp. 28 (2007), no. 11,
1194–1205.

43. G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan, Learning the kernel matrix with semidefinite program-
ming, J. Mach. Learn. Res. 5 (2004), 27–72.

44. X. Lei, P. A. Valdes-Sosa, and D. Yao, EEG/fMRI fusion based
on independent component analysis: Integration of data-driven
and model-driven methods, J. Integr. Neurosci. 11 (2012), no. 03,
313–337.

45. P. Li and T. Maiti, Universal consistency of support tensor
machine, 2019 IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA),
Washington, DC, IEEE, 2019, pp. 608–609.

46. Q. Li and L. Li, Integrative factor regression and its inference
for multimodal data analysis. arXiv Preprint arXiv:1911.04056,
2019.

47. Q. Li and D. Schonfeld, Multilinear discriminant analysis for
higher-order tensor data classification, IEEE Trans. Pattern Anal.
Mach. Intell. 36 (2014), no. 12, 2524–2537.

48. X. Li, D. Xu, H. Zhou, and L. Li, Tucker tensor regression and
neuroimaging analysis, Stat. Biosci. 10 (2018), no. 3, 520–545.

49. Y. Li, L. Zhang, A. Bozoki, D. C. Zhu, J. Choi, and T. Maiti, Early
prediction of Alzheimer’s disease using longitudinal volumetric
MRI data from ADNI, Health Serv. Outcomes Res. Methodol. 20
(2020), no. 1, 13–39.

50. M. A. Lindquist, The statistical analysis of fMRI data, Stat. Sci.
23 (2008), no. 4, 439–464.

51. J. Liu, G. Pearlson, A. Windemuth, G. Ruano, N. I.
Perrone-Bizzozero, and V. Calhoun, Combining fMRI and SNP
data to investigate connections between brain function and genet-
ics using parallel ICA, Hum. Brain Mapp. 30 (2009), no. 1,
241–255.

52. S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng, Early
diagnosis of Alzheimer’s disease with deep learning, 2014 IEEE
11th Int. Symp. Biomed. Imaging (ISBI), Beijing, China, IEEE,
2014, pp. 1015–1018.

53. E. F. Lock, Tensor-on-tensor regression, J. Comput. Graph. Stat.
27 (2018), no. 3, 638–647.

54. X. Long, L. Chen, C. Jiang, L. Zhang, and A. D. N. Initia-
tive, Prediction and classification of Alzheimer disease based on
quantification of MRI deformation, PLoS One 12 (2017), no. 3,
e0173372.

55. J. C. Morris, C. M. Roe, E. A. Grant, D. Head, M. Storandt,
A. M. Goate, A. M. Fagan, D. M. Holtzman, and M. A. Mintun,
Pittsburgh compound B imaging and prediction of progression
from cognitive normality to symptomatic Alzheimer disease, Arch.
Neurol. 66 (2009), no. 12, 1469–1475.

56. R. Mosayebi and G.-A. Hossein-Zadeh, Correlated coupled
matrix tensor factorization method for simultaneous EEG-fMRI
data fusion, Biomed. Signal Process. Control 62 (2020), 102071.

57. G. Niso, K. J. Gorgolewski, E. Bock, T. L. Brooks, G. Flandin,
A. Gramfort, R. N. Henson, M. Jas, V. Litvak, J. T. Moreau,
R. Oostenveld, J.-M. Schoffelen, F. Tadel, J. Wexler, and S. Bail-
let, Meg-BIDS, the brain imaging data structure extended to mag-
netoencephalography, Sci. Data 5 (2018), no. 1, 1–5.

58. J. Nocedal and S. Wright, Numerical optimization, Springer Sci-
ence & Business Media, Berlin, Germany, 2006.

59. S. Ogawa, T.-M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic
resonance imaging with contrast dependent on blood oxygenation,
Proc. Nat. Acad. Sci. 87 (1990), no. 24, 9868–9872.

60. Y. Pan, Q. Mai, and X. Zhang, Covariate-adjusted tensor classi-
fication in high dimensions, J. Am. Stat. Assoc. 114:527 (2018),
1–15.

61. P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy, Gene func-
tional classification from heterogeneous data, Proc. Fifth Annu.
Int. Conf. Comput. Biol., Quebec, Canada, 2001, pp. 249–255.

62. M. J. Powell, Nonconvex minimization calculations and the con-
jugate gradient method. Numerical analysis, Springer, Berlin,
Germany, 1984, 122–141.

63. S. Qiu and T. Lane, A framework for multiple kernel support vec-
tor regression and its applications to siRNA efficacy prediction,
IEEE/ACM Trans. Comput. Biol. Bioinform. 6 (2008), no. 2,
190–199.

64. K. A. Schindlbeck and D. Eidelberg, Network imaging biomark-
ers: Insights and clinical applications in Parkinson’s disease,
Lancet Neurol. 17 (2018), no. 7, 629–640.

65. S. Shalev-Shwartz and S. Ben-David, Understanding machine
learning: From theory to algorithms, Cambridge University Press,
Cambridge, 2014.

https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6


18 LI et al.

66. I. Steinwart and A. Christmann, Support vector machines,
Springer Science & Business Media, Berlin, Germany, 2008.

67. J. Sui, G. Pearlson, A. Caprihan, T. Adali, K. A. Kiehl, J.
Liu, J. Yamamoto, and V. D. Calhoun, Discriminating
schizophrenia and bipolar disorder by fusing fMRI and DTI in a
multimodal CCA+ joint ICA model, NeuroImage 57 (2011), no.
3, 839–855.

68. H. Tanabe, T. B. Ho, C. H. Nguyen, and S. Kawasaki, Simple
but effective methods for combining kernels in computational
biology, 2008 IEEE Int. Conf. Res. Innov. Vis. Fut. Comput.
Commun. Technol., Ho Chi Minh City, Vietnam, IEEE, 2008,
pp. 71–78.

69. D. Tao, X. Li, W. Hu, S. Maybank, and X. Wu, Supervised tensor
learning, Fifth IEEE Int. Conf. Data Mining (ICDM’05), Rio de
Janerio, Brazil, IEEE, 2005, 8 pp.

70. M. Teplan, Fundamentals of EEG measurement, Measure. Sci.
Rev. 2 (2002), no. 2, 1–11.

71. M. Varma and D. Ray, Learning the discriminative
power-invariance trade-off , 2007 IEEE 11th Int. Conf. Comput.
Vis., Rio de Janerio, Brazil, IEEE, 2007, pp. 1–8.

72. J. M. Walz, R. I. Goldman, M. Carapezza, J. Muraskin, T. R.
Brown, and P. Sajda, Simultaneous EEG-fMRI reveals tempo-
ral evolution of coupling between supramodal cortical attention
networks and the brainstem, J. Neurosci. 33 (2013), no. 49,
19212–19222.

73. P. Wolfe, Convergence conditions for ascent methods, SIAM Rev.
11 (1969), no. 2, 226–235.

74. P. Wolfe, Convergence conditions for ascent methods. ii: Some
corrections, SIAM Rev. 13 (1971), no. 2, 185–188.

75. K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. Duncan,
F. Morales, and A. Evans, A general statistical analysis for fMRI
data, NeuroImage 15 (2002), no. 1, 1–15.

76. T. Zhang, Statistical behavior and consistency of classification
methods based on convex risk minimization, Ann. Stat. 32 (2004),
no. 1, 56–85.

77. H. Zhou, L. Li, and H. Zhu, Tensor regression with applications
in neuroimaging data analysis, J. Am. Stat. Assoc. 108 (2013), no.
502, 540–552.

78. G. Zoutendijk, Computational methods in nonlinear program-
ming Studies in Optimization 1. (1970), 125.

How to cite this article: P. Li, S. E. Sofuoglu,
S. Aviyente, and T. Maiti, Coupled support tensor
machine classification for multimodal
neuroimaging data, Stat. Anal. Data Min.: ASA Data
Sci. J. (2022), 1–22. https://doi.org/10.1002/sam.
11587

APPENDIX A. PROOF OF THEOREM 2

Proof . To prove the proposition 2, we introduce few
more notations here. Let  be the loss function satisfying
the condition AS.2. We denote the classification risk for an

arbitrary decision function, f, as

(f) = E𝒳×𝒴(y, f(𝒳 )) = ∫ (y, f(𝒳 ))dP.

The expectation is taken over the joint distribution of 𝒳 ×
𝒴 . Notice that this risk notation, (f), is different from
our notation (f) in Section 5 since we use the Lipschitz
continuous loss  instead of the “zero–one” loss to mea-
sure the classification error.  is also called surrogate loss
for classification problems. Examples of such surrogate
loss functions include hinge loss and squared hinge loss.
Comparison of these loss functions and their statistical
properties can be found in [76]. If we denote the Bayes risk
under the surrogate loss  as ∗, that is, ∗ = min(f)
for all measurable function f , then the result from [76]
says  (fn) → ∗ indicates  (fn) → ∗ for any decision
rule {fn}. This conclusion holds as long as the surrogate
loss is “self-calibrated” [66]. Since we use hinge loss in
our problem, and hinge loss is known to be Lipschitz and
self-calibrated, our assumption AS.2 holds in our discus-
sion. Thus, we only need to show  (fn) → ∗ for the
proof of our Proposition 2.

Given the tuning parameter 𝜆 satisfying condition
AS.4, we denote

f𝜆n = arg min
f∈

𝜆 ⋅ ||f||2 + 1
n

n∑
i=1

 (f (𝒳i) , yi) ,

where  is the RKHS generated by the kernel function (9).
As we mentioned in Section 3,  is also known as the col-
lection of functions which are in the form of Equation (11).
Now we further assume

f𝜆 = arg min
f∈

𝜆 ⋅ ||f||2 +(f).

Then f𝜆 is the optimal decision function from  such that
it minimizes the expected risk. Comparing f𝜆n with f𝜆, we
can understand that f𝜆 is the version of f𝜆n when the size of
training data is as large as possible. If we denote ,Tn (f) =
1
n

∑n
i=1 (f (𝒳i) , yi), then ,Tn (f) is a sample estimate of

(f). With f𝜆, we can show that

|
(
f𝜆n
)
−∗| ≤ |

(
f𝜆n
)

−
(
f𝜆
) | + |

(
f𝜆
)
−∗|

through triangular inequality. Since the Bayes risk under
loss function  is defined as ∗ = min

f∶𝒳→𝒴
(f) over all

functions defined on 𝒳 , we can immediately show that

| (
f𝜆
)
−∗| ≤ E(𝒳×𝒴 )| (

y, f𝜆(𝒳 )
)
−  (

y, f∗(𝒳 )
) |

https://doi.org/10.1002/sam.11587
https://doi.org/10.1002/sam.11587


LI et al. 19

≤ C (Kmax) sup |f𝜆 − f∗|
≤ C (Kmax) ⋅ 𝜀. (A1)

This is the result of using condition AS.1 and AS.2 in the
Proposition 2. f𝜆 is in the RKHS and thus bounded by
some constant depending on Kmax. f∗ is also continuous on
compact subspace 𝒳 (because all the tensor components
considered are bounded in condition AS.1) and thus is
bounded. The universal approximating property in con-
dition AS.3 makes Equation (A1) vanishes as 𝜀 goes
to zero. Thus, the consistency result can be established
if we show | (

f𝜆n
)
− (

f𝜆
) | converges to zero. This

can be done with Rademacher complexity (see chap.
26 in [65]).

From the objective function (10), we have

,Tn (fn) + 𝜆n‖fn‖2 ≤ L0 (A2)

under condition AS.2 when we simply let f = 0 as a
naive classifier. Thus, ‖‖‖fn

‖‖‖ ≤ √
L0
𝜆n

. Let Mn =
√

L0
𝜆n

. f𝜀 ∈

 such that  (f𝜀) ≤ 
(
f𝜆
)
+ 𝜀

2
. ‖‖‖f𝜀

‖‖‖ ≤ Mn when n is
sufficiently large. Due to condition AS.4, 𝜆n → 0, making
Mn → ∞. Further notice that we introduce f𝜀 since it is
independent of n. As a result, its norm, even though is
bounded by Mn, is a constant and is not changing with
respect to n. By Rademacher complexity, the following
inequality holds with probability at least 1 − 𝛿, where 0 <

𝛿 < 1:


(
f𝜆n
) ≤ ,Tn

(
f𝜆n
)
+ 2C (Kmax)Mn√

n

+ (L0 + C (Kmax)Mn)
√

log 2∕𝛿
2n

,

f𝜀 is not the optimal in training data

≤ ,Tn (f𝜀) + 𝜆n‖f𝜀‖2 − 𝜆n
‖‖‖f𝜆n

‖‖‖2

+ 2C (Kmax)Mn√
n

+ (L0 + C (Kmax)Mn)
√

log 2∕𝛿
2n

,

Drop
(
𝜆n
‖‖‖f𝜆n

‖‖‖2
> 0

) ≤ ,Tn (f𝜀) + 𝜆n‖f𝜀‖2

+ 2C (Kmax)Mn√
n

+ (L0 + C (Kmax)Mn)
√

log 2∕𝛿
2n

,

Rademacher Complexity again

≤  (f𝜀) + 𝜆n‖f𝜀‖2 + 4C (Kmax)Mn√
n

+ 2 (L0 + C (Kmax)Mn)
√

log 2∕𝛿
2n

.

Let 𝛿 = 1
n2 , and N large such that for all n > N,

𝜆n‖f𝜀‖2 + 4C (Kmax)Mn√
n

+ 2 (L0 + C (Kmax)Mn)
√

log 2∕𝛿
2n

≤ 𝜀

2
.

The inequality exists because ‖‖‖f𝜀
‖‖‖ is a constant with

respect to n, and all other terms are converging to zero.
Thus,


(
f𝜆n
) ≤  (f𝜀) + 𝜀

2
≤ 

(
f𝜆
)
+ 𝜀

with probability 1 − 1
n2 . We conclude that

P
(

(
f𝜆n
)
−

(
f𝜆
) | ≥ 𝜀

)
→ 0 (A3)

for any arbitrary 𝜀. This establishes the weak consistency
of CP-STM. For strong consistency, we consider for each n

∞∑
n=1

P
(

(
f𝜆n
)
−

(
f𝜆
) | ≥ 𝜀

) ≤ N − 1 +
∞∑

n=1

1
n2 ≤ ∞.

By Borel–Cantelli lemma [22], 
(
f𝜆n
)
→ 

(
f𝜆
)

almost
surely. The proof is finished.

APPENDIX B. DATA PRE-PROCESSING FOR
SECTION 7

We provide further details about our EEG-fMRI data
preprocessing and fMRI data extraction in this section.
Most of the processing steps are referred from [34]. Infor-
mation about the number of trials per subject can be seen
in Table B1.

B.1.fMRI Data
The fMRI data processing includes three major steps,

which are preprocessing, ROIs identification, and data
extraction. We describe all these steps here. All the steps
are performed by SPM 12 in Matlab. There are five steps
in the image preprocessing part including realignment,
co-registration, segment, normalization, and smoothing.

• Realignment: It is a procedure to align all the 3D BOLD
volumes recorded along the time to remove artifacts
caused by head motions, and also to estimate head posi-
tion. For each task, there are three sessions of fMRI
scans, providing 510 scans in total for each subject.
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T A B L E B1 EEG-fMRI data: number of trials per subject

Tasks
Auditory
oddball

Auditory
standard

Visual
oddball

Visual
standard

Subject 1 75 299 75 299

Subject 2 70 287 70 287

Subject 3 74 296 74 296

Subject 5 74 299 74 299

Subject 6 75 290 75 290

Subject 7 73 295 73 295

Subject 8 72 297 72 297

Subject 9 75 297 75 298

Subject 10 72 298 72 298

Subject 11 70 293 70 293

Subject 12 74 299 74 299

Subject 13 71 297 71 297

Subject 14 75 296 75 296

Subject 15 72 295 72 295

Subject 16 74 293 74 293

Subject 17 73 295 73 295

These scans are realigned within subject to the average
of these 510 scans. (average across time) In SPM, we cre-
ate three independent sessions to load all the fMRI runs,
and choose not to reslice all the images at this step. The
reslicing will be done in normalization step. Avoiding
extra reslicing can avoid introducing new artifacts. The
mean scan is created in this step for co-registration.

• Co-registration: Since all the fMRI scans are aligned to
the mean scan, we have to transform the T1-weighted
anatomical scan to match their orientation. Reason for
doing this is that all the data will finally be transformed
to a standardized space. Estimating such a transforma-
tion with T1-weighted scan can provide a high accuracy,
since anatomical scans have higher resolutions. Match-
ing the orientation of T1-weighted scan with all the
fMRI scans makes it possible to apply the transforma-
tion estimated from T1 scan directly on fMRI data. In
this step, we let the mean fMRI scan to be stationary,
and move T1 anatomical scan to match it. A resliced T1
weighted scan is created in this step.

• Segment: This step estimate a deformation transforma-
tion mapping data into MNI 152 template space [15, 42].
A forward deformation field is created in this step.

• Normalization: In this step, the forward deformation is
applied to all realigned fMRI scans, transforming all the
data into MNI template space. The voxel size is set to be
3 × 3 × 4 mm, which is the same as the original images.

• Smoothing: All normalized fMRI volumes are then
smoothed by 3D Gaussian kernels with FWHM param-
eter being 8 × 8 × 8.

This preprocessing procedure is applied to auditory
and visual fMRI scans separately and independently.

For each task, the processed fMRI are used to for statis-
tical analysis introduced in [50, 75]. These models are basic
linear mixed effect model with auto-regression covariance
structure. Since these models are standard and are out of
the scope of this dissertation, we do not introduce them
in this part. For the first-level (subject-level) analysis, we
use the model to estimate two contrast images: standard
stimulus over baseline and oddball stimulus over baseline.
These two are difference of average BOLD signals during
stimulus time and that during no stimulus (baseline) time.
They can be understand as the estimate 𝛽 in a regression
model y = x𝛽 + 𝜀. These contrasts are then pooled together
in the group-level analysis. For each voxel, the group-level
analysis performs a T-test to compare the BOLD signals in
standard contrasts and oddball contrasts. For voxels whose
test results are significant, SPM highlighted them as the
ROI. The ROIs of auditory and visual tasks are presented
in Figures B1 and B2 with p-values.

The coordinates of these activate voxels are also pro-
vided in the statistical analysis results. To extract ROI data,
we can use “spm_get_data” function in SPM 12. Since we
are classifying trials, we only take one fMRI scan for each
trial. This is because the trial duration (0.6 s) is less than
the repetition time (2 s) of fMRI data. For each trial, we
take the k-th fMRI scan where “k = round(onset/TR)+ 1”.
This option is also inspired by SPM codes.

B.2.EEG data
The preprocessing of EEG data is relatively easy com-

paring to fMRI, since all EEG are already converted to
MAT file and are re-referenced. Thus, we only need to
resample it using Matlab signal processing toolbox to
a lower sampling rates, which is 200 Hz in our case.
Then, we use function “ft_preproc_lowpassfilter” and
“ft_preproc_highpassfilter” from SPM 12 toolbox to filter
the data. Finally, we split EEG into epochs which starts
100 ms before the onset and ends 500 ms after the onset.
According to Henson et al. [34], such a duration is long
enough to capture the event-related potential for EEG data.

APPENDIX C. PARAMETER SELECTION

C.1 Multimodal tensor factorization
The proposed model requires the selection of three differ-
ent parameters, namely, 𝛾 , 𝛽, and rank r. To select these
parameters, we closely follow best practices outlined in



LI et al. 21

F I G U R E B1 Auditory functional
magnetic resonance imaging (fMRI)
group-level analysis

previous work on CMTF [2], ACMTF [5], and CCMTF
[56]. First of all, one of these parameter can be set to 1
as a pivot, and following previous work, we set 𝛾 = 1. The
selection of rank r is directly related to the selection of 𝛽. As
𝛽 enforces sparsity over the singular values, it directly min-
imizes the rank. With sufficiently large r, we can estimate
the low-rank part through optimization. For the selec-
tion of r in real data, we set r = 5 following the work of
Mosayebi and Hossein-Zadeh [56], where it was shown
through CORCONDIA tests [35] that r = 3 is sufficiently
large for oddball data. In the case of the simulation study,
r = 5 is again sufficiently large as the data were generated
from rank r = 3 factors. Finally, based on our empirical
results and the results presented in [56] we set 𝛽 = 0.001
using k-fold cross-validation.

C.2 Coupled support tensor machine
The parameters in C-STM include kernel weights
w1,w2,w3 and regularization parameter 𝜆 in the optimiza-
tion. The weight parameters, normalized such that the
𝓁2-norm is equal to 1, and 𝜆 are selected using fivefold
cross-validation. The overall classification accuracy in our
validation set serves as the performance metric and helps
us determine the best combination of weights and 𝜆.

The selection of weight parameters w1,w2,w3 is
indeed a problem of how to combine kernels from dif-
ferent modalities. It is straightforward to calculate ker-
nels from every data modality, however, combining them
appropriately and effectively would be challenging unless
we can find out the weight for each kernel. This problem
has been widely studied in the literature of MKL. In
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F I G U R E B2 Visual functional
magnetic resonance imaging (fMRI)
group-level analysis

[29], the authors summarize that the existing methods
of kernel weight selection can be divided into five cate-
gories, including fixed rules, heuristic approaches, opti-
mization approaches, Bayesian approaches, and boosting
approaches. As there is no consensus on the best way to
choose the weights, we adopt a cross-validation approach
as explained in the Appendix of the revised manuscript to
identify the kernel weights. The overall classification accu-
racy in our validation set serves as the performance metric
and helps us determine the best combination of weights.

The generalization of our method to more than
two modalities would be straightforward for tuning the

weights. This is because the tuning problem has been
widely studied in MKL research. There is no restriction on
the number of kernels one can include in MKL framework.
The weight selection techniques in MKL can be adapted to
our framework.

The optimization problem defined in (10) is an ordi-
nary SVM problem once the kernel values are calculated
through Equation (9). Thus, for more information about
the estimation procedure, 𝜆 selection as well as the con-
sistency results readers are referred to the existing SVM
literature [66].
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